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Abstract 

The optimal development planning of offshore oil and gas fields has received significant attention in 

the recent years. In this paper, we present an efficient investment and operational planning model for 

this problem which is fairly generic and it is extended to include fiscal considerations. With the 

objective of maximizing total NPV for long-term planning horizon, the proposed non-convex 

multiperiod MINLP model involves decisions regarding facility installation and expansion, field-

facility connections, well drilling schedule and production profiles of oil, water and gas in each time 

period. The model can be solved effectively with DICOPT for realistic instances and gives good quality 

solutions. Furthermore, it can be reformulated into an MILP after piecewise linearization and exact 

linearization techniques that can be solved globally in an efficient way. Solutions of the realistic 

instances are reported for the proposed models as well as the computational impact with consideration 

of the complex fiscal rules within development planning.   
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Introduction

The planning of offshore oil and gas field development 

represents a very complex problem and involves multi-

billion dollar investments and profits. The complexity 

comes from the fact that usually there are many 

alternatives available for installation of the platforms and 

their sizes, for deciding which fields to develop and what 

should be the order to develop them, and which and how 

many wells are to be drilled in those fields and in what 

order, which field to be connected to which facility, and 

how much oil and gas to produce from each field. The 

other difficulties are the consideration of nonlinear 

profiles of the reservoir that are critical to predict the 

actual flowrates of oil, water and gas from each field as 

there can be significant variations in these flowrates over 

time, limitation on the number of wells that can be drilled 

each year due to availability of the drilling rigs, and long-

term planning horizon that is the characteristics of the 

these projects. Moreover, installation and operation 

decisions in these projects involve very large investments 

that can lead to large profits, or losses in the worst case if 

these decisions are not made carefully. Therefore, there is 

a clear motivation to optimize the investment and 

operations decisions for this problem to ensure reasonable 

return on the investments.  

In this paper, we propose a new generic non-convex 

multiperiod MINLP model for the strategic/tactical 

planning of offshore oil and gas fields that on the one 

hand captures the realistic reservoir profiles, interaction 

among various fields and facilities, wells drilling 

limitations and other practical trade-offs involved in the 

offshore development projects, and on the other hand can 

be used as the basis for extensions that include fiscal 

considerations (e.g. Production Sharing Agreements) 

and/or for a stochastic programming model to handle 

uncertainties (e.g. uncertain reservoir size). As compared 

to the previous work (Iyer et al. (1998), Van den Heever 



  

 

and Grossmann (2000), Goel and Grossmann (2004), 

Goel et al. (2006), Carvalho and Pinto (2006), Tarhan et 

al. (2009)), there are following major extensions and/or 

differences that are addressed in the paper:  

1. Three components (oil, water and gas) are explicitly 

considered in the model for a multi-field offshore site 

to ensure realistic facility installation and capacity 

decisions.  

2. Nonlinear reservoir behavior is approximated by high 

order polynomials to incorporate sufficient accuracy 

for the predicted reservoir profiles. 

3. Reservoir profiles are expressed in terms of 

cumulative water and cumulative gas produced that 

are derived from water-to-oil (WOR) and gas-to-oil 

(GOR) ratio expressions using proposed properties. 

4. The number of wells is a decision variable for each 

field to capture the realistic drill rig limitations and 

the resulting trade-offs among various fields. 

5. The possibility of expanding the facility capacities in 

the future and lead times for construction and 

expansions of each facility are also considered.  

We first present a multiperiod MINLP model for 

offshore oilfield development problem which is 

reformulated as an MILP problem. Furthermore, the 

models are reformulated with reduced number of binary 

variables. The models are then extended to include 

complex fiscal terms. The effectiveness of the proposed 

models and computational impact of using fiscal terms 

within investment and operational planning are 

demonstrated with the numerical results on realistic 

instances of the oilfield development problem.  

Problem Statement 

Given is a typical offshore oilfield infrastructure 

consisting of a set F={1,2,…f} of oil fields available for 

producing oil using a set of FPSO (Floating, Production, 

Storage and Offloading) facilities, FPSO ={1,2,…fpso}, 

(see Fig. 1) that can process the produced oil, store and 

offload it to the other tankers. Each oilfield consists of a 

number of potential wells to be drilled using drilling rigs, 

which are then connected to these FPSO facilities through 

pipelines to produce oil. We assume that the location of 

each FPSO facility and its possible connections to the 

given fields are known. Notice that each FPSO facility can 

be connected to more than one field to produce oil while a 

field can only be connected to a single FPSO facility. 

There is two-phase flow in the connecting pipelines due to 

the presence of gas and liquid that comprises oil and 

water. We assume here that there is no re-injection of 

water or gas in the fields for simplicity.  

To develop and operate such a complex and capital 

intensive offshore oilfield infrastructure, we have to make 

the optimum investment and operation decisions to 

maximize the NPV considering a long-term planning 

horizon. The planning horizon is discretized into a 

number of time periods t, typically each with 1 year of 

duration. Investment decisions in each time period t 

include which FPSO facilities should be installed or 

expanded, and their respective installation or expansion 

capacities for oil, liquid and gas, which fields should be 

connected to which FPSO facility, and the number of 

wells that should be drilled in a particular field f given the 

restrictions on the total number of wells that can be 

drilled in each time period t over all the given fields. 

Operating decisions include the oil/gas production rates 

from each field f in each time period t. It is assumed that 

all the installation and expansion decisions occur at the 

beginning of each time period t, while operation takes 

place throughout the time period. There is a limit on the 

number of expansions for each FPSO facility and lead 

time for its initial installation and expansion decision.  

 

 

 

 

 

 

 

 

 

 

 

 

 When oil is extracted from a reservoir oil 

deliverability, eq. (1), water-to-oil ratio (WOR), eq. (2),   

and gas-to-oil ratio (GOR), eq. (3), change nonlinearly as 

a function of the fractional oil recovered, (fc),  from the 

reservoir. The initial oil and gas reserves in the reservoirs, 

as well as the relationships for WOR and GOR in terms of 

fractional recovery are estimated from geologic studies. 

WOR and GOR values are further used in eqs. (4) and (5) 

to calculate the respective water and gas flow rates.  
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In this paper, we approximate the field deliverability, 

i.e. maximum oil flowrate from a field, eq. (1), cumulative 

water produced, eq. (6), and cumulative gas produced, eq. 

(7), from a field by high order polynomials in terms of the 

fractional oil recovered from that field. 

ftfchwc tftf ,)( ,,            (6) 

ftfchgc tftf ,)( ,,         (7) 

Notice that eqs. (6) and (7) are derived from the 

corresponding equations for WOR, eq. (2), and GOR, eq. 

(3), using following two proposed properties: 

1. The area under the curve WOR vs. cumulative oil 

produced for a field yields the cumulative amount of 

water produced. 

2. The area under the curve GOR vs. cumulative oil 

produced for a field yields the cumulative amount of 

gas produced. 
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Figure 1. Typical Offshore Oilfield Infrastructure 



  

The motivation for using polynomials for cumulative 

water produced and cumulative gas produced as compared 

to WOR and GOR is to avoid bilinear terms in the 

formulation and to allow converting the resulting model 

into an MILP formulation. A generic MINLP model for 

oilfield development planning is presented next.   

MINLP Model 

We present here a new multiperiod MINLP model (P1) 

for the offshore oil and gas field investment and 

operations planning. The objective function (8) is to 

maximize the NPV of the project which is the difference 

between total revenue and total cost in each time period t 

taking the discount factors into account.  

(P1)            Objective: Maximize NPV      (8) 

         s.t. 

Economic Constraints     (9) 

Reservoir Constraints   (10) 

Field-FPSO Flow constraints  (11) 

FPSO Capacity Constraints  (12) 

Well drilling limitations   (13) 

Logic Constraints   (14) 

The gross revenues based on the total amount of oil 

and gas produced whereas total cost as the sum of capital 

and operating expenses in each time period t are 

calculated in economic constraints (9). Capital costs 

consist of the fixed FPSO installation cost, variable 

installation and expansion costs, field-FPSO connection 

costs and well drilling costs in each time period t while 

total operating expenses depend on the total amount of 

liquid and gas produced.  

Constraints (10) predict the reservoir behavior for 

each field f in each time period t. In particular, constraint 

(1) are used to restrict the oil flow rate from each well for 

a particular FPSO-field connection to be less than the 

deliverability (maximum oil flow rate) of that field. The 

cumulative water and cumulative gas produced by the end 

of time period t from a field are represented by polynomial 

eqs. (6) and (7), respectively, in terms of fractional oil 

recovery by the end of time period t that are further used 

to calculate individual water and gas flow rates. The 

cumulative oil produced is also restricted by the 

recoverable amount of oil from the field. 

Equations (11) represent the material balance 

constraints for the flow between fields and FPSOs. In 

particular, the total oil flow rate from field f in time 

period t is the sum of the oil flow rates over all FPSO 

facilities from this field, which depends on the oil flow 

rate per well and number of wells available for 

production. Total oil, water and gas flow rates into each 

FPSO facility, respectively, in time period t from all the 

given fields is calculated as the sum of the flow rates of 

each component over all the connected fields.  

Equations (12) restrict the total oil, liquid and gas 

flow rates into each FPSO facility to be less than its 

corresponding capacity in each time period t. FPSO 

facility capacities in time period t are computed as the 

sum of the corresponding installation and expansion 

capacities taking lead time into considerations. 

Furthermore, there are restrictions on the maximum 

installation and expansion capacities for each FPSO 

facility. 

The number of wells available in a field is calculated 

as the sum of the wells available at the end of previous 

time period and the number of wells drilled at the 

beginning of time period t. The maximum number of 

wells that can be drilled over all the fields during each 

time period t and in each field f during complete planning 

horizon T are restricted by respective upper bounds in 

(13).  

Logic constraints (14) include the restrictions on the 

number of installation and expansion of a FPSO facility, 

possible FPSO-field connections during the planning 

horizon T. Other logic constraints are also included to 

ensure that FPSO facility can be expanded and the 

connection between a field and that facility and 

corresponding flow can occur only if that facility has 

already been installed by that time period.  

The proposed non-convex MINLP model (P1) for 

offshore oilfield planning involves nonlinear and non-

convex constraints that can lead to suboptimal solutions 

when solved with a method that assumes convexity. In 

particular, constraints (1), (6) and (7) are univariate 

polynomials that represent reservoir profiles while 

constraints (15) involves bilinear terms with integer 

variables, 
well

tfN , , that calculates the total oil flow rate 

from a field as the multiplication of the number of 

available wells in the field and oil flow rate per well. 

ftxNx well
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well
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In the following section, we reformulate this MINLP 

model (P1) into an MILP problem that can be solved to 

global optimality in an effective way.  

MILP Reformulation 

To approximate the univariate polynomials (1), (6) and 

(7) SOS1 variables l

tfb ,
 are introduced to select the 

adjacent points l-1 and l for interpolation over an interval 

l. Constraints (16)-(19) represent the piecewise linear 

approximation for the fractional oil recovery and 

corresponding oil deliverability, cumulative water and 

cumulative gas produced for a field in each time period t, 

respectively, based on the reservoir profiles.  
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Equation (20) allows only one of the point l to be 

selected for which l

tfb ,
 equals 1 while eq. (21) states that 

l

tf , can be non-zero for only two consecutive points l 

and l-1 that are used for convex combination during 

interpolation, eq. (22). Thus, the corresponding lth piece 

is used for linear interpolation as all other 
l

tf ,
 
are zero 

for a field in time period t and determines the value of the 

interpolated variable as a convex combination of their 

values at both the end of this piece l in eqs. (16)-(19).  
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The other nonlinear constraints (15) in Model (P1) 

contain bilinear terms with integer variables that can be 

linearized using exact linearization techniques. Therefore, 

to linearize this constraint we first express the integer 

variable,
well

tfN ,
, for the number of wells in terms of the 

binary variables 
well

tkfZ ,,
 using eq. (23) where 

well

tkfZ ,,
 

determines the value of the kth term of the binary 

expansion. The bilinear term in constraint (15) can then 

be rewritten as equation (24). Constraint (24) can be 

reformulated as a linear constraint (25) by introducing a 

nonnegative continuous variable
well

tkfpsofZX ,,,  which is 

further defined by the linear constraints (26)-(29) using 

an auxiliary variable
well

tkfpsofZX ,,,1 . 
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The reformulated MILP Model (P2) involves all the 

constraints as in model (P1) except nonlinear constraints 

(1), (6), (7) and (15) which are replaced with linear and 

mixed-integer linear constraints (16)-(23) and (25)-(29). 

 

Remark: Due to the potential computational expense of 

solving the large scale MINLP and MILP models 

presented in the previous sections, we further reformulate 

them by replacing the binary variables that represent the 

timing of the connections between fields and FPSOs 

without time index along with corresponding change in 

the logic constraints. The motivation for binary reduction 

comes from the fact that in the solution of these models 

the connection cost is only ~2-3% of the total cost, and 

hence, its exact discounting does not has a significant 

impact on the optimal solution. This results in a 

significant reduction in the number of binary variables 

(~33% reduction) and the solution time can be improved 

significantly for both the MINLP and MILP formulations. 

Hence, the proposed reduced models (P1-R) and (P2-R) 

correspond to the MINLP (P1) and MILP (P2) models, 

respectively, after binary reduction as explained above.   

 

Example 1 

In this example we consider 3 oil fields (see Fig. 2) that 

can be connected to 3 FPSOs with 7 possible connections 

among these fields and FPSOs. There are a total of 25 

wells that can be drilled, and the planning horizon 

considered is 10 years, which is discretized into 10 

periods of each 1 year of duration. We need to determine 

the optimum investment and operations decisions while 

maximizing total NPV over the given planning horizon. 

 

 

The problem is solved using DICOPT 2x-C solver for 

MINLP (P1), and CPLEX 12.2 for MILP (P2). These 

models were implemented in GAMS 23.6.3 and run on 

Intel Core i7 machine with 4GB of RAM. The optimal 

solution of this problem that corresponds to (P1), suggests 

installing only FPSO 3 with a capacity of 300 kstb/d, 

420.01 kstb/d and 212.09 MMSCF/d for oil, liquid and 

gas, respectively, at the beginning of year 1. All the three 

fields are connected to this FPSO facility at the beginning 

of year 4 when installation of the FPSO facility is 

completed and a total of 20 wells are drilled in these 3 

fields to start production. One additional well is also 

drilled in field 3 in year 5 and there are no expansions in 

the capacity of FPSO facility. The total NPV of this 

project is $6912.04 M. Table 1 compares the 

computational time of DICOPT (3.7s) for this instance 

with BARON which takes more than 36,000s to be within 

~10% of optimality. Note that we use the DICOPT 

solution to initialize in this case, but BARON could only 

FPSO 1 FPSO 3 

Field 1 

 

Field 3 
Field 2 

 

FPSO 2 

Figure 2.  Oilfield Planning Example 1 
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provide a slightly better solution (6919.28 vs. 6912.04) 

than DICOPT in more than 10 hours.  

Table 1. Comparison of the solvers for Example 1 (P1) 

The MILP (P2) and its binary reduction (P2-R), are 

solved with CPLEX 12.2 and results in Table 2 show the 

significant reduction in the solution time after binary 

reduction (6.55s vs. 37.03s) while both the models give 

same optimal NPV i.e. $7030.90M. Notice that these 

approximate MILP models are solved upto global 

optimality in few seconds while global solution of the 

original MINLP formulation is much expensive to obtain. 

We use 5 point estimates for piecewise linearization to 

formulate (P2) and (P2-R) as beyond that limit the change 

in optimal solution was very small as compared to large 

increase in the computational time.  

Table 2. Model comparison for Example 1 (P2 vs. P2-R) 

The global solution from the MILP approximation 

(P2-R) gives a higher NPV for this example as compared 

to solving (P1) directly (7030.90 vs. 6912.04). Therefore, 

this model can potentially be used for finding global or 

near optimal solution to the original MINLP formulation. 

We fix the discrete variables coming from the model (P2-

R) in the MINLP model (P1) and solve the resulting NLP 

that significantly improve the local solutions (7004.08 vs. 

6912.04). Notice also that no other MINLP solver could 

find the better solution than this in reasonable 

computational time.  

 

Incorporating Complex Fiscal Rules 

Including fiscal considerations, Van den Heever and 

Grossmann (2001), Lin and Floudas (2003), as part of the 

investment and operation decisions for the oilfield 

development problem can significantly impact the optimal 

NPV and required computational time. Therefore, in this 

section we extend the proposed models to include the 

generic complex fiscal rules within planning. 

There are a variety of contracts (e.g. Production 

Sharing Agreements or PSAs, Concessionary system) that 

are used in the offshore Oil and Gas industry. The specific 

rules defined in such a contract between operating Oil 

Company and host Government determine the profit that 

the oil company can keep as well as the royalties, profit 

share that are paid to the government. These profit oil 

splits, royalty rates etc. are usually based on the 

profitability of the project (progressive fiscal terms), 

where cumulative oil produced, rate of return, R-factor 

etc. are the typical profitability measures that determine 

the tier structure for these contract terms. Given that the 

resulting royalties and/or Government profit oil share can 

be significant amount of the gross revenues, it is critical to 

consider these contracts terms explicitly during oilfield 

planning to access the actual economic potential of such a 

project. For instance, a very promising oilfield or block 

can turn out to be a big loss or less profitable than 

projected in the long-term if significant royalties are 

attached to that field which was not considered during the 

development planning phase involving large investments. 

On contrary, there could be possibility of missing an 

opportunity to invest in a field which has very difficult 

conditions for production and looks unattractive, but can 

has very favorable fiscal terms resulting in very large 

profits in the long-term.  

With this motivation for optimal investment and 

operations decisions in a realistic situation for offshore oil 

and gas field planning project, we incorporate the generic 

fiscal terms within development planning models (MINLP 

and MILP) presented in the previous sections with  

objective of maximizing the total contractor’s (oil 

company) share. In particular, we include the cost 

recovery ceiling in terms of min function (30) to limit the 

amount of total oil produced each year that can be used to 

recover the capital and operational expenses. This ceiling 

on the cost oil recovery is usually enforced to ensure early 

revenues to the Govt. as soon as production starts.  

),min( t

CR

ttt REVfCRCO             (30) 

Moreover, sliding scale based profit oil share of 

contractor that is linked to the cumulative oil production 

is also included in the model. In particular, disjunction 

(31) is used to model this tier structure for profit oil split 

which says that variable tiZ , will be true if cumulative oil 

production by the end of time period t lies between given 

tier thresholds iti UxcL  i.e. tier i is active and split 

fraction 
PO

if is used to determine the contractor share in 

that time period. The disjunction (31) in the model is 

further reformulated into linear and mixed-integer linear 

constraints using convex-hull formulation. 
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Furthermore, the proposed model is also extended to 

include the ring-fencing which is the provisions that are 

usually part of fiscal terms and have significant impact 

on the NPV calculations. These provisions determine that 

all the costs associated with a given block (which may be 

a single field or a group of fields) or license must be 

recovered from revenues generated within that block, i.e. 

the block is “ring-fenced”. Optimal investment and 

operations decisions and computational impact of adding 

a typical progressive Production Sharing Agreement 

(PSA) terms are demonstrated in the next section with a 

small example. 

Solver Const. Cont.  

var. 

Dis. 

var. 

NPV  

Millions  

Time   

(s) 

DICOPT 1,997 

1,997 

1,271 

1,271 

151 

151 

6,912.04 3.07 

BARON 6,919.28 >36,000 

Model Const. Cont.  

var. 

Dis. 

var. 

SOS1 

Var. 

NPV 

Millions  

Time 

(s) 

P2 3,094 2,228 219 120 7,030.90 37.03 

P2-R 3,057 2,165 177 120 7,030.90 6.55 



  

 

Example 2 

In this instance of oilfield planning problem, we consider 

5 oilfields that can be connected to 3 FPSO’s with 11 

possible connections. There are a total of 31 wells that can 

be drilled in all of these 5 fields and the planning horizon 

considered is 20 years. There is a cost recovery ceiling 

and 4 tiers (see. Fig. 3) for profit oil split between the 

contractor and host Government that are linked to 

cumulative oil production which defines the fiscal terms 

of a typical progressive Production Sharing Agreement. 

 
 

 

Table 3 compares the results of the MILP (P2) and 

reduced MILP (P2-R) with progressive PSAs for this 

example. We can observe that there is significant increase 

in the computational time with fiscal consideration for the 

original MILP formulation (P2) which takes more than 10 

hours to be within 14% of optimality gap as compared to 

the reduced MILP model (P2-R) that reaches within 2% of 

gap in reasonable computational time. Therefore, 

including fiscal rules within development planning can 

make the problem much harder to solve due to the 

additional binary variables that are required. 

Table 3. Computational Results for Example 2 
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The optimal solution from model (P2-R) with fiscal 

considerations suggests installing 1 FPSO facility with 

expansions in the future (see Fig. 4) while Fig. 5 

represents the well drilling schedule for this example. The 

tiers 2, 3 and 4 for profit oil split gets active in years  6, 8 

and 12, respectively, based on the cumulative oil 

production profile during the given planning horizon.  

 

Conclusions 

In this paper, we have proposed a new generic MINLP 

model for offshore oil and gas field infrastructure 

investment and operational planning considering multiple 

fields, three components (oil, water and gas) explicitly in 

the formulation, facility expansions decisions, well 

drilling schedules and nonlinear reservoir profiles. The 

MINLP model yields good solutions to realistic instances 

when solving with DICOPT directly. Furthermore, the 

model can be reformulated into an MILP with which the 

problem can be solved to global optimality. The proposed 

MINLP and MILP formulations are further improved by 

using a binary reduction scheme resulting in the 

significant computational savings. Complex fiscal terms 

are included in the proposed models and the results on an 

example show significant increase in the computational 

time for the original MILP formulation as compared to 

the reduced one. The models will further be extended to 

include more complex fiscal rules in an efficient way.        
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Model  Const. Cont.  

var. 

Dis. 

var. 

NPV 

Millions  

Time 

(s) 

P2 with PSA  9,474 6432 727 2,183.63 >36,000 

P2-R with PSA 9,363 6,223 551 2,228.94 1,163.7 

Figure 3.  Contractor’s Profit oil share for Example 2 

Figure 4. Liquid and Gas capacities of FPSO 3 facility 

Figure 5.  Well drilling schedule for Example 2 

(a) Liquid capacity          (b) Gas capacity  


