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ABSTRACT 

This paper has as a major objective to present a unified overview and derivation of mixed-

integer nonlinear programming (MINLP) techniques, Branch and Bound, Outer-Approximation, 

Generalized Benders and Extended Cutting Plane methods, as applied to nonlinear discrete 

optimization problems that are expressed in algebraic form. The solution of MINLP problems 

with convex functions is presented first, followed by a brief discussion on extensions for the 

nonconvex case. The solution of logic based representations, known as generalized disjunctive 

programs, is also described. Theoretical properties are presented, and numerical comparisons on 

a small process network problem. 

Keywords: mixed-integer programming, disjunctive programming, nonlinear programming. 

 

INTRODUCTION 

Mixed-integer optimization provides a powerful framework for mathematically modeling many 

optimization problems that involve discrete and continuous variables. Over the last few years 

there has been a pronounced increase in the development of these models, particularly in process 

systems engineering (see Grossmann et al, 1996; Grossmann, 1996a; Grossmann and Daichendt, 

1996; Pinto and Grossmann, 1998; Shah, 1998; Grossmann et al, 1999; Kallrath, 2000).  

 

Mixed-integer linear programming (MILP) methods and codes have been available and applied 

to many practical problems for more than twenty years (e.g. see Nemhauser and Wolsey, 1988). 

The most common method is the LP-based branch and bound method (Dakin, 1965), which has 

been implemented in powerful codes such as OSL, CPLEX and XPRESS.  Recent trends in 

MILP include the development of branch-and-price (Barnhart et al. 1998) and branch-and-cut 

methods such as the lift-and-project method by Balas, Ceria and Cornuejols (1993) in which 

cutting planes are generated as part of the branch and bound enumeration. See also Johnson et 

al. (2000) for a recent review on MILP. 
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It is not until recently that several new methods and codes are becoming available for mixed-

integer nonlinear problems (MINLP) (Grossmann and Kravanja, 1997). In this paper we provide 

a review the various methods emphasizing a unified treatment for their derivation.  As will be 

shown, the different methods can be derived from three basic NLP subproblems and from one 

cutting plane MILP problem, which essentially correspond to the basic subproblems of the 

Outer-Approximation method. Properties of the algorithms are first considered for the case 

when the nonlinear functions are convex in the discrete and continuous variables. Extensions are 

then presented for handling nonlinear equations and nonconvexities. Finally, the paper considers 

properties and algorithms of the recent logic-based representations for discrete/continuous 

optimization that are known as generalized disjunctive programs.  Numerical results on a small 

example are presented comparing the various algorithms.  

 

BASIC ELEMENTS OF MINLP METHODS 

The most basic form of an MINLP problem when represented in algebraic form is as follows: 
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where f(·), g(·) are convex, differentiable functions, J  is the index set of inequalities, and x and y 

are the continuous and discrete variables, respectively.  The set X is commonly assumed to be a 

convex compact set, e.g.     X = {x | x∈R
n
, Dx < d, xL < x < xU};  the discrete set Y corresponds to 

a polyhedral set of integer points,     Y = {y | y∈Zm, Ay < a} , which in most applications is 

restricted to 0-1 values, y ∈ {0,1}m
. In most applications of interest the objective and constraint 

functions f(·), g(·) are linear in y  (e.g. fixed cost charges and mixed-logic constraints): 

f (x, y) = cT y + r(x),  g(x, y) = By + h(x).  

 

Methods that have addressed the solution of problem (P1) include the branch and bound method 

(BB) (Gupta and Ravindran, 1985; Nabar and Schrage, 1991; Borchers and Mitchell, 1994; 

Stubbs and Mehrotra, 1999; Leyffer, 2001), Generalized Benders Decomposition (GBD) 

(Geoffrion, 1972), Outer-Approximation (OA) (Duran and Grossmann, 1986; Yuan et al., 1988; 

Fletcher and Leyffer, 1994), LP/NLP based branch and bound (Quesada and Grossmann, 1992), 

and Extended Cutting Plane Method (ECP) (Westerlund and Pettersson, 1995). 
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NLP Subproblems. There are three basic NLP subproblems that can be considered for problem 

(P1): 

a) NLP relaxation 
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where YR is the continuous relaxation of the set Y, and   IFL

k , IFU
k  are index subsets of the integer 

variables yi,    i∈ I , which are restricted to lower and upper bounds,    αi
k, βi

k,  at the k’th step of a 

branch and bound enumeration procedure.   It should be noted that αi
k = yi

l , βi
k = yi

m ,  l < k, 

m < k where yi
l ,yi

m ,  are noninteger values at a previous step, and  . , . , are the floor and 

ceiling functions, respectively. 

 
Also note that if Ø== k

FL
k
FU II  (k=0), (NLP1) corresponds to the continuous NLP relaxation of 

(P1).  Except for few and special cases, the solution to this problem yields in general a 

noninteger vector for the discrete variables.  Problem (NLP1) also corresponds to the k’th step in 

a branch and bound search.  The optimal objective function   ZLB
o  provides an absolute lower 

bound to (P1); for m > k, the bound is only valid for    IFL
k ⊂ IFL

m, IFU
k ⊂ IFL

m . 

 

b)  NLP subproblem for fixed yk: 
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(NLP2) 

which yields an upper bound   ZU
k  to (P1) provided (NLP2) has a feasible solution. When this is 

not the case, we consider the next subproblem: 

c)  Feasibility subproblem for fixed yk. 
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Fig. 1. Geometrical interpretation of linearizations in master problem (M-MIP) 

 

which can be interpreted as the minimization of the infinity-norm measure of infeasibility of the 

corresponding NLP subproblem.  Note that for an infeasible subproblem the solution of (NLPF) 

yields a strictly positive value of the scalar variable u. 

 

MILP cutting plane. 

  The convexity of the nonlinear functions is exploited by replacing them with supporting 

hyperplanes, that are generally, but not necessarily, derived at the solution of the NLP 

subproblems. In particular, the new values yK (or (xK, yK)) are obtained from a cutting plane 

MILP problem that is based on the K points, (xk, yk), k=1...K generated at the K previous steps:
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where Jk⊆J.  When only a subset of linearizations is included, these commonly correspond to 

violated constraints in problem (P1).  Alternatively, it is possible to include all linearizations in 
(M-MIP).   The solution of (M-MIP) yields a valid lower bound   ZL

K  to problem (P1).  This 

bound is nondecreasing with the number of linearization points K.  Note that since the functions 

f(x,y) and g(x,y) are convex, the linearizations in (M-MIP) correspond to outer-approximations 

of the nonlinear feasible region in problem (P1). A geometrical interpretation is shown in Fig.1, 

where it can be seen that the convex objective function is being underestimated, and the convex 

feasible region overestimated with these linearizations. 

Algorithms. The different methods can be classified according to their use of the subproblems 

(NLP1), (NLP2) and (NLPF), and the specific specialization of the MILP problem (M-MIP) as 

seen in Fig. 2. It should be noted that in the GBD and OA methods (case (b)), and in the 

LP/NLP based branch and bound mehod (case (d)),  the problem (NLPF) is solved if infeasible 

subproblems are found.  Each of the methods is explained next in terms of the basic 

subproblems. 
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   Fig. 2. Major Steps In the Different Algorithms 

 

I.  Branch and Bound.  While the earlier work in branch and bound (BB) was aimed at linear 

problems (Dakin, 1965), this method can also be applied to nonlinear problems (Gupta and 

Ravindran, 1985; Nabar and Schrage, 1991; Borchers and Mitchell, 1994; Stubbs and Mehrotra, 

1999; Leyffer, 2001).  The BB method starts by solving first the continuous NLP relaxation.  If 

all discrete variables take integer values the search is stopped. Otherwise, a tree search is 
performed in the space of the integer variables    yi, i∈ I . These are successively fixed at the 

corresponding nodes of the tree, giving rise to relaxed NLP subproblems of the form (NLP1) 

which yield lower bounds for the subproblems in the descendant nodes. Fathoming of nodes 

occurs when the lower bound exceeds the current upper bound, when the subproblem is 
infeasible or when all integer variables yi take on discrete values.  The latter yields an upper 

bound to the original problem. 

 

The BB method is generally only attractive if the NLP subproblems are relatively inexpensive to 

solve, or when only few of them need to be solved.  This could be either because of the low 

dimensionality of the discrete variables, or because the integrality gap of the continuous NLP 

relaxation of (P1) is small. 
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II. Outer-Approximation (Duran and Grossmann, 1986; Yuan et al., 1988; Fletcher and 

Leyffer, 1994).  The OA method arises when NLP subproblems (NLP2) and MILP master 

problems (M-MIP) with Jk = J  are solved successively in a cycle of iterations to generate the 

points (xk, yk).  For its derivation, the OA algorithm is based on the following theorem (Duran 

and Grossmann, 1986): 

Theorem 1. Problem (P) and the following MILP master problem (M-OA) have the same 

optimal solution (x*, y*),  
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where K*={k for all feasible yk∈Y, (xk, yk) is the optimal solution to the problem (NLP2), and 

for all infeasible yk∈Y, (xk, yk) is the optimal solution to the problem (NLPF)}  

   

Since the master problem (M-OA) requires the solution of all feasible discrete variables yk, the 

following MILP relaxation is considered, assuming that the solution of K different NLP 

subproblems (K =|KFS ∪  KIS|, KFS set of solutions from NLP2, KIS set of solutions from 

NLPF) is available: 
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Given the assumption on convexity of the functions f(x,y) and g(x,y), the following property can 

easily be established, 

Property 1. The solution of problem (RM-OA), ZL
K , corresponds to a lower bound of the solution 

of problem (P1). 
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Note that this property can be verified in Fig. 1. Also, since function linearizations are 

accumulated as iterations proceed, the master problems (RM-OA) yield a non-decreasing 
sequence of lower bounds, ZL

1 .. .≤ ZL
k ≤.. .≤ZL

K , since linearizations are accumulated as iterations 

k proceed.   

 

The OA algorithm as proposed by Duran and Grossmann (1986) consists of performing a cycle 

of major iterations, k=1,..K, in which (NLP1) is solved for the corresponding yk, and the relaxed 

MILP master problem (RM-OA) is updated and solved with the corresponding function 

linearizations at the point (xk,yk), for which the corresponding subproblem NLP2 is solved. If 

feasible, the solution to that problem is used to construct the first MILP master problem; 

otherwise a feasibility problem (NLPF) is solved to generate the corresponding continuous point 

(Fletcher and Leyffer, 1994). The initial MILP master problem (RM-OA) then generates a new 

vector of discrete variables. The (NLP2) subproblems yield an upper bound that is used to 
define the best current solution, }{min k

U
k

K ZUB = .  The cycle of iterations is continued until this 

upper bound and the lower bound of the relaxed master problem, ZL
K , are within a specified 

tolerance.  One way to avoid solving the feasibility problem (NLPF) in the OA algorithm when 

the discrete variables in problem (P1) are 0-1, is to introduce the following integer cut whose 

objective is to make infeasible the choice of the previous  0-1 values generated at the K previous 

iterations (Duran and Grossmann, 1986):  

 KkByy k

Ni
i

Bi
i

kk

,...11 =−≤−∑∑
∈∈

                (ICUT) 

where Bk={ i | yik = 1}, Nk={ i | yik = 0}, k=1,...K. This cut becomes very weak as the 

dimensionality of the 0-1 variables increases.  However, it has the useful feature of ensuring that 

new 0-1 values are generated at each major iteration.  In this way the algorithm will not return to 

a previous integer point when convergence is achieved. Using the above integer cut the 
termination takes place as soon as ZLK ��8%K.   

 

The OA method generally requires relatively few cycles or major iterations.  One reason for this 

behavior is given by the following property: 

 

Property 2.   The OA algorithm trivially converges in one iteration if f(x,y) and g(x,y) are linear.   

 

This property simply follows from the fact that if f(x,y) and g(x,y) are linear in x and y  the MILP 

master problem (RM-OA) is identical to the original problem (P1).  
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It is also important to note that the MILP master problem need not be solved to optimality.  In 

fact given the upper bound UBK and a tolerance ε, it is sufficient to generate the new (yK, xK) by 

solving, 
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While in (RM-OA) the interpretation of the new point yK  is that it represents the best integer 

solution to the approximating master problem, in (RM-OAF) it represents an integer solution  

whose lower bounding objective does not exceed the current upper bound, UBK; in other words 

it is a feasible solution to (RM-OA) with an objective below the current estimate.  Note that the 

OA iterations are terminated when (RM-OAF) has no feasible solution.  

 

III. Generalized Benders Decomposition (Geoffrion, 1972).  The GBD method (see Flippo 

and Kan 1993) is similar to the Outer-Approximation method.  The difference arises in the 

definition of the MILP master problem (M-MIP).  In the GBD method only active inequalities 

are considered Jk = {j |gj (xk, yk) = 0} and the set   x∈ X  is disregarded.  In particular, consider 

an outer-approximation given at a given point (xk, yk),  
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where for a fixed yk the point xk corresponds to the optimal solution to problem (NLP2). Making 

use of the Karush-Kuhn-Tucker conditions and eliminating the continuous variables x, the 

inequalities in (OAk) can be reduced as follows (Quesada and Grossmann (1992):  

    ( ) ( ) ( )[ ]kTkk
y

kkTkkTkk
y

kk yyyxgyxgyyyxfyxf −∇++−∇+≥ ),(),(),(),( µα  (LCk) 

 

which is the Lagrangian cut projected in the y-space. This can be interpreted as a surrogate 

constraint of the equations in (OAk), because it is obtained as a linear combination of these. 
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For the case when there is no feasible solution to problem (NLP2), then if the point xk is 

obtained from the feasibility subproblem (NLPF), the following feasibility cut projected in y can 

be obtained using a similar procedure, 

   ( ) ( )[ ] 0),(),( ≤−∇+ kTkk
y

kkTk yyyxgyxgλ    (FCk) 

In this way, the problem (M-MIP) reduces to a problem projected in the y-space: 

    
( )

( ) ( )[ ] KFSkyyyxgyxg

yyyxfyxfst

Z

kTkk
y

kkTk

kTkk
y

kk

K
L

∈−∇++

−−∇+≥

=

),(),(

GBD)(RM),(),(

min

µ

α
α

 

        
( ) ( )[ ]

1,

0),(),(

RXx

KISkyyyxgyxg kTkk
y

kkTk

∈∈

∈≤−∇+

α

λ
 

 

where KFS is the set of feasible subproblems (NLP2) and KIS the set of infeasible subproblems 

whose solution is given by (NLPF).  Also |KFS  ∪  KIS | = K.  Since the master problem (RM-

GBD) can be derived from the master problem (RM-OA), in the context of problem (P1), 

Generalized Benders decomposition can be regarded as a particular case of the Outer-

Approximation algorithm. In fact the following property, holds between the two methods 

(Duran and Grossmann, 1986): 

 

Property 3  Given the same set of K subproblems, the lower bound predicted by the relaxed 

master problem (RM-OA) is greater or equal to the one predicted by the relaxed master problem 

(RM-GBD).  

 

The above proof follows from the fact that the Lagrangian and feasibility cuts, (LCk) and (FCk), 

are surrogates of the outer-approximations (OAk). Given the fact that the lower bounds of GBD 

are generally weaker, this method commonly requires a larger number of cycles or major 

iterations.  As the number of 0-1 variables increases this difference becomes more pronounced.  

This is to be expected since only one new cut is generated per iteration. Therefore, user-supplied 

constraints must often be added to the master problem to strengthen the bounds.  Also, it is 

sometimes possible to generate multiple cuts from the solution of an NLP subproblem in order 

to strengthen the lower bound (Magnanti and Wong, 1981).  As for the OA algorithm, the trade-

off is that while it generally predicts stronger lower bounds than GBD, the computational cost 
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for solving the master problem (M-OA) is greater since the number of constraints added per 

iteration is equal to the number of nonlinear constraints plus the nonlinear objective. 

 

The following convergence property applies to the GBD method (Sahinidis and Grossmann, 

1991): 

 

Property 4.  If problem (P1) has zero integrality gap, the GBD algorithm converges in one 

iteration once the optimal (x*, y*) is found. 

 

The above property implies that the only case one can expect the GBD method to terminate in 

one iteration, is when the initial discrete vector is the optimum, and when the objective value of 

the NLP relaxation of problem (P1) is the same as the objective of the optimal mixed-integer 

solution. Given the relationship of GBD with the OA algorithm, Property 4 is also inherited by 

the OA method.  

 

One further property that relates the OA and GBD algorithms is the following (Türkay and 

Grossmann, 1996):  

 

Property 5.  The cut obtained from performing one Benders iteration on the MILP master (RM-

OA) is equivalent to the cut obtained from the GBD algorithm. 

 

By making use of this property, instead of solving the MILP (RM-OA) to optimality, for 

instance by LP-based branch and bound, one can generate a GBD cut by simply performing one 

Benders (1962) iteration on the MILP. This property will prove to be useful when deriving a 

logic-based version of the GBD algorithm as will be discussed later in the paper.  

 

IV. Extended Cutting Plane (Westerlund and Pettersson, 1995).  The ECP method, which is 

an extension of Kelly's cutting plane algorithm for convex NLP (Kelley, 1960), does not rely on 

the use of NLP subproblems and algorithms. It relies only on the iterative solution of the 

problem (M-MIP) by successively adding a linearization of the most violated constraint at the 
predicted point   (xk,yk) : )},(max{argˆ{ kk

j
Jj

k yxgjJ
∈

∈=  Convergence is achieved when the 

maximum constraint violation lies within the  specified tolerance. The optimal objective value 

of (M-MIP) yields a non-decreasing sequence of lower bounds. It is of course also possible to 

either add to (M-MIP) linearizatons of all the violated constraints in the set Jk , or linearizations 

of all the nonlinear constraints j ∈ J.  In the ECP method the objective must be defined as a 
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linear function, which can easily be accomplished by introducing a new variable to transfer 

nonlinearities in the objective as an inequality.  

 

Note that since the discrete and continuous variables are converged simultaneously, the ECP 

method may require a large number of iterations.  However, this method shares with the OA 

method Property 2 for the limiting case when all the functions are linear.  

 

V. LP/NLP based Branch and Bound (Quesada and Grossmann, 1992).  This method is 

similar in spirit to a branch and cut method, and avoids the complete solution of the MILP 

master problem (M-OA) at each major iteration.  The method starts by solving an initial NLP 

subproblem, which is linearized as in (M-OA). The basic idea consists then of performing an 

LP-based branch and bound method for (M-OA) in which NLP subproblems (NLP2) are solved 

at those nodes in which feasible integer solutions are found. By updating the representation of 

the master problem in the current open nodes of the tree with the addition of the corresponding 

linearizations, the need of restarting the tree search is avoided.  

 

This method can also be applied to the GBD and ECP methods. The LP/NLP method commonly 

reduces quite significantly the number of nodes to be enumerated.  The trade-off, however, is 

that the number of NLP subproblems may increase. Computational experience has indicated that 

often the number of NLP subproblem remains unchanged. Therefore, this method is better suited 

for problems in which the bottleneck corresponds to the solution of the MILP master problem. 

Leyffer (1993) has reported substantial savings with this method. 

 

EXTENSIONS OF MINLP METHODS 

In this section we present an overview of some of the major extensions of the methods presented 

in the previous section. 

 

Quadratic Master Problems.  For most problems of interest, problem (P1) is linear in y:  f(x,y) 

= φ(x) + cTy, g(x,y) = h(x) + By.  When this is not the case Fletcher and Leyffer (1994) 

suggested to include a quadratic approximation to (RM-OAF) of the form: 
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     x∈X , y∈Y , α∈ R1  
where ),(2 kk yxL∇  is the Hessian of the Lagrangian of the last NLP subproblem.  Note that ZK 

does not predict valid lower bounds in this case.  As noted by Ding-Mei and Sargent (1992), 

who developed a master problem similar to M-MIQP, the quadratic approximations can help to 

reduce the number of major iterations since an improved representation of the continuous space 

is obtained.  Note also that for convex f(x, y) and g(x,y) using (M-MIQP) leads to rigorous 

solutions since the outer-approximations remain valid.  Also, if the function f(x,y) is nonlinear in 

y, and y is a general integer variable, Fletcher and Leyffer (1994) have shown that the original 

OA algorithm may require a much larger number of iterations to converge than when the master 

problem (M-MIQP) is used. This, however, comes at the price of having to solve an MIQP 

instead of an MILP. Of course, the ideal situation is the case when the original problem (P1) is 

quadratic in the objective function and linear in the constraints, as then (M-MIQP) is an exact 

representation of such a mixed-integer quadratic program.  

 

Reducing dimensionality of the master problem in OA.  The master problem (RM-OA) can 

involve a rather large number of constraints, due to the accumulation of linearizations.  One 

option is to keep only the last linearization point, but this can lead to nonconvergence even in 

convex problems, since then the monotonic increase of the lower bound is not guaranteed. A 

rigorous way of reducing the number of constraints without greatly sacrificing the strength of 

the lower bound can be achieved in the case of the "largely" linear MINLP problem:  

                              
    min Z = a T w + r ( v ) + c T y    (PL) 

 

   s.t. Dw + t (v) + Cy < 0

Fw + Gv + Ey< b

w∈W , v∈V , y∈Y

 

where (w, v) are continuous variables and r(v) and t(v) are nonlinear convex functions.  As 

shown by Quesada and Grossmann (1992), linear approximations to the nonlinear objective and 

constraints can be aggregated with the following MILP master problem: 

 

                             min ZL
K

= aTw + β + cT y                                                               (M-MIPL)
 

 KkGCytDwrts kTkkTkk ,....1)(()(])([)()(.. =−−++≥ ννµνλνβ  
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   Fw + Gv + Ey < b  

     w∈W , v∈V , y∈Y , β∈ R
1

 

Numerical results have shown that the quality of the bounds is not greatly degraded with the 

above MILP as might happen if GBD is applied to (PL). 

 

Handling of equalities.  For the case when linear equalities of the form h(x, y) = 0 are added to 

(P1) there is no major difficulty since these are invariant to the linearization points.  If the 

equations are nonlinear, however, there are two difficulties.  First, it is not possible to enforce 

the linearized equalities at K points.  Second, the nonlinear equations may generally introduce 

nonconvexities, unless they relax as convex inequalities (see Bazaara et al, 1994).  Kocis and 

Grossmann (1987) proposed an equality relaxation strategy in which the nonlinear equalities are 

replaced by the inequalities, 

 0),( ≤

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




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



−

−
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k

k
Tkkk

yy

xx
yxhT  (1) 

where   T k = {tii
k},  and   tii

k  = sign    (λi
k)  in which    λi

k  is the multiplier associated to the equation 

hi(x, y) = 0.  Note that if these equations relax as the inequalities h(x, y ) < 0 for all y, and h(x, y) 

is convex, this is a rigorous procedure.  Otherwise, nonvalid supports may be generated.  Also, 

note that in the master problem of GBD, (RM-GBD), no special provision is required to handle 

equations since these are simply included in the Lagrangian cuts. However, similar difficulties 

as in OA arise if the equations do not relax as convex inequalities. 

 

Handling of nonconvexities.  When f(x,y) and g(x,y) are nonconvex in (P1), or when nonlinear 

equalities, h(x, y) = 0,  are present, two difficulties arise.  First, the NLP subproblems (NLP1), 

(NLP2), (NLPF) may not have a unique local optimum solution.  Second, the master problem 

(M-MIP) and its variants (e.g. M-MIPF, M-GBD, M-MIQP), do not guarantee a valid lower 
bound ZLK or a valid bounding representation with which the global optimum may be cut off.  

One possible approach to circumvent this problem is reformulation. This, however, is restricted 

to special cases, most notably in geometric programming constraints (posynomials) in which  

exponential transformations, u=exp(x), can be applied for convexification. 

 

Rigorous global optimization approaches for addressing nonconvexities in MINLP problems can 

be developed when special structures are assumed in the continuous terms (e.g. bilinear, linear 

fractional, concave separable). Specifically, the idea is to use convex envelopes or 

underestimators to formulate lower-bounding convex MINLP problems. These are then 

combined with global optimization techniques for continuous variables (Falk and Soland, 1969; 
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Horst and Tuy, 1996; Ryoo and Sahinidis, 1995; Quesada and Grossmann, 1995; Grossmann, 

1996; Zamora and Grossmann, 1999; Floudas, 2000), which usually take the form of spatial 

branch and bound methods. The lower bounding MINLP problem has the general form, 

 

 

YyXx

Jjyxgts

yxfZ

j

∈∈

∈≤
=

,
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),(min
 (LB-P1) 

 
where f , g ,  are valid convex underestimators such that f (x, y) ≤ f (x, y),  and the inequalities 

g (x,y) ≤ 0 are satisfied if g(x, y) ≤ 0. A typical example of convex underestimators are for 

instance the convex envelopes by McCormick (1976) for bilinear terms. 

 

Examples of global optimization methods for MINLP problems include the branch and reduce 

method by Ryoo and Sahinidis (1995) and Tawarmalani and Sahinidis (2000), the α-BB method 

by Adjiman et al (2000), the reformulation/spatial branch and bound search method by Smith 

and Pantelides (1999), the branch and cut method by Kesavan and Barton (2000), and the 

disjunctive branch and bound method by Lee and Grossmann (2001). All these methods rely on 

a branch and bound procedure. The difference lies on how to perform the branching on the 

discrete and continuous variables. Some methods perform the spatial tree enumeration on both 

the discrete and continuous variables on problem (LB-P1). Other methods perform a spatial 

branch and bound on the continuous variables and solve the corresponding MINLP problem 

(LB-P1) at each node using any of the methods reviewed earlier in the paper. Finally, other 

methods, branch on the discrete variables of problem (LB-P1), and switch to a spatial branch 

and bound on nodes where a feasible value for the discrete variables is found. The methods also 

rely in on procedures for tightening the lower and upper bounds of the variables, since these 

have a great effect on the quality of the underestimators. Since the tree searches are not finite 

(except for ε-convergence), these methods can be computationally expensive. However, their 

major advantage is that they can rigorously find the global optimum. It should also be noted that 

specific cases of nonconvex MINLP problems have been handled. An example is the work of 

Pörn and Westerlund (2000), who have addressed the solution of MINLP problems with pseudo-

convex objective function and convex inequalities through an extension of the ECP method. 

 

The other option for handling nonconvexities is to apply a heuristic strategy to try to reduce as 

much as possible the effect of nonconvexities.  While not being rigorous, this requires much less 

computational effort. We will describe here an approach for reducing the effect of 

nonconvexities at the level of the MILP master problem. 
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Viswanathan and Grossmann (1990) proposed to introduce slacks in the MILP master problem 

to reduce the likelihood of cutting-off feasible solutions.  This master problem (Augmented 

Penalty/Equality Relaxation) (APER) has the form: 

 
   

min Z K = α + w p
k pk + wq

kqkΣ
k=1
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(M-APER)
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     x∈X , y∈Y , α∈ R1 , pk, qk > 0  

 

where   w p
k , wq

k  are weights that are chosen sufficiently large (e.g. 1000 times magnitude of 

Lagrange multiplier).   Note that if the functions are convex then the MILP master problem (M-

APER) predicts rigorous lower bounds to (P1) since all the slacks are set to zero.  

 

It should also be noted that another modification to reduce the undesirable effects of 

nonconvexities in the master problem is to apply global convexity tests followed by a suitable 

validation of linearizations. One possibility is to apply the tests to all linearizations with respect 

to the current solution vector (yK, xK)  (Kravanja and Grossmann, 1994). The convexity 

conditions that have to be verified for the linearizations are as follows: 
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   (GCT) 

where ε is a vector of small tolerances (e.g. 10-10). Note that the test is omitted for the current 

linearizations K since these are always valid for the solution point (yK, xK) . Based on this test, a 
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validation of the linearizations is performed so that the linearizations for which the above 

verification is not satisfied are simply dropped from the master problem. This test relies on the 

assumption that the solutions of the NLP subproblems are approaching the global optimum, and 

that the successive validations are progressively defining valid feasibility constraints around the 

global optimum.  Also note that if the right hand side coefficients of linearizations are modified 

to validate the linearization, the test corresponds to the one in the two-phase strategy by Kocis 

and Grossmann (1988).  

COMPUTER CODES FOR MINLP 

The number of computer codes for solving MINLP problems is still rather small.  The program 

DICOPT (Viswanathan and Grossmann, 1990) is an MINLP solver that is available in the 

modeling system GAMS (Brooke et al., 1998). The code is based on the master problem (M-

APER) and the NLP subproblems (NLP2). This code also uses the relaxed (NLP1) to generate 

the first linearization for the above master problem, with which the user need not specify an 

initial integer value. Also, since bounding properties of (M-APER) cannot be guaranteed, the 

search for nonconvex problems is terminated when there is no further improvement in the 

feasible NLP subproblems.  This is a heuristic that works reasonably well in many problems. 

Codes that implement the branch-and-bound method using subproblems (NLP1) include the 

code MINLP_BB that is based on an SQP algorithm (Leyffer, 2001) and is available in AMPL, 

the code BARON (Sahinidis, 1996) that also implements global optimization capabilities, and 

WKH�FRGH�6%%�ZKLFK�LV�DYDLODEOH�LQ�*$06��%URRNH�HW�DO���������7KH�FRGH� –ECP implements 

the extended cutting plane method by Westerlund and Pettersson (1995), including the extension 

by Pörn and Westerlund (2000). Finally, the code MINOPT (Schweiger and Floudas, 1998) also 

implements the OA and GBD methods, and applies them to mixed-integer dynamic optimization 

problems. It is difficult to make general remarks on the efficiency and reliability of all these 

codes and their corresponding methods since no systematic comparison has been made. 

However, one might anticipate that branch and bound codes are likely to perform better if the 

relaxation of the MINLP is tight. Decomposition methods based on OA are likely to perform 

better if the NLP subproblems are relatively expensive to solve, while GBD can perform with 

some efficiency if the MINLP is tight, and there are many discrete variables. ECP methods tend 

to perform well on mostly linear problems. 

 

LOGIC BASED METHODS 

Recently there has been a new trend of representing discrete/continuos optimization problems 

by models consisting of algebraic constraints, logic disjunctions and logic relations (Beaumont, 
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1991; Raman and Grossmann, 1993, 1994; Türkay and Grossmann, 1996; Hooker and Osorio, 

1999; Hooker, 2000; Lee and Grossmann, 2000). In particular, the mixed-integer program (P1) 

can also be formulated as a generalized disjunctive program (Raman and Grossmann,1994), 

which can be regarded as a generalization of disjunctive programming (Balas, 1985): 

  Min Z =  ck
k

∑ + f (x)   

           st g(x) ����      (GDP) 
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   Ω (Y) = True 

   x ∈ Rn, c ∈ Rm, Y ∈ {true, false}m 

In problem (GDP) Yik are the Boolean variables that establish whether a given term in a 

disjunction is true [hik(x) ��0], while Ω(Y) are logical relations assumed to be in the form of 

propositional logic involving only the Boolean variables. Yik are auxiliary variables that control 

the part of the feasible space in which the continuous variables, x, lie, and the variables ck 

represent fixed charges which are activated to a value γik if the corresponding term of the 

disjunction is true. Finally, the logical conditions, Ω(Y), express relationships between the 

disjunctive sets.  In the context of synthesis problems the disjunctions in (GDP) typically arise 

for each unit i in the following form: 
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in which the inequalities hi apply and a fixed cost γi is incurred if the unit is selected (Yi); 

otherwise (¬Yi) there is no fixed cost and a subset of the x variables is set to zero with the 

matrix Bi, which has all zero elements, except for bjj=1 if variable xj must be set to zero. 

It is important to note that any problem posed as (GDP) can always be reformulated as an 

MINLP of the form of problem (P1), and any problem in the form of (P1) can be posed in the 

form of (GDP). For modeling purposes, however, it is advantageous to start with model (GDP) 

as it captures more directly both the qualitative (logical) and quantitative (equations) part of a 

problem (Vecchietti and Grossmann, 1999, 2000). As for the transformation from (GDP) to 
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(P1), the most straightforward way is to replace the Boolean variables Yik by binary variables 

yik, and the disjunctions by "big-M" constraints of the form, 

SDky

SDkDiyMxh
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    (3) 

where M is a large valid upper bound. Finally, the logic propositions Ω(y)=True, are converted 

into linear inequalities as described in Williams (1985) (see also Raman and Grossmann, 1991). 

The drawback with the "big-M" constraints in (3) is that their relaxation is often weak.  

For the solution of problem (GDP), Grossmann and Lee (2001) have shown, based on the work 

by Stubbs and Mehrotra (1999), that the convex hull of the disjunction in the Generalized 

Disjunctive Program (GDP), is given by the following theorem: 

Theorem 2. The convex hull of each disjunction k ∈ SD in problem (GDP),  
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    (CHk) 

This proof follows from performing an exact linearization of (4) with the non-negative variables 

λik, and by relying on the proof by Stubbs and Mehrotra(1999) that λh(ν/λ) is a convex function 

if h(x) is a convex function. In (CHk) the variables νik can be interpreted as disaggregated 

variables that are assigned to each disjunctive term, while λik, can be interpreted as weight 

factors that determine the validity of the inequalities in the corresponding disjunctive term. Note 
also that (CHk) reduces to the result by Balas (1985) for the case of linear constraints. The 

following corollary follows (Grossmann and Lee, 2001) from Theorem 2: 

Corollary. The nonlinear programming relaxation of (GDP) is given by, 
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    (RDP) 

x ∈ Rn, νik ���������½�λik ������L∈Dk, k∈SD 

and yields a valid lower bound to the solution of problem (GDP).  

 

The relaxation problem (RDP), which is related to the work by Ceria and Soares (1999), can be 

used as a basis to construct a special purpose branch and bound method as has been proposed by 

Lee and Grossmann (2000). The basic idea in this method is to directly branch on the constraints 

corresponding to particular terms of each disjunction, while considering the convex hull of the 

remaining disjunctions or disjunctive terms. Compared to the conventional branch and bound 

method applied to the equivalent MINLP problem, the disjunctive branch and bound often 

yields tighter lower bounds. Alternatively, problem (RDP) can also be used to reformulate 

problem (GDP) as a tight MINLP problem of the form, 
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   x ∈ Rn, νik �������λik ={0,1},      i∈Dk, k∈SD 

in which ε is a small tolerance to avoid numerical difficulties, and λik are binary variables that 

represent the Boolean variables Yik. All the algorithms that were discussed in the section on 

MINLP methods can be applied to solve this problem.  

We consider next OA and GBD algorithms for solving problem (GDP).  As described in Türkay 
and Grossmann (1996), for fixed values of the Boolean variables, Yîk = true and Yik = false for î  

≠ i , the corresponding NLP subproblem is as follows:  
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      x ∈ Rn,  ci ∈ Rm, 

Note that for every disjunction k ∈SD only constraints corresponding to the Boolean variable Yîk  

that is true are imposed, thus leading to a reduction in the size of the problem.  Also, fixed 
charges γik are only applied to these terms.  Assuming that K subproblems (NLPD) are solved in 

which sets of linearizations l =1,...K are generated for subsets of disjunction terms Lik = { l  |  
Ylik = true } , one can define the following disjunctive OA master problem: 
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  α ∈ R,  x ∈ Rn, c ∈ Rm, Y ∈ {true, false}m 

 

It should be noted that before applying the above master problem it is necessary to solve various 

subproblems (NLPD) so as to produce at least one linear approximation of each of the terms in 

the disjunctions.  As shown by Türkay and Grossmann (1996) selecting the smallest number of 

subproblems amounts to solving a set covering problem, which is of small size and easy to 

solve.  In the context of a process flowsheet synthesis problems, another way of generating the 
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linearizations in (MGDP) is by starting with an initial flowsheet and suboptimizing the 

remaining subsystems as in the modelling/decomposition strategy (Kocis and Grossmann, 1989; 

Kravanja and Grossmann, 1990).  

 

The above problem (MGDP) can be solved by the methods described by Beaumont (1991), 

Raman and Grossmann (1994), and Hooker and Osorio (1996).  It is also interesting to note that 

for the case of process networks, Türkay and Grossmann (1996) have shown that if the convex 

hull representation of the disjunctions in (2) is used in (MGDP), then converting the logic 

relations Ω(Y) into the inequalities Ay ��D, leads to the following MILP problem,   
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where the vector x is partitioned into the variables (xZi
,xNi

) for each disjunction i according to 

the definition of the matrix Bi (i.e. xz referes to non-zero rows of this matrix). The linearization 

set is given by KLi = {l  | Yi
l = True, l = 1,...,L} that denotes the fact that only a subset of 

inequalities were enforced for a given subproblem l .  It is interesting to note that the logic-based 

Outer-Approximation algorithm represents a generalization of the modeling/decomposition 

strategy Kocis and Grossmann (1989) for the synthesis of process flowsheets. 

Türkay and Grossmann (1996) have also shown that while a logic-based Generalized Benders 

method (Geoffrion, 1972) cannot be derived as in the case of the OA algorithm, one can exploit 

the property for MINLP problems that performing one Benders iteration (Türkay and 

Grossmann, 1996) on the MILP master problem of the OA algorithm, is equivalent to generating 

a Generalized Benders cut. Therefore, a logic-based version of the Generalized Benders method 

consists of performing one Benders iteration on the MILP master problem (MIPDF) (see 

property 5).  It should also be noted that slacks can be introduced to (MGDP) and to (MIPDF) to 
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reduce the effect of nonconvexities as in the augmented-penalty MILP master problem 

(Viswanathan and Grossmann, 1990). Finally, Lee and Grossmann (2000) noted that for the case 

when the disjunctions have the form of (2), there is the following realtionship of problem (MIP-

DP) with the logic-based outer-approximation by Türkay and Grossmann (1996). If one 
considers fixed values of λik this leads to an NLP subproblem of the form (NLPD). If one then 

performs a linearization on problem (MIP-DP), this leads to the MILP problem (MIPDF).  

 

Example 

We present here numerical results on an example problem dealing with the synthesis of a 

process network that was originally formulated by Duran and Grossmann (1986) as an MINLP 

problem, and later by Türkay and Grossmann (1986) as a GDP problem. Fig. 3 shows the 
superstructure which involves the possible selection of 8 processes. The Boolean variables Yj 

denote the existence or non-existence of processes 1-8. The global optimal solution is Z* = 

68.01, consists of the selection of processes 2,4,6, and 8. 
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 Fig. 3. Superstructure for process network example 

 

The model in the form of the GDP problem involves disjunctions for the selection of units, and 

propositional logic for the relationship of these units. Each disjunction contains the equations for 

each unit (these relax as convex inequalities). The model is as follows:  

a) Objective function: 
  min   Z=c1+c2+c3+c4+c5+c6+c7+c8+x2-10x3+x4-15x5-40x9+15x10 

+15x14+80x17-65x18+25x19-60x20+35x21-80x22-35x25+122 

b) Material balances at mixing/splitting points: 
    x3+x5-x6-x11 = 0 

    x13-x19-x21 = 0 

    x17-x9-x16-x25 = 0 

    x11-x12-x15 = 0 
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    x6-x7-x8 = 0 

    x23-x20-x22 = 0 

    x23-x14-x24 = 0 

c) Specifications on the flows: 
    x10-0.8x17 ���

 

    
x10-0.4x17 ��� 

    x12-5x14 ��� 

    x12-2x14 ��� 

d) Disjunctions: 

















=
==

¬

















=
≤−− ∨

0c

0xx

Y

5c

0x1)(xexp

Y

:1

1

32

1

1

23

1

Unit  

    

 

















=
==

¬

















=
≤−− ∨

0c

0xx

Y

8c

0x12).1/(xexp

Y

:2

2

54

2

2

45

2

Unit  
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













=
===

¬

















=
=+− ∨

0c

0xxx

Y

6c

0xx1.5x

Y

:3

3
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3

3

1089

3

Unit  

 














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=
===

¬

















=
=−+ ∨

0c

0xxx

Y

10c

0x)x1.5(x

Y

:4

4

141312

4

4

131412

4

Unit  
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
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¬




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






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=
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0c

0xx

Y

6c

0x2x
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5
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5

5
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5
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Y

7c

0x15).1/(xexp
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6
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6

6
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








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
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















=
===

¬

















=
=−−− ∨

0c

0xxx

Y

5c
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8
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8

8
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8
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e) Propositional Logic [� �<i)]: 

    Y1⇒Y3∨Y4∨Y5 

    Y2⇒Y3∨Y4∨Y5 

    Y3⇒Y1∨Y2 

    Y3⇒Y8 

    Y4⇒Y1∨Y2 

    Y4⇒Y6∨Y7 

    Y5⇒Y1∨Y2 

    Y5⇒Y8 

    Y6⇒Y4 

    Y7⇒Y4 

    Y8⇒Y3∨Y5∨(¬Y3∧¬Y5) 

f) Specifications: 
    Y1∨Y2 

    Y4∨Y5 

    Y6∨Y7 

g) Variables: 
   xj, ci����<i={True,False}   i=1,2,...,8,  j=1,2,...,25 

 

As seen in Table 1, the branch and bound (BB) algorithm by Lee and Grossmann (2000) finds 

the optimal solution in only 5 nodes compared with 17 nodes of standard branch and bound 

method when applied to the MINLP formulation with big-M constraints. A major difference in 

these two methods is the lower bound predicted by the relaxed NLP. Clearly the bound at the 

root node in the proposed BB method, which is given by problem (RDP), is much stronger 

(62.48 vs. 15.08). Table 2 shows the comparison with other algorithms when the problem is 

reformulated as the tight MINLP problem (MIP-DP). Note that the proposed BB algorithm and 

the standard BB yield the same lower bound (62.48) since they start by solving the same 

relaxation problem. The difference in the number of nodes, 5 vs. 11, lies in the branching rules, 

which are better exploited in the special branch and bound method by Lee and Grossmann 

(2000). The OA, GBD and ECP methods start with initial guess Y0 = [1,0,1,1,0,0,1,1]. Note that 

in GBD and OA methods, one major iteration consists of one NLP subproblem and one MILP 
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master problem. As predicted by the theory, the logic-based OA method yields the lower bound 

8.541, which is stronger than the one of the GBD method. Therefore, OA requires 3 major 

iterations versus 8 from GBD. The ECP method requires 7 iterations, each involving the 

solution of an MILP. Thus, these results show the improvements that can be obtained through 

the logic based formulation, such as with the generalized disjunctive program (GDP). It also 

shows that the OA algorithm requires fewer major iterations than the GBD and ECP methods. 



27 

 

Table 1. Comparison of Branch and Bound methods 

Model Big-M 

(BM) 

MIP-DP 

Method Standard 

BB 

Proposed BB 

Algorithm 

No. of nodes 17 5 

Relaxed NLP 15.08 62.48 

 

Table 2. Comparison of several algorithms on reformulation MIP-DP. 

Method* Standard 

BB 

Proposed 

BB 

OA 

 

GBD 

 

ECP 

 

No. of nodes 

or Iteration 

11 

(Nodes) 

5 

(Nodes) 

3 

(Iter.) 

8 

(Iter.) 

7 

(Iter.) 

Lower Bound 62.48 62.48 8.541 -551.4 -5.077 

*All methods solve the reformulated MINLP problem (MIP-DP). 

 

 

CONCLUDING REMARKS 

This paper has presented a unified treatment and derivation of the different MINLP algorithms 

that have been reported in the literature.  As has been shown for the case where the problem is 

expressed in algebraic form, Branch and Bound, Generalized Benders, Outer-Approximation, 

Extended Cutting Plane and LP/NLP based Branch and Bound can easily be derived from three 

basic NLP subproblems and one master MILP problem.  Similar derivations can be obtained for 

the case when the problem is expressed as a generalized disjunctive optimization problem. Major 

theoretical properties of these methods have been presented, as well as extensions for nonconvex 

problems. The numerical results of the small example have confirmed the theoretical properties 

that were discussed in the paper. 
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