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Abstract 

The objective of this paper is to present a unified modeling framework to address the issues of 

uncertainty and complex fiscal rules in the development planning of offshore oil and gas fields 

which involve critical investment and operational decisions. In particular, the paper emphasizes 

the need to have as a basis an efficient deterministic model that can account for various 

alternatives in the decision making process for a multi-field site incorporating sufficient level of 

details in the model, while being computationally tractable for the large instances. Consequently, 

such a model can effectively be extended to include other complexities, for instance endogenous 

uncertainties and a production sharing agreements. Therefore, we present a new deterministic 

MINLP model followed by discussion on its extensions to incorporate generic fiscal rules, and 

uncertainties based on recent work on multistage stochastic programming. Numerical results on 

the development planning problem for deterministic as well as stochastic instances are discussed. 

A detailed literature review on the modeling and solution methods that are proposed for each 

class of the problems in this context is also presented. 

 

Keywords: Multi-period optimization, Planning, Offshore Oil and Gas, Multistage Stochastic, 

Endogenous, Production Sharing Agreements (PSAs) 

 

1 Introduction  

The development planning of offshore oil and gas fields has received significant attention in 

recent years given the new discoveries of large oil and gas reserves in the last decade around the 
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world. These have been facilitated by the new technologies available for exploration and 

production of oilfields in remote locations that are often hundreds of miles offshore. 

Surprisingly, there has been a net increase in the total oil reserves in the last decade because of 

these discoveries despite increase in the total demand (BP, Statistical review Report 2011). 

Therefore, there is currently a strong focus on exploration and development activities for new oil 

fields all around the world, specifically at offshore locations. However, installation and operation 

decisions in these projects involve very large investments that potentially can lead to large 

profits, but also to losses if these decisions are not made carefully.  

With the motivation described above, the paper addresses the optimal development planning 

of offshore oil and gas fields in a generic way and discusses the key issues involved in this 

context. In particular, a unified modeling framework (Fig. 1) is presented starting with a basic 

deterministic model that includes sufficient level of detail to be realistic as well as 

computationally efficient. Moreover, we discuss the extension of the model for incorporating 

uncertainty based on multistage stochastic programming, and fiscal rules defined by the terms of 

the contract between oil companies and governments. 

 

 

 

 

 

 

 

Figure 1: A unified framework for Oilfield Development planning under uncertainty and 

complex fiscal rules 

The planning of offshore oil and gas field development represents a very complex problem 

and involves multi-billion dollar investments (Babusiaux et al., 2007). The major decisions 

involved in the oilfield development planning phase are the following: 

(a) Selecting platforms to install and their sizes 

(b) Deciding which fields to develop and what should be the order to develop them 

(c) Deciding which wells and how many are to be drilled in the fields and in what sequence 

(d) Deciding which fields are to be connected to which facility 
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(e) Determining how much oil and gas to produce from each field  

Therefore, there are a very large number of alternatives that are available to develop a 

particular field or group of fields. However, these decisions should account for the physical and 

practical considerations, such as the following: a field can only be developed if a corresponding 

facility is present; nonlinear profiles of the reservoir to predict the actual flowrates of oil, water 

and gas from each field; limitation on the number of wells that can be drilled each year due to 

availability of the drilling rigs; long-term planning horizon that is the characteristics of the these 

projects. Therefore, optimal investment and operations decisions are essential for this problem to 

ensure the highest return on the investments over the time horizon considered.  

By including all the considerations described above in an optimization model, this leads to a 

large scale multiperiod MINLP problem.  The extension of this model to the cases where we 

explicitly consider the fiscal rules (Van den Heever et al. (2000) and Van den Heever and 

Grossmann (2001)) and the uncertainties, especially endogenous uncertainty cases (Jonsbraten et 

al. (1998), Goel and Grossmann (2004, 2006), Goel et al. (2006), Tarhan et al. (2009, 2011) and 

Gupta and Grossmann (2011)), can lead to a very complex problem to solve. Therefore, an 

effective model for the deterministic case is essential. On one hand such a model must capture 

realistic reservoir profiles, interaction among various fields and facilities, wells drilling 

limitations and other practical trade-offs involved in the offshore development planning, and on 

the other hand can be used as the basis for extensions that include other complexities, especially 

fiscal rules and uncertainties as can be seen in Figure 1.  

The paper starts with a brief background on the basic structure of an offshore oilfield site and 

major reservoir features. Next, a review of the various approaches considered in the literature for 

optimal oilfield development under perfect information is outlined. The key strategic/tactical 

decisions and details to be included with a generic deterministic model for multi-field site are 

presented. Given the importance of the explicit consideration of the uncertainty in the 

development planning, the recent work on the multistage stochastic programming approaches in 

this context is highlighted. Furthermore, based on the above unified framework and literature 

review, discussions on the extension of the proposed deterministic model to incorporate 

uncertainty and generic fiscal rules within development planning are also presented. Numerical 

results on several examples ranging from deterministic to stochastic cases for this planning 

problem are reported.  
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2 Background 

(a) Basic elements of an offshore oilfield planning 

The life cycle of a typical offshore oilfield project consists of following five steps: 

1) Exploration: This activity involves geological and seismic surveys followed by 

exploration wells to determine the presence of oil or gas.  

2) Appraisal: It involves drilling of delineation wells to establish the size and quality of the 

potential field. Preliminary development planning and feasibility studies are also 

performed.  

3) Development: Following a positive appraisal phase, this phase aims at selecting the most 

appropriate development plan among many alternatives. This step involves capital-

intensive investment and operations decisions that include facility installations, drilling, 

sub-sea structures, etc. 

4) Production: After facilities are built and wells are drilled, production starts where gas or 

water is usually injected in the field at a later time to enhance productivity. 

5) Abandonment: This is the last phase of an oilfield development project and involves the 

decommissioning of facility installations and subsea structures associated with the field. 

Given that most of the critical investment decisions are usually associated with the 

development planning phase of the project, this paper focuses on the key decisions during this 

phase of the project.  

An offshore oilfield infrastructure (Fig. 2) consists of various production facilities such as 

Floating Production, Storage and Offloading (FPSO), Tension Leg platform (TLP), fields, wells 

and connecting pipelines to produce oil and gas from the reserves. Each oilfield consists of a 

number of potential wells to be drilled using drilling rigs, which are then connected to the 

facilities through pipelines to produce oil. There is two-phase flow in these pipelines due to the 

presence of gas and liquid that comprises oil and water. Therefore, there are three components, 

and their relative amounts depend on certain parameters like cumulative oil produced.  

The field to facility connection involves trade-offs associated to the flowrates of oil and gas, 

piping costs, and possibility of other fields to connect to that same facility. The number of wells 

that can be drilled in a field depends on the availability of the drilling rig that can drill a certain 

number of wells each year.  



5 
 

  

 

The facilities and piping connections in the offshore infrastructure are often in operation over 

many years. It is therefore important to anticipate future conditions when designing an initial 

infrastructure or any expansions. This can be accomplished by dividing the planning horizon, for 

example, 20 years, into a number of time periods with a length of 1 year, and allowing 

investment and operating decisions in each period, which leads to a multi-period planning 

problem.  

 

(b) Development planning Problem Specifications 

We assume in this paper that the type of offshore facilities connected to fields to produce oil 

and gas are FPSOs (Fig. 3). The extension for including Tension Leg Platform (TLP) is 

straightforward but for simplicity we only consider FPSOs with continuous capacities and ability 

to expand them in the future. These FPSO facilities cost multi-billion dollars depending on their 

sizes, and have the capability of operating in remote locations for very deep offshore oilfields 

(200m-2000m) where seabed pipelines are not cost effective. FPSOs are large ships that can 

process the produced oil and store it until it is shipped to the onshore site or sales terminal. 

Processing includes the separation of oil, water and gas into individual streams using separators 

located at these facilities. Each FPSO facility has a lead time between the construction or 

expansion decision, and its actual availability. The wells are subsea wells in each field that are 

drilled using drilling ships. Therefore, there is no need to have a facility present to drill a subsea 

well. The only requirement to recover oil from it is that the well must be connected to a FPSO 

facility.  

      Figure 2: A Complex Offshore Oilfield Infrastructure  
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In this paper, we consider a typical offshore oilfield infrastructure (Figure 4) as a reference to 

model the problem of oilfield development planning. In particular, given are a set of oil fields F 

= {1,2,…f}  available for producing oil using a set of FPSO (Floating, Production, Storage and 

Offloading) facilities, FPSO = {1,2,…fpso}, that can process the produced oil, store and offload 

it to the other tankers. Each oilfield consists of a number of potential wells to be drilled using 

drilling rigs, which are then connected to these FPSO facilities through pipelines to produce oil.  

 

 

  

 

 

 

 

 

 

The location of production facilities and possible field and facility allocation itself is a very 

complex problem. In this work, we assume that the potential location of facilities and field-

facility connections are given. In addition, the potential number of wells in each field is also 

given. Note that each field can be potentially allocated to more than one FPSO facility, but once 

the particular field-connection is selected, the other possibilities are not considered. Furthermore, 

each facility can be used to produce oil from more than one field. We assume for simplicity that 

there is no re-injection of water or gas in the fields.  

 Figure 3: FPSO (Floating Production Storage and Offloading) facility 

     FPSO     FPSO 

  Field 
  Field 

  Field 

  Field 

Oil/Gas 

Production 

 Figure 4: A typical offshore oilfield infrastructure 
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The problem considers strategic/tactical decisions to maximize the total NPV of the project 

under given constraints. The proposed model, as explained in the next section, focuses on the 

multi-field site presented here and includes sufficient details to account for the various trade-offs 

involved without going into much detail for each of these fields. However, the proposed model 

can easily be extended to include various facility types and other details in the oilfield 

development planning problem.   

 

 

 

 

 

 

 

 

When oil is extracted from a reservoir oil deliverability, water-to-oil ratio (WOR) and gas-to-

oil ratio (GOR) change nonlinearly as a function of the cumulative oil recovered from the 

reservoir. The initial oil and gas reserves in the reservoirs, as well as the relationships for WOR 
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and GOR in terms of fractional recovery (fc), are estimated from geologic studies. Figures 5 (a) –

(c) represent the oil deliverability from a field per well, WOR and GOR versus fractional oil 

recovered from that field.  

The maximum oil flowrate (field deliverability) per well can be represented as a 3
rd

 order 

polynomial equation (a) in terms of the fractional recovery.  Furthermore, the actual oil flowrate 

(xf ) from each of the wells is restricted by both the field deliverability   
 , (b), and facility 

capacity. We assume that there is no need for enhanced recovery, i.e., no need for injection of 

gas or water into the reservoir. The oil produced from the wells (xf ) contains water and gas and 

their relative rates depend on water-to-oil ratio (worf)  and gas-to-oil ratio (gorf) that are 

approximated using 3
rd

 order polynomial functions in terms of fractional oil recovered (eqs. (c)-

(d)). The water and gas flowrates can be calculated by multiplying the oil flowrate (xf ) with 

water-to-oil ratio and gas-to-oil ratio as in eqs. (e) and (f), respectively.  Note that the reason for 

considering fractional oil recovery compared to cumulative amount of oil is to avoid numerical 

difficulties that can arise due to very small magnitude of the polynomial coefficients in that case. 
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The next section reviews several approaches to model and solve the development planning 

problem in the literature for the deterministic case where all the model parameters are assumed 

to be known with certainty. A generic MINLP model for oilfield development planning is 

presented next taking the infrastructure and reservoir characteristics presented in this section as 

reference. 
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3 Development Planning under Perfect Information 

The oilfield investment and operation planning has traditionally been modeled as LP (Lee and 

Aranofsky (1958), Aronofsky and Williams (1962)) or MILP (Frair, 1973) models under certain 

assumptions to make them computationally tractable. Simultaneous optimization of the 

investment and operation decisions was addressed in Bohannon (1970), Sullivan (1982) and 

Haugland et al. (1988) using MILP formulations with different levels of details in these models. 

Behrenbruch (1993) emphasized the need to consider a correct geological model and to 

incorporate flexibility into the decision process for an oilfield development project.  

Iyer et al. (1998) proposed a multiperiod MILP model for optimal planning and scheduling of 

offshore oilfield infrastructure investment and operations. The model considers the facility 

allocation, production planning, and scheduling within a single model and incorporates the 

reservoir performance, surface pressure constraints, and oil rig resource constraints. To solve the 

resulting large-scale problem, the nonlinear reservoir performance equations are approximated 

through piecewise linear approximations. As the model considers the performance of each 

individual well, it becomes expensive to solve for realistic multi-field sites. Moreover, the flow 

rate of water was not considered explicitly for facility capacity calculations.  

Van den Heever and Grossmann (2000) extended the work of Iyer et al. (1998) and proposed 

a multiperiod generalized disjunctive programming model for oil field infrastructure planning for 

which they developed a bilevel decomposition method. As opposed to Iyer and Grossmann 

(1998), they explicitly incorporated a nonlinear reservoir model into the formulation but did not 

consider the drill-rig limitations. 

Grothey and McKinnon (2000) addressed an operational planning problem using an MINLP 

formulation where gas has to be injected into a network of low pressure oil wells to induce flow 

from these wells. Lagrangean decomposition and Benders decomposition algorithms were also 

proposed for the efficient solution of the model. Kosmidis et al. (2002) considered a production 

system for oil and gas consisting of a reservoir with several wells, headers and separators. The 

authors presented a mixed integer dynamic optimization model and an efficient approximation 

solution strategy for this system. 

Barnes et al. (2002) optimized the production capacity of a platform and the drilling 

decisions for wells associated with this platform. The authors addressed this problem by solving 

a sequence of MILPs. Ortiz-Gomez et al. (2002) presented three mixed integer multiperiod 
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optimization models of varying complexity for the oil production planning. The problem 

considers fixed topology and is concerned with the decisions involving the oil production 

profiles and operation/shut in times of the wells in each time period assuming nonlinear reservoir 

behavior. 

Lin and Floudas (2003) considered the long-term investment and operations planning of the 

integrated gas field site. A continuous-time modeling and optimization approach was proposed 

introducing the concept of event points and allowing the well platforms to come online at 

potentially any time within planning horizon. Two-level solution framework was developed to 

solve the resulting MINLP problems which showed that the continuous time approach can 

reduce the computational efforts substantially and solve problems that were intractable for the 

discrete-time model.  

Kosmidis et al. (2005) presented a mixed integer nonlinear (MINLP) model for the daily well 

scheduling in petroleum fields, where the nonlinear reservoir behaviour, the multiphase flow in 

wells and constraints from the surface facilities were simultaneously considered. The authors 

also proposed a solution strategy involving logic constraints, piecewise linear approximations of 

each well model and an outer approximation based algorithm. Results showed an increase in oil 

production up to 10% compared to a typical heuristic rules widely applied in practice. 

Carvalho and Pinto (2006) considered an MILP formulation for oilfield planning based on 

the model developed by Tsarbopoulou (2000), and proposed a bilevel decomposition algorithm 

for solving large scale problems where the master problem determines the assignment of 

platforms to wells and a planning subproblem calculates the timing for the fixed assignments. 

The work was further extended by Carvalho and Pinto (2006) to consider multiple reservoirs 

within the model.  

Barnes et al. (2007) addressed the optimal design and operational management of offshore oil 

fields where at the design stage the optimal production capacity of a main field was determined 

with an adjacent satellite field and a well drilling schedule. The problem was formulated as an 

MILP model. Continuous variables involved individual well, jacket and topsides costs, whereas 

binary variables were used to select individual wells within a defined field grid. An MINLP 

model wad proposed for the operational management to model the pressure drops in pipes and 

wells for multiphase flow. Non-linear cost equations were derived for the production costs of 

each well accounting for the length, the production rate and their maintenance. Operational 
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decisions included the oil flowrates, the operation/shut-in for each well and the pressures for 

each point in the piping network. 

Gunnerud and Foss (2010) considered the real-time optimization of oil production systems 

with a decentralized structure and modeled nonlinearities by piecewise linear approximations, 

resulting in a MILP model. The Lagrange relaxation and Dantzig–Wolfe decomposition methods 

were studied on a semi-realistic model of the Troll west oil rim which showed that both the 

approaches offers an interesting option to solve the complex oil production systems as compared 

to the fullspace method. 

 

(a) Key issues and Discussions 

The work described above uses a deterministic approach to address the oilfield development 

planning problem, and considers a sub-set of decisions under certain assumptions to ease the 

computational burden. One such approach used is to optimize the production profiles and other 

operation related decisions assuming that the investment decisions have already been fixed. 

Other simplifying approaches include optimizing the decisions associated with a field or a 

facility independent of decisions for other fields, optimizing investment and operation decisions 

assuming linear or piece-wise linear reservoir behavior, simplified reservoir characteristics, etc. 

In this paper, we emphasize the need to include the following details and decisions in the 

deterministic model for it to be more realistic and consider various trade-offs to yield optimal 

investment and operations decisions in a multi-field setting:    

1) All three components (oil, water and gas) should be considered explicitly in the 

formulation to consider realistic problems for facility installation and capacity decisions.  

2) Nonlinear reservoir behavior in the model should be approximated by nonlinear functions 

such as  higher order polynomials to ensure sufficient accuracy for the predicted reservoir 

profiles. 

3) Reservoir profiles should be specific to the field-facility connections.  

4) The number of wells should be a variable for each field to capture the realistic drill rig 

limitations and the resulting trade-offs among various fields. 

5) The possibility of expanding the facility capacities in the future, and including the lead 

times for construction and expansions for each facility are essential to ensure realistic 

investments.  
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6) Reservoir profiles should be expressed in such a way so that non-convexities can be 

minimized in the model for it to be computationally efficient. 

7) The planning horizon should be long enough, typically 20-30 years. 

Notice that the inclusion of the other details in the model could further improve the quality of 

decisions that are made. However, the model may become computationally intractable for the 

deterministic case itself. Therefore, it is assumed that accounting for the above details will 

provide a model that while being computationally tractable, is realistic. 

 

(b) Proposed Deterministic Development Planning Model 

We outline in this section the proposed MINLP model (Gupta and Grossmann, 2011), in 

which we incorporate all the features mentioned above. The model takes the infrastructure (Fig. 

4) and reservoir characteristics (Eq. (a)-(f)) presented in the earlier section as reference. With the 

objective of maximizing the NPV considering a long-term planning horizon, the key investment 

and operations decisions included in the proposed multi-period planning model are as follows: 

(i) Investment decisions in each time period include which FPSO facilities should be 

installed or expanded, and their respective installation or expansion capacities for oil, 

liquid and gas, which fields should be connected to which FPSO facility, and the number 

of wells that should be drilled in a particular field given the restrictions on the total 

number of wells that can be drilled in each time period over all the given fields. 

(ii) Operating decisions include the oil/gas production rates from each field in each time 

period.  

It is assumed that all the installation and expansion decisions occur at the beginning of each 

time period, while operation takes place throughout the time period at constant conditions. There 

is a limit on the number of expansions for each FPSO facility, and lead time for its initial 

installation and expansion decision. The above decisions should satisfy the following set of 

constraints: 

Economic Constraints: The gross revenues, based on the total amount of oil and gas produced, 

and total cost based on capital and operating expenses in each time period are calculated in these 

constraints. Capital costs consist of the fixed FPSO installation cost, variable installation and 

expansion costs, field-FPSO connection costs and well drilling costs in each time period, while 

total operating expenses depend on the total amount of liquid and gas produced.  
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Reservoir Constraints: These constraints predict the reservoir production performance for each 

field in each time period. In particular, the oil flow rate from each well for a particular FPSO-

field connection to be less than the deliverability (maximum oil flow rate) of that field. The 

cumulative water and cumulative gas produced by the end of time period from a field, are 

represented by a polynomial in terms of fractional oil recovery by the end of time period, and are 

further used to calculate individual water and gas flowrates. The cumulative oil produced is also 

restricted by the recoverable amount of oil from the field. The other way to incorporate water 

and gas flow rates is to use the water-oil-ratio and gas-oil-ratio profiles directly in the model, 

eqs. (c)-(d). However, it will add bilinear terms in the model, eqs. (e)-(f).  

Field-FPSO Flow constraints: It includes the material balance constraints for the flow between 

fields and FPSOs. In particular, the total oil flow rate from field in time period is the sum of the 

oil flow rates over all FPSO facilities from this field, which depends on the oil flow rate per well 

and number of wells available for production. Total oil, water and gas flowrates into each FPSO 

facility, at time period from all the given fields, is calculated as the sum of the flow rates of each 

component over all the connected fields.  

FPSO Capacity Constraints: These equations restrict the total oil, liquid and gas flow rates into 

each FPSO facility to be less than its corresponding capacity in each time period. The FPSO 

facility capacities in each time period are computed as the sum of the corresponding installation 

and expansion capacities taking lead times into considerations. Furthermore, there are 

restrictions on the maximum installation and expansion capacities for each FPSO facility. 

Well drilling limitations: The number of wells available in a field for drilling is calculated as the 

sum of the wells available at the end of the previous time period and the number of wells drilled 

at the beginning of time period. The maximum number of wells that can be drilled over all the 

fields during each time period and in each field during complete planning horizon, are restricted 

by the respective upper bounds.  

Logic Constraints: Logic constraints include the restrictions on the number of installation and 

expansion of a FPSO facility, and possible FPSO-field connections during the planning horizon. 

Other logic constraints are also included to ensure that the FPSO facility can be expanded, and 

the connection between a field and that facility and corresponding flow can occur only if that 

facility has already been installed by that time period.  
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The proposed non-convex MINLP model for offshore oilfield planning involves nonlinear 

and non-convex constraints that can lead to suboptimal solutions when solved with a method that 

assumes convexity (e.g. branch and bound, outer-approximation). The detailed description of the 

model is outlined in Gupta and Grossmann (2011) with two possibilities of MINLP formulations. 

MINLP Model 1 consists of bilinear terms in the formulation involving WOR, GOR and oil flow 

rates. MINLP model 2 includes univariate polynomials that represent reservoir profiles in terms 

of cumulative water and gas produced. In addition, some constraints that involves bilinear terms 

with integer variables that calculates the total oil flow rate from a field as the multiplication of 

the number of available wells in the field and oil flow rate per well, are also present. However, 

this MINLP formulation (Model 2) can be reformulated into an MILP using piecewise 

linearizations and exact linearizations with which the problem can be solved to global optimality 

(Gupta and Grossmann, 2011).  

Table 1 summarizes the main features of these MINLP and reformulated MILP models. In 

particular, the reservoir profiles and respective nonlinearities involved in the models are 

compared in the table. Realistic instances involving 10 fields, 3 FPSO’s and 20 years planning 

horizon have been solved and comparisons of the computational performance of the proposed 

MINLP and MILP formulations are presented in the paper. The computational efficiency of the 

proposed MINLP and MILP models have been further improved by binary reduction scheme that 

yield an order of magnitude reduction in the solution time. A large scale example is explained in 

the results section 6 of this paper. 

 

Table 1: Comparison of the nonlinearities involved in 3 model types 

 Model 1 Model 2 Model 3 

Model Type MINLP MINLP MILP 

Oil Deliverability 3rd order polynomial 3rd order polynomial Piecewise Linear 

WOR 3rd order polynomial - - 

GOR 3rd order polynomial - - 

wc - 4th order polynomial Piecewise Linear 

gc - 4th order polynomial Piecewise Linear 

Bilinear Terms N*x 

N*x*WOR 

N*x*GOR 

N*x None 

MILP Reformulation Not Possible Possible Reformulated MILP  
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Remarks:  

The proposed non-convex MINLP model yields good quality solutions in few seconds when 

solving with DICOPT directly even for large instances. There are various trade-offs involve in 

selecting a particular model for oilfield problem. In case that we are concerned with the solution 

time, especially for the large instances, it would be better to use DICOPT on the MINLP 

formulations directly to obtain good quality solutions with modest computational times, although 

global optimality is not guaranteed. If computing times are of no concern, one may want to use 

the MILP approximation models that can yield better solutions, but at a higher computational 

cost as explained in the results section.   

Furthermore, these MILP solutions also provide a way to assess the quality of the suboptimal 

solutions from the MINLPs, or finding better once using its solution for the original problem. 

These MINLP or MILP models can further be used as the basis to exploit various decomposition 

strategies or global optimization techniques for solving the problems to global optimality. 

Moreover, the deterministic model proposed in the paper is very generic and can either be used 

for simplified cases (e.g. linear profiles for reservoir, fixed well schedule, single field site etc.), 

or extended to include other complexities as discussed in the following sections.  

 

4 Incorporating Uncertainty in the Development Planning 

In the previous section, one of the major assumptions is that there is no uncertainty in the model 

parameters, which in practice is generally not true. There are multiple sources of uncertainty in 

these projects.  The market price of oil/gas, quantity and quality of reserves at a field are the 

most important sources of the uncertainty in this context. The uncertainty in oil prices is 

influenced by the political, economic or other market factors. The uncertainty in the reserves on 

the other hand, is linked to the accuracy of the reservoir data (technical uncertainty). While the 

existence of oil and gas at a field is indicated by seismic surveys and preliminary exploratory 

tests, the actual amount of oil in a field, and the efficacy of extracting the oil will only be known 

after capital investment have been made at the field. Both, the price of oil and the quality of 

reserves directly affect the overall profitability of a project, and hence it is important to consider 

the impact of these uncertainties when formulating the decision policy. However, the problem 

that addresses the issue of uncertainty within development planning is very challenging due to 

the additional complexity caused by the model size and resulting increase in the solution time. 
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Although limited, there has been some work that accounts for uncertainty in the problem of 

optimal development of oil and/or gas fields. Haugen (1996) proposed a single parameter 

representation for uncertainty in the size of reserves and incorporates it into a stochastic dynamic 

programming model for scheduling of oil fields. However, only decisions related to the 

scheduling of fields were considered. Meister et al. (1996) presented a model to derive 

exploration and production strategies for one field under uncertainty in reserves and future oil 

prices. The model was analyzed using stochastic control techniques.  

Jonsbraten (1998) addressed the oilfield development planning problem under oil price 

uncertainty using an MILP formulation that was solved with a progressive hedging algorithm. 

Aseeri et al. (2004) introduced uncertainty in the oil prices and well productivity indexes, 

financial risk management, and budgeting constraints into the model proposed by Iyer and 

Grossmann (1998), and solved the resulting stochastic model using a sampling average 

approximation algorithm.  

Jonsbraten (1998b) presented an implicit enumeration algorithm for the sequencing of oil 

wells under uncertainty in the size and quality of oil reserves. The author uses a Bayesian 

approach to represent the resolution of uncertainty with investments. Both these papers consider 

investment and operation decisions for one field only. Lund (2000) addressed a stochastic 

dynamic programming model for evaluating the value of flexibility in offshore development 

projects under uncertainty in future oil prices and in the reserves of one field using simplified 

descriptions of the main variables. 

Cullick et al. (2003) proposed a model based on the integration of a global optimization 

search algorithm, a finite-difference reservoir simulation, and economics. In the solution 

algorithm, new decision variables were generated using meta-heuristics, and uncertainties were 

handled through simulations for fixed design variables. They presented examples having 

multiple oil fields with uncertainties in the reservoir volume, fluid quality, deliverability, and 

costs. Few other papers, (Begg et al. (2001), Zabalza-Mezghani et al. (2004), Bailey et al. 

(2005), Cullick et al. (2007)), have also used a combination of reservoir modeling, economics 

and decision making under uncertainty through simulation-optimization frameworks. 

Ulstein et al. (2007) addressed the tactical planning of petroleum production that involves 

regulation of production levels from wells, splitting of production flows into oil and gas 
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products, further processing of gas and transportation in a pipeline network.  The model was 

solved for different cases with demand variations, quality constraints, and system breakdowns. 

Elgsæter et al. (2010) proposed a structured approach to optimize offshore oil and gas 

production with uncertain models that iteratively updates setpoints, while documenting the 

benefits of each proposed setpoint change through excitation planning and result analysis. The 

approach is able to realize a significant portion of the available profit potential, while ensuring 

feasibility despite large initial model uncertainty. 

However, most of these works either consider the very limited flexibility in the investment 

and operations decisions or handle the uncertainty in an ad-hoc manner. Stochastic programming 

provides a systematic framework to model problems that require decision-making in the presence 

of uncertainty by taking uncertainty into account of one or more parameters in terms of 

probability distribution functions, (Birge and Louveaux, 1997). This area has been receiving 

increasing attention given the limitations of deterministic models. The concept of recourse action 

in the future, and availability of probability distribution in the context of oilfield development 

planning problems, makes it one of the most suitable candidates to address uncertainty. 

Moreover, extremely conservative decisions are usually ignored in the solution utilizing the 

probability information given the potential of high expected profits in the case of favorable 

outcomes.  

In the next section, we first provide a basic background on the stochastic programming. 

Furtheremore, given the importnace of uncertianty in the reserves sizes and its quality (decision-

dependent uncertianty) that directly impact the profitabiltiy of the project, a detailed review of 

the model and solution methods recently proposed are discussed (Goel and Grossmann (2004), 

Goel et al. (2006), Tarhan et al. (2009)). 

 

(a) Basics Elements of Stochastic Programming 

A Stochastic Program is a mathematical program in which some of the parameters defining a 

problem instance are random (e.g. demand, yield). The basic idea behind stochastic 

programming is to make some decisions now (stage 1) and to take some corrective action 

(recourse) in the future, after revelation of the uncertainty (stages 2,3,…). If there are only two 

stages, then the problem corresponds to a 2-stage stochastic program, while in a multistage 

stochastic program the uncertainty is revealed sequentially, i.e. in multiple stages (time periods), 
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and the decision-maker can take corrective action over a sequence of stages. In the two-stage and 

multistage case the cost of the decisions and the expected cost of the recourse actions are 

optimized.  

The problems are usually formulated under the assumption that uncertain parameters follow 

discrete probability distributions, and that the planning horizon consists of a fixed number of 

time periods that correspond to decision points. Using these two assumptions, the stochastic 

process can be represented with scenario trees. In a scenario tree (Figure 6-a) each node 

represents a possible state of the system at a given time period. Each arc represents the possible 

transition from one state in time period t to another state in time period t+1, where each state is 

associated with the probabilistic outcome of a given uncertain parameter. A path from the root 

node to a leaf node represents a scenario.  

 

 

 

 

 

 

 

An alternative representation of the scenario tree was proposed by Ruszczynski (1997) where 

each scenario is represented by a set of unique nodes (Figure 6-b). The horizontal lines 

connecting nodes in time period t, mean that nodes are identical as they have the same 

information, and those scenarios are said to be indistinguishable in that time period. These 

horizontal lines correspond to the non-anticipativity (NA) constraints in the model that link 

different scenarios and prevent the problem from being decomposable. The alternative scenario 

tree representation allows to model the uncertainty in the problem more effectively.  

Jonsbraten (1998) classified uncertainty in Stochastic Programming problems into two broad 

categories: exogenous uncertainty where stochastic processes are independent of decisions that 

are taken (e.g. demands, prices), and endogenous uncertainty where stochastic processes are 

affected by these decisions (e.g. reservoir size and its quality). Notice that the resulting scenario 

tree in the exogenous case is decision independent and fixed, whereas endogenous uncertainty 

             (a) Standard Scenario Tree with uncertain parameters θ1 and  θ2              (b) Alternative Scenario Tree 
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Figure 6: Tree representations for discrete uncertainties over 3 stages. 
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problems yield a decision-dependent scenario tree. In the process systems area, Ierapetritou and 

Pistikopoulos (1994), Clay and Grossmann (1997) and Iyer and Grossmann (1998) solved 

various production planning problems that considered exogenous uncertainty and formulated as 

the two-stage stochastic programs. Furthermore, detailed reviews of previous work on problems 

with exogenous uncertainty can be found in Schultz (2003) and Sahinidis (2004). These 

approaches for exogenous uncertainty can directly be exploited for the oilfield development 

planning problem under oil/gas price uncertainty. In this paper, we focus on the endogenous 

uncertainty problems where limited literature is available. 

In the next section, we review the development planning problem using a multistage 

stochastic programming (MSSP) approach with endogenous uncertainty, where the structure of 

scenario tree is decision-dependent.  

(b) Development planning under Endogenous Uncertainty 

Most previous work in planning under uncertainty has considered exogenous uncertainty 

where stochastic processes are independent of decisions (e.g., demands, prices). In contrast, there 

is very limited work in problems in which the stochastic processes are affected by decisions, that 

is with endogenous uncertainty. 

Decisions can affect stochastic processes in two different ways (Goel and Grossmann, 2006). 

Either they can alter the probability distributions (type 1), or they can be used to discover more 

accurate information (type 2). In this paper, we focus on the type 2 of endogenous uncertainty 

where the decisions are used to gain more information, and eventually resolve uncertainty. 

Ahmed (2000), Vishwanath et al. (2004) and Held et al. (2005) considers type 1 decision-

dependent uncertainty. Ahmed (2000) presented examples on network design, server selection, 

and facility location problems with decision-dependent uncertainties that are reformulated as 

MILP problems, and solved by LP-based branch-and-bound algorithms. Vishwanath et al. (2004) 

addressed a network problem having endogenous uncertainty in survival distributions. The 

problem is a two-stage stochastic program in which first-period investment decisions are made 

for changing the survival probability distribution of arcs after a disaster. The aim is to find the 

investments that minimizes the expected shortest path from source to destination after a disaster. 

Held et al. (2005) considered the problem that includes endogenous uncertainty in the structure 

of a network. In each stage of this problem, an operator tries to find the shortest path from a 
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source to a destination after some of the nodes in the network are blocked. The aim is to 

maximize the probability of stopping the flow of goods or information in the network.  

Another way the decisions can impact the stochastic process is that they can affect the 

resolution of uncertainty or the time uncertainty resolves (type 2). Type 2 uncertainty can further 

be classified into two categories. 

 

Immediate Uncertainty Resolution:  

The first category of type 2 decision-dependent uncertainty assumes that the revelation of 

accurate information (resolution of endogenous uncertainty) occurs instantaneously (Pflug 

(1990); Jonsbraten et al. (1998); Goel and Grossmann (2004, 2006); Goel et al. (2006); Boland et 

al. (2008)).  

Pflug (1990) addressed endogenous uncertainty problems in the context of discrete event 

dynamic systems where the underlying stochastic process depends on the optimization decisions.  

Jonsbraten et al. (1998) proposed an implicit enumeration algorithm for the problems in this 

class where decisions that affect the uncertain parameter values are made at the first stage.  

In the context of oilfield development planning, Goel and Grossmann (2004) considered a 

gas field development problem under uncertainty in the size and quality of reserves where 

decisions on the timing of field drilling were assumed to yield an immediate resolution of the 

uncertainty, i.e. the problem involves decision-dependent uncertainty as discussed in Jonsbraten 

et al. (1998). The alternative scenario tree representation described earlier is used as a key 

element to model the problem in this work. Linear reservoir models, which can provide a 

reasonable approximation for gas fields, were used. In their solution strategy, the authors used a 

relaxation problem to predict upper bounds, and solved multistage stochastic programs for a 

fixed scenario tree for finding lower bounds. Goel et al. (2006) later proposed the theoretical 

conditions to reduce the number of non-anticipativity constraints in the model. The authors also 

developed a branch and bound algorithm for solving the corresponding disjunctive/mixed-integer 

programming model where lower bounds are generated by Lagrangean duality. The proposed 

decomposition strategy relies on relaxing the disjunctions and logic constraints for the non-

anticipativity constraints.   

Boland et al. (2008) applied multistage stochastic programming to open pit mine production 

scheduling, which is modeled as a mixed-integer linear program. These authors consider the 
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endogenous uncertainty in the total amount of rock and metal contained in it, where the 

excavation decisions resolve this uncertainty immediately. They followed a similar approach as 

Goel and Grossmann (2006) for modeling the problem, with the exception of eliminating some 

of the binary variables used in the general formulation to represent conditional nonanticipativity 

constraints. Furthermore, they solved the model in full-space without using a decomposition 

algorithm. These authors also compared the fullspace results for this mine-scheduling problem 

with the one where non-anticipativity constraints were treated as ‘lazy constraints’ during the 

solution in CPLEX.  

Colvin and Maravelias (2008, 2010) presented several theoretical properties, specifically for 

the problem of scheduling of clinical trials having uncertain outcomes in the pharmaceutical 

R&D pipeline. These authors developed a branch and cut framework to solve these MSSP 

problems with endogenous uncertainty under the assumption that only few non-anticipativity 

constraints be active at the optimal solution.  

Gupta and Grossmann (2011) proposed a generic mixed-integer linear multistage stochastic 

programming model for the problems with endogenous uncertainty where uncertainty in the 

parameters resolve immediately based on the investment decisions. The authors exploit the 

problem structure and extend the conditions by Goel and Grossmann (2006) to formulate a 

reduced model to improve the computational efficiency in fullspace. Furthermore, several 

generic solution strategies for the problems in this class are proposed to solve the large instances 

of these problems, with numerical results on process networks examples.  

Ettehad et al. (2011) presented a case study for the development planning of an offshore gas 

field under uncertainty optimizing facility size, well counts, compression power and production 

policy. A two-stage stochastic programming model was developed to investigate the impact of 

uncertainties in original gas in place and inter-compartment transmissibility. Results of two 

solution methods, optimization with Monte Carlo sampling and stochastic programming, were 

compared which showed that the stochastic programming approach is more efficient. The models 

were also used in a value of information (VOI) analysis.  

 

Gradual uncertainty Resolution:  

The second category of decision-dependent uncertainty of type 2 assumes that uncertainty 

resolves gradually over time because of learning (Tarhan and Grossmann (2008); Solak (2007); 
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Tarhan et al. (2009); Stensland and Tjøstheim (1991); Dias (2002); Jonsbraten (1998); Harrison 

(2007)).  

Stensland and Tjøstheim (1991) have worked on a discrete time problem for finding optimal 

decisions with uncertainty reduction over time and applied their approach to oil production. 

These authors expressed the uncertainty in terms of a number of production scenarios. Their 

main contribution was combining production scenarios and uncertainty reduction effectively for 

making optimal decisions. Dias (2002) presented four propositions to characterize technical 

uncertainty and the concept of revelation towards the true value of the variable. These four 

propositions, based on the theory of conditional expectations, are employed to model technical 

uncertainty.  

Jonsbraten (1998) considered gradual uncertainty reduction where all uncertainty is assumed 

to resolve at the end of the project horizon. The author used a decision tree approach for 

modeling the problem where Bayesian statistics are applied to find the probabilities of branches 

in the decision tree that are decision dependent. The author also proposed an algorithm that relies 

on the prediction of upper and lower bounds. Harrison (2007) used a different approach for 

optimizing two-stage decision making problems under uncertainty. Some of the uncertainty was 

assumed to resolve after the observation of the outcome of the first stage decision. The author 

developed a new method, called Bayesian Programming, where the corresponding integrals were 

approximated using Markov Chain Monte Carlo simulations, and decisions were optimized using 

simulated annealing type of meta-heuristics.  

Solak (2007) considered the project portfolio optimization problem that deals with the 

selection of research and development projects and determination of optimal resource allocations 

under decision dependent uncertainty where uncertainty is resolved gradually. The author used 

the sample average approximation method for solving the problem, where the sample problems 

were solved through Lagrangean relaxation and heuristics. 

Tarhan and Grossmann (2008) considered the synthesis of process networks with 

uncertainties in the yields of the processes, which are resolved gradually over time depending on 

the investment and operating decisions. In the context of oilfield development planning problem, 

Tarhan et al. (2009) address the planning of offshore oil field infrastructure involving 

endogenous uncertainty in the initial maximum oil flowrate, recoverable oil volume, and water 

breakthrough time of the reservoir, where decisions affect the resolution of these uncertainties. 
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The authors extend the work of Goel and Grossmann (2004) and Goel et al. (2006) but with three 

major differences.  

i. Model focuses on a single field consisting of several reservoirs rather than multiple 

fields. However, more detailed decisions such as the number, type, and construction 

decisions for infrastructure are considered.  

ii. Nonlinear, rather than linear, reservoir models are considered. Nonlinear reservoir 

models are important because Goel and Grossmann (2004) focused on gas fields, for 

which linear models are often an adequate approximation, while for oil fields 

nonlinear reservoir models are required.  

iii. The resolution of uncertainty is gradual over time instead of being resolved 

immediately. Compared to the instantaneous uncertainty resolution, gradual 

resolution gives rise to some challenges in the model, including the underlying 

scenario tree and the nonanticipativity constraints. 

Tarhan et al. (2009) developed a multistage stochastic programming framework that was 

modeled as a disjunctive/mixed-integer nonlinear programming model consisting of individual 

non-convex MINLP subproblems connected to each other through initial and conditional non-

anticipativity constraints. A duality-based branch and bound algorithm was proposed taking 

advantage of the problem structure and globally optimizing each scenario problem 

independently. An improved solution approach was also proposed that combines global 

optimization and outer-approximation to optimize the investment and operations decisions 

(Tarhan et al. (2011)).   

 

(c) Discussions 

The explicit modeling of endogenous uncertainty in the multistage stochastic programming 

framework, and the proposed duality based branch and bound solution strategies (Goel et al. 

2006, Tarhan et al. 2009, 2011) can be very useful for the oilfield development planning 

problem. The examples considered in these papers show considerable improvement in the 

expected NPV compared to the solution where uncertainty is handled by simply using expected 

values of the parameters (expected value solution). The added value of stochastic programming 

is due to the more conservative initial investment strategy compared to the expected value 

solution. In particular, stochastic programming solution proposes higher investments only when 
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the uncertainty parameters are found to be favorable. Moreover, stochastic programming based 

model generate solutions that not only provides higher expected net present values, but also 

offers more robust solutions with respect to the uncertainties that are not included explicitly in 

the uncertainty space. The stochastic solutions have low risk in terms of probability of leading to 

a negative NPV as compared to expected value solution. These results support the advantage of 

using stochastic programming approach for development planning of oilfields.  

The model considered by Goel et al. (2006) is for gas fields only, where linear reservoir 

profiles is a reasonable assumption. The model considers multiple fields but facility expansions 

and well drilling decisions are not considered. On the other hand, the model considered in 

Tarhan et al. (2009) assumes either gas/water or oil/water components for a single field and 

single reservoir at a detailed level. Hence, its extension to realistic multiple field instances can be 

expensive to solve with this model. Also, the model cannot be reformulated as an MILP for 

solving large instances to global optimality.    

Therefore, the proposed deterministic model, (Gupta and Grossmann, 2011), presented in the 

earlier section can be used as a basis to incorporate uncertainty in the decision-making process 

(either exogenous or endogenous) under the proposed unified framework (Fig. 1). The model 

includes multiple fields, oil, water and gas, nonlinear reservoir behavior, well drilling schedule 

and facility expansions and lead times to represent realistic oilfield development project while 

being computationally tractable for large instances. The interaction among various fields, 

possibility of capacity expansions, lead-times and well drilling decisions allows incorporating 

recourse actions in a more practical way. Moreover, the model is suitable for either immediate 

(Goel et al. 2006) or gradual uncertainty resolution (Tarhan et al. 2009) using multistage 

stochastic program as the underlying model. 

However, there are still certain points in the proposed uncertainty modeling approaches and 

solution algorithms in these papers (Goel et al. 2006, Tarhan et al. 2009) for which there is scope 

for further improvement: 

1. The duality based branch and bound method can further be improved e.g. use of logic 

inference during the generation of cuts in the branch and bound tree, robust procedure to 

generate feasible solution from the solution of Lagrangean dual, use of parallel 

computing and scenario reduction algorithms to solve large instances etc.  
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2. Other solution approaches (e.g. Gupta and Grossmann (2011)) for multiage stochastic 

problems with endogenous uncertainties can be explored. 

3. Some heuristic approaches and model approximations can be explored to handle the 

realistic large scale development planning problems with uncertainty. 

4. The importance of considering other uncertain parameters, most notably oil price, might 

be interesting to consider. 

5. The decision maker is assumed to be risk neutral in the proposed models where the 

objective is to maximize the expected net present value. In reality with such huge 

investments, companies are interested in models that consider not only uncertainty but 

also the risk explicitly, which can make the problem even more challenging to solve (You 

et al. 2009).  

6. The available reservoir simulators ECLIPSE (Schlumberger, 2008) could be incorporated 

into the model to improve the accuracy of the reservoir profiles, although the potential 

computational expense would be too large.  

7. Although the real options methods, (Lund (1999, 2005), Kalligeros (2004), Dias (2004)), 

seems to be limited to the number of decisions and the flexibility to incorporate complex 

system structures, some insight about its advantages and disadvantages over stochastic 

programming methods would be worth investigating.  

It should also be noted that the development planning models are not intended to solve only 

once to plan for next 20-30 years. Instead the model can be updated and resolved multiple times 

as more information reveals.  

5 Development Planning with Fiscal Considerations 

In previous sections, we considered the development planning problem under perfect information 

and proposed a deterministic model that can be applied to a project with multiple fields. 

Furthermore, we also outlined the multistage stochastic approaches to incorporate uncertainty 

and their solution methods. The deterministic model, (Gupta and Grossmann, 2011), can be used  

a basis to incorporate uncertainty according to the unified framework (Fig. 1). 

Including fiscal considerations, (Van den Heever and Grossmann (2001), Lin and Floudas 

(2003)), as part of the investment and operation decisions for the oilfield development problem 

can significantly impact the optimal investment and operations decisions and actual NPV. 
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Therefore, in this section we extend the proposed deterministic model that considers multiple oil 

and gas fields with sufficient detail to include generic complex fiscal rules in development 

planning under the proposed framework (Fig. 1). We first consider the basic elements of the 

various types of contracts involved in this industry, review the work in this area and provide a 

generic approach to include these contracts terms in the model.   

 

(a) Type of Contracts 

There are a variety of contracts that are used in the offshore oil and gas industry (World 

Bank, 2007). These contracts can be classified into two main categories: 

I. Concessionary System: A concessionary (or tax and royalty) system usually 

involves royalty, deduction and tax. Royalty is paid to the government at a certain 

percentage of the gross revenues each year. The net revenue after deducting costs 

becomes taxable income on which a pre-defined percentage is paid as tax. The total 

contractor’s share involves gross revenues minus royalty and taxes. The basic 

difference as compared to the production sharing agreement, is that the oil company 

obtains the title to all of the oil and gas at the wellhead and pay royalties, bonuses, 

and other taxes to the government. 

II. Production Sharing Agreements: The revenue flow in a typical Production Sharing 

Agreement can be seen as in Figure 7. Some portion of the total oil produced is kept 

as cost oil by the oil company for cost recovery purposes after paying royalties to the 

government that is a certain percentage of the oil produced. There is a cost recovery 

ceiling to ensure revenues to the government as soon as production starts. The 

remaining part of the oil called profit oil is divided between oil company and the host 

government. The oil company needs to further pay income tax on its share of profit 

oil. Hence, the total contractor’s (oil company) share in the gross revenue comprises 

of cost oil and contractor’s profit oil share after tax. The other important feature of a 

PSA is that the government owns all the oil and transfers title to a portion of the 

extracted oil and gas to the contractor at an agreed delivery point. Notice that the cost 

oil limit is one of the key differences with a concessionary system.  

 

 



27 
 

  

 

 

 

 

 

 

 

 

 

 

 

The specific rules defined in such a contract (either PSA or concessionary) between 

operating oil company and host government determine the profit that the oil company can keep 

as well as the royalties and profit share that are paid to the government. These profit oil splits, 

royalty rates are usually based on the profitability of the project (progressive fiscal terms), where 

cumulative oil produced, rate of return, R-factor etc. are the typical profitability measures that 

determine the tier structure for these contract terms.  

In particular, the fraction of total oil production to be paid to the government in terms of 

profit share, royalties are to be calculated based on the value of one or more profitability 

parameters (e.g. cumulative production, daily production, IRR, etc.), specifically in the case of 

progressive fiscal terms. The transition to the higher profit share, royalty rates is expressed in 

terms of tiers that are a step function (g) linked to the above parameters and corresponding 

threshold values. For instance, if the cumulative production is in the range of first tier,

11 UxcL t  , the royalty R1 will be paid to the government, while if the cumulative production 

reaches in tier 2, royalty R2  will need to be paid, and so on. In practice, as we move to the higher 

tier the percentage share of government in the total production increases. Notice that if the fiscal 

Figure 7: Revenue flow for a typical Production Sharing Agreement 
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terms are not linked to the specific parameters, e.g. royalties, profit share are the fixed 

percentage of total production, then the tier structure is not present in the problem.   
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Given that the resulting royalties and/or government profit oil share can be a significant 

amount of the gross revenues, it is critical to consider these contracts terms explicitly during 

oilfield planning to access the actual economic potential of such a project. For instance, a very 

promising oilfield or block can turn out to be a big loss or less profitable than projected in the 

long-term if significant royalties are attached to that field, which was not considered during the 

development planning phase involving large investments. On the contrary, there could be the 

possibility of missing an opportunity to invest in a field that has very difficult conditions for 

production and looks unattractive, but can have favorable fiscal terms resulting in large profits in 

the long-term. In the next section we discuss how to include these rules within a development 

planning model. 

(b) Development Planning Model with Fiscal Considerations 

The models and solutions approaches in the literature that consider the fiscal rules within 

development planning are either very specific or simplified, e.g. one field at a time, only one 

component, simulation or meta-heuristic based approaches to study the impact of fiscal terms 

that may not yield the optimal solutions (Sunley et al. (2002), Kaiser, M.J. and A.G. Pulsipher 

(2004), World Bank (2007), Tordo (2007)).   

Van den Heever et al. (2000), and Van den Heever and Grossmann (2001) used a 

deterministic model to handle complex economic objectives including royalties, tariffs, and taxes 

for the multiple gas field site. These authors incorporated these complexities into their model 

through disjunctions as well as big-M formulations. The results were presented for realistic 

instances involving 16 fields and 15 years. However, the model considers only gas production 

and the number of wells were used as parameters (fixed well schedule) in the model. Moreover, 

the fiscal rules presented were specific to the gas field site considered for the study, but not in the 

generic form. Based on the continuous time formulation for gas field development with complex 
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economics of similar nature as Van den Heever and Grossmann (2001), Lin and Floudas (2003) 

presented an MINLP model and solved it with a two stage algorithm. 

With the motivation for optimal investment and operations decisions in a realistic situation 

for offshore oil and gas field planning project, we incorporate the generic fiscal terms described 

earlier within proposed planning models (MINLP and MILP) and unified framework (Fig. 1). 

Notice that we focus on the progressive production sharing agreement terms here that covers the 

key elements of the most of the available contracts, and represent one of the most generic forms 

of fiscal rules. Particular fiscal rules of interest can be modeled as the specific case of this 

representation.    

The objective here is to maximize the contractor’s NPV which is the difference between total 

contractor’s revenue share and total cost occurred over the planning horizon, taking discounting 

into consideration. The idea of cost recovery ceiling is included in terms of min function (h) to 

limit the amount of total oil produced each year that can be used to recover the capital and 

operational expenses. This ceiling on the cost oil recovery is usually enforced to ensure early 

revenues to the Govt. as soon as production starts.  

),min( t
CR

ttt REVfCRCO             t        (h) 

Moreover, a sliding scale based profit oil share of contractor that is linked to some parameter, 

for instance cumulative oil production, is also included in the model. In particular, disjunction (i) 

is used to model this tier structure for profit oil split which states that variable tiZ , will be true if 

cumulative oil production by the end of time period t, (Gupta and Grossmann, 2012), lies 

between given tier thresholds iti UxcL  , i.e. tier i is active and split fraction PO
if  is used to 

determine the contractor share in that time period. The disjunction (i) in the model is further 

reformulated into linear and mixed-integer linear constraints using the convex-hull formulation 

(Lee and Grossmann, 2000). 
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We assume that only profit oil split is based on a sliding scale system, while other fractions 

(e.g. tax rate, cost recovery limit fraction) are fixed parameters. Furthermore, the proposed model 
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is also extended to include the ring-fencing, which is the provision that are usually part of fiscal 

terms and have significant impact on the NPV calculations. These provisions determine that all 

the costs associated with a given block (which may be a single field or a group of fields) or 

license must be recovered from revenues generated within that block, i.e. the block is “ring-

fenced”. It basically defines the level at which all fiscal calculations are need to be done, and 

provide restriction to balance the costs and revenues across various projects/blocks that are not 

part of that ring-fence. The other constraints and features remains the same as the proposed 

MINLP and MILP models described in earlier sections.   

Notice that the deterministic model with fiscal consideration presented here can also be used 

as the basis for the stochastic programming approaches explained in the previous section to 

incorporate uncertainty in the model under the unified framework (Fig. 1). Optimal investment 

and operations decisions, and the computational impact of adding a typical progressive 

Production Sharing Agreement (PSA) terms, is demonstrated in the results section 6 with a small 

example.  

(c) Key issues and Discussions 

The extension of the deterministic oilfield development planning problem to include fiscal 

rules explicitly in the formulation raises the following issues: 

1. The model can become expensive to solve with the fiscal rules, especially the one that 

involves progressive fiscal terms due to the additional binary variable that are required to 

model the tier structure and resulting weak relaxation of the model. This is due to the 

relatively weak bounds on some of the key variables in the model, e.g. contractor share, 

profit oil, cost oil etc. which are difficult to estimate a priori. 

2. Specialized decomposition algorithms that exploit the problem structure may be exploited 

to improve the computational efficiency.  

3. Alternative ways to disjunctive models for the fiscal rules can be analyzed, e.g.  including 

fiscal terms in approximate form, especially for the progressive fiscal terms so that multi-

field site problem is tractable. 

4. Although we include the most general basic elements of the fiscal rules, there might be 

some additional project specific fiscal terms that can have significant impact. Therefore, 

it is important to include the corresponding fiscal terms defined for a particular project of 

interest.    



31 
 

In a forthcoming paper, we will discuss the details of the generic model for the development 

planning problem with fiscal considerations and ways to improve its computational efficiency,  

(Gupta and Grossmann, 2012).  

 

6 Examples 

In this section we consider a variety of the examples for the oilfield development planning 

problem that covers deterministic, stochastic and complex fiscal features as discussed in the 

earlier sections.  

(a) Instance 1: Deterministic Case  

In this section we present an example of the oilfield planning problem assuming that there is 

no uncertainty in the model parameters. We compare the computational results of the various 

MINLP and MILP models proposed in the respective section (see Gupta and Grossmann, 2011 

for more details).  

We consider 10 oil fields (Figure 8) that can be connected to 3 FPSOs with 23 possible 

connections. There are a total of 84 wells that can be drilled in all of these 10 fields, and the 

planning horizon considered is 20 years, which is discretized into 20 periods of each 1 year of 

duration. We need to determine which of the FPSO facilities is to be installed or expanded, in 

what time period, and what should be its capacity of oil, liquid and gas, to which fields it should 

be connected and at what time, and the number of wells to be drilled in each field during each 

time period. Other than these installation decisions, there are operating decisions involving the 

flowrate of oil, water and gas from each field in each time period. The objective function is to 

maximize total NPV over the given planning horizon. 

 
 Figure 8: Instance 3 (10 Fields, 3 FPSO, 20 years) for oilfield problem 
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The problem is solved using the DICOPT 2x-C solver for MINLP Models 1 and 2, and 

CPLEX 12.2 for MILP Model 3. These models were implemented in GAMS 23.6.3 and run on 

Intel Core i7 machine. The optimal solution of this problem that corresponds to reduced MINLP 

Model 2-R solved with DICOPT 2x-C, suggests to install all the 3 FPSO facilities in the first 

time period with their respective liquid (Figure 9-a) and gas (Figure 9-b) capacities. These FPSO 

facilities are further expanded in future when more fields come online or liquid/gas flow rates 

increases as can be seen from these figures.  

 

 

 

 

 

After initial installation of the FPSO facilities by the end of time period 3, these are 

connected to the various fields to produce oil in their respective time periods for coming online 

as indicated in Figure 10. The well installation schedule for these fields (Figure 11) ensures that 

the maximum number of wells drilling limit and maximum potential wells in a field are not 
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violated in each time period t. We can observe from these results that most of the installation and 

expansions are in the first few time periods of the planning horizon. The total NPV of the project 

is $30946.39M. 

Tables 2-3 represent the results for the various model types considered for this instance. 

DICOPT performs best in terms of solution time and quality, even for the largest instance 

compared to other solvers as can be seen from Table 2. There are significant computational 

savings with the reduced models as compared to the original ones for all the model types in 

Table 3. Even after binary reduction of the reformulated MILP, Model 3-R becomes expensive to 

solve, but yields global solutions, and provides a good discrete solution to be fixed/initialized in 

the MINLPs for finding better solutions.   

     Table 2: Comparison of various models and solvers for Instance 1 

  Model 1  Model 2  

Constraints 5,900 10,100 

Continuous Var. 4,681 6,121 

Discrete Var. 851 851 

 Solver 

Optimal NPV 

(million$) 

Time (s) Optimal NPV 

(million$) 

Time (s) 

DICOPT 31297.94 132.34 30562.95 114.51 

SBB 30466.36 4973.94 30005.33 18152.03 

BARON 31297.94 >72,000 30562.95 >72,000 

 

Table 3: Comparison of models 1, 2 and 3 with and w/o binary reduction  

  Model 1 Model 1-R Model 2 Model 2-R Model 3-R 

Constraints 5,900 5,677 10,100 9,877 17,140 

Continuous Var. 4,681 4,244 6,121 5,684 12,007 

Discrete Var. 851 483 851 483 863 

SOS1 Var. 0 0 0 0 800 

NPV(million$) 31297.94 30982.42 30562.95 30946.39 30986.22 

Time(s) 132.34 53.08 114.51 67.66 16295.26 

  *Model 1 and 2 solved with DICOPT 2x-C, Model 3 with CPLEX 12.2 

We can see from Table 4 that the solutions from the Models 1 and 2 after fixing discrete 

variables based on the MILP solution (even though it was solved within 10% of optimality 

tolerance) are the best among all other solutions obtained in Table 2. Therefore, the MILP 

approximation is an effective way to obtain near optimal solution for the original problem. 

Notice also that the optimal discrete decisions for Models 1 and 2 are very similar even though 
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they are formulated in a different way. However, only Model 2 can be reformulated into an 

MILP problem that gives a good estimate of the near optimal decisions for these MINLPs.  

Table 4: Improved solutions (NPV in million$) for Models 1 and 2 using Model 3-R solution 

Model 1 Model 1 (fixed 

binaries from 

Model 3-R) 

Model 2 Model 2 (fixed 

binaries from 

Model 3-R) 

31297.94 31329.8136 30562.95 31022.4813 

 

(b) Instance 2: Stochastic Case 

In this example, we consider the planning of offshore oilfield under decision-dependent 

uncertainty which resolves gradually as a function of investment and operations decisions.  

A single reservoir (Figure 12) for 10 years planning horizon is considered that involves 

decisions about the number, capacity, and installation schedule of FPSO/TLP facilities; the 

number and drilling schedule of subsea/TLP wells; and the oil production profile over time. The 

objective is to maximize the expected NPV value. The problem data, details and solution 

methods are reported in Tarhan et al. (2009).  

 

 

 

The uncertainties in the initial maximum oil flowrate, the size of the reservoirs, and the water 

breakthrough time are represented by discrete distributions consisting of high and low values 

resulting in eight scenarios (Table 5).  

 

Figure 12: Offshore oilfield Infrastructure for instance 2 
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Table 5: Scenario representation for example 2 

 Scenarios 

Initial 

Productivity per 

well (kbd) 

Reservoir Size 

Water 

breakthrough 

time 

1 10 300 5 

2 10 300 2 

3 20 300 5 

4 20 300 2 

5 10 1500 5 

6 10 1500 2 

7 20 1500 5 

8 20 1500 2 

 

The specific rules used for describing the uncertainty resolution are as follows:  

The appraisal program is completed when a total of three wells are drilled in one reservoir, 

which not only gives the actual value for the initial maximum oil flowrate, but also provides the 

posterior probabilities of reservoir sizes depending on the outcome. The uncertainty in reservoir 

size can be resolved if either a total of nine or more wells are drilled, or production is made from 

that reservoir for a duration of 1 year. Uncertainty in the water breakthrough time is resolved 

after 1 year of production from the reservoir.  

The comparison of model statistics given in the paper shows that the size of the full space 

model increases exponentially as a result of the increase in the number of binary variables for 

representing uncertainty resolution and the nonanticipativity constraints that relate the decisions 

in indistinguishable scenarios. 

The proposed branch-and-bound algorithm in Tarhan et al. (2009) required 23 h because, at 

each node, 40 MINLP problems were solved to global optimality. A total of seven nodes were 

traversed, and the best feasible solution was found at node 5. The computational efficiency of the 

method is further improved by combining global optimization and outer-approximation within 

proposed duality based branch and bound based algorithm (Tarhan et al. 2011). 

The expected value solution proposes building five small FPSO and two TLP facilities and 

drilling nine subsea wells in the first year. These decisions resolve the uncertainty in the initial 

productivity and reservoir size. Depending on the values of the reservoir size and initial 

productivity, different decisions are implemented. This expected value approach gives an 

objective function value of $5.81 × 10
9
. The optimal stochastic programming solution yields an 
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expected net present value of $6.37 × 10
9
, which is higher than the expected value solution 

($5.81 × 10
9
). The multistage stochastic programming solution proposes building two small 

FPSO and one TLP facility, and drilling nine subsea wells in the first year. Uncertainty in the 

initial oil flowrate and reservoir size is resolved after nine wells have been drilled. For scenarios 

5 and 6, the solution proposes building four more small FPSO facilities, one large FPSO facility, 

and five TLP facilities and drilling 12 subsea and three TLP wells. For scenarios 7 and 8, the 

solution proposes building six more small FPSO facilities and one TLP facility and drilling six 

subsea wells.  

The added value of stochastic programming is due to the conservative initial investment 

strategy compared to the expected value solution strategy. The stochastic programming approach 

considers all eight scenarios before making the initial investment. Therefore, it proposes building 

two small FPSO facilities instead of five and one TLP facility instead of two. Also, it builds 

more facilities and drills wells only after it determines that the reservoir size is 1500 Mbbl. A 

comparison of net present values of the expected value solution and stochastic programming 

shows that the added value of stochastic programming comes from handling the downside risk 

much better than the expected value solution. 

 

(c) Instance 3: Development planning with Complex Fiscal Rules  

Optimal investment and operations decisions, and the computational impact of adding a 

typical progressive Production Sharing Agreement (PSA) terms for a deterministic case of the 

oilfield planning problem is demonstrated here.  

 

 

0% 

20% 

40% 

60% 

80% 

100% 

0 200 400 600 800 1000 

%
 P

ro
fi

t 
o

il 
Sh

ar
e 

o
f 

C
o

n
tr

ac
to

r 
 

Cumulative Oil Production (MMbbl) 

Figure 13.  Contractor’s Profit oil share for Example 3 



37 
 

In this instance, we consider 5 oilfields that can be connected to 3 FPSO’s with 11 possible 

connections (Gupta and Grossmann, 2012). There are a total of 31 wells that can be drilled in the 

5 fields, and the planning horizon considered is 20 years. There is a cost recovery ceiling and 4 

tiers (see. Fig. 13) for profit oil split between the contractor and host Government that are linked 

to cumulative oil production, which defines the fiscal terms of a typical progressive Production 

Sharing Agreement. 

Table 6 compares the results of the proposed MILP (Model 3) and reduced MILP models 

(Model 3-R) with progressive PSAs for this example. We can observe that there is significant 

increase in the computational time with fiscal consideration for the original MILP formulation 

(Model 3), which takes more than 10 hours with a 14% of optimality gap as compared to the 

reduced MILP model (Model 3-R), which terminates the search with a 2% gap in reasonable 

time. In contrast, Model 3-R without any fiscal terms can be solved in 189.8 seconds. Therefore, 

including fiscal rules within development planning can make the problem much harder to solve 

due to the additional binary variables that are required to model tiers, and resulting weak 

relaxation.  

Note that on contrary the fiscal terms without tier structure, for instance fixed percentage of 

profit share, royalty rates, may reduce the computational expense of solving the deterministic 

model directly without any fiscal terms instead. Surprisingly, the problem with flat 35% of the 

profit share of contractor is solved in 72.64s which is even smaller than the solution time for 

deterministic case without any fiscal terms (189.8s). On the other hand, the problem with 2 tiers 

instead of 4 as considered above is solved in 693.71s which is more than the model without fiscal 

terms and less than the model with 4 tiers.  Therefore, the increase in computational time while 

including fiscal rules within development planning is directly related to the number of tiers 

(steps) that are present in the model to determine the profit oil shares or royalties.           

Table 6. Computational Results for Example 3 

 Model 
Constraints Continuous 

Variables 

Discrete 

Variables 

NPV 

($Million) 

Time (s) 

Model 3 with PSA 9474 6432 727 2,183.63 >36,000 

Model 3-R with PSA 9363 6223 551 2,228.94 1,163.7 

The optimal solution from Model 3-R with fiscal considerations suggests installing 1 FPSO 

facility with expansions in the future (see Fig. 14), while Fig. 15 represents the well drilling 

schedule for this example. The tiers 2, 3 and 4 for profit oil split become active in years 6, 8 and 
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12, respectively, based on the cumulative oil production profile during the given planning 

horizon.  

 

 

 

 

 

Conclusions 

In this paper, we have first reviewed a new generic model for offshore oil and gas field 

infrastructure investment and operational planning considering multiple fields, three components 

(oil, water and gas), facility expansions decisions, well drilling schedules and nonlinear reservoir 

profiles. The detailed model and its reformulations to improve the computational efficiency have 

been discussed. Furthermore, to address the issue of uncertainty in key model parameters, recent 

work on multiage stochastic programming based approaches was highlighted. Discussion on the 

extensions of the proposed deterministic model to incorporate uncertainties and generic fiscal 

rules in a unified framework, and possible complications was presented. Numerical results on 

development planning problems involving perfect information or uncertainty were reported, as 

well as the handling of fiscal considerations, specifically Production Sharing Agreements. It is 
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hoped that this paper has shown that there has been very significant progress in the mathematical 

programming models for offshore development planning.  
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