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Abstract 

 
This paper provides a historical perspective and an overview of the pioneering work that 
Manfred Morari developed in the area of resiliency for chemical processes. Motivated by unique 
counter-intuitive examples, we present a review of the early mathematical formulations and 
solution methods developed by Grossmann and co-workers for quantifying Static Resiliency 
(Flexibility). We also give a brief overview of some of the seminal ideas by Manfred Morari and 
co-workers in the area of Dynamic Resiliency. Finally, we provide a review of some of the 
recent developments that have taken place since that early work. 
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1. Introduction 
 
This paper is a tribute to the pioneering work by Manfred Morari in the area of resiliency that he 
initiated during his early years at the University of Wisconsin (1977-1983) and later was a major 
part of his research at Caltech (1983-1994). 
 
We first give an account of the early relation that Ignacio Grossmann was fortunate to establish 
with Manfred Morari through their discussions on Flexibility and Resiliency, which are major 
components of the operability of chemical processes. We then provide two motivating examples 
that show the non-trivial nature of these areas, and which motivated much of the subsequent 
research. We next give a brief review of the early mathematical formulations and solution 
methods developed by Grossmann and co-workers for addressing these problems, which can also 
be found in Biegler et al. (1997). We also briefly review the major contribution by Morari and 
co-workers. Finally, we close with the new developments and extensions that have taken place 
since that early work.  
 
 

2. The early years of flexibility and resiliency 
 
Ignacio Grossmann met Manfred Morari in 1980 on their way to Hennicker to attend the 1st 
FOCAPD meeting organized by the late Dick Mah and Warren Seider. At the time Ignacio asked 
Manfred: what are you working on these days? He replied: on Resiliency. What about you? 
Ignacio replied: I am working on Flexibility. They both thought: Flexibility or Resiliency? 
 
According to Merriam Webster, Flexibility is the ready capability to adapt to new, different, or 
changing requirements, while Resiliency is the capability to recover or adjust easily to 
misfortune or change. Clearly not much of a difference, except that Flexibility might be better 
suited for optimists, while Resiliency might be better for pessimists! 
 
After this encounter, Manfred and Ignacio joined forces at the 2nd FOCAPD meeting that took 
place at Snowmass, and was organized by Art Westerberg and Henry Chien. That led to their 
joint paper (Grossmann & Morari, 1984) in which for the first time they quantitatively 
articulated the properties of Flexibility and Resiliency, with the former generally addressing the 
capability of feasible operation in the steady state, and the latter addressing the dynamic 
capability to easily recover from process disturbances in a fast and smooth manner.  
 
More specifically, the motivation of this early work was to incorporate operability considerations 
at the design stage. The conventional approach is to consider only nominal conditions without 
anticipating effects of changes and uncertainties in plant operation. The remedy is to use 
overdesign to compensate for lack of anticipation. In contrast, steady-state Flexibility or 
Resiliency addresses the guaranteed feasibility of operation of a plant over a range of conditions, 
with the ultimate goal being on how to design a process for guaranteed flexible/resilient 
operation. Furthermore, dynamic Resiliency is concerned with fast and smooth changeover and 
recovery from process disturbance, with the ultimate goal of determining the inherent dynamic 
characteristic of a plant independent of the selection of a particular controller. To appreciate why 
these are non-trivial problems we review two motivating examples in the next section. 
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3. Motivating examples 
 
Let us consider the heat exchanger network shown in Fig. 1 (Biegler et al., 1997), a slight 
modification of the pioneering example by Saboo and Morari (1984) in which the heat capacity 
flowrate 𝐹𝐻1 is an uncertain parameter. We would like to determine whether this network is 
feasible for the range 1 ≤ 𝐹𝐻1 ≤ 1.8 (kW/K). 
 
The following inequalities are considered for feasible operation of this network: 
 
Feasibility in exchanger 2:   𝑇2 − 𝑇1 ≥ 0 
Feasibility in exchanger 3:   𝑇2 − 393 ≥ 0     (1) 
Feasibility in exchanger 3:   𝑇3 − 313 ≥ 0 
Specification in outlet temperature  𝑇3 ≤ 323 
 
By considering the corresponding heat balances, we can solve for the above temperatures in 
terms of the cooling load 𝑄𝑐, that can be regarded as a control variable (i.e. degree of freedom), 
and in terms of 𝐹𝐻1, the uncertain parameter.  The reduced inequalities in (1) are then as follows: 

𝑓1 = −25 + 𝑄𝑐 �
1

𝐹𝐻1
− 0.5� +

10
𝐹𝐻1

≤ 0 

(2)  
𝑓2 = −190 +

10
𝐹𝐻1

+
𝑄𝑐

𝐹𝐻1
≤ 0 

𝑓3 = −270 +
250
𝐹𝐻1

+
𝑄𝑐

𝐹𝐻1
≤ 0 

𝑓4 = 260 −
250
𝐹𝐻1

−
𝑄𝑐

𝐹𝐻1
≤ 0 
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Fig. 1. Heat exchanger network with uncertain heat capacity flowrate, 𝐹𝐻1. 

 

 
Fig. 2. Feasible region for constraints in (2). 

 
Plotting the inequalities in (2) in terms of 𝑄𝑐, the control variable, and in terms of 𝐹𝐻1, the 
uncertain parameter, we can see that the inequalities are satisfied at the extreme points 𝐹𝐻1 = 1 
kW/K, say for 𝑄𝑐 = 15 kW, and at 𝐹𝐻1= 1.8 kW/K, say for 𝑄𝑐 = 227 kW. That is, by adjusting 
the cooling load one can achieve feasibility of operation in the network at the extreme points. If 
we did not plot the feasible region we may be tempted to conclude that the network is feasible to 
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operate for the range 1 ≤ 𝐹𝐻1 ≤ 1.8 kW/K. However, from Fig. 2, we can see that for an 
intermediate value, like 𝐹𝐻1 = 1.2 kW/K, the inequalities define an empty feasible space even if 
we set the cooling load to say 𝑄𝑐 = 58.6 kW. In other words the network is infeasible at the non-
vertex point FH1 = 1.2 kW/K. Furthermore, from Fig. 2 we can clearly see that we have a non-
convex region where for 1.118 ≤ 𝐹𝐻1 ≤ 1.65 we have infeasible operation. In fact at 𝐹𝐻1= 1.37 
kW/K we have the greatest violation of constraints. Hence, 𝐹𝐻1= 1.37 kW/K corresponds to the 
critical point. This brilliant example by Saboo & Morari (1984) shows that it is possible to have 
non-vertex critical points, and consequently, that we need appropriate methods that will be able 
to predict such points. 
 
The next motivating example (Grossmann & Morari, 1984) shows that the sensitivity of a 
multivariable control system to plant parameter variations is not only a function of the control 
system design, but even more so of the system itself. Fig. 3 shows a system of thermally coupled 
distillation columns, which is used to separate a 70% methanol/water mixture into a 99% 
methanol distillate and a 0.1% methanol bottom product (more details on the model and analyses 
can be found in Lenhoff & Morari, 1982). 

 
Fig. 3. Thermally coupled distillation columns. 

 
Two control structures are investigated: 
 

 Manipulated Var. Fixed Var. 
Structure 1 𝑅1, 𝑉2 𝐹, 𝑅2 
Structure 2 𝐹, 𝑉2 𝐷1, 𝑅2 

 
That is, the manipulated variables are the two valves used for composition control and the fixed 
variables are not used at all for control. To mimic a situation encountered in a real plant, time 
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delays in length equal to about 8% of the dominant open loop time constants were introduced in 
the model. 
 
Simulation of the system shows that the performance deteriorates significantly for Structure 1 
and much less for Structure 2. Moreover, Structure 1 yields an unstable system for slightly larger 
time delay or gain error. The contributions by Morari and co-workers provide criteria that can be 
used to assess the dynamic resilience at the design stage, thus avoiding extensive simulation runs 
as the differences in sensitivity may not be obvious on physical grounds and may not be 
suggested by heuristics. 
 
 

4. Mathematical formulations for flexibility analysis 
 
In the previous section we have shown through the motivating example how to graphically 
perform a flexibility analysis on a simple heat exchanger network. In this section, we will see 
how we can systematically address these problems through mathematical formulations developed 
by Grossmann and co-workers (Grossmann et al., 1983; Grossmann & Straub, 1991). We will 
then also consider simple vertex solution methods as well as an active set method, which does 
not necessarily have to examine all the vertex points or even assume that critical points 
correspond to vertices. 
 
The basic model assumed for the flexibility analysis involves the following vectors of variables 
and parameters: 

 𝑑 = design variables corresponding to the structure and equipment sizes of the plant 
 𝑥 = state variables that define the system (e.g. flows, temperatures) 
 𝑧 = control variables that can be adjusted during operation (e.g. flows, utility loads) 
 𝜃 = uncertain parameters (e.g. inlet conditions, reaction rate constants) 
 
The equations that represent the performance (e.g. heat and material balances) are given by: 

ℎ(𝑑, 𝑥, 𝑧, 𝜃) = 0 (3)  
 
where by definition dim{ℎ} = dim{𝑥}. The constraints that represent feasible operation (e.g. 
physical constraints, specifications) are given by: 

𝑔(𝑑, 𝑥, 𝑧, 𝜃) ≤ 0 (4)  
 
Although in principle we can analyze flexibility directly in terms of (3) and (4), for simplicity in 
the presentation we eliminate the state variables 𝑥 from (3) as we did in in the motivating 
example for the heat exchanger network.  In this way the state variables become an implicit 
function of 𝑑, 𝑧, and 𝜃. That is, 

𝑥 = 𝑥(𝑑, 𝑧, 𝜃) (5)  
 
Substituting (5) in (4) yields the reduced inequalities 

𝑔(𝑑, 𝑥(𝑑, 𝑧, 𝜃), 𝑧, 𝜃) = 𝑓(𝑑, 𝑧, 𝜃) ≤ 0 (6)  
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Hence, the feasibility of operation of a design 𝑑 operating at a given value of the uncertain 
parameters 𝜃 is determined by establishing whether by proper adjustment of the control variables 
𝑧 each inequality 𝑓𝑗(𝑑, 𝑧, 𝜃), 𝑗 ∈ 𝐽 is less or equal to zero. 
 
In the next two subsections we present mathematical formulations for both the flexibility test 
problem and for the flexibility index problem (Halemane & Grossmann, 1983; Swaney & 
Grossmann, 1985a,b). 
 

4.1. Flexibility test problem  
 
Assume we are given a nominal value of the uncertain parameters θN, as well as expected 
deviations Δθ+, Δθ-, in the positive and negative directions.  This then implies that the uncertain 
parameters θ have the following bounds:  

Lower bound:  𝜃𝐿 = 𝜃𝑁 − Δ𝜃− 
Upper bound:  𝜃𝑈 = 𝜃𝑁 + Δ𝜃+ 
 
The flexibility test problem (Halemane & Grossmann, 1983) for a given design 𝑑 consists in 
determining whether by proper adjustment of the controls 𝑧 the inequalities 𝑓𝑗(𝑑, 𝑧, 𝜃), 𝑗 ∈ 𝐽, 
hold for all 𝜃 ∈ 𝑇 = {𝜃: 𝜃𝐿 ≤ 𝜃 ≤ 𝜃𝑈}. In order to answer this question, we first consider 
whether for a fixed value of 𝜃, the controls 𝑧 can be adjusted to meet the constraints 𝑓𝑗(𝑑, 𝑧, 𝜃). 
This can be accomplished if we select the controls 𝑧 so as to minimize the largest 𝑓𝑗, that is, 

𝜓(𝑑, 𝜃) = min
𝑧

max
𝑗𝜖𝐽

�𝑓𝑗(𝑑, 𝑧, 𝜃)� (7)  

 
where 𝜓(𝑑, 𝜃) is defined as the feasibility function. If 𝜓(𝑑, 𝜃) ≤ 0, we can have feasible 
operation; if 𝜓(𝑑, 𝜃) > 0, there is infeasible operation even if we do our best in trying to adjust 
the control variables 𝑧. If 𝜓(𝑑, 𝜃) = 0 it also means that we are on the boundary of the region of 
operation. 
 
Problem (7) can be posed as a standard optimization problem (LP or NLP) by defining a scalar 
variable 𝑢, such that: 
ψ(d,θ) = min

𝑧,𝑢
 𝑢  (8)  

 s.t. 𝑓𝑗(𝑑, 𝑧, 𝜃) ≤ 𝑢 ∀ 𝑗 ∈ 𝐽 
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a) Feasible design 𝜒(𝑑) ≤ 0 b) Infeasible design 𝜒(𝑑) >  0 

Fig. 4. Regions of feasible operation for feasible and infeasible design (flexibility test problem) 
 
In order to determine whether we can attain operation in the parameter range of interest, 

𝜃 ∈ 𝑇 = {𝜃: 𝜃𝐿 ≤ 𝜃 ≤ 𝜃𝑈} (9)  
 
we need to establish whether 𝜓(𝑑, 𝜃) ≤ 0 for all 𝜃 ∈ 𝑇. This is also equivalent to stating whether 
the maximum value of 𝜓(𝑑, 𝜃) is less or equal than zero in the range of 𝜃. Hence, the flexibility 
test problem can be formulated as: 

𝜒(𝑑) = max
𝜃∈𝑇

 𝜓(𝑑, 𝜃) (10)  
 
where 𝜒(𝑑) corresponds to the flexibility function of design 𝑑 over the range 𝑇. If 𝜒(𝑑) ≤ 0, it 
then means that feasible operation can be attained over the parameter range 𝑇 (see Fig. 4a). If 
𝜒(𝑑) > 0 it means that at least for part of the range of 𝑇, feasible operation cannot be achieved 
(see Fig. 4b). Also the value of 𝜃 that is determined in (10) can be regarded as critical for the 
parameter range 𝑇 since it is the one where the feasibility of operation is the smallest (𝜒(𝑑) ≤ 0) 
or where maximum constraint violation occurs (𝜒(𝑑) > 0). 
 
Finally, by substituting (7) in (10), the general mathematical formulation of the flexibility test 
problem yields, 

𝜒(𝑑) = max
𝜃∈𝑇

min
𝑧

max
𝑗𝜖𝐽

 𝑓𝑗(𝑑, 𝑧, 𝜃) (11)  

 
4.2.Flexibility index problem 

 
The drawback in the flexibility test problem is that it only determines whether a design does or 
does not have the flexibility to operate over the specified parameter range 𝑇. It is desirable to 
develop a quantitative measure that will indicate how much flexibility can actually be achieved 
in the given design (Swaney & Grossmann, 1985). To address this question, we define a variable 
parameter range: 

𝑇(𝛿) = {𝜃: 𝜃𝑁 − 𝛿∆𝜃− ≤ 𝜃 ≤ 𝜃𝑁 + 𝛿∆𝜃+} (12)  
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where 𝛿 is a non-negative scalar variable. Note that for 𝛿 = 1, 𝑇(1) = 𝑇; i.e. in this case 𝑇(𝛿) 
becomes identical to the specified parameter range 𝑇. For 𝛿 < 1, it is clear that 𝑇(𝛿) ⊂ 𝑇, while 
for 𝛿 > 1, 𝑇(𝛿) ⊃ 𝑇. 
 
We can then define the Flexibility Index, 𝐹, as the largest value of 𝛿 such that the inequalities 
𝑓𝑗(𝑑, 𝑧, 𝜃) ≤ 0, 𝑗 ∈ 𝐽, hold over the parameter range 𝑇(𝐹) (i.e. 𝜒(𝑑) ≤ 0 for 𝑇(𝐹)). 
Mathematically, this problem can be formulated as: 

F = max  𝛿 

(13)   s.t. 𝜒(𝑑) = max
𝜃∈𝑇

min
𝑧

max
𝑗𝜖𝐽

 𝑓𝑗(𝑑, 𝑧, 𝜃) ≤ 0 

  𝑇(𝛿) = {𝜃: 𝜃𝑁 − 𝛿∆𝜃− ≤ 𝜃 ≤ 𝜃𝑁 + 𝛿∆𝜃+} 
  𝛿 ≥ 0 
 
The geometric interpretation of this problem is shown in Fig. 5 where it can be seen that the 
rectangle 𝑇(𝐹) is the largest rectangle that can be inscribed within the region of operation. This 
rectangle is centered at the nominal point and its sides are proportional to the expected 
deviations, 𝛥𝜃+, 𝛥𝜃−. The flexibility index also indicates the actual parameter range that can be 
handled by the design; this will be given by (see Fig. 5), 

𝑇(𝛿) = {𝜃: 𝜃𝑁 − 𝐹∆𝜃− ≤ 𝜃 ≤ 𝜃𝑁 + 𝐹∆𝜃+} (14)  
 
A value 𝐹 = 1 implies that the design has exactly the flexibility to satisfy the constraints over the 
set 𝑇.  A value 𝐹 > 1 implies that the design exceeds the flexibility requirements; a value 𝐹 < 1 
supplies the fractional deviation that can actually be handled for any of the expected deviations. 
Finally, the value of 𝜃 determined by (13) corresponds to the critical parameter point, 𝜃𝑐, that 
limits flexibility (see Fig. 5). 
 

9 

 



 
Fig. 5. Geometrical representation of parameter range 𝑇(𝐹) with flexibility index 𝐹. 

 
4.3. Vertex solution methods 

 
The solution of (11) for the flexibility test problem and of (13) for the flexibility index problem 
can be greatly simplified for the case when the critical points correspond to vertices or extreme 
values of the parameter sets 𝑇 and 𝑇(𝐹), respectively (Halemane & Grossmann, 1983). 
 
Consider first the flexibility test problem, and let 𝜃𝑘, 𝑘 ∈ 𝑉, represent the vertices of the set 𝑇.  
Then, (10) reduces to: 

𝜒(𝑑) = max
𝑘∈𝑉

𝜓(𝑑, 𝜃𝑘) (15)  
 
Note that 𝜓(𝑑, 𝜃𝑘) can be evaluated through the optimization problem in (8) at the vertex 𝜃𝑘.  
Hence, the following algorithm can be applied: 
 
Step 1. For each vertex 𝜃𝑘, 𝑘 ∈ 𝑉, solve the optimization problem: 
ψ(d,θk) = min

𝑧,𝑢
 𝑢  

(16)  
 s.t. 𝑓𝑗(𝑑, 𝑧, 𝜃𝑘) ≤ 𝑢 𝑗 ∈ 𝐽  
 
Step 2. Set 𝜒(𝑑) = max

𝑘∈𝑉
{𝜓(𝑑, 𝜃𝑘)} 

 
If 𝜒(𝑑) ≤ 0 then design is feasible to operate over the set 𝑇; otherwise if 𝜒(𝑑) > 0 it is not. 
 
A similar procedure can be applied for the flexibility index problem. First, note that in (13) 
𝜒(𝑑) = 0 at the optimal solution since the critical point in this case will always lie on the 
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boundary (see Fig. 5). Let Δ𝜃𝑘, 𝑘 ∈ 𝑉, denote the vertex directions from the nominal point to the 
vertex points in 𝑇. Then, the maximum deviation 𝛿𝑘 to the boundary along Δ𝜃𝑘 will be given by 
the optimization problem: 
 

δk =  max
𝑧,𝛿

 𝛿  
(17)   s.t. 𝑓𝑗(𝑑, 𝑧, 𝜃𝑘) ≤ 0 𝑗 ∈ 𝐽  

  𝜃𝑘 = 𝜃𝑁 + 𝛿∆𝜃𝑘  
 
From among the parameter rectangles 𝑇(𝛿𝑘), 𝑘 ∈ 𝑉, it is clear that only the smallest one can be 
totally inscribed within the feasible region (Kabatek & Swaney, 1992). Hence, 

𝐹 = min
𝑘∈𝑉

{𝛿𝑘} (18)  
 
Thus, the following algorithm applies, 
 
Step 1. Solve the optimization problem in (17) for each vertex 𝑘 ∈ 𝑉. 
 
Step 2. Set 𝐹 = min 

𝑘∈𝑉
{𝛿𝑘} 

 
It can be shown that only under some convexity conditions (see Swaney & Grossmann, 1985) for 
the constraint functions 𝑓𝑗 , 𝑗 ∈ 𝐽, the critical points will always correspond to vertices (e.g. linear 
functions). For most cases however, when these conditions are not met we will often still have 
vertex critical points. A second reason is that even if critical points are vertices, we may be faced 
with the problem of having to analyze an exponential number of vertices (2𝑝). We present next a 
method that can overcome these problems. 
 

4.4. Active-set method 
 

The flexibility test in problem (10) and the flexibility index in problem (13) can be formulated as 
mixed-integer optimization problems (Grossmann & Floudas, 1987). Let us consider first 
problem (10), the flexibility test, which with (7) becomes, 

χ(d)= max
𝜃∈𝑇

 𝜓(𝑑, 𝜃) 
(19)  

 s.t. 𝜓(𝑑, 𝜃) = min
𝑧

max
𝑗∈𝐽

𝑓𝑗(𝑑, 𝑧, 𝜃) 

 
The above is a two-level optimization problem since it involves as a constraint the min-max 
problem for the function 𝜓(⋅). In order to convert this constraint into algebraic equations, let us 
consider the Karush-Kuhn-Tucker conditions of the function 𝜓(𝑑, 𝜃) as defined by the problem 
in (8). These conditions yield: 

� 𝜆𝑗
𝑗𝜖𝐽

= 1  (20a) 
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� 𝜆𝑗
𝜕𝑓𝑗(𝑑, 𝑧, 𝜃)

𝜕𝑧
= 0

𝑗∈𝐽

 
 (20b) 

𝜆𝑗�𝑓𝑗(𝑑, 𝑧, 𝜃) − 𝑢� = 0 𝑗 ∈ 𝐽 (20c) 

𝜆𝑗 ≥ 0; 𝑓𝑗(𝑑, 𝑧, 𝜃) − 𝑢 ≤ 0 𝑗 ∈ 𝐽 (20d) 
 
where 𝜆𝑗 are the Lagrange multipliers for the constraints 𝑓𝑗(𝑑, 𝑧, 𝜃) − 𝑢 ≤ 0 in (8). Since at the 
optimal solution of (8), 𝜓(𝑑, 𝜃) = 𝑢, we can reformulate (19) as a single optimization problem. 
 

χ(d)= max
𝜃∈𝑇

 𝑢 
(21)  

 s.t. Constraints in (20) 
 
The complementary conditions in (20c) imply making discrete choices of those constraints that 
become active in (8), i.e. 𝑓𝑗(𝑑, 𝑧, 𝜃) = 𝑢. That is, if 𝜆𝑗 = 0, 𝑓𝑗 − 𝑢 < 0, constraint 𝑗 is inactive. 
These discrete choices can be modeled as follows. 
 
Let 𝑠𝑗 ≥ 0, be the slack of constraint 𝑓𝑗(𝑑, 𝑧, 𝜃) − 𝑢 ≤ 0, such that  

𝑓𝑗(𝑑, 𝑧, 𝜃) + 𝑠𝑗 = 𝑢 𝑗 ∈ 𝐽 (22) 
 
Also let 𝑦𝑗 be a 0-1 variable defined as follows: 

𝑦𝑗 = �1
0 if constraint 𝑓𝑗 − 𝑢 = 0 (23) 

otherwise 
 
This binary variable can be related to 𝑠𝑗 and 𝜆𝑗 by the logical inequalities: 

𝑠𝑗 ≤ 𝑈�1 − 𝑦𝑗� 
𝑗 ∈ 𝐽 (24) 

𝜆𝑗 ≤ 𝑦𝑗 
 
where 𝑈 is a valid upper bound for the slacks. Note that if 𝑦𝑗 = 1, it implies 𝑠𝑗 = 0, 𝜆𝑗 ≤ 1; if 
𝑦𝑗 = 0, it implies 0 ≤ 𝑠𝑗 ≤ 𝑈, 𝜆𝑗 = 0. In other words the inequalities in (23) are equivalent to 
the conditions in (20c). 
 
Furthermore, it can be shown that if the gradients 

𝜕𝑓𝑗

𝜕𝑧
, 𝑗 ∈ 𝐽, are linearly independent (Swaney & 

Grossmann, 1985), then there will be 𝑛𝑧 + 1 active constraints in (21), where 𝑛𝑧 is the 
dimensionality of the control variables 𝑧. Hence, we can set 

𝑦𝑗 = 𝑛𝑧 + 1 𝑗 ∈ 𝐽 (25) 
 
By then considering equations (22), (24), (25) in place of (20c) and (20d), problem (21) can be 
posed as the following mixed-integer optimization problem: 
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χ(d)= max
𝑢,𝜃,𝑧,𝜆𝑗,𝑠𝑗,𝑦𝑗

   𝑢  

(26) 

 s.t. 𝑓𝑗(𝑑, 𝑧, 𝜃) + 𝑠𝑗 = 𝑢 𝑗 ∈ 𝐽 

  � 𝜆𝑗
𝑗𝜖𝐽

= 1  

  � 𝜆𝑗
𝜕𝑓𝑗(𝑑, 𝑧, 𝜃)

𝜕𝑧
= 0

𝑗∈𝐽

  

  𝑠𝑗 ≤ 𝑈�1 − 𝑦𝑗� 𝑗 ∈ 𝐽 

  𝜆𝑗 ≤ 𝑦𝑗 𝑗 ∈ 𝐽 

  𝑦𝑗 = 𝑛𝑧 + 1  

  𝜃𝐿 ≤ 𝜃 ≤ 𝜃𝑈  

  𝜆𝑗 , 𝑠𝑗 ≥ 0; 𝑦𝑗 ∈ {0,1} 𝑗 ∈ 𝐽 
 
Note that in the above formulation all the variables, 𝑢, 𝜃, 𝑧, 𝜆𝑗 , 𝑠𝑗 , 𝑦𝑗 , 𝑗 ∈ 𝐽 appear as variables for 
the optimization since these are constrained to solve the problem for 𝜓(𝑑, 𝜃) through the 
constraints. There are several interesting features about the formulation in (26): 
 
a) If 𝑓𝑗 is linear in 𝑧 and 𝜃 (26) corresponds to an MILP problem (note 

𝜕𝑓𝑗

𝜕𝑧
 is constant for this 

case). Otherwise it corresponds to an MINLP. 
b) No enumeration of vertices is required, and therefore many uncertain parameters can be 

handled. 
c) The derivation of problem (26) does not require the assumption of vertex critical points. 

Hence, non-vertex critical points can be predicted such as in the motivating heat exchanger 
network problem (Grossmann and Floudas, 1987). 
 

A similar formulation can be derived for the flexibility index problem by reformulating (13) as 
the minimum 𝛿 to the boundary 𝜓(𝑑, 𝜃). That is, 

F = min  𝛿 (27) 
 s.t. 𝜓(𝑑, 𝜃) = 0 
 
Since the constraint 𝜓(𝑑, 𝜃) = 0 implies setting 𝑢 = 0 in problem (26) and from the deviation of 
the variable parameter range in (12), the flexibility index problem can be posed as the following 
mixed-integer optimization problem: 

F = min
𝛿,𝜆𝑗,𝑠𝑗,𝑦𝑗

    𝛿  (28) 
 s.t. 𝑓𝑗(𝑑, 𝑧, 𝜃) + 𝑠𝑗 = 0 𝑗 ∈ 𝐽 
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  � 𝜆𝑗
𝑗𝜖𝐽

= 1  

  � 𝜆𝑗
𝜕𝑓𝑗(𝑑, 𝑧, 𝜃)

𝜕𝑧
= 0

𝑗∈𝐽

  

  𝑠𝑗 ≤ 𝑈�1 − 𝑦𝑗� 𝑗 ∈ 𝐽 

  𝜆𝑗 ≤ 𝑦𝑗 𝑗 ∈ 𝐽 

  𝑦𝑗 = 𝑛𝑧 + 1  

  𝜃𝑁 − 𝛿∆𝜃− ≤ 𝜃 ≤ 𝜃𝑁 + 𝛿∆𝜃+  

  𝛿, 𝜆𝑗 , 𝑠𝑗 ≥ 0; 𝑦𝑗 ∈ {0,1} 𝑗 ∈ 𝐽 
 
This problem has again similar features as the flexibility test problem in (26). 
 

4.5. Special cases and extension for flexibility analysis 
 

The previous sections assumed that the uncertain parameters are independent. The case of 
correlated parameters can be easily handled by specifying these in algebraic equations 𝑟(𝜃) = 0, 
which are added as constraints in formulations (26) or (28). 
 
For the case when there are no control variables (i.e. 𝑛𝑧 = 0) the formulations are simplified.  
Consider for instance problem (26) for the flexibility test. If 𝑛𝑧 = 0, the stationary conditions in 
(20) are not required. Hence problem (26) reduces to: 

χ(d)= max
𝑢,𝜃,𝑠𝑗,𝑦𝑗

   𝑢  

(29) 

 s.t. 𝑓𝑗(𝑑, 𝜃) + 𝑠𝑗 = 𝑢 𝑗 ∈ 𝐽 

  𝑠𝑗 ≤ 𝑈�1 − 𝑦𝑗� 𝑗 ∈ 𝐽 

  𝑦𝑗 = 1 𝑗 ∈ 𝐽 

  𝜃𝐿 ≤ 𝜃 ≤ 𝜃𝑈  

  𝑠𝑗 ≥ 0; 𝑦𝑗 ∈ {0,1} 𝑗 ∈ 𝐽 
 
Since in the above formulation only one constraint can be active, we can easily decompose the 
solution to this problem by setting 𝑠𝑗 = 0 and maximizing 𝑢 = 𝑓𝑗(𝑑, 𝜃) for each constraint 𝑗. 
That is the problem reduces to: 
 

Step 1. For each constraint 𝑗 ∈ 𝐽, solve: 𝑢𝑗 = max
𝜃𝐿≤𝜃≤𝜃𝑈

𝑓𝑗(𝑑, 𝜃) 

Step 2. Set  𝜒(𝑑) = max
𝑗∈𝐽

�𝑢𝑗�  
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In a similar fashion, it can easily be shown that for 𝑛𝑧 = 0 the problem for the flexibility index 
reduces from (28) to: 

Step 1. For each constraint 𝑗 ∈ 𝐽, solve: 𝛿𝑗 = max
𝛿,𝜃

 𝛿  

   s.t. 𝑓𝑗(𝑑, 𝜃) = 0  

    𝜃𝑁 − 𝛿∆𝜃− ≤ 𝜃 ≤ 𝜃𝑁 + 𝛿∆𝜃+  

Step 2. Set  𝐹 = min
𝑗∈𝐽

�𝛿𝑗�    
 
That is, for each constraint we determine the closest displacement 𝛿𝑗 to the boundary 
𝑓𝑗(𝑑, 𝜃) = 0, and then set the index F to the smallest of all the displacements. 
 
Finally, we consider the case where we would like to explicitly keep the performance equations 
to avoid the algebraic elimination of the state variables. In the case when there are no control 
variables this is straightforward as we then simply have to include the equations ℎ𝑖(𝑑, 𝑥, 𝜃) = 0,
𝑖 ∈ 𝐼, in the optimization problems. For example, for the flexibility test, in the two-step 
procedure 𝑢𝑗can be determined as: 

u j = max
𝜃,𝑥

 𝑔𝑗(𝑑, 𝑥, 𝜃)  
(30)  s.t. ℎ𝑖(𝑑, 𝑥, 𝜃) = 0 𝑖 ∈ 𝐼 

  𝜃𝐿 ≤ 𝜃 ≤ 𝜃𝑈  
 
The feasibility function 𝜓(𝑑, 𝜃) in (8) must be redefined as: 

ψ(d,θ) = max
𝑢,𝑧,𝑥

 𝑢  
(31)  s.t. ℎ𝑖(𝑑, 𝑥, 𝜃) = 0 𝑖 ∈ 𝐼 

  𝑔𝑗(𝑑, 𝑥, 𝜃) ≤ 𝑢 𝑗 ∈ 𝐽 
 
This formulation would then be used for the vertex search method for the flexibility test. For the 
mixed-integer formulation in (26), the Karush-Kuhn-Tucker conditions of problem (31) must be 
included. Using a similar reasoning as in (26) the flexibility test problem corresponds to: 

χ(d)= max
𝑢,𝜃,𝑧,𝜆𝑗,𝜇𝑖,𝑠𝑗,𝑦𝑗

   𝑢  

(32) 

 s.t. ℎ𝑖(𝑑, 𝑥, 𝑧, 𝜃) = 0 𝑖 ∈ 𝐼 

  𝑔𝑗(𝑑, 𝑥, 𝑧, 𝜃) + 𝑠𝑗 − 𝑢 = 0 𝑗 ∈ 𝐽 

  � 𝜆𝑗
𝑗𝜖𝐽

= 1  

  � 𝜇𝑖
𝜕ℎ𝑖(𝑑, 𝑥, 𝑧, 𝜃)

𝜕𝑧
+ � 𝜆𝑗

𝜕𝑔𝑗(𝑑, 𝑥, 𝑧, 𝜃)
𝜕𝑧

𝑗∈𝐽𝑖∈𝐼

= 0  
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  � 𝜇𝑖
𝜕ℎ𝑖(𝑑, 𝑥, 𝑧, 𝜃)

𝜕𝑥
+ � 𝜆𝑗

𝜕𝑔𝑗(𝑑, 𝑥, 𝑧, 𝜃)
𝜕𝑥

𝑗∈𝐽𝑖∈𝐼

= 0  

  𝑠𝑗 ≤ 𝑈�1 − 𝑦𝑗� 𝑗 ∈ 𝐽 

  𝜆𝑗 ≤ 𝑦𝑗 𝑗 ∈ 𝐽 

  𝑦𝑗 = 𝑛𝑧 + 1  

  𝜃𝐿 ≤ 𝜃 ≤ 𝜃𝑈  

  𝜆𝑗 , 𝑠𝑗 ≥ 0; 𝑦𝑗 ∈ {0,1} 𝑗 ∈ 𝐽 
 
where 𝜇𝑖 are Lagrange multipliers to the equality constraints in (37) that are unrestricted in sign.  
Note that in (32) we have the advantage of not having to eliminate equations although we face a 
problem larger in size than in (26). Similar extensions can be performed for the flexibility index 
problem in (28).  
 

4.6.Optimal design of flexible processes 
 

As for design optimization problems they involve the selection of the design variables 𝑑 so as to 
minimize cost and either a) satisfy the flexibility test (11), or b) maximize the flexibility measure 
as given by (13), where the latter problem gives rise to a multi-objective optimization problem. 
Most of the initial work in design under uncertainty (Johns et al., 1976; Malik & Hughes, 1979) 
considered a joint probability distribution function 𝑗(θ) for the continuous uncertain parameters 
𝜃 in order to determine the design optimization by minimizing the expected value of the cost 
using a two-stage strategy: 

min
𝑑

𝐸
𝜃∈𝑇(𝐹)

�min
𝑧

𝑐(𝑑, 𝑧, 𝜃)|𝑓(𝑑, 𝑧, 𝜃) ≤ 0� (33) 
 
The reason the above is denoted as a two-stage strategy in analogy to stochastic programming 
(Birge & Louveaux, 2011) is because the design variables are chosen in stage 1 and remain fixed 
during stage 2 during which the control variables 𝑧 are adjusted depending on the realizations of 
the parameters θ. In order to handle infeasibilities in the inner minimization, one approach is to 
assign penalties for the violation of constraints (e.g. 𝐶(𝑑, 𝑧, 𝜃) = 𝐶̅(𝑑, 𝑧, 𝜃) if 𝑓(𝑑, 𝑧, 𝜃) > 0). 
This however can lead to discontinuities. The other approach is to enforce feasibility for a 
specified flexibility index 𝐹 (e.g. see Halemane & Grossmann, 1993) through the parameter set: 

𝑇(𝐹) = {𝜃: 𝜃𝑁 − 𝐹∆𝜃− ≤ 𝜃 ≤ 𝜃𝑁 + 𝐹∆𝜃+, 𝑟(𝜃) ≤ 0} 
 
In this case (27) is formulated as: 

min
𝑑

𝐸
𝜃∈𝑇(𝐹)

 �min
𝑧

𝐶(𝑑, 𝑧, 𝜃)|𝑓(𝑑, 𝑧, 𝜃) ≤ 0� (34) 

s.t. max
𝜃∈𝑇(𝐹)

𝜓(𝑑, 𝜃) ≤ 0  
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A particular case of (34) is when only a discrete set of points 𝜃𝑘, 𝑘 = 1, … , 𝐾 are specified 
which then gives rise to the optimal design problem, 

min
𝑑

 � 𝑤𝑘𝐶(𝑑, 𝑧𝑘, 𝜃𝑘)
𝐾

𝑘=1

  (35) 

s.t. 𝑓(𝑑, 𝑧𝑘, 𝜃𝑘) ≤ 0 k = 1,…,K  

where � 𝑤𝑘
𝐾

𝑘=1

= 1   

 
and 𝑤𝑘 are weights that are assigned to each point 𝜃𝑘. Problem (35) can be interpreted as a 
multiperiod design problem, which is an important problem in its own right for the design of 
flexible chemical plants (see Grossmann & Sargent, 1979; Varvarezos et al. 1992, 1994). As 
shown by Grossmann & Sargent (1978) problem (35) can also be used to approximate the 
solution of (34). This is accomplished by selecting an initial set of points 𝜃𝑘, solving problem 
(35), and verifying its feasibility over 𝑇(𝐹) by solving problem (11) or (13). If the design is 
feasible the procedure terminates. Otherwise the critical point obtained from the flexibility 
evaluation is included to the set of 𝐾 𝜃 points and the solution of (35) is repeated. Commonly 
only one or two major iterations must be performed to achieve feasibility with this method. Other 
approaches for the design problem can be found in Pistikopoulos & Grossmann (1988, 1989). 
 
It is also interesting to point out that for the case when there are no control variables 𝑧, and the 
cost function 𝐶(𝑑) depends only on 𝑑, problem (34) can be interpreted as a robust optimization 
problem in which the goal is to find the design variables 𝑑 so as to meet the inequalities 
𝑓(𝑑, 𝜃) ≤ 0 , ∀𝜃 ∈ 𝑇 (Ben-Tal et al., 2009). In that sense, problem (34) can be regarded as a 
more general formulation than robust optimization since it involves the recourse or control 
variables 𝑧, as well as the joint distribution function 𝑗(𝜃) over the uncertainty set 𝑇(𝐹). 
 
 

5. Fundamental concepts for dynamic resiliency 
 
As was illustrated in the motivating examples section, dynamic resiliency was introduced with 
some counterintuitive observations. For instance, longer dead times can sometimes improve 
plant dynamic resiliency. A basic question was: why can perfect controllers not be implemented? 
The key idea was to recognize some inherent characteristics of a system, namely, time delays, 
non-minimum phase elements, constraints on manipulated variables, and model uncertainty. The 
key contribution by Manfred Morari and his group was to assess quantitatively the effect of each 
of them. This was accomplished with a brilliant series of 9 papers on Design of Resilient 
Processing Plants. Each of the 9 parts is listed in Table 1. 
 
Table 1. Series of nine papers by Morari and coworkers on design of resilient processing plants. 
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For ease of exposition, we present the mathematical treatment of dynamic resiliency for Single-
Input-Single-Output (SISO) systems and note that more details and extensions to the 
multivariable case are available in Morari (1983). We assume that the system can be represented 
by a transfer matrix 𝐺(𝑠), i.e.: 

𝑦(𝑠) = 𝐺(𝑠)𝑢(𝑠) (36) 
 
where 𝑦(𝑠) ∈ 𝑅𝑛 are the outputs to be controlled and 𝑢(𝑠) ∈ 𝑅𝑚 are manipulated variables. Fig. 
6 shows the feedback control structure analyzed in this section, where 𝐶(𝑠) ∈ 𝑅𝑚×𝑛 is the 
controller transfer matrix, 𝑦𝑠(𝑠) ∈ 𝑅𝑛 the set points and 𝑑 ∈ 𝑅𝑛 the disturbances. 

 
Fig. 6. Typical feedback control structure. 

 
In order to achieve perfect regulatory control, i.e. 𝑦(𝑡) = 𝑦𝑠(𝑡), at all times and for all 
disturbances affecting the system, that is 𝑦′(𝑠) = 𝑦𝑠(𝑠) − 𝑑(𝑠), we require 
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𝑢(𝑠) = 𝐺−1(𝑠)(𝑦𝑠(𝑠) − 𝑑(𝑠)) (37) 
 
where 𝐺−1(𝑠) is the right inverse of 𝐺(𝑠). A perfect controller is only possible if 𝐺(𝑠) has a 
right inverse. From the block diagram in Fig. 6, we find that 

𝑢(𝑠) = 𝐶(𝑠)�𝐼 + 𝐺(𝑠)𝐶(𝑠)�
−1

�𝑦𝑠(𝑠) − 𝑑(𝑠)� (38) 
 
where 𝐶(𝑠)�𝐼 + 𝐺(𝑠)𝐶(𝑠)�

−1
 is called the Closed-Loop Controller Transfer Matrix (CLCTM). 

Therefore, the objective is to make the CLCTM equal to 𝐺−1(𝑠) without imposing constraints on 
the structure of 𝐶(𝑠). 
 
Instead of proceeding with the analysis using such an indirect expression of 𝐺−1(𝑠), it is more 
convenient to introduce the Internal Model Control (IMC) structure whose block diagram is 
shown in Fig. 7, where �̅�(𝑠) is an approximate model of the system, since the system itself is 
never known exactly. We remark that the two representations are equivalent as expressed in the 
following relations: 

𝐺𝐶 = 𝐶(𝐼 + �̅�𝐶)−1 (39) 

𝐶 = 𝐺𝐶(𝐼 − �̅�𝐺𝐶)−1 (40) 

 
Fig. 7. Internal Model Control (IMC) structure. 

 
Let us restate our goal. We want to select the controller 𝐺𝐶(𝑠) to be “close” to �̅�−1 subject to the 
constraints that it be realizable (to allow physical implementation) and stable (to guarantee 
closed-loop stability). �̅�−1 is not realizable and/or stable if �̅�(𝑠) is a non-minimum phase 
(NMP), i.e. it contains time delays and/or zeros in the right-half plane (RHP). If �̅�(𝑠) is an NMP, 
then it can be factored into an invertible part, �̅�−(𝑠), and a non-invertible part, �̅�+(𝑠): 

�̅�(𝑠) = �̅�+(𝑠)�̅�−(𝑠) (41) 
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such that ‖�̅�+(𝑠)‖ = 1 and �̅�−(𝑠)−1 is realizable and stable. Therefore, we choose 𝐺𝐶(𝑠) =
�̅�−(𝑠)−1. 
 
In order to study how constraining the manipulated variables as ‖𝑢(𝑠)‖ ≤ ‖𝑢max‖ affects 
resiliency, assuming a perfect model �̅�(𝑠) = 𝐺(𝑠), from Fig. 6 we obtain that: 

‖𝑦𝑠(𝑠) − 𝑑‖ ≤ ‖�̅�(𝑖𝜔)‖‖𝑢max‖ (42) 
 
which, if we normalize 𝑢(𝑠) appropriately so that ‖𝑢max‖ = 1, can be interpreted as the 
amplitude ratio plot for the open-loop system, ‖�̅�(𝑖𝜔)‖, is also a plot of the maximum 
disturbance, ‖𝑦𝑠(𝑠) − 𝑑‖, that can be handled by the closed-loop system when a “perfect” 
controller is employed. 
 
However, in practice and particularly at high frequencies, the disturbance often exceeds the 
bound set by ‖�̅�(𝑖𝜔)‖, and when it happens the control loop performance deteriorates as the 
“perfect” controller cannot function properly due to the saturation of the manipulated variables. 
A “practical” controller will have to depart from the “perfect” controller at high frequencies. The 
point of departure can be used as a measure of the effect of the constraints on manipulated 
variables on closed-loop performance and resiliency assessment. 
 
Thus far we have assumed a perfect model (𝐺 = �̅�). In practice, plant-model mismatch may be 
caused by uncertainties and nonlinearities cannot be neglected. A reasonable approach for 
system uncertainty is to assume that 𝐺(𝑠) is somewhere in a “ball” of radius 𝑙(𝜔) around model 
�̅�(𝑠), that is (see Fig. 8 for block diagram): 

𝐺(𝑠) = (1 + 𝐿0(𝑠))�̅�(𝑠) (43) 
 
where 𝐿0(𝑠) is constrained as follows 

‖𝐺(𝑖𝜔) − �̅�(𝑖𝜔)‖
‖�̅�(𝑖𝜔)‖

= ‖𝐿0(𝑖𝜔)‖ ≤ 𝑙(𝜔) (44) 

 

 
Fig. 8. Internal Model Control structure for multiplicative model uncertainties occurring at the 

model output 
 
Hence, a necessary and sufficient condition for “robustness”, i.e. closed-loop stability under 
system variations, is given by 

‖𝐺𝐶(𝑖𝜔)�̅�(𝑖𝜔)‖ <
1

𝑙(𝜔)
 (45) 
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As before, we select 𝐺𝐶(𝑠) = �̅�−(𝑠)−1 and the robustness condition becomes 

𝑙(𝜔) < 1 (46) 
 
The above condition implies that the system is only closed-loop stable if the uncertainty radius 
does not exceed the unity. In reality, this will not be guaranteed for high frequencies. Therefore, 
a dynamic compensator or a “filter”, 𝐹(𝑠), is introduced to render the controller more robust. It 
does so by lowering the ‖𝐺𝐶(𝑠)‖ at high frequencies. 

𝐺𝐶(𝑠) = �̅�−(𝑠)−1𝐹(𝑠) (47) 
 
with 𝐹(0) = 1. Thus, aside physically constraining the control action, model uncertainty limits 
the frequency range over which a “perfect” control is achievable. 
 
In summary, resiliency of single-variable systems is limited by three factors as enumerated 
below. 
1. Non-minimum phase (NMP) elements, i.e. time delays and RHP zeros; 
2. Physical constraints on the manipulated variables, and 
3. Plant-model mismatch, which generally becomes severe at frequencies with small 
amplitude ratios. The amplitude ratio plot of the open-loop system provides all the information 
needed. 
 
For multivariable systems, the main indicator of the sensitivity of the control structure to plant-
model mismatch is the condition number of �̅�(𝑖𝜔) at 𝜔 = 0, which is denoted by 𝛾(0). The 
condition number of a matrix is the ratio between its largest and smallest singular values, 𝜎𝑀(�̅�) 
and 𝜎𝑚(�̅�), respectively; therefore, the larger the condition number the more sensitive the 
control system is to process variations. In the example involving the thermally-coupled 
distillation columns, the 𝛾(0) for Structure 1 is about three orders of magnitude larger than that 
of Structure 2, thus confirming the better control performance of Structure 2 in the simulation 
study. 
 
  

6. Recent extensions in flexibility analysis 
 
The pioneering research work by Manfred Morari on resiliency that in turn motivated the 
formulations by Grossmann and co-workers have seen recent extensions as described in the next 
sections. 
 

6.1. Flexible design with confidence intervals and process variability 
 

Rooney & Biegler (2001) extended the mathematical foundations of Flexibility Analysis in 
steady-state problems to include nonlinear confidence intervals of the uncertain model 
parameters. In particular, the authors proposed using the likelihood ratio test to derive the 
confidence regions of the estimated model parameters. This method is an improvement over the 
deviation of individual and elliptical confidence intervals. The likelihood ratio test is defined as 
follows: 
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𝐿𝑅 = 2[𝐿(𝜃∗) − 𝐿(𝜃)] ≤ 𝜂𝜒1−𝛼,𝑝
2  (48) 

 
where 𝐿 is the log-likelihood function, 𝜂 is the Bartlett correction factor, and 𝜒1−𝛼,𝑝

2  is the chi-
squared test statistic for a significance level of 1 − 𝛼 and 𝑝 degrees of freedom. 
 
As described previously in the paper, a flexible design is obtained in a two-stage optimization 
approach. In the first stage, the multiperiod problem in Eq. (35) is solved for the design 
variables, 𝑑. The solution of this problem is represented by �̅� and is optimal for the discretization 
points chosen. The multiperiod problem is followed by the flexibility problem in Eq. (11), which 
is solved using the active-set approach of Grossmann & Floudas (1987) defined in Equation (26). 
 
The initial values of 𝜃𝑘 are obtained by solving the off-line problem in Equation (50), in which 
we simply find the point in the confidence region that lies furthest away (in Euclidean space) 
from the optimal estimates. 

max �[𝜃𝑘 − (𝜃𝑘)∗]2

𝑝

𝑖=1

  (49) 

s.t. 2[𝐿(𝜃∗) − 𝐿(𝜃)] ≤ 𝜂𝜒1−𝛼,𝑝
2    

 
In a subsequent paper, Rooney & Biegler (2004) further extended the analysis to include 
unmeasured process variability. The uncertain parameters, 𝜃 ∈ Θ, are distinguished as follows: 

• Unmeasured uncertain parameters, 𝜃𝑢 ∈ Θ𝑢, which are never known exactly. Therefore, 
no control or recourse action can be applied to them. Examples include kinetic constants 
and unobservable disturbances. 

• Measured uncertain parameters, 𝜃𝑚 ∈ Θ𝑚, which are not known at the design stage, but 
for which control action can be taken since they can be measured at the operating stage. 
Examples include feed flow rates, pressures and temperatures, and product demands. 

 
Therefore, the multiperiod problem in Equation (35) is extended to include both sources of 
uncertain parameters. 

min
𝑑,𝑧

 𝐶(𝑑)  (50) 

s.t. 𝑓𝑖,𝑘�𝑥𝑖,𝑘, 𝑧𝑘, 𝑑, 𝜃𝑖
𝑚, 𝜃𝑘

𝑢� ≤ 0
𝜃𝑖

𝑚 ∈ Θ𝑚,     𝜃𝑘
𝑢 ∈ Θ𝑢 �    𝑖 ∈ 𝐼 ,̅   𝑘 ∈ 𝐾�   

 
where 𝑖 and 𝑘 are the discretization points of 𝜃𝑚 and 𝜃𝑢, respectively, and 𝐼 ̅and 𝐾� are index sets 
that represent the critical points that are found if the constraints cannot be satisfied in the second 
stage. 
 
The flexibility test is extended to account for unmeasured process variability, 𝜃𝑢. As before, for 
a given solution �̅� obtained by solving the first-stage problem in Eq. (50), the flexibility problem 
is defined as the nested optimization problem as follows: 
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𝜒��̅�� = max
𝜃𝑚∈Θ𝑚

min
𝑧

max
𝜃𝑢∈Θ𝑢

max
𝑗

𝑓𝑗�𝑥, 𝑧, �̅�, 𝜃𝑚, 𝜃𝑢�  (51) 
 
The multilevel and nondifferentiable optimization problem in Eq. (51) is cast as a single-level 
smooth optimization problem through the use of a modified KS function (Kreisselmeier & 
Steinhauser, 1979) defined below and application of KKT conditions. More details on the 
reformulation can be found in the original paper. 

𝐾𝑆� �𝑥, 𝑧, �̅�, 𝜃𝑚, 𝜃𝑢, 𝜌� =
1
𝜌

ln �
∑ exp�𝜌𝑔𝑓𝑗�𝑥, 𝑧, �̅�, 𝜃𝑚, 𝜃𝑢��|𝐽|

𝑗

|𝐽| � (52) 

 
6.2. Simplicial approximation to feasibility limits 

 
In contrast to finding the hyperrectangle corresponding to the flexibility index (Fig. 5), Goyal & 
Ierapetritou (2002) presented an approach based on the ideas of inner and outer approximation of 
the feasible region in order to measure the entire feasible region. However, they restricted 
themselves to the case of no control variables. 
 
The inner approximation of the feasible region, 𝑅, is represented by a polyhedron made up of 𝑛-
dimensional simplices, where it is assumed that the constraint functions are locally convex. It 
provides a lower bound to 𝑅. The algorithm is summarized in the following steps where more 
details can be found in the original paper. Fig. 9 shows a schematic of the algorithm. 
1. Determine any 𝑚 points on the boundary of the feasible region, 𝜕𝑅, where  𝑚 ≥ 𝑛 + 1; 
2. Using the set of 𝑚 points from the previous step, construct the convex hull; 
3. Given the first approximation of 𝜕𝑅, inscribe the largest hypersphere (or hyperellipsoid 
by scaling the boundary points) by solving a linear programming problem; 
4. Determine the largest of the faces of the polyhedron that are tangent to the inscribed 
hypersphere (or hyperellipsoid) by solving a linear programming problem; 
5. Determine new boundary point by making a one-dimensional search in the outwards 
normal direction, starting at the center of the largest inscribed hypersphere (or hyperellipsoid) 
obtained in the previous step; 
6. Add the new point to the set of boundary points and a new convex hull is formed, thus 
improving the approximation to 𝜕𝑅. 
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Fig. 9. Steps in simplicial approximation. Initial convex hull (1,2,3) and the resulting  

convex hull (1,2,3,4) after one iteration (Goyal & Ierapetritou, 2002). 
 
The outer approximation, which is a convex envelope, provides an upper bound to the feasible 
region, 𝑅. The proposed algorithm is based on the supporting hyperplane theorem of convex sets 
that states that if 𝑆 is a convex set and 𝑝 is a boundary point of 𝑆, then there exists a hyperplane 
containing 𝑝 and containing S in one of its closed half-spaces. The algorithm is summarized in 
the following steps. 
1. Use points generated by the simplicial approximation as initial boundary points; 
2. Generate hyperplanes at the points from the previous step, which requires no extra 
optimization problems to be solved if the constraints are explicitly defined, but additional 
optimization problems in the form of Equation (8) must be solved in case constraints are 
implicit; 
3. Obtain the points of intersection at the tangent half-planes; 
4. Generate convex hull at the intersection points obtained in the previous step, thus forming 
the outer polytope. 
 
Subsequent papers that build on the ideas of the simplicial approximation are by Banerjee & 
Ierapetritou (2005), in which the authors consider the feasible region as an object and apply 
surface reconstruction ideas to capture and define the shape of the object by sampling points and 
constructing a polygonal representation of the feasible region, and by Boukouvala & Ierapetritou 
(2012), who addressed the feasibility evaluation of black-box processes using Kriging 
interpolation and development of an adaptive sampling strategy in order to minimize sampling 
cost, while maintaining feasibility space accuracy. 
 

6.3. Stochastic flexibility 
 

Pistikopoulos & Mazzuchi (1990) and Straub & Grossmann (1990) addressed the problem where 
instead of specifying a fixed parameter set 𝑇, one assumes that the uncertain parameters θ are 
described by a joint probability distribution function 𝑗(θ). This involves the evaluation of the 
multiple integral 
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𝑆𝐹(𝑑) = � 𝑗(𝜃)𝑑𝜃
𝜃:𝜓(𝑑,𝜃)≤0

 (53) 

 
where 𝑆𝐹(𝑑) is the stochastic flexibility for a given design, which can be interpreted as the 
probability that a design exhibit feasible operation while accounting for control variables that can 
be adjusted. Note that this integral must be evaluated over the feasible region projected in 𝜃 
space (see Fig. 10). In Fig. 10 the circles represent the contours of the joint distribution function 
𝑗(⋅). 

 
Fig. 10. SF is evaluated by integration over the shaded area. 

 
Straub & Grossmann (1990) have proposed a numerical approximation scheme for arbitrary 
distribution functions using Gaussian quadrature within the feasible region of the projected 
region 𝑅(𝑑, 𝜃) (see Fig. 11). 
 

 
Fig. 11. Location of Quadrature Points. 

 
The location of the quadrature periods is performed by first projecting the functions 𝜓𝑘(𝑑, 𝜃), 
𝑘 = 1, … , 𝑁𝐴𝑆, into successively lower dimensional spaces in 𝜃; i.e. 
[𝜃1, 𝜃2, … , 𝜃𝑀], [𝜃1, 𝜃2, … , 𝜃𝑀−1], … , [𝜃1]. This is accomplished by analytically solving the 
problems 𝑟 = 1, 2, … , 𝑀 − 1: 

𝜓𝑟+1,𝑘(𝑑, 𝜃1, 𝜃2, … , 𝜃𝑀−𝑟) =  min 𝑢  (54) 

 s.t. 𝜓𝑟,𝑘(𝑑, 𝜃1, 𝜃2, … ) ≤ 𝑢 𝑘 = 1, … , 𝑁𝐴𝑆  
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where 𝜓1,𝑘 = 𝜓𝑘(𝑑, 𝜃) = 𝑓𝑗(𝑧, 𝑑, 𝜃) for 𝑗 ∈ 𝐽𝐴
𝑘 and 𝑁𝐴𝑆(𝑟) is the number of active sets at the 𝑟-

th state of the projection. 
 
In the next step, lower and upper bounds are generated together with the quadrature points for 
each 𝜃𝑖 component in the order 𝜃1, 𝜃2, … , 𝜃𝑀 . This is accomplished by using the analytical 
expressions 𝜓𝑟,𝑘(𝑑, 𝜃1, 𝜃2, … , 𝜃𝑀+𝑟−1) in the order 𝑟 = 𝑀, 𝑀 − 1, …, to determine the bounds.  
For instance, the bounds 𝜃1

𝐿 and 𝜃1
𝑈 are determined from the linear inequalities 𝜓𝑀,𝑘(𝑑, 𝜃1) ≤ 0, 

𝑘 = 1, … , 𝑁𝐴𝑆(𝑀). The quadrature points 𝜃1
𝑞1 then are given by: 

𝜃1
𝑞1 =

𝜈𝑞1(𝜃1
𝑈 − 𝜃1

𝐿) + 𝜃1
𝑈 + 𝜃1

𝐿

2
                    𝑞1 = 1, … , 𝑄𝑃1 (55)  

 
where  𝜈𝑞1, 𝑞1 = 1, … , 𝑄𝑃1 represent the location of 𝑄𝑃1 quadrature points in [−1, 1]. In the next 
step, bounds for 𝜃2 are computed for each 𝜃1

𝑞1 from 𝜓𝑀−1,𝑘(𝑑, 𝜃1, 𝜃2) ≤ 0, 𝑘 = 1, … , 𝑁𝐴𝑆(𝑀 −
1).  These bounds are denoted as 𝜃2

𝐿�𝜃1
𝑞1� since they depend on the value of 𝜃1

𝑞1. Quadrature 
points are then computed as in (54) and the procedure continues until the bounds 
𝜃𝑀

𝐿 �𝜃1
𝑞1 , 𝜃2

𝑞1𝑞2 , … , 𝜃𝑀−1
𝑞1𝑞2⋯𝑞𝑀−1�, 𝜃𝑀

𝑈�𝜃1
𝑞1 , 𝜃2

𝑞1𝑞2 , … , 𝜃𝑀−1
𝑞1𝑞2⋯𝑞𝑀−1� and quadrature points 𝜃𝑀

𝑞1𝑞2⋯𝑞𝑀 
are determined. 
  
The numerical approximation to (53) is then given by: 

𝑆𝐹(𝑑) =
𝜃1

𝑈 − 𝜃1
𝐿

2
� 𝑤𝑞1 �

𝜃2
𝑈�𝜃1

𝑞1� − 𝜃2
𝐿�𝜃1

𝑞1�
2

� ⋯
𝑄𝑃1

𝑞1=1

 

� 𝑤𝑞2 �
𝜃3

𝑈�𝜃1
𝑞1 , 𝜃2

𝑞1𝑞2� − 𝜃3
𝐿�𝜃1

𝑞1 , 𝜃2
𝑞1𝑞2�

2
�

𝑄𝑃2

𝑞2=1

⋯ 

� 𝑤𝑞2𝑀−1

𝑄𝑃𝑀

𝑞𝑀−1=1

�
𝜃𝑀

𝑈�𝜃1
𝑞1 , 𝜃2

𝑞1𝑞2 , ⋯ , 𝜃𝑀−1
𝑞1𝑞2⋯𝑞𝑀−1� − 𝜃𝑀

𝐿 �𝜃1
𝑞1 , 𝜃2

𝑞1𝑞2 , ⋯ , 𝜃𝑀−1
𝑞1𝑞2⋯𝑞𝑀−1�

2
� ⋯ 

� 𝑤𝑞𝑀𝑗�𝜃1
𝑞1 , 𝜃2

𝑞1𝑞2 , ⋯ , 𝜃𝑀
𝑞1𝑞2⋯𝑞𝑀�

𝑄𝑃𝑀

𝑞𝑀=1

 

(56)  

 
where 𝑤𝑞𝑖 are the weights corresponding to each quadrature point. 
 

6.4. Global optimization for the flexibility test and flexibility index problems 
 

The active set method in (26) and (28) developed by Grossmann & Floudas (1987) relies on the 
KKT conditions to solve the inner optimization problems of the flexibility test and the flexibility 
index problems. If some of the model equations (ℎ𝑖(𝑑, 𝑥, 𝑧, 𝜃)) or the feasibility constraints 
(𝑔𝑗(𝑑, 𝑥, 𝑧, 𝜃)) are not convex, the KKT conditions are not sufficient for global optimality. 
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Therefore, the solution obtained for the outer optimization problems might not indicate the actual 
flexibility of the system.  
 
The global optimization strategy proposed by Floudas et al. (2001) for the flexibility test and the 
flexibility index problems is based on the principles of spatial branch and bound algorithms. 
Starting from the formulations obtained with the active set method (26) and (28), upper and 
lower bounds on the global optimum are improved by analyzing successive partitions of the 
space of the variables. Upper bounds on the global optimum are calculated from local solutions 
of the single-stage optimization problem that is obtained when the inner minimization is replaced 
by its KKT conditions. Lower bounds are calculated by convexification of the model equations 
and the feasibility constraints. Underestimators of functions 𝑔𝑗and ℎ𝑖 are used to relax the 
feasible region. The non-convex terms are replaced by their corresponding convex 
underestimators:  

𝑔𝑗(𝑑, 𝑥, 𝑧, 𝜃) ≤ 0 ⇒ 𝑔�𝑗(𝑑, 𝑥, 𝑧, 𝜃) ≤ 0 (57) 

ℎ𝑖(𝑑, 𝑥, 𝑧, 𝜃) = 0 ⇒ ℎ�𝑖(𝑑, 𝑥, 𝑧, 𝜃) = 0 (58) 
 
The flexibility test problem as stated in (32) can be expressed as follows for the convexified 
functions: 
χ(d)= max

𝑢,𝜃,𝑧,𝜆�𝑗,𝜇�𝑖,�̂�𝑗,𝑦�𝑗
   𝑢  

(59) 

 s.t. ℎ�𝑖(𝑑, 𝑥, 𝑧, 𝜃) = 0 𝑖 ∈ 𝐼 
  𝑔�𝑗(𝑑, 𝑥, 𝑧, 𝜃) + 𝑠𝑗 = 𝑢 𝑗 ∈ 𝐽 

  � �̂�𝑗
𝑗𝜖𝐽

= 1  

  � �̂�𝑖
𝜕ℎ�𝑖(𝑑, 𝑥, 𝑧, 𝜃)

𝜕𝑧
+ � �̂�𝑗

𝜕𝑔�𝑗(𝑑, 𝑥, 𝑧, 𝜃)
𝜕𝑧

𝑗∈𝐽𝑖∈𝐼

= 0  

  � �̂�𝑖
𝜕ℎ�𝑖(𝑑, 𝑥, 𝑧, 𝜃)

𝜕𝑥
+ � �̂�𝑗

𝜕𝑔�𝑗(𝑑, 𝑥, 𝑧, 𝜃)
𝜕𝑥

𝑗∈𝐽𝑖∈𝐼

= 0  

  �̂�𝑗 ≤ 𝑈�1 − 𝑦�𝑗� 𝑗 ∈ 𝐽 
  �̂�𝑗 ≤ 𝑦�𝑗 𝑗 ∈ 𝐽 
  𝑦�𝑗 = 𝑛𝑧 + 1  
  𝜃𝐿 ≤ 𝜃 ≤ 𝜃𝑈  
  �̂�𝑗 , �̂�𝑗 ≥ 0; 𝑦�𝑗 ∈ {0,1} 𝑗 ∈ 𝐽 
 
In order to obtain a convex formulation, further relaxation of the feasible region might be needed 
to eliminate non-linearities of the equality constraints, including the equality formulation of the 
feasibility constraints required for the active set method. If the underestimation of the model 
equations, feasibility constraints or the KKT conditions is non-linear, they have to be rewritten as 
pairs of inequalities. Eq. (60) shows the procedure for the subset of non-linear model equations. 

ℎ𝑖′(𝑑, 𝑥, 𝑧, 𝜃) = 0 ⇒ 
ℎ�𝑖′

1 (𝑑, 𝑥, 𝑧, 𝜃) ≤ 0 
(60) 

−ℎ�𝑖′
2 (𝑑, 𝑥, 𝑧, 𝜃) ≤ 0 

27 

 



 
The convex relaxation of formulation (59) yields a lower bound on the flexibility test problem 
for any partition of the space of the variables because it implies a relaxation of the inner 
minimization problem. The successive refining of the partition together with the update of 
underestimators produces a non-decreasing sequence of lower bounds. Partitions of the space of 
the variables (nodes) are fathomed when the solution of the convex relaxation is greater than the 
best upper bound found. A similar strategy can be applied to the flexibility index problem by 
using a convex relaxation of formulation (28). 
 

6.5. Flexibility analysis of dynamic systems 
 

The ability of dynamic systems to maintain feasibility over ranges of uncertain parameters was 
studied by Dimitriadis & Pistikopoulos (1995). They extended the flexibility test and flexibility 
index problems (Halemane & Grossmann, 1983; Swaney & Grossmann 1985) developed for 
steady-state models to dynamic systems that contain time-varying uncertain parameters. The 
main difference with the steady-state problems is given by the time-dependence of the 
uncertainty and the feasible region.  
 
The dynamic flexibility problem establishes the ability of a system to maintain feasible operation 
throughout a finite time horizon for any possible trajectory of the uncertain parameters. If the 
system is found feasible for the range of uncertain parameters, the solution involves finding the 
control actions that guarantee feasibility in the worst trajectory of the uncertain parameters. 
Following the notation used for the steady-state, dynamic systems can be modeled by a set by 
algebraic and differential equations with the following form: 

ℎ(𝑑, �̇�(𝑡), 𝑥(𝑡), 𝑧(𝑡), 𝜃(𝑡), 𝑡) = 0 (61) 
𝑥(0) = 𝑥0 
 
The constraints that represent feasible operation are divided in two groups. Path constraints, 
which must be satisfied throughout the whole time horizon: 

𝑔𝑝𝑎𝑡ℎ(𝑑, 𝑥(𝑡), 𝑥(𝑡), 𝜃(𝑡), 𝑡) ≤ 0 (62) 
 
and point constraints that must be satisfied at specific instances of time: 

𝑔𝑘
𝑝𝑜𝑖𝑛𝑡(𝑑, 𝑥(𝑡𝑘), 𝑧(𝑡𝑘), 𝜃(𝑡𝑘), 𝑡𝑘) ≤ 0 (63) 

 
The flexibility test problem is formulated as follows: 

𝜒(𝑑) = max
𝜃(𝑡)∈𝑇(𝑡)

 𝜓�𝑑, 𝜃(𝑡)�  
(64) 

 s.t. 𝜓�𝑑, 𝜃(𝑡)� = min
𝑧(𝑡)∈𝑍(𝑡)

max
𝑗∈𝐽,𝑡∈[0,𝐻]

𝑔𝑗(𝑑, 𝑥(𝑡), 𝑧(𝑡), 𝜃(𝑡), 𝑡) 

  s.t. ℎ(𝑑, �̇�(𝑡), 𝑥(𝑡), 𝑧(𝑡), 𝜃(𝑡), 𝑡) = 0 
    𝑥(0) = 𝑥0 

   𝑇(𝑡) = {𝜃(𝑡)|𝜃𝐿(𝑡) ≤ 𝜃(𝑡) ≤ 𝜃𝑈(𝑡)} 
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   𝑍(𝑡) = {𝑧(𝑡)|𝑧𝐿(𝑡) ≤ 𝑧(𝑡) ≤ 𝑧𝑈(𝑡)} 
 
where 𝐽 is the set of constraints that represent feasible operation. Just like in the steady-state 
case, a design (𝑑) is feasible for any trajectory of uncertain parameters if 𝜒(𝑑) ≤ 0. 
 
Similarly, the dynamic flexibility index problem is formulated as follows: 

𝐷𝐹(𝑑) = max  𝛿  

(65) 

 s.t. 𝜓𝜒(𝑑) = max
𝜃(𝑡)∈𝑇(𝑡)

min
𝑧(𝑡)∈𝑍(𝑡)

max
𝑗∈𝐽,𝑡∈[0,𝐻]

𝑔𝑗(𝑑, 𝑥(𝑡), 𝑧(𝑡), 𝜃(𝑡), 𝑡) 

  s.t. ℎ(𝑑, �̇�(𝑡), 𝑥(𝑡), 𝑧(𝑡), 𝜃(𝑡), 𝑡) = 0 
   𝑥(0) = 𝑥0 

   
𝑇(𝑡) = {𝜃(𝑡)|𝜃𝐿(𝑡) ≤ 𝜃(𝑡)

≤ 𝜃𝑈(𝑡)} 

   𝑍(𝑡) = {𝑧(𝑡)|𝑧𝐿(𝑡) ≤ 𝑧(𝑡) ≤ 𝑧𝑈(𝑡)} 
 
The dynamic flexibility index (𝐷𝐹) quantifies the maximum range of uncertain parameters that 
can be tolerated throughout the time horizon while maintaining feasibility. The uncertainty 
ranges are measured from a nominal point (𝜃𝑁(𝑡)) with the scaled deviation from the expected 
deviations (𝛥𝜃(𝑡)). 
 
The resulting flexibility test and flexibility index formulations are two-stage semi-infinite 
dynamic optimization problems. Their solution can be obtained by combining a discretization 
scheme with the active constraint strategy developed for the steady state problems. By using 
orthogonal collocation on finite elements and enforcing profile continuity among elements, the 
dynamic flexibility test can be expressed in the following form. 

max  𝑢 

(66) 

s.t. ℎ𝑚,𝑛
𝑖 (𝑑, 𝑥, 𝑧, 𝜃, 𝑡, 𝛼) = 0 

 𝑔𝑚,𝑛
𝑗 (𝑑, 𝑥, 𝑧, 𝜃, 𝑡) + 𝑠𝑚,𝑛

𝑗 − 𝑢 = 0 

 � 𝜇𝑚,𝑛
𝑖 𝜕ℎ𝑚,𝑛

𝑖

𝜕𝑥
𝑚,𝑛,𝑖

+ � 𝜆𝑚,𝑛
𝑗 𝜕𝑔𝑚,𝑛

𝑗

𝜕𝑥
𝑚,𝑛,𝑗

= 0 

 � 𝜇𝑚,𝑛
𝑖 𝜕ℎ𝑚,𝑛

𝑖

𝜕𝑧
𝑚,𝑛,𝑖

+ � 𝜆𝑚,𝑛
𝑗 𝜕𝑔𝑚,𝑛

𝑗

𝜕𝑧
𝑚,𝑛,𝑗

= 0 

 � 𝜇𝑚,𝑛
𝑖 𝜕ℎ𝑚,𝑛

𝑖

𝜕𝛼
𝑚,𝑛,𝑖

+ � 𝜆𝑚,𝑛
𝑗 𝜕𝑔𝑚,𝑛

𝑗

𝜕𝛼
𝑚,𝑛,𝑗

= 0 
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 � 𝜆𝑚,𝑛
𝑗

𝑚,𝑛,𝑗

= 1 

 � 𝑦𝑚,𝑛
𝑗

𝑚,𝑛,𝑗

= 𝑛𝑧 + 1 

 𝜆𝑚,𝑛
𝑗 − 𝑦𝑚,𝑛

𝑗 ≤ 0 

 𝑠𝑚,𝑛
𝑗 − 𝑈�1 − 𝑦𝑚,𝑛

𝑗 � ≤ 0 

 𝜃𝐿 ≤ 𝜃 ≤ 𝜃𝑈 

 𝑦𝑚,𝑛
𝑗 ∈ {0,1} 𝜆𝑚,𝑛

𝑗 , 𝑠𝑚,𝑛
𝑗 ≥ 0 

 𝑚 ∈ 𝑀 𝑛 ∈ 𝑁 𝑖 ∈ 𝐼 𝑗 ∈ 𝐽 
 
where 𝑀 is the set of finite elements, 𝑁 the set of collocation points, 𝐼 the set of model 
equations, and J the set of feasibility constraints. The location of the discrete-time elements is 
indicated by index 𝑡 and the collocation points are denoted by 𝛼. The Lagrange multipliers of the 
model and the feasibility constraints are 𝜇 and 𝜆, respectively. Slack variables (𝑠𝑚,𝑛

𝑗 ) are used in 
the same way as in the steady-state model; the model selects the active constraints with binary 
variables 𝑦𝑚,𝑛

𝑗 . 
 
The dynamic flexibility index problem can also be transformed to a mixed-integer formulation 
following the same principles. 

min  𝛿 

(67) 

s.t. ℎ𝑚,𝑛
𝑖 (𝑑, 𝑥, 𝑧, 𝜃, 𝑡, 𝛼) = 0 

 𝑔𝑚,𝑛
𝑗 (𝑑, 𝑥, 𝑧, 𝜃, 𝑡) + 𝑠𝑚,𝑛

𝑗 = 0 

 � 𝜇𝑚,𝑛
𝑖 𝜕ℎ𝑚,𝑛

𝑖

𝜕𝑥
𝑚,𝑛,𝑖

+ � 𝜆𝑚,𝑛
𝑗 𝜕𝑔𝑚,𝑛

𝑗

𝜕𝑥
𝑚,𝑛,𝑗

= 0 

 � 𝜇𝑚,𝑛
𝑖 𝜕ℎ𝑚,𝑛

𝑖

𝜕𝑧
𝑚,𝑛,𝑖

+ � 𝜆𝑚,𝑛
𝑗 𝜕𝑔𝑚,𝑛

𝑗

𝜕𝑧
𝑚,𝑛,𝑗

= 0 

 � 𝜇𝑚,𝑛
𝑖 𝜕ℎ𝑚,𝑛

𝑖

𝜕𝛼
𝑚,𝑛,𝑖

+ � 𝜆𝑚,𝑛
𝑗 𝜕𝑔𝑚,𝑛

𝑗

𝜕𝛼
𝑚,𝑛,𝑗

= 0 

 � 𝜆𝑚,𝑛
𝑗

𝑚,𝑛,𝑗

= 1 

 � 𝑦𝑚,𝑛
𝑗

𝑚,𝑛,𝑗

= 𝑛𝑧 + 1 
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 𝜆𝑚,𝑛
𝑗 − 𝑦𝑚,𝑛

𝑗 ≤ 0 

 𝑠𝑚,𝑛
𝑗 − 𝑈�1 − 𝑦𝑚,𝑛

𝑗 � ≤ 0 

 𝜃𝑁 − 𝛿∆𝜃− ≤ 𝜃 ≤ 𝜃𝑈 + 𝛿∆𝜃+ 

 𝑦𝑚,𝑛
𝑗 ∈ {0,1} 𝜆𝑚,𝑛

𝑗 , 𝑠𝑚,𝑛
𝑗 ≥ 0 𝛿 ≥ 0 

 𝑚 ∈ 𝑀 𝑛 ∈ 𝑁 𝑖 ∈ 𝐼 𝑗 ∈ 𝐽 
 
These formulations can accommodate additional constraints that impose restrictions on the 
performance of the control variables. By doing so, the feasibility of systems with realistic control 
strategies can be analyzed. 
 
 
Conclusions 
 
This paper has given a historical perspective and an overview of the pioneering work that 
Manfred Morari developed in the area of resiliency, a major component of process operability. 
Motivated by unique counter-intuitive process examples, a review has been presented of the 
early mathematical formulations and solution methods developed by Grossmann and co-workers 
for addressing Static Resiliency (Flexibility) problems, which in fact are conceptually related to 
the area of robust optimization (Ben-Tal et al., 2009) for the case of design optimization subject 
to flexibility constraints. We also give a brief overview of some of the seminal ideas by Morari 
and co-workers in the area of Dynamic Resiliency. Finally, we have reviewed some of the recent 
developments that have taken place since that early work took place, which clearly indicates that 
on the one hand there has been significant progress in this area, and on the other hand it also 
indicates that there are still major challenges that remain to be addressed in this area, including 
their application in industry. 
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