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Abstract

We consider the problem of optimal investment and operational planning for development

of gas fields under uncertainty in gas reserves. Assuming uncertainties in the size and initial

deliverabilities of the gas fields, the problem has been formulated as a multistage stochastic

program by Goel and Grossmann (2004b). In this paper, we present a set of theoretical

properties satisfied by any feasible solution of this model. We also present a Lagrangean

duality based branch and bound algorithm that is guaranteed to give the optimal solution

of this model. It is shown that the properties presented here achieve significant reduction in

the size of the model. In addition, the proposed algorithm generates significantly superior

solutions than the deterministic approach and the heuristic proposed by Goel and Grossmann

(2004b). The optimality gaps are also much tighter.
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Figure 1: A typical gas production asset

1 Introduction

A gas production asset consists of a number of gas fields with infrastructure including well

platforms, production platforms and connecting pipelines, as shown in Figure 1. A dedicated

well platform (WP) is installed at each field being exploited for gas. Each WP is connected to

another WP, or to a production platform (PP), through pipelines. Gas produced at all WPs

is sent to the PPs and from there to the shore through this network of pipelines. Investment

decisions to be taken during a gas production project include selection of WPs, PPs and pipelines

to be installed together with their capacities, while operation decisions include the production

profiles for all fields.

Each project in this industry typically lasts 10-30 years or more and can be worth in excess of $1

Billion. Installation of a WP or PP itself can cost millions of dollars and such a decision affects

the profitability of the entire project. Given the large potential profits and high investments in

each project, there is significant interest in developing optimization models for planning in the

oil and gas exploration and production industry.

A major challenge in this area is to address the uncertainty in various parameters, quality of

reserves being one of the most important among them. The existence of gas reserves at a site is
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indicated by seismic surveys and preliminary exploration tests. However, the actual sizes and the

initial deliverabilities (represent efficacy of extraction of gas) of the gas reserves remain largely

uncertain until after the capital investments have been made. Both these factors directly affect

the profitability of the project and hence it is important to consider the impact of uncertainty

in these parameters when formulating the decision policy.

However, most of the available literature that deals with planning of oil and gas field infrastruc-

tures uses a deterministic approach (Ierapetritou et al. (1999), Iyer et al. (1998), Grothey and

McKinnon (2000), Van den Heever and Grossmann (2000), Van den Heever et al. (2001), Barnes

et al. (2002), Kosmidis et al. (2002), Lin and Floudas (2003), Ortiz-Gomez et al. (2002)). For a

recent review of deterministic approaches for these problems, please refer to Van den Heever et al.

(2001). Goel and Grossmann (2004b) present a review of literature that deals with uncertainty

in these problems. These authors have concluded that most of this work deals with simplified

cases, where either the investment or operation decisions are assumed to be fixed, or the problem

includes only one field (as examples, see Jornsten (1992), Haugen (1996), Jonsbraten (1998)).

Recently, Goel and Grossmann (2004b) addressed the general problem of optimizing investment

and operation decisions simultaneously for a multi-field site under uncertainty in quality of re-

serves. They identified that while the standard modeling approach in stochastic programming

(Birge and Louveaux (1997)) can address problems with exogenous uncertainty only(Jonsbraten

(1998); scenario tree is independent of the optimization decisions), the gas field problem has

endogenous uncertainty where the investment decisions determine the structure of the scenario

tree. As a result, the standard approach in stochastic programming cannot be used to formulate

an optimization model for this problem. For an example illustrating the dependence of the sce-

nario tree on the investment decisions and its impact on the optimization model, please refer to

Goel and Grossmann (2004b). These authors presented a novel hybrid mixed-integer/disjunctive

optimization model where the interdependence between the scenario tree and the investment de-

cisions is captured by conditional non-anticipativity constraints. They also developed a heuristic

algorithm to solve this model. While the heuristic gave significantly better solutions than the

deterministic method and was computationally more efficient than solving the the model in

full space using off-the-shelf solvers, it is not guaranteed to find the optimal solution. Further,

the upper bounding scheme in the heuristic produced weak bounds in some examples and the

algorithm had to be stopped with fairly large optimality gaps.

The goal of this paper is to make the solution process more rigorous and efficient. We present
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properties that significantly reduce the size of the model presented by Goel and Grossmann

(2004b) without affecting the feasible space, thus making solution of the full space model using

an off-the-shelf solver more attractive. We also present a Lagrangean duality based branch

and bound algorithm that, unlike the heuristic of Goel and Grossmann (2004b), is guaranteed

to converge to the optimal solution. The algorithm also gives much tighter bounds than the

heuristic.

This paper is organized as follows. Sections 2 and 3 present the problem statement and the

stochastic programming model (Goel and Grossmann (2004b)) for the gas field problem. Theo-

retical properties of this model and a smaller but equivalent form of this model that is derived

based on these properties is presented in section 4. The proposed Lagrangean duality branch and

bound algorithm is presented in section 5. Finally, we illustrate the advantages of our approach

with a set of example problems in section 6.

2 Problem Statement

Given is a gas production asset with a set of gas fields. To produce gas from a field, a dedicated

WP will have to be installed at that field. Candidate WP to WP and WP to PP pipeline

connections for the WP at each field are given. Candidate locations for the PPs are also given.

Note that since each field is associated with a dedicated WP, we will use the terms field and

WP interchangeably.

Investment and operation decisions have to be made over the project horizon of T years, which

is discretized into T time periods of one year each. Investment decisions include selecting which

WPs, PPs and pipeline connections should be installed in which time periods and the capacities

of the WPs and PPs. Operation decisions include determining the production rates for each

field in each time period. It is assumed that investments are instantaneous and take place at

the beginning of a time period, while operation takes place throughout the time period. Also,

once installed, the capacity of a WP or PP cannot be expanded further.

The quality of reserves of a field are characterized by the “size” and “deliverability” of the field.

The size of a field corresponds to the total amount of gas that can be recovered from the field,

while deliverability at any time represents the maximum rate of production that can be obtained

from the field. As shown in Figure 2, the deliverability of a field is highest (initial deliverability)

before production from the field has begun and decreases with increase in cumulative production
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from the field. In this paper, as in Goel and Grossmann (2004b), we assume that this decrease

is linear.
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Figure 3: Nine scenarios arising from un-

certainty in size and initial deliverability

of a field

We assume discrete probability distributions for the sizes and initial deliverabilities of all fields.

Let Θwp,1 and Θwp,2 represent the set of possible realizations in the distributions for the size and

initial deliverability, respectively, of field wp. The overall set of possibilities is represented by a

set of “scenarios”, where each scenario is one possible combination of values for the sizes and

initial deliverabilities of all fields, and has a given probability. We assume that the set of scenarios

consists of every possible combination of realizations for the sizes and initial deliverabilities of

various fields. Thus, the set of scenarios is given by ×wp (Θwp,1 × Θwp,2), where the × operator

computes the Cartesian product of sets. Figure 3 shows the nine possible reservoir models for

a field with three realizations each for its size and its initial deliverability. For a problem where

decisions have to be made only for this field, each of the nine reservoir models shown in Figure 3

would correspond to a scenario.

We use indices s, s′ to refer to individual scenarios. D(s, s′) represents the set of fields (or equiv-

alently, WPs) that have different sizes and/or initial deliverabilities in scenarios s, s′. Mathe-

matically,

D(s, s′) = {wp|(θs
wp,1 6= θs′

wp,1) ∨ (θs
wp,2 6= θs′

wp,2)}

For example, consider a problem where the uncertainty is restricted to uncertainty in the sizes
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Figure 4: Scenarios for problem with uncertainty in sizes of fields B and C

of fields B and C and possible realizations for the size of field B include 300, 400 and 500 BSCF

with1 probabilities 0,3, 0.4 and 0.3, respectively, while possible realizations for the size of field

C include 150, 300 and 450 BSCF with probabilities 0,3, 0.4 and 0.3, respectively. Each circle in

Figure 4 represents one of the nine scenarios with the scenario probabilities given in parenthesis

next to the scenario indices. The set D(s, s′) for scenarios s, s′ such that s < s′ is given in

Table 1. As an example, D(1, 2) = {B} because scenarios 1 and 2 differ only in the size of field

B (see Figure 4). Also, note that D(s, s′) = D(s′, s).

We assume that all uncertainty in a field is resolved completely as soon as a WP is installed at

the field; i.e., the size and initial deliverability of the field are known deterministically once the

WP is installed.2 Goel and Grossmann (2004b) showed that as a result of this interdependence

between the resolution of uncertainty and the investment decisions, the scenario tree is not fixed

but depends on the investment decisions. However, since the non-anticipativity constraints in

the stochastic program depend on the scenario tree, therefore the standard modeling approach

in stochastic programming is based on the assumption that the scenario tree is known a priori.

1BSCF = Billion Standard Cubic Feet
2This is a simplification of reality because, in practice, installing a WP at a field yields a significant amount

of information about the field, but may not eliminate the uncertainty completely.
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D(s, s′) s′

for s < s′ 1 2 3 4 5 6 7 8 9

1 {B} {B} {C} {B,C} {B,C} {C} {B,C} {B,C}

2 {B} {B,C} {C} {B,C} {B,C} {C} {B,C}

3 {B,C} {B,C} {C} {B,C} {B,C} {C}

4 {B} {B} {C} {B,C} {B,C}

s 5 {B} {B,C} {C} {B,C}

6 {B,C} {B,C} {C}

7 {B} {B}

8 {B}

9

Table 1: The set D(s, s′) for scenarios s, s′ given in Figure 4 such that s < s′

Since this is not the case with the gas field problem, the standard modeling approach in stochastic

programming cannot be used to define the optimization model for this problem.

3 Model

(SPM) is the hybrid mixed-integer/disjunctive optimization model for the gas field problem

presented by Goel and Grossmann (2004b). Note that while Goel and Grossmann (2004b) had

presented the model in abbreviated form with variables and constraints represented by generic

vectors, we have presented the unabbreviated model to make the following discussion clearer. In

(SPM), index t refers to time periods, indices and s and s′ refer to scenarios, indices wp and wp′

refer to well-platforms while index pp refers to production platforms. A different set of decision

variables is defined for each scenario. For example, bs
wp,t is a binary variable representing whether

or not well-platform wp (at the corresponding field) is installed in time period t of scenario s.

Please refer to the nomenclature at the end of the paper.

(SPM) φ = max
∑

s

psNPV s (1)

s.t.
qdeliv,s
wp,t

θs
wp,2

+
qcum,s
wp,t

θs
wp,1

= 1 ∀(wp, t, s) (2)

qcum,s
wp,t =

t
∑

τ=1

qprod,s
wp,τ δτ ∀(wp, t, s) (3)

qprod,s
wp,t ≤ qdeliv,s

wp,t ∀(wp, t, s) (4)
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The objective of (SPM) is to maximize the expected net present value (ENPV), which is

the probability weighted average of the net present values (NPVs) over all scenarios (1). (2)-

(28) represent investment, operational and economic constraints for scenario s. Constraint (2)

represents the cumulative production-deliverability curve (Figure 2) for field wp in scenario s.

θs
wp,1 and θs

wp,2 represent the size and initial deliverability, respectively, of field wp in scenario s.

Equation (3) computes the cumulative production for field wp while (4) restricts the production

rate for field wp below its current deliverability.

qout,s
wp,t = qprod,s

wp,t +
∑

wp′

qout,s
wp′,wp,t ∀(wp, t, s) (5)

qout,s
wp,t =

∑

wp′

qout,s
wp,wp′,t +

∑

pp

qout,s
wp,pp,t ∀(wp, t, s) (6)

qout,s
pp,t =

∑

wp

qout,s
wp,pp,t ∀(pp, t, s) (7)

qshr,s
t = (1 − shrink)

∑

pp

qout,s
pp,t ∀(t, s) (8)

Equations (5)-(6) together enforce mass balance at well-platform wp while (7) and (8) compute

the flow into pp and into the shore, respectively, in time period t. The factor shrink accounts

for the shrinkage in flow to the shore through the pipeline.

qout,s
wp,t ≤ caps

wp,t ∀(wp, t, s) (9)

qout,s
pp,t ≤ caps

pp,t ∀(pp, t, s) (10)

caps
wp,t = caps

wp,t−1 + es
wp,t ∀(wp, t, s) (11)

caps
pp,t = caps

pp,t−1 + es
pp,t ∀(pp, t, s) (12)

es
wp,t ≤ Mwpb

s
wp,t ∀(wp, t, s) (13)

es
pp,t ≤ Mppb

s
pp,t ∀(pp, t, s) (14)

qs
wp,wp′,t ≤ Mwp,wp′

t
∑

τ=1

bs
wp,wp′,τ ∀(wp, wp′, t, s) (15)

qs
wp,pp,t ≤ Mwp,pp

t
∑

τ=1

bs
wp,pp,τ ∀(wp, pp, t, s) (16)

Constraints (9)-(10) impose capacity restrictions on flows out of all platforms. Platform ca-

pacities in time period t are computed by equalities (11)-(12). (13)-(14) are upper-bounding

constraints on expansion decisions in time period t. Similarly, (15)-(16) are upper-bounding
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constraints on the flow-rates through pipelines.

∑

t

bs
wp,t ≤ 1 ∀(wp, s) (17)

∑

t

bs
pp,t ≤ 1 ∀(pp, s) (18)

∑

t

bs
wp,wp′,t ≤ 1 ∀(wp, wp′, s) (19)

∑

t

bs
wp,pp,t ≤ 1 ∀(wp, pp, s) (20)

bs
wp,t =

∑

wp′

bs
wp,wp′,t +

∑

pp

bs
wp,pp,t ∀(wp, t, s) (21)

bs
wp,wp′,t ≤

t
∑

τ=1

bs
wp′,τ ∀(wp, wp′, t, s) (22)

bs
wp,pp,t ≤

t
∑

τ=1

bs
pp,τ ∀(wp, pp, t, s) (23)

bs
wp,wp′,t + bs

wp′,wp,t ≤ 1 ∀(wp, wp′, t, s) (24)

Inequalities (17)-(20) state that a platform or a pipeline connection can be installed only once.

Equation (21) states that exactly one outgoing connection should be installed when wp is in-

stalled. Constraints (22)-(23) state that a connection to a platform can be installed only if that

platform has already been installed. Constraint (24) prevents two way connections between

platforms.

CCtot,s
t =

∑

wp



FCCwpb
s
wp,t + V CCwpe

s
wp,t +

∑

wp′

FCCwp,wp′b
s
wp,wp′,t +

∑

pp

FCCwp,ppb
s
wp,pp,t





+
∑

pp

(

FCCppb
s
pp,t + V CCppe

s
pp,t

)

∀(t, s) (25)

OCtot,s
t =

∑

wp

(

FOCwpb
s
wp,t + V OCwpq

prod,s
wp,t

)

+
∑

pp

(

FOCppb
s
pp,t + V OCppq

out,s
pp,t

)

∀(t, s)(26)

Revtot,s
t =

∑

t

Ptq
shr,s
t δt ∀(t, s) (27)

NPV s =
∑

t

αt(Revtot,s
t − CCtot,s

t − OCtot,s
t ) ∀s (28)

The overall capital cost consists of fixed and variable costs for installation of platforms and

fixed costs for the installation of pipelines (25). The total operating cost consists of fixed and
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variable costs for operation of platforms (26). Equation (27) computes the total revenue for

time period t based on the flow to the shore while the overall NPV for scenario s is computed

in (28). Constraints (2)-(28) are applied for every scenario.

bs
wp,1 = bs′

wp,1 ∀(wp, s, s′), s < s′ (29a)

es
wp,1 = es′

wp,1 ∀(wp, s, s′), s < s′ (29b)

bs
pp,1 = bs′

pp,1 ∀(pp, s, s′), s < s′ (29c)

es
pp,1 = es′

pp,1 ∀(pp, s, s′), s < s′ (29d)

bs
wp,wp′,1 = bs′

wp,wp′,1 ∀(wp, wp′, s, s′), s < s′ (29e)

bs
wp,pp,1 = bs′

wp,pp,1 ∀(wp, pp, s, s′), s < s′ (29f)

Zs,s′

t ⇔

[

∧

wp∈D(s,s′)

t
∧

τ=1

(

¬bs
wp,τ

)

]

∀(t, s, s′), s < s′ (30)



































Zs,s′

t

bs
wp,t+1 = bs′

wp,t+1 ∀wp

es
wp,t+1 = es′

wp,t+1 ∀wp

bs
pp,t+1 = bs′

pp,t+1 ∀pp

es
pp,t+1 = es′

pp,t+1 ∀pp

bs
wp,wp′,t+1 = bs′

wp,wp′,t+1 ∀(wp, wp′)

bs
wp,pp,t+1 = bs′

wp,pp,t+1 ∀(wp, pp)

qprod,s
wp,t = qprod,s′

wp,t ∀wp



































∨
[

¬Zs,s′

t

]

∀(t, s, s′), s < s′ (31)

Decisions for different scenarios are linked to each other by non-anticipativity constraints (29)-

(31). These constraints ensure that decisions at any time are based only on information available

at that time, and not on foresight. Scenarios s, s′ are said to be indistinguishable at some time

if s, s′ are identical in realizations for all parameters in which uncertainty has been resolved up

till that time. The non-anticipativity rule states that if two scenarios are indistinguishable at

some time, then decisions at that time should be the same in the two scenarios. As explained in

section 2, we assume that investments are made instantaneously at the beginning of each time

period, while operation is performed throughout the time period. Since it is the investment
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decisions that lead to the resolution of uncertainty, operation decisions in time period t and

investment decisions in time period t + 1 should be the same for scenarios s, s′ if these scenarios

are indistinguishable after investments in time period t.

By definition, all scenarios are mutually indistinguishable before investments are made in the

first time period. Thus, non-anticipativity requires that investment decisions at t = 1 be the

same for all scenarios (constraints (29a)-(29f)). Boolean variable Zs,s′

t represents whether or

not scenarios s, s′ are indistinguishable after investments have been made in time period t.

Expression (30) relates the indistinguishability of scenarios with the investment decisions for

the WPs.

(30) states3 that scenarios s, s′ are indistinguishable after investment in time period t if and only

if none of the WPs that distinguish scenario s from s′ have been installed up till time period t.

For scenarios s, s′, disjunction (31) imposes non-anticipativity constraints on operation decisions

in time period t, and investment decisions in time period t + 1 only if s, s′ are indistinguishable

after investment in time period t.

Note that in (SPM), b
(·)
wp,t+1, b

(·)
pp,t+1, b

(·)
wp,wp′,t+1, b

(·)
wp,pp,t+1, e

(·)
wp,t+1, e

(·)
pp,t+1, q

prod,(·)
wp,t are the only

decision variables. All other variables are “state variables” that can be eliminated from the

model. Hence non-anticipativity is not imposed on those variables. Also, note that to avoid

duplication of non-anticipativity constraints for a pair of scenarios, constraints (29)-(31) are

applied for (s, s′) only if s < s′.

Finally, the domains for the variables are specified as below.

bs
wp,t ∈ {0, 1} ∀(wp, t, s), bs

pp,t ∈ {0, 1} ∀(pp, t, s),

bs
wp,wp′,t ∈ {0, 1} ∀(wp, wp′, t, s), bs

wp,pp,t ∈ {0, 1} ∀(wp, pp, t, s),

es
wp,t ≥ 0 ∀(wp, t, s), es

pp,t ≥ 0 ∀(pp, t, s),

qprod,s
wp,t ≥ 0 ∀(wp, t, s), Zs,s′

t ∈ {True, False} ∀(t, s, s′), s < s′

3In theory, the logical operator “¬” should only be used with Boolean variables. Since bs
wp,t are binary variables,

constraint (30) involves a slight inconsistency in notation. A more rigorous formulation can be obtained at the

expense of additional notation by defining (30) in terms of Boolean variables Bs
wp,t and specifying an equivalence

between variables Bs
wp,t and bs

wp,t.
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4 Model Properties

Next we present a set of properties satisfied by all feasible solutions of (SPM). These properties

are combined in Theorem 1 to arrive at an equivalent but significantly smaller model than

(SPM). Note that we will follow the convention that a variable name for which an index has

been dropped refers to the vector of that variable over all possible values of that index. For

example, bwp,t represents the vector of bs
wp,t for all s while bwp represents the vector of bs

wp,t for

all (t, s). Similarly, b represents the vector of bs
wp,t, b

s
pp,t, b

s
wp,wp′,t, b

s
wp,pp,t for all (wp, wp′, pp, t, s).

Finally, we will use the set of vectors (b, e, qprod, Z) to refer to a feasible solution of (SPM).

Lemma 1 states that given a feasible solution of (SPM) and scenarios s, s′, if the sub-solution

for scenario s is such that WPs have not been installed at any of the fields that distinguish

scenario s from s′, then the sub-solution for scenario s′ also satisfies this condition.

Proposition 1 implies that constraints (30)-(31) need to be applied for scenarios s, s′ only if these

scenarios differ in the realization of exactly one uncertain parameter. We refer to the set of such

scenario pairs as L1, which is mathematically defined as

L1 =
{

(s, s′)|s < s′,D(s, s′) = {wp∗}, (θs
wp∗,1 6= θs′

wp∗,1) Y (θs
wp∗,2 6= θs′

wp∗,2)
}

.

Proposition 2 states that for (s, s′) ∈ L1 and for wp∗ such that wp∗ is the (only) field that has

different properties in scenarios s, s′, the investment decisions for field wp∗ always have to be the

same for scenarios s, s′. Thus, equalities bs
wp∗,t+1 = bs′

wp∗,t+1, es
wp∗,t+1 = es′

wp∗,t+1 hold irrespective

of the value of Zs,s′

t , unlike as stipulated by (31).

The detailed proofs to Lemma 1 and Proposition 1 can be found in Goel and Grossmann (2004b)

and Goel and Grossmann (2004a), respectively. Here we only present brief argumentative proofs

to provide physical insight into those relationships.

Lemma 1. Any feasible solution of (SPM) satisfies

[

∧

wp∈D(s,s′)

t
∧

τ=1

(

¬bs
wp,τ

)

]

⇔

[

∧

wp∈D(s′,s)

t
∧

τ=1

(

¬bs′

wp,τ

)

]

∀(t, s, s′), s < s′

Proof. Suppose (b̄, ē, q̄prod, Z̄) is a feasible solution of (SPM). Consider scenarios s, s′, s < s′.

Suppose the solution is such that scenarios s, s′ cease to be indistinguishable after investments

in time period t∗. By definition of t∗, Z̄s,s′

t∗−1 = True, Z̄s,s′

t∗ = False and therefore, using (30) ,
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∃wp∗ ∈ D(s, s′) such that

b̄s
wp∗,t∗ = 1 (32)

b̄s
wp,t = 0 ∀(wp, t), wp ∈ D(s, s′), 1 ≤ t ≤ t∗ − 1. (33)

Also, since the solution satisfies the non-anticipativity rule, therefore

b̄s
wp,t = b̄s′

wp,t ∀(wp, t), 1 ≤ t ≤ t∗. (34)

Thus, combining (32) with (34) and (33) with (34), we get

[

∧

wp∈D(s,s′)

t
∧

τ=1

(

¬bs
wp,τ

)

]

=

[

∧

wp∈D(s′,s)

t
∧

τ=1

(

¬bs′

wp,τ

)

]

= True ∀1 ≤ t ≤ t∗ − 1,

[

∧

wp∈D(s,s′)

t
∧

τ=1

(

¬bs
wp,τ

)

]

=

[

∧

wp∈D(s′,s)

t
∧

τ=1

(

¬bs′

wp,τ

)

]

= False ∀t ≥ t∗

Note that as a result of the above lemma, we can use either of bs
wp,τ and bs′

wp,τ in the right hand

side of (30).

Proposition 1. Consider constraints (35)-(37) defined over the tuple (t, s, s′).

bs
wp,t = bs′

wp,t ∀wp (35a)

es
wp,t = es′

wp,t ∀wp (35b)

bs
pp,t = bs′

pp,t ∀pp (35c)

es
pp,t = es′

pp,t ∀pp (35d)

bs
wp,wp′,t = bs′

wp,wp′,t ∀(wp, wp′) (35e)

bs
wp,pp,t = bs′

wp,pp,t ∀(wp, pp) (35f)

Zs,s′

t ⇔

[

∧

wp∈D(s,s′)

t
∧

τ=1

(

¬bs
wp,τ

)

]

(36)
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

































Zs,s′

t

bs
wp,t+1 = bs′

wp,t+1 ∀wp

es
wp,t+1 = es′

wp,t+1 ∀wp

bs
pp,t+1 = bs′

pp,t+1 ∀pp

es
pp,t+1 = es′

pp,t+1 ∀pp

bs
wp,wp′,t+1 = bs′

wp,wp′,t+1 ∀(wp, wp′)

bs
wp,pp,t+1 = bs′

wp,pp,t+1 ∀(wp, pp)

qprod,s
wp,t = qprod,s′

wp,t ∀wp



































∨
[

¬Zs,s′

t

]

(37)

Suppose the set of scenarios is given by ×wp (Θwp,1 × Θwp,2), where Θwp,1 and Θwp,2 represent

the set of possible realizations for the size and initial deliverability, respectively, of field wp. If

solution (b̄, ē, q̄prod, Z̄) satisfies

(i) Constraint (35) for all (t, s, s′) such that s < s′, t = 1

(ii) Constraints (36)-(37) for all (t, s, s′) such that (s, s′) ∈ L1

then this solution satisfies (36)-(37) for all (s, s′) such that s < s′.

Proof. Consider scenarios s0, sk such that s0 < sk and s0, sk differ in realizations for k parame-

ters. If k = 1 then (s0, sk) ∈ L1 and therefore (36)-(37) hold because of condition (ii) above. If

k > 1, suppose that vector b̄wp is such that scenarios s0, sk are mutually indistinguishable after

investments in time period t, and therefore operation decisions in time period t and investment

decisions in time period t+1 should be the same for these two scenarios. Since the set of scenarios

is given by ×wp (Θwp,1 × Θwp,2) (all possible combinations of realizations for the sizes and initial

deliverabilities of all fields), the set of scenarios will include scenarios s1, s2, . . . , sk−1 such that

si, si+1 differ in the realization of exactly one of (and mutually exclusive) these k parameters,

for all 0 ≤ i ≤ k−1. Thus, (s0, s1), (s1, s2), (s2, s3), . . . , (sk−2, sk−1), (sk−1, sk) ∈ L1. Since s0, sk

are mutually indistinguishable in t, uncertainty in none of the k parameters should have been

resolved up till period t. Since scenarios si, si+1 differ in the realization of exactly one of these

k parameters, for all 0 ≤ i ≤ k − 1, these scenarios should also be mutually indistinguishable.

Since (si, si+1) ∈ L1 for all 0 ≤ i ≤ k − 1, therefore Z̄
si,si+1

t should be True. Thus, from (37)

we can infer that operation decisions in time period t and investment decisions in time period

t + 1 will be the same for si, si+1 for all 0 ≤ i ≤ k − 1. Thus, operation decisions in time period

t and investment decisions in time period t + 1 will be same for s0, sk.

14
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(a) In (SPM)
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(b) According to Proposition 1

Figure 5: Pairs (s, s′) for which (30)-(31) have to be applied for example introduced in section 2

Figure 5 is a pictorial representation of the statement of Proposition 1 for the two field example

introduced in section 2. Linkages between scenarios s, s′ mean that constraints (30)-(31) will be

applied for (t, s, s′) for all t.

Proposition 2. Any feasible solution of (SPM) satisfies

bs
wp,t = bs′

wp,t

es
wp,t = es′

wp,t

}

∀(wp, t, s, s′), (s, s′) ∈ L1, {wp} = D(s, s′)

Proof. Suppose (b̄, ē, q̄prod, Z̄) is a feasible solution of (SPM). Choose (wp, s, s′) such that

(s, s′) ∈ L1, {wp} = D(s, s′). For t = 1, the proof follows directly from (29a) and (29b).

Consider t > 1. Suppose b̄s
wp,t 6= b̄s′

wp,t. Since b̄s
wp,t, b̄

s′

wp,t ∈ {0, 1}, exactly one of b̄s
wp,t, b̄

s′

wp,t is

equal to 1.

If b̄s
wp,t = 1, then using (17), we can infer that b̄s

wp,τ = 0 for all τ such that 1 ≤ τ ≤ t − 1.

Then, using (30) and (31), we get Z̄s,s′

t−1 = True and therefore b̄s
wp,t = b̄s′

wp,t. Hence we have a

contradiction to the hypothesis that b̄s
wp,t 6= b̄s′

wp,t.

On the other hand, if b̄s′

wp,t = 1, then from (17), we have b̄s′

wp,τ = 0 for all τ such that 1 ≤ τ ≤ t−1.

Then, using Lemma 1, we can infer that b̄s
wp,τ = 0 for all τ such that 1 ≤ τ ≤ t − 1. Using (30)

15



and (31) as above, we get Z̄s,s′

t−1 = True and therefore b̄s
wp,t = b̄s′

wp,t. Again we have contradicted

our hypothesis that b̄s
wp,t 6= b̄s′

wp,t.

Now suppose that ēs
wp,t 6= ēs′

wp,t. This implies that at least one of ēs
wp,t and ēs′

wp,t is non-zero.

Therefore we can use (13) to infer that b̄
(·)
wp,t = 1 for the corresponding scenario. Using the same

logic as above, we can infer that Z̄s,s′

t−1 = True, and therefore ēs
wp,t = ēs′

wp,t, which contradicts

our hypothesis.

Based on Propositions 1 and 2 together with model (SPM), we define model (SPM2) where

the disjunctions and logic constraints in (30)-(31) are applied over a reduced set of combinations

for s, s′ ((39)-(40)). Also, some of the equality constraints inside the disjunct corresponding to

Zs,s′

t = True in (31) are now applied unconditionally (38).

(SPM2) φ = max
∑

s psNPV s

s.t. (2)-(28), (29)

bs
wp,t = bs′

wp,t ∀(t, s, s′), t > 1, (s, s′) ∈ L1, {wp} = D(s, s′) (38a)

es
wp,t = es′

wp,t ∀(t, s, s′), t > 1, (s, s′) ∈ L1, {wp} = D(s, s′) (38b)

Zs,s′

t ⇔

[

t
∧

τ=1

(

¬bs
wp,τ

)

]

∀(t, s, s′), (s, s′) ∈ L1, {wp} = D(s, s′) (39)



































Zs,s′

t

bs
wp,t+1 = bs′

wp,t+1 ∀wp /∈ D(s, s′)

es
wp,t+1 = es′

wp,t+1 ∀wp /∈ D(s, s′)

bs
pp,t+1 = bs′

pp,t+1, ∀pp

es
pp,t+1 = es′

pp,t+1 ∀pp

bs
wp,wp′,t+1 = bs′

wp,wp′,t+1 ∀(wp, wp′)

bs
wp,pp,t+1 = bs′

wp,pp,t+1 ∀(wp, pp)

qprod,s
wp,t = qprod,s′

wp,t ∀wp



































∨
[

¬Zs,s′

t

]

∀(t, s, s′), (s, s′) ∈ L1(40)

bs
wp,t ∈ {0, 1} ∀(wp, t, s), bs

pp,t ∈ {0, 1} ∀(pp, t, s),
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bs
wp,wp′,t ∈ {0, 1} ∀(wp, wp′, t, s), bs

wp,pp,t ∈ {0, 1} ∀(wp, pp, t, s),

es
wp,t ≥ 0 ∀(wp, t, s), es

pp,t ≥ 0 ∀(pp, t, s),

qprod,s
wp,t ≥ 0 ∀(wp, t, s), Zs,s′

t ∈ {True, False} ∀(t, s, s′), s < s′

Theorem 1. The optimal solutions of (SPM) and (SPM2) are the same.

Proof. Since the objective functions of (SPM) and (SPM2) are the same, it is sufficient to

show that the feasible regions of these models are the same.

Any feasible solution of (SPM) will satisfy (2)-(28), (29) and (38a)-(38b) (from Proposition 2).

In addition, since any feasible solution of (SPM) will satisfy (30)-(31), therefore it will also

satisfy (39)-(40) (since the domain of (s, s′) in (39)-(40) is a subset of the domain of (s, s′) in

(30)-(31)). Thus, any feasible solution of (SPM) is also a feasible solution of (SPM2).

Now consider a feasible solution of (SPM2). This solution will satisfy (2)-(28), (29)-(29f). Also,

this solution will satisfy (35a)-(35f) for s < s′, t = 1 (from (29a)-(29f)) and (36)-(37) for all t and

(s, s′) ∈ L1 (combining (38)-(40)). Thus, from Proposition 1, this solution will satisfy (30)-(31).

Thus, any feasible solution of (SPM2) is also a feasible solution of (SPM).

5 Branch and Bound Algorithm

One approach for solving model (SPM2) is to reformulate it as an MILP by converting the

logic constraints and disjunctions into linear constraints using a big-M approach (Raman and

Grossmann (1994)). Since the size of the resulting MILP problem can be very large, we consider

in this section a Lagrangean duality based branch and bound algorithm. Model (SPM2) is

coupled in scenarios through the non-anticipativity constraints. In the proposed branch and

bound algorithm, an upper bound to the optimal solution at any node is obtained by solving

a Lagrangean dual problem that is obtained by relaxing these non-anticipativity constraints.

Lower bounds at each node are obtained by generating feasible solutions heuristically from the

solution of the Lagrangean dual. Non-anticipativity constraints violated by the solution of the

Lagrangean dual are used in the branching step of the algorithm to partition the feasible space.
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5.1 Upper bound generation

We illustrate the formulation of the Lagrangean dual problem at the root node. Model (SPM2RLR)

is obtained from (SPM2) by relaxing constraints (39)-(40) and replacing equality constraints

(29), (38) by penalty terms in the objective.

(SPM2RLR) φRLR(bλ, eλ) =

max
∑

s

psNPV s

+
∑

s<s′

[

∑

wp

(

bλs,s′

wp,1

(

bs
wp,1 − bs′

wp,1

)

+ eλs,s′

wp,1

(

es
wp,1 − es′

wp,1

))

+
∑

pp

(

bλs,s′

pp,1

(

bs
pp,1 − bs′

pp,1

)

+ eλs,s′

pp,1

(

es
pp,1 − es′

pp,1

))

+
∑

(wp,wp′)

bλs,s′

wp,wp′,1

(

bs
wp,wp′,1 − bs′

wp,wp′,1

)

+
∑

(wp,pp)

bλs,s′

wp,pp,1

(

bs
wp,pp,1 − bs′

wp,pp,1

)





+
∑

(s,s′)∈L1

∑

t>1





∑

wp∈D(s,s′)

bλs,s′

wp,t

(

bs
wp,t − bs′

wp,t

)

+ eλs,s′

wp,t

(

es
wp,t − es′

wp,t

)



 (41)

s.t. (2) − (28)

bs
wp,t ∈ {0, 1} ∀(wp, t, s), bs

pp,t ∈ {0, 1} ∀(pp, t, s),

bs
wp,wp′,t ∈ {0, 1} ∀(wp, wp′, t, s), bs

wp,pp,t ∈ {0, 1} ∀(wp, pp, t, s),

es
wp,t ≥ 0 ∀(wp, t, s), es

pp,t ≥ 0 ∀(pp, t, s),

qprod,s
wp,t ≥ 0 ∀(wp, t, s),

In (SPM2RLR), parameters bλs,s′

(·),t and eλs,s′

(·),t represent the Lagrange multipliers for equality

constraints bs
(·),t = bs′

(·),t and es
(·),t = es′

(·),t, respectively. bλ and eλ represent the vectors of bλs,s′

(·),t

and eλs,s′

(·),t, respectively, for all relevant combinations of indices ((·), t, s, s′). (SPM2RLR) is an

MILP model and clearly a relaxation of (SPM2) for any values of the Lagrange multipliers. Fur-

ther, for fixed Lagrange multipliers, the solution of (SPM2RLR) can be obtained by solving one

MILP sub-problem for each scenario. The sub-problem for scenario s will consist of constraints

(2)-(28) for scenario s with the objective of maximizing the sum of all terms in (41) involving

variables associated with scenario s. We use φs
RLR(bλ, eλ) to denote the optimal objective value
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for the sub-problem corresponding to scenario s for given bλ, eλ. Thus,

φRLR(bλ, eλ) =
∑

s

φs
RLR(bλ, eλ) ≥ φ ∀(bλ, eλ)

Since this upper bounding property is valid for all values of bλ, eλ, the tightest upper bound

on φ can be obtained by solving the following Lagrangean dual problem (Guignard and Kim

(1987), Nemhauser and Wolsey (1988))

φRLD = min
bλ,eλ

φRLR(bλ, eλ).

The above Lagrangean dual problem can be solved approximately by using the sub-gradient

algorithm (Fisher, 1981).

5.2 Branching

Let (b̂, ê, q̂prod) represent the solution4 of the Lagrangean dual. In general, this solution may

not satisfy equality non-anticipativity constraints (29) and (38) and/or the conditional non-

anticipativity constraints implied by (39) and (40). The branching procedure eliminates infea-

sibility in the solution of the Lagrangean dual by partitioning the feasible space based on these

violated constraints.

5.2.1 Branching on equality non-anticipativity constraints

Similar to Caroe and Schultz (1999), our strategy for branching on equality constraints depends

on whether the variables involved are binary or continuous. Suppose the constraint bs1
wp,t =

bs2
wp,t = . . . = bsk

wp,t involving binary variables b
(·)
wp,t is violated by the solution of the Lagrangean

dual. The branching scheme partitions the feasible space in to two regions where bs1
wp,t = bs2

wp,t =

. . . = bsk

wp,t = 1 and bs1
wp,t = bs2

wp,t = . . . = bsk

wp,t = 0, respectively. The same strategy is used for

branching on violated equality constraints involving other binary variables (b
(·)
pp,t, b

(·)
wp,wp′,t and

b
(·)
wp,pp,t).

On the other hand, if an equality constraint es1
wp,t = es2

wp,t = . . . = esk

wp,t involving continuous

variables e
(·)
wp,t is violated, we create branches with bounds es1

wp,t, e
s2
wp,t, . . . , e

sk
wp,t ≥ ẽwp,t and

es1
wp,t, e

s2
wp,t, . . . , e

sk
wp,t ≤ ẽwp,t, where ẽwp,t is the mean value of variables esi

wp,t for 1 ≤ i ≤ k in the

4Note that SPM2RLR does not have any Z variables
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solution of the Lagrangean dual. Mathematically,

ẽwp,t =

k
∑

i=1
psi êsi

wp,t

k
∑

i=1
psi

(42)

The same strategy is used for branching on equality constraints involving other continuous

variables5 (e
(·)
pp,t and q

prod,(·)
wp,t ).

Note that (SPM2) involves equality constraints linking variables for only two scenarios at a

time, such as es1
wp,t = es2

wp,t. Similar to the strategy of Caroe and Schultz (1999), we could simply

branch on this equality constraint by partitioning the feasible space at ẽwp,t, which is computed

from (42) by setting k = 2. Instead, we combine all equality constraints involving e
(·)
wp,t to identify

a maximal set of scenarios s1, s2, . . . , sk, with k ≥ 2, such that es1
wp,t = es2

wp,t = . . . = esk

wp,t has

to hold at the current node. Intuitively, it seems that a large value for k in (42) would yield a

partitioning point that removes infeasibility in a large number of equality constraints involving

e
(·)
wp,t (rather than in just one equality constraint, es1

wp,t = es2
wp,t), and thus lead to more effective

branching.

5.2.2 Branching on conditional non-anticipativity constraints

Consider (wp∗, t, s, s′) such that (s, s′) ∈ L1 and {wp∗} = D(s, s′). Suppose
t
∧

τ=1

(

¬b̂s
wp∗,τ

)

=

True, but at least one of the following equality constraints is not satisfied.

bs
wp,t+1 = bs′

wp,t+1 ∀wp /∈ D(s, s′) (43a)

es
wp,t+1 = es′

wp,t+1 ∀wp /∈ D(s, s′) (43b)

bs
pp,t+1 = bs′

pp,t+1 ∀pp (43c)

es
pp,t+1 = es′

pp,t+1 ∀pp (43d)

bs
wp,wp′,t+1 = bs′

wp,wp′,t+1 ∀(wp, wp′) (43e)

bs
wp,pp,t+1 = bs′

wp,pp,t+1 ∀(wp, pp) (43f)

qprod,s
wp,t = qprod,s′

wp,t ∀wp (43g)

Thus, constraints (39)-(40) are violated for (t, s, s′). Figure 6 illustrates the branching strategy

5Although there may not be non-anticipatitivity constraints in equality form involving variables q
prod,(·)
wp,t at the

root node, they may be introduced at other nodes.
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Figure 6: Branching on conditional non-anticipativity constraints (39)-(40)

when
t
∧

τ=1

(

¬b̂s
wp∗,τ

)

= True but b̂s
wp,t+1 6= b̂s′

wp,t+1 for some wp /∈ D(s, s′). The three-way

branching scheme enforces the rule that either scenarios s, s′ are not indistinguishable after

investments in time period t or they are indistinguishable and bs
wp,t+1 = bs′

wp,t+1 holds. Note

that constraints (43) will be dualized in addition to (29) and (38) when the Lagrangean dual is

formulated at nodes 2 and 3 in Figure 6.

The same branching strategy is used if
t
∧

τ=1

(

¬b̂s
wp∗,τ

)

= True, but an equality in (43) involving

other binary variables ((43c), (43e), (43f)) is violated. On the other hand, if
t
∧

τ=1

(

¬b̂s
wp∗,τ

)

=

True, but ês
wp,t+1 6= ês′

wp,t+1 for some wp /∈ D(s, s′), then the branching scheme enforces the rule

that either scenarios s, s′ are not indistinguishable after investments in time period t or they

are indistinguishable and es
wp,t+1, e

s′

wp,t+1 ≤ ẽwp,t+1 or es
wp,t+1, e

s′

wp,t+1 ≥ ẽwp,t+1, where ẽwp,t+1

is the probability weighted mean of ês
wp,t+1 and ês′

wp,t+1. The same branching strategy is used

if
t
∧

τ=1

(

¬b̂s
wp∗,τ

)

= True, but an equality in (43) involving other continuous variables ((43d),

(43g)) is violated.

At any node in the branch and bound algorithm, the set of non-anticipativity constraints in

equality form will consist of constraints (29) and (38), and equalities (43) for (t, s, s′) such that

(s, s′) ∈ L1 and Zs,s′

t is fixed to True at that node. Non-anticipativity constraints in conditional

form will consist of logic constraints (39) and disjunctions (40) for (t, s, s′) such that (s, s′) ∈ L1

and Zs,s′

t is a free variable at the node. The Lagrangean dual at any node is formulated by

dualizing the non-anticipativity constraints in equality form and relaxing those in conditional

form. As part of the branching step, the feasible region is partitioned based on one of these

non-anticipativity constraints in equality or conditional form by using the appropriate strategy.
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5.3 Lower bound generation

Lower bounds at each node are obtained by generating feasible solutions of (SPM2) heuristically

from the solution of the Lagrangean dual. In this procedure, we first use a heuristic to fix all

binary decisions for installation of WPs and PPs so that (29a), (29c), (38a), (39) and (40) are

satisfied. With these decisions fixed, (SPM2) is reformulated as an MILP and solved in full

space.

Binary investment decisions for WPs and PPs are fixed in order of increasing t. We illustrate

the procedure for fixing the binary investment decisions for WPs. Let b̄s
wp,t represent the value

to which bs
wp,t is fixed by this heuristic procedure. In order to fix decisions bwp,t, we use the

values of b̄s
wp′,τ , 1 ≤ τ ≤ t − 1 (since binary investment decisions for WPs are fixed in order of

increasing t) together with (39) and (40) to identify all s′ such that (s, s′) ∈ L1 and bs
wp,t = bs′

wp,t

has to be satisfied. These equalities are combined with (29a) and (38a) to identify the set of

scenarios s1, s2, . . . , sk such that bs1
wp,t = bs2

wp,t = . . . = bsk

wp,t has to be satisfied. Using scenario

probabilities as weights, we compute α, the net weight in favor of fixing bsi

wp,t = 1 for all i such

that 1 ≤ i ≤ k. If α > 0, where α is computed as shown below, then we fix b̄si
wp,t = 1 for all i

such that 1 ≤ i ≤ k. Otherwise, we fix b̄si
wp,t = 0 for all i such that 1 ≤ i ≤ k.

α =

k
∑

i=1

b̂si

wp,tp
si −

k
∑

i=1

(1 − b̂si

wp,t)p
si

Binary investment decisions for PPs are fixed using the same logic.

5.4 Remarks

(i) It is important to note that logic inferencing (Hooker (2000)) on Boolean and discrete

variables can significantly impact the quality of upper bounds in the proposed algorithm.

Specifically, constraints (29a), (29c), (29e), (29f), (38a), (39) and (40) can be used for logic

inferencing on variables b and Z. For example, if a node in the branch and bound tree

has the restriction bs1
wp=A,1 = 0, then we can use (39) to infer that Zs1,s2

1 = True for s2

such that D(s1, s2) = {A}. Thus, equality constraints (43) for (t = 1, s = s1, s
′ = s2) can

be added to the model at that node and can be dualized when the Lagrangean dual at

that node is formulated. These modifications may significantly impact the value of the

Lagrangean dual at that node. Therefore, the logic inferencing step should be executed

before the Lagrangean dual is solved at any node.
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Figure 7: Object oriented design for implementation of branch and bound algorithms

(ii) It should be noted that since this algorithm involves branching on continuous variables,

some stopping criterion is needed to avoid infinite branching on these variables. As ex-

plained by Caroe and Schultz (1999), if the feasible region is bounded and if we branch

parallel to the coordinate axes, then we can stop after the l∞-diameter of the feasible sets

of the sub-problems has fallen below a certain threshold. The algorithm is then guaranteed

to converge finitely.

5.5 Implementation

Figure 7 represents an object-oriented design (Deitel and Deitel (2003)) for the implementa-

tion of branch and bound algorithms. In this representation, each rectangular box represents

a class while an arrow connecting class A to class B represents that each object of class A has

a reference to an object of class B among its data members. Only the most important data

members and member functions for each class are shown. In this design, the class BBManager

controls the branch and bound algorithm. A BBManager object has access to objects of classes

BBTreeManager, UpperBoundGenerator (maximization case) and FeasibleSolutionGenerator.

The BBTreeManager maintains the branch and bound tree by pruning unwanted nodes and by

creating child nodes, when needed, with the help of the class BranchingProcedure. Each node in

the branch and bound tree is represented by an object of class BBTreeNode. The ModelChanges

object associated with each BBTreeNode object stores information on how the model at that node
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differs from that at its parent. The WarmStartData object associated with each BBTreeNode

object stores warm start information to be used when upper bounds are being generated for any

of its child nodes.

The user invokes the branch and bound algorithm on Model by calling function solve(Model),

which is a member of class BBManager. At any iteration of the algorithm, this function calls

function getNextNodeModel(), a member of class BBTreeManager, which returns NodeModel,

the model at the next node, and the WarmStartData to be used for solving this model. The

BBTreeManager generates NodeModel by using the ModelChanges information at the node and all

its ancestors. NodeModel is passed to function genUB(NodeModel,WarmStartData), a member of

class UpperBoundGenerator, which develops and solves a relaxation of NodeModel. NodeSol, the

solution of the relaxation of NodeModel, is passed to the function genFeasSol(Model,NodeSol),

a member of class FeasibleSolutionGenerator, which attempts to generate a feasible solution

to Model by using NodeSol as a starting point. Based on the upper and lower bounds thus

generated, the BBManager either asks the BBTreeManager to prune the tree or asks it to branch

on the current node. In the latter case, the BBManager collects the necessary information from

the UpperBoundGenerator and passes it to BBTreeManager as a WarmStartData object. This

information is stored at the current node and will be used when upper bounds are being generated

at child nodes of the current node.

We believe that this object-oriented design can be used to implement any branch and bound

algorithm by customizing the upper-bound generation procedure, the feasible solution generation

scheme and the branching procedure. We refer to the classes providing to these functionalities as

the variant classes. Since the warm start data will depend on the solution procedure being used

in the UpperBoundGenerator, while the changes in model from one node to another will depend

on the branching strategy, WarmStartData and ModelChanges are also variant classes. The

remaining classes, namely, BBManager, BBTreeManager and BBTreeNode will remain the same

irrespective of the algorithm being implemented. Thus, we will refer to these as the invariant

classes. The proposed object-oriented design can be used to develop a library that provides

concrete implementations for the invariant classes and abstract implementations for the variant

classes. By implementing derived classes that embed algorithm specific functionality for each of

the variant classes, this library can be used to implement any branch and bound algorithm with

significant reduction in development time.

We have implemented the proposed algorithm in C++ based on this object-oriented design. The
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model has been implemented using ILOG’s Concert Technology modeling libraries. In our im-

plementation, the class GFUpperBoundGenerator, which is derived from UpperBoundGenerator,

has access to objects of user defined classes PreProcessor and LagrangeanDualSolver. The

PreProcessor object embeds a logic-model in variables b and Z based on constraints (29a),

(29c), (29e), (29f), (38a), (39) and (40). Before function genUB(NodeModel,WarmStartData),

member of class GFUpperBoundGenerator, develops the relaxation of NodeModel, it passes

NodeModel to the PreProcessor. The PreProcessor uses the logic-model to fix additional

variables in NodeModel. The pre-processed model is passed to the LagrageanDualSolver ob-

ject, which uses the sub-gradient algorithm (Fisher (1981)) to solve the Lagrangean dual. The

LagrangeanDualSolver has access to an IloCplex object (ILOG (2003)) that is called to solve

each of the MIP sub-problems.

The derived class corresponding to the FeasibleSolutionGenerator also has access to an

IloCplex object that is called to solve the reduced MIP after binary investment variables for

WPs and PPs have been fixed by the FeasibleSolutionGenerator. The derived class corre-

sponding to WarmStartData stores the optimal Lagrange multipliers at a node while the derived

class corresponding to ModelChanges stores the bounds on the branch connecting a node to its

parent node.

Finally, the derived class corresponding to BranchingProcedure implements the branching

scheme explained in section 5.2. In this scheme, we gave higher priority to branching on equality

constraints than on conditional non-anticipativity constraints. Among the equality constraints,

we gave highest priority to branching on constraints involving b
(·)
wp,t, followed by those involving

e
(·)
wp,t, b

(·)
pp,t, e

(·)
pp,t, b

(·)
wp,wp′,t, b

(·)
wp,pp,t and q

prod,(·)
wp,t , in order of decreasing priority. This priority can

be justified as follows. During the solution of the Lagragean dual, decisions for each scenario are

optimized independently and therefore they violate the relaxed non-anticipativity constraints.

Since the scenarios differ only in the properties associated with WPs (or, more precisely, with the

fields corresponding to the WPs), it is natural to expect that this violation comes about because

investment decisions for WPs in every scenario will be optimal with respect to the properties

of the WPs in that scenario. Thus, enforcing the non-anticipativity constraints on investment

decisions for WPs seems intuitively most important.
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Example 1 Example 2 Example 5

(3 scenarios) (9 scenarios) (81 scenarios)

(SPM) (SPM2) (SPM) (SPM2) (SPM) (SPM2)

Constraints 7,541 7,457 43,337 29,045 2,735,597 386,597

Variables 4,480 4,480 13,843 13,573 169,696 125,956

0-1 Variables 594 594 1,782 1,782 16,281 16,281

CPU time (sec.) 51 41 1,200 1,200 Out 75,000

Lower Bound ($ Million) 99.551 99.551 85.534 85.566 of 137.834

Optimality gap < 1% < 1% 84.74% 21.63% memory 77.70%

Table 2: MILP reformulations of (SPM) and (SPM2)

6 Results

In this section, we present results for five sample problems to highlight the effectiveness of

the properties presented in section 4 and the performance of the proposed branch and bound

algorithm. Examples 1, 2 and 5 have been taken from Goel and Grossmann (2004b) while

examples 3 and 4 are new. Examples 1, 2, 3, 4 and 5 have 3, 9, 9, 81 and 81 scenarios,

respectively. All results presented below have been obtained on a Pentium-IV, 2.4 GHz Linux

machine. We present detailed qualitative results for example 3 only. Results for other examples

are summarized.

Table 2 illustrates the effectiveness of propositions 1 and 2 by comparing the sizes of the big-M

reformulations of models (SPM) and (SPM2). The status of ILOG CPLEX 9.0 during the

solution in full space of these reformulations is also compared. An optimality gap of 1% has

been used as a stopping criterion. It can be seen that for examples 1, 2 and 5, the propositions

achieve 1%, 33% and 86% reduction, respectively, in the number of constraints. While the

impact on the performance of ILOG CPLEX 9.0 is relatively small for example 1, the reduction

in model size leads to a much tighter optimality gap for example 2 after 1,200 CPU seconds.

In the case of example 5, the computer ran out of memory even before the root node could be

solved during the solution of the big-M reformulation of (SPM). It is clear that the smaller size

of (SPM2) makes solution of this model more manageable. Thus it is evident that propositions

1 and 2 have a significant impact on model size and their importance increases with increase in

the number of scenarios. On the other hand, it is also clear that even with these reductions, the

size of the problem can still become very large, thereby neccessitating the use of the proposed

branch and bound algorithm.
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Figure 8: Superstructure for Example 3

6.1 Example 3

Figure 8 shows the super-structure for an offshore site with four fields, denoted by letters A-D,

and one potential location for a production platform, PP. Investment and operation decisions

have to be made for this site over a project horizon of 15 years (15 time periods). For ease of

illustration, we assume that the uncertainty is restricted to the sizes of fields B and C. Possible

realizations for the size of field B include 300, 400 and 500 BSCF with probabilities 0.3, 0.4 and

0.3, respectively. Similarly, possible realizations for the size of field C include 150, 300 and 450

BSCF with probabilities 0.3, 0.4 and 0.3, respectively. Fields A and D have sizes 300 and 250

BSCF, respectively. Initial deliverabilities for fields A, B, C, and D are 130, 120, 150 and 140

MSCF/D, respectively6. The sizes of fields B and C in each of the nine scenarios together with

the probabilities of these scenarios are shown in Figure 4. The set D(s, s′) is given in Table 1.

Figure 9 shows the branch and bound tree traversed by the proposed algorithm. The nodes

are numbered in the order they are visited. All Lagrangean multipliers are initialized to zero

during the solution of the Lagrangean dual at the root node. The solution of the Lagrangean

dual yields an upper bound of 68.912 while the feasible solution generation scheme generates

a lower bound of 65.767. In the solution of the Lagrangean dual, variables bs
wp=C,t=1 take

values 1, 0, 0, 0, 0, 1, 0, 0, 1 for s = 1, 2, . . . , 9, which clearly violates the equality constraints

b1
C,1 = b2

C,1 = . . . = b8
C,1 = b9

C,1 implied by (29a). Thus, the feasible space is bifurcated in

6MSCF/D = Million Standard Cubic Feet per Day
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Figure 9: Branch and bound tree for Example 3 (1% optimality gap used as stopping criterion)

to regions b1
C,1 = b2

C,1 = . . . = b8
C,1 = b9

C,1 = 0 and b1
C,1 = b2

C,1 = . . . = b8
C,1 = b9

C,1 = 1,

represented by nodes 2 and 3, respectively.

During the solution of the Lagrangean dual at nodes 2 and 3, the Lagrange multipliers are ini-

tialized to the optimal values of these multipliers at node 1. A logic inferencing step is executed

at nodes 2 and 3 before the Lagrangean dual problems are solved at these nodes. As shown in Fig-

ure 9, this step is able to fix Zs,s′

t = True for (t, s, s′) ∈ {(1, 1, 4), (1, 1, 7), (1, 2, 5), (1, 2, 8), (1, 3, 6),

(1, 3, 9), (1, 4, 7), (1, 5, 8), (1, 6, 9)}. Equality constraints (43) for these combinations of (t, s, s′)

are also dualized when the Lagrangean dual at node 2 is formulated. Lagrange multipliers for

these constraints are initialized to zero during the solution of the Lagrangean dual. At node

2, upper and lower bounds of 67.596 and 65.770, respectively, are generated. In the solution

of the Lagrangean dual, variables e1
C,6, e

4
C,6, and e7

C,6 take values 69.17, 69.21 and 0.00 respec-

tively. These values violate the equality constraints e1
C,6 = e4

C,6 = e7
C,6 (implied by (38a) since

(1, 4), (1, 7) ∈ L1 and D(1, 4) = D(1, 7) = {C}; see Table 1). Thus, the feasible space is bifur-

cated into two regions about the mean of 69.17, 69.21, 0.00, which is 48.44.

The algorithm is stopped after the optimality tolerance of 1% is reached. The lower bound
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Scenario

1 4 7 2 5 8 3 6 9

t = 1 A(66.68), B(83.32), PP(150.00)

t = 6 C(73.86)

t = 7 C(73.33)

t = 8 C(73.33)

t = 10 D(66.26)

t = 12 D(69.75) D(70.54)

t = 13 D(49.01) D(55.18) D(60.99)

ENPV $65.770 Million

Table 3: Solution for Example 3 from branch and bound algorithm

Scenario

1 4 7 2 5 8 3 6 9

t = 1 A(67.66), B(82.34), PP(150.00)

t = 7 C(72.13) C(64.70) C(69.21)

t = 10 D(63.95)

t = 12 D(67.83) D(44.25) D(70.54)

t = 13 D(54.27) D(62.09)

ENPV $62.794 Million

Table 4: Solution for Example 3 from heuristic developed by Goel and Grossmann (2004b)

generated at node 2 corresponds to the best solution found by the algorithm. This solution

(Table 3) proposes installation of WPs at fields A and B in year 1 with capacities 66.68 and

83.32 MSCF/D, respectively. Installation of the WP at field C is proposed in years 6, 7 or 8

depending on whether the size of field B is 300 (scenarios 1, 4 and 7), 400 (scenarios 2, 5 and

8) or 500 BSCF (scenarios 3, 6 and 9), respectively. Finally, installation of the WP at field D is

proposed in six of the nine scenarios.

Table 4 gives the best solution found by the heuristic proposed by Goel and Grossmann (2004b).

In that paper, the authors aimed to obtain a good feasible solution to (SPM), rather than the

optimal solution. Specifically, their heuristic aims to obtain the best solution that satisfies

bs
wp,t = bs′

wp,t for all (t, s) and all WPs wp that have uncertainty associated with them, in

addition to satisfying (2)-(28) and (29)-(31). This extra restriction prevents solutions from

proposing investment at field wp in different time periods based on information obtained about

other fields if the quality of reserves of field wp is uncertain. Hence, the best solution found

by this heuristic (ENPV = $62.794 Million) forces the WP at field C to be installed in year 7
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Scenario

1 4 7 2 5 8 3 6 9

t = 1 B(80.79), C(69.21), PP(150.00)

t = 4 A(66.87) A(63.42) A(57.37)

t = 6 A(66.68) A(58.57)

t = 7 A(66.68)

t = 8 A(61.67) A(66.02)

t = 10 D(70.54) A(65.81)

t = 11 D(66.39)

t = 12 D(70.67) D(63.88)

t = 13 D(56.13)

ENPV $61.214 Million

Table 5: Solution for Example 3 from deterministic approach

irrespective of the size information obtained for field B. The solution obtained by the proposed

branch and bound algorithm (ENPV = $65.770 Million) cannot be found by the heuristic. Note

that since field D does not have any associated uncertainty, the heuristic allows the WP at field

D to be installed in different time periods in different scenarios.

Table 5 gives the solution found by using a deterministic approach. In this approach, a deter-

ministic problem obtained by assuming mean values for all uncertain parameters is first solved.

The decisions proposed by the solution are implemented until more information is obtained.

The new information obtained is then used to update the model which is then re-solved to find

“optimal” future decisions given that decisions up till that time have already been implemented.

The solution from the above approach proposes investment in both uncertain fields in the first

year, and has an ENPV of $61.214 Million which is $4.516 Million less than the ENPV of the

solution obtained by the proposed branch and bound algorithm. It should be noted that the

feasible space of (SPM) contains the solution spaces searched by the deterministic approach

and the heuristic of Goel and Grossmann (2004b). Since the branch and bound algorithm gives

the optimal solution of (SPM), it is guaranteed to always give solutions at least as good as

these two methods.

Computational Performance

Table 6 compares the performance of the proposed branch and bound algorithm with that of

ILOG CPLEX 9.0 applied to the big-M reformulation of (SPM2) in full space. Note that similar
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Branch and Bound Full space with ILOG CPLEX 9.0

In time 2 · t In time 10 · t

t Lower Bound Opt. gap Lower Bound Opt. gap Lower Bound Opt. gap

(CPU sec.) ($ Million) ($ Million) ($ Million)

Example 1 169 99.551 < 1% In 41 CPU sec. (< t), lower bound = 99.551, Opt. gap < 1%

Example 2 556 92.057 < 1% 85.566 21.63% 91.694 7.45%

Example 3 1,683 65.770 < 1% 65.567 20.55% 65.567 15.38%

Example 4 18,552 86.746 < 1% 27.883 655.57% 71.3067 151.97%

Example 5 37,204 146.695 < 1% 137.834 77.70% 141.578 32.90%

Table 6: Comparison of proposed branch and bound algorithm with ILOG CPLEX 9.0

Heuristic (Goel and Grossmann (2004b))

CPU time Lower Bound Opt. gap

(sec.) ($ Million)

Example 1 34 99.551 0.00%

Example 2 127 92.057 0.21%

Example 3 80 62.794 16.21%

Example 4 589 74.881 37.35%

Example 5 3,034 146.316 9.77%

Table 7: Results for heuristic proposed by Goel and Grossmann (2004b)

Branch and bound: root node

CPU time Lower Bound Opt. gap

(sec.) ($ Million)

Example 1 152 99.551 1.57%

Example 2 455 92.047 3.68%

Example 3 390 65.767 4.78%

Example 4 3,798 86.094 6.76%

Example 5 3,901 146.695 3.25%

Table 8: Status of branch and bound algorithm at root node
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Solution from Best solution found

deterministic approach for (SPM)

($ Million) ($ Million)

Example 1 94.557 99.551

Example 2 84.507 92.057

Example 3 61.214 65.770

Example 4 84.188 86.746

Example 5 143.432 146.695

Table 9: Comparison of deterministic and stochastic approaches

to Example 3, Example 4 also involves optimizing the investment and operation decisions for a

four field site over a 15 year time horizon. However, in Example 4 we consider uncertainty in

the sizes of all four fields, with three possible realizations for each uncertain parameter. Thus,

Example 4 involves 81 scenarios. Also, the field data is different from that in Example 3. Further

details for Example 4 are not provided for sake of brevity.

The branch and bound algorithm is stopped when the optimality gap falls below 1%. The CPU

time required by the branch and bound algorithm is represented by t in Table 6. The status

of ILOG CPLEX 9.0 is reported after 2t and 10t CPU seconds for each of the examples. It

can be seen that the proposed algorithm out-performs the solution of the full space model using

ILOG CPLEX in all examples except for example 1, which is also the smallest one. For all

other examples, ILOG CPLEX 9.0 could not achieve the same optimality gaps even if provided

one order of magnitude greater time than the proposed algorithm. In addition, for most of

the examples the best feasible solution generated by ILOG CPLEX 9.0 in 10t CPU seconds is

significantly inferior to that generated by the proposed algorithm in t CPU seconds.

Results obtained using the heuristic proposed by Goel and Grossmann (2004b) are presented in

Table 7. It can be seen that the proposed branch and bound algorithm requires significantly

more CPU time (see Table 6). The trade-off, however, is that the proposed algorithm yields

improved solutions in three of the five test problems. Furthermore, it is interesting to note that

the proposed algorithm generates very good solutions at the root node itself (see Table 8). In

fact, the feasible solutions generated at the root node are better than the solutions obtained from

the heuristic by Goel and Grossmann (2004b) in three of the five test problems. The solution

times for solving the root node in the proposed algorithm are still greater than the solution times

for the heuristic by Goel and Grossmann (2004b), but the differences are considerably smaller.

Finally, Table 9 shows that for each of the five examples, the best known solution for (SPM2)
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(obtained from the proposed algorithm) is significantly better than the solution obtained from

a deterministic approach, thus validating the importance of addressing the uncertainty in the

gas field problem.

7 Conclusions

Goel and Grossmann (2004b) presented a hybrid mixed-integer/disjunctive model stochastic

programming model and a solution heuristic for the optimal planning for development of gas

fields under uncertainty in reserves. We have presented a set of theoretical properties satisfied

by any feasible solution of this model with the goal of achieving a reduction in model size. It is

shown that the effectiveness of these properties increases as the number of scenarios increases.

The number of constraints in the model is reduced by 86% for the largest test problem considered.

This in turn has a direct impact on the solvability of the model.

We have also presented a Lagrangean duality based branch and bound algorithm to solve the

stochastic programming model rigorously and efficiently. It was shown that the proposed algo-

rithm achieves significantly better solutions and tighter optimality gaps than the heuristic of

Goel and Grossmann (2004b), especially for the larger problems. Also, ILOG CPLEX 9.0, the

state-of-the-art commercial solver as applied to the full space model cannot match the perfor-

mance of the proposed algorithm even if provided one order of magnitude greater CPU time.
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Nomenclature

Indices

t, τ Time periods, t ∈ {1, 2, . . . , T}

wp, wp′ Well platform or corresponding field
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pp Production platform

s, s′ Scenario

Sets

Θwp,1 Set of realizations for the size of field wp

Θwp,2 Set of realizations for the initial deliverability of field wp

D(s, s′) Set of fields that have different properties in scenarios s and s′

L1 Set of scenario pairs (s, s′) such that s < s′ and s, s′ differ in realization of exactly one

uncertain parameter

Optimization Variables

bs
(·),t Whether or not structure (·) is installed in time period t

Zs,s′

t Whether or not scenarios s, s′ are indistinguishable after investment in time period t

qprod,s
wp,t Gas production rate at field wp in time period t; scenario s

qdeliv,s
wp,t Deliverability of field wp in time period t; scenario s

qcum,s
wp,t Cumulative production from field wp at end of time period t; scenario s

qout,s

(·),t Gas flow-rate out of structure (·) in time period t; scenario s

qshr,s
t Gas flow-rate to shore in time period t; scenario s

caps
wp,t Capacity of well platform wp in time period t

caps
pp,t Capacity of production platform pp in time period t; scenario s

es
wp,t Expansion in capacity of well platform wp in time period t; scenario s

es
pp,t Expansion in capacity of production platform pp in time period t; scenario s

CCtot,s
t Total capital costs in time period t; scenario s

OCtot,s
t Total operating costs in time period t; scenario s

Revtot,s
t Total revenues in time period t; scenario s

NPV s Net Present Value in scenario s

Parameters

ps Probability of scenario s

θs
wp,1 Size of field wp in scenario s
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θs
wp,2 Initial deliverability of field wp in scenario s

δt Number of days in time period t

shrink Shrinkage factor for flow in pipeline towards shore

M(·) Upper bound on capacity of (·)

αt Discounting factor for time period t

FCC(·) Fixed operating cost for structure (·)

V CC(·) Variable capital cost for structure (·)

FOC(·) Fixed operating cost for structure (·)

V OC(·) Variable operating cost for structure (·)

Pt Price of gas in time period t
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