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Abstract 
In this work, a rigorous tray-by-tray distillation column model is presented based on a 
new open-source modeling framework built on Pyomo that is designed to specifically 
support optimization of steady state and dynamic processes. The modeling framework 
allows for process synthesis and design of conventional tray columns either as an NLP or 
as a GDP problem. The model was used to simulate a distillation column for a binary 
mixture using three different property packages (Ideal, NRTL and Peng-Robinson), and 
the results are compared to results from existing commercial tools. Furthermore, a 
comparative case study is presented for an optimal column design problem using both 
frameworks. 
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1. Introduction 
In the past two decades, the advent of inexpensive computing power and improved 
numerical algorithms has enabled the increased use of equation oriented (EO) process 
models in process systems engineering. Though the current commercial equation oriented 
simulators can be used to model complex unit operations, the platforms do not provide 
the flexibility required for solving large-scale conceptual design optimization problems. 
Typically, such design problems are either solved with simplifying assumptions that lead 
to sub-optimal solutions or with rigorous models that are developed from the ground up, 
which is both time and labor intensive. The optimal design of a distillation column is an 
open and extensively researched problem in conceptual design owing to its importance in 
the process industries. Optimization problems concerning distillation columns can be 
broadly classified into two categories: (i) minimizing the operating cost subject to purity 
constraints for a fixed column design and (ii) minimizing the capital and operating cost 
subject to purity constraints. The former is relatively easy to solve with existing 
commercial simulation tools, but the latter commonly requires workarounds to overcome 
challenges such as limited compatibility for deterministic optimization and the lack of 
initialization routines with existing tools. This is computationally difficult for two 
reasons: (1) the presence of discrete decision variables for the number of trays and the 
feed tray location and (2) the non-linearity of the problem when using rigorous models.   

Both a Generalized Disjunctive Programming (GDP) and NLP formulations have been 
proposed to model the discrete decision variables in this problem. The GDP approach 
may be solved with a logic-based outer-approximation (LOA) algorithm, where the trays 
are activated/deactivated using Boolean variables (Yeomans and Grossmann, 2000). In 
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the NLP approach, integer variables are avoided and trays are deactivated using bypass 
streams (Dowling and Biegler, 2015). The GDP approach simplifies the problem by 
eliminating the equations associated with deactivated trays. However, the solution to the 
GDP problem may require several major iterations (Barttfeld et al., 2004).  

On the other hand, the NLP approach avoids the combinatorial problem associated with 
binary variables, but requires solving a larger NLP problem. In general, both approaches 
provide robust methods that can be solved with existing solvers; however, (i) a 
comparative study between the two methods is lacking (Dowling and Biegler, 2015) and 
(ii) distillation models available in existing commercial simulation tools are not 
compatible with either approach. The objective of the study is to present a comparison of 
the methodologies, which have been implemented within the IDAES conceptual design 
framework. A rigorous tray-by-tray unit model that has been developed to optimize the 
size, feed tray location and operating conditions of the distillation column is also be 
presented.  

2. Unit Operations Modelling and Optimization – the  IDAES approach  
The goal of the Institute for the Design of Advanced Energy Systems (IDAES), a U.S. 
Department of Energy initiative, is to build an open-source, next generation process 
systems engineering framework that will help accelerate the development of advanced 
energy systems. The IDAES modeling framework is based on Pyomo (Hart et al. 2017) 
– a Python-based algebraic modeling language that leverages the capabilities of a high 
level programming language to support optimization. One of the major objectives of the 
IDAES framework is to simplify the formulation and solution of conceptual design 
problems encountered in process systems engineering, thus addressing limitations with 
existing commercial tools. To this end, the models that are developed within this 
framework will be specifically designed for optimization of steady state and dynamic 
processes.  

3. Distillation Tray Column Model  
The unit model for the conventional tray-by-tray column in IDAES consists of the 
standard MESH equations for a distillation column. The model can be used to simulate a 
tray column with or without a condenser (total or partial) and a reboiler. The trays are 
numbered from top to bottom where the condenser and reboiler are not included as trays 
i.e. a distillation column with ten trays has ten trays plus a condenser and reboiler. For 
every tray there is an option for a feed inlet, outlet side draws for the liquid and vapor 
streams and heat addition/removal. The IDAES PSE framework is modular such that the 
user has flexibility to add or remove objects. For example, the property methods are 
instantiated as separate objects at the flowsheet level keeping them independent of the 
unit models. This provides the flexibility to easily change property calculations without 
making any changes to the model equations. At every tray, there is a property block for 
the feed stream, a property block for the mixer outlet and a property block for the 
equilibrium separator. The property blocks contain the equations (or constraints) for a 
flash calculation and also to compute properties like the specific enthalpy, vapor pressure 
and equilibrium coefficient as a function of the local state variables. 

A major limitation for distillation column models that employ the MESH equations is the 
lack of consistent and robust initialization schemes. The IDAES framework ensures that 
sufficient flexibility is available to simplify the initialization procedure.  For the column 
model in IDAES, the following three methods have been built to initialize the column: 
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• Method 1: The trays are initialized one by one starting from the top tray.  
• Method 2: All trays are initialized together by sequentially activating and solving 

the mass, pressure, and energy balances.  
• Method 3: Similar to method 1 but the feed stage is solved first followed by the 

rectification section and then the stripping section.   

4. Optimization Framework for Distillation Columns in IDAES 
4.1 NLP framework  

 
Figure 1: NLP framework with bypass streams 

 
The NLP framework that has been implemented for solving conceptual design problems 
concerning distillation columns in IDAES is based on Dowling and Biegler (2015). The 
formulation allows trays to be bypassed using bypass variables (xi,bypass) as shown in 
Figure 1. Typically, these variables should be binary where 1 denotes active and 0 denotes 
inactive trays. However, in the NLP formulation these variables are continuous variables 
bounded between 0 and 1, i.e., a relaxed MINLP problem. The general consensus while 
using bypass variables in distillation columns is to split the tray outlet streams 
(liquid/vapor) to two streams: a bypassed stream and a stream input to the tray above or 
below. While this formulation allows trays to be bypassed, using a conventional splitter 
results in a zero flow if the tray is bypassed, which will affect convergence of the flash 
calculations on the tray. Instead, this framework duplicates the bypass stream and 
employs a mixer for the vapor and liquid outlets such that zero flows are avoided through 
bypassed trays. The mass/energy balances for these mixers are shown in Figure 1. When 
a tray is bypassed, the bypass variable xi,bypass should be 0. Then from the mass and energy 
balances for the mixer, it can be observed that the inputs to next tray (above/below) are 
appropriately accounted for depending on whether the tray is active or inactive. 
Furthermore, engineering knowledge tells us that partial bypass will be avoided as it is 
inefficient to mix an impure stream with a pure stream. Another feature with this 
framework is that it indirectly, concurrently optimizes for the optimal feed tray location. 
Although the feed tray is fixed, the bypass variables are restricted to trays in the stripping 
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and rectification sections. Thus, the feed tray location is determined depending upon the 
number of trays eliminated in each section.  
 
4.2 GDP framework  
 
The GDP framework for conceptual design of distillation columns is based upon the 
formulation given in Barttfeld et al. (2003). Disjunctions at each candidate tray describe 
the presence or absence of the tray. The general form of the disjunctions is given in 
Equation 1. 

�
𝑌𝑌𝑡𝑡

𝑔𝑔1(𝑥𝑥) ≤ 0� ∨ �
¬𝑌𝑌𝑡𝑡

𝐴𝐴𝑥𝑥 ≤ 𝑏𝑏� (1) 

𝑌𝑌𝑡𝑡 is the Boolean variable associated with tray existence. Constraints denoted by 𝑔𝑔1 
contain the MESH equations for each stage. When the tray does not exist, linear bypass 
constraints 𝐴𝐴𝑥𝑥 ≤ 𝑏𝑏 ensure that flowrates and enthalpies are transmitted unchanged to the 
next stage. An analogous disjunction governs selection of the feed tray: a tray either is 
the feed stage and has the relevant inlet material and energy flows OR it is not and the 
flows are set to zero. A logical proposition enforces that if a tray is selected as the feed, 
then it implies that the tray is also active. The first and final stages correspond to the 
condenser and reboiler; the Boolean existence variables associated with these trays are 
fixed to True. The GDP model was initialized using the column profile results from a 10-
stage square problem; to accommodate additional conditional trays, a linear interpolation 
of the profile was used. 

5. Results and Discussion 
The IDAES tray-by-tray column model was used to simulate a distillation column with 
ten trays (+ condenser + reboiler) to separate an equimolar mixture of benzene and toluene 
using three different property methods: Ideal, Ideal-NRTL and the Peng-Robinson cubic 
equation of state. The feed specifications are as follows: Feed = 100 mol/s, Tfeed = 368 K, 
Pfeed = 101 kPa, feed tray = 5. The molar reflux and reboil ratio were set to 1.4 and 1.3 
respectively. The results were compared to a “RadFrac” model in Aspen Plus and are 
presented in Table 1. The results using the EO IDAES model show an excellent match 
with Aspen Plus models solved sequentially. The model was successfully initialized using 
“Method 2” for all the three simulations and demonstrates robustness even when using a 
rigorous property method like the cubic equation of state.   
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Table 1: Comparison of model predictions using IDAES and Aspen Plus models 

Variable Ideal Ideal – NRTL Peng-Robinson 
IDAES Aspen IDAES Aspen IDAES Aspen 

Distillate (mols/) 47.76 47.71 47.94 47.82 45.31 45.33 
xD,benzene 0.886 0.887 0.885 0.887 0.900 0.900 
xD,toluene 0.114 0.113 0.115 0.113 0.100 0.100 
Bottoms (mol/s) 52.24 52.29 52.06 52.18 54.69 54.67 
xB,benzene 0.147 0.147 0.145 0.145 0.168 0.168 
xB,toluene 0.853 0.853 0.855 0.855 0.832 0.832 
Qcondenser (kW) -3626.4 -3594.5 -3639.9 -3591 -3375.2 -3378.7 
Qreboiler     (kW) 2307.9 2272.2 2300.6 2245.7 2366.8 2366.4 

 
5.1 Optimal design problem 
The problem for the optimal design of a distillation column has been formulated as 
follows: 

min
𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

103 �∑ 𝑥𝑥𝑏𝑏𝑡𝑡𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏,𝑖𝑖
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑖𝑖=1 � + (𝑄𝑄𝑅𝑅 + 𝑄𝑄𝐶𝐶)  

s.t.: 𝑥𝑥𝐷𝐷,𝑏𝑏𝑓𝑓𝑏𝑏𝑏𝑏𝑓𝑓𝑏𝑏𝑓𝑓 ≥ 0.95 ; 𝑥𝑥𝑅𝑅,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑓𝑓𝑏𝑏𝑓𝑓 ≥ 0.95; 𝑅𝑅𝑅𝑅 ≤ 4; 𝑅𝑅𝑅𝑅 ≤ 4    (2)      
The objective function minimizes a capital cost (number of active trays) and an operating 
cost (reboiler and condenser duty). The number of active trays is multiplied by a cost 
coefficient of 1000 to scale it to the same range as that of the condenser and reboiler duties 
to ensure equal weights to the capital and operating cost in the objective function. The 
feed conditions are the same as that used for simulation studies outlined in Table 1 (Ideal 
case). For the NLP framework, the model was initialized with 35 active trays (feed tray 
= 10) and initial values for the decision variables were unchanged from the simulation 
case study. The solver used was IPOPT with MA 27 as the linear solver. The optimal 
solution using the NLP framework is outlined in Table 2 and it can be seen that the total 
number of trays is an integer value (11 in this case) even though the bypass variables were 
declared as continuous variables. Also, the optimal feed location is tray 6. The same 
aforementioned solution was obtained when the model was initialized with 15/20/50/60 
active trays or when the feed location was changed to 10/15/25/30 in the superstructure 
respectively. The GDP model was solved using the GDPopt solver in Pyomo, which 
implements LOA and uses both Gurobi and IPOPT as sub-solvers. Even though the 
formulation with the bypass framework consists of a larger NLP model, it required 597 
function evaluations to determine the optimal solution. In comparison, the GDPopt 
terminated after 20 master iterations requiring 2057 NLP function evaluations in total 
mainly due to weak linear approximations. However, this can be avoided with better 
reformulation techniques. Table 2: Optimal solutions from NLP and GDP frameworks 

Optimal solution NLP framework GDP framework 

Objective  19430 19450 

No. of trays 11 10 

Feed tray 6 5 

Reflux ratio 2.07 2.45 

Reboil ratio 2.13 2.39 
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xD,benzene/ xB,toluene 0.95/0.95 0.95/0.95 

 

Both the NLP and GDP frameworks yield similar solutions. The NLP framework solution 
includes one extra tray to reduce column duties, making a slightly different capital vs. 
operating cost trade-off compared to the GDP framework.  

6. Conclusions 
This work presents a tray-by-tray distillation column model using MESH equations 
within the IDAES modeling framework that is suitable for both simulation and 
deterministic optimization studies. For solving the conceptual design problem for 
distillation columns, both NLP and GDP frameworks are available and a comparative 
case study is presented in this work. In the case study considered here, while the NLP and 
GDP frameworks yield similar solutions, the NLP framework using bypass streams 
requires fewer nonlinear function evaluations when compared to the GDP solution but a 
robust initialization scheme was necessary. On the other hand, the main limitation of the 
GDP framework in this case study was the quality of the linear approximation, leading to 
slower convergence. This may be addressed by adding support for stronger GDP to MILP 
reformulation techniques in GDPopt, improving the bounds via automatic bound-
strengthening tools, and adding logical propositions to screen out structurally redundant 
configurations. At the same time, the impact of the reduced space sub-problems in LOA 
can be seen, as only a few function evaluations are required for each subproblem, even 
without a complex initialization scheme. A thorough comparison between the two 
frameworks will be considered in the future especially with more rigorous property 
models like the cubic equation of state.  
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