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1. Introduction 

Since Grossmann and Sargent addressed the optimum design with uncertain parameters in 

1978,1 the area of flexibility analysis has evolved for about 40 years in the community of 

process systems engineering (PSE). For a historical perspective on the evolution of this area 

and the relations between flexibility, resiliency and robust optimization, please refer to the 

review paper by Grossmann et al.,2 and the paper by Zhang et al.3 as a tribute to professor 

Roger Sargent, the pioneer in the PSE community. 

The basic idea of flexibility analysis is to explicitly consider uncertainties in the evaluation 

and design of chemical processes. The uncertainties can be thermodynamic and kinetic 

parameters, concentration and temperature of inlet streams, demand and price of products, etc. 

In general, flexibility analysis problems apply to the case where the design of a chemical 

process is fixed. It is an evaluation to determine whether the design can tolerate the 

uncertainties in a specified range, or to quantify the range of uncertainties that the design can 

tolerate. The former is known as flexibility test problem, and the latter is known as flexibility 

index problem.4 

The mathematical model of a chemical process comprises a set of equations to describe mass 

and energy balances and a set of inequalities to describe operating limits and product 

specifications:4 

 ( , , , ) 0h d z x     (1a) 

 ( , , , ) 0g d z x     (1b) 

where dn
d   are design variables, znz   are control variables, xnx   are state 
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variables with the same dimension as ( , , , )h d z x   , and n   are uncertain parameters. 

From Eq. (1a), x can be expressed as a function of d, z, and θ by ( , , )x x d z  . Equation (1b) 

can then be reformulated as 

 ( , , ( , , ), ) ( , , ) 0g d z x d z f d z      (2) 

Therefore, a chemical process can be described by a set of inequalities as shown in Eq. (2). 

For a fixed design d (this is always the case in this paper unless noted) and every realization of 

uncertain parameters θ in a region R, if a set of control variables can be found such that Eq. (2) 

is satisfied, then this process is feasible in R, the feasible region projected in the θ-space. Define 

the following feasibility function:4,5 

 ( , ) min max ( , , )j
z j J

d f d z  


   (3) 

which is equivalent to, 

 ,
( , ) min

s.t. ( , , ) ,

u z

j

d u

f d z u j J

 





  
  (4) 

Hence, the feasible region R can be expressed as, 

 { | ( , ) 0}R d      (5) 

The feasible region R is difficult to obtain for high-dimensional systems, and the shape is 

quite different for different processes. Therefore, a hyperrectangle inscribed in R is introduced 

to simplify the evaluation and comparison of tolerance for uncertain parameters. The 

hyperrectangle is centered at the nominal point N , and the lengths of its sides are proportional 

to the expected positive and negative deviations, denoted by    and   , respectively. A 

non-negative scalar δ is used to define the hyperrectangle T(δ): 

  ( ) | N NT                  (6) 
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The flexibility index F can be defined as the maximum value of δ such that ( )T R  , which 

means Eq. (2) is satisfied for every realization of   in T(δ) with appropriate adjustment of z. 

This abstract definition can be converted to an equivalent mathematical programming 

problem:4,5 

 

 
( )

( ) max

s.t. max min max ( , , ) 0

( ) |

j
zT j J

N N

F d

f d z

T

 





        

 

 





      

  (7) 

Similar to the aforementioned flexibility index problem, the flexibility test problem is to 

determine whether by adjusting the control variables z, Eq. (2) holds for all

(1) { | }N NT              . This paper does not consider the flexibility test 

problem explicitly since it is equivalent to determine whether the flexibility index is greater 

than or equal to one, although one may take advantage of its simpler formulation to devise a 

more efficient algorithm. 

The geometric interpretation of the flexibility index is to find the largest hyperrectangle 

inscribed in the feasible region R. According to the Properties 1 and 2 proved by Swaney and 

Grossmann,4 if ( , , ),jf d z j J    , are continuous in z and θ, then the critical point (the 

solution *  of problem (7)) lies at the boundary of R. If the critical point corresponds to a 

vertex of the hyperrectangle, then problem (7) can be solved by direct search or implicit 

enumeration algorithms.6 If there is a nonvertex critical point, there are also several algorithms. 

Grossmann and Floudas7 proposed an active constraint strategy (active-set) in which the 

problem is reformulated as a mixed-integer linear programming (MILP) or mixed-integer 

nonlinear programming (MINLP) by applying the Karush-Kuhn-Tucker (KKT) conditions to 
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problem (4). Ostrovsky et al.8,9 used a branch and bound method to obtain nonvertex solutions 

for the flexibility function. Bansal et al.10 solved the flexibility analysis problem of linear 

systems by parametric programming, and then generalized it to nonlinear systems.11 Floudas 

et al.12 proposed a global optimization algorithm to solve the flexibility test and flexibility index 

problems of nonconvex systems, in which the problem is convexified and solved to global 

optimality by the αBB algorithm to obtain a lower bound, and the original problem is solved 

by the active-set method to obtain an upper bound. By branching on the space of θ and z, the 

gap is closed within a given tolerance. 

As stated by Ierapetritou and coworkers,13,14 the flexibility index has limitations to quantify 

the degree of uncertain parameters a process can tolerate. Sometimes, it is overly conservative 

since it underestimates the size of the feasible region. However, compared to other flexibility 

measures, e.g., the feasible convex hull ratio13 and the simplicial approximation,14 the 

flexibility index provides a good balance between the accuracy of approximation of the feasible 

region and ease of interpretation. Therefore, in this paper we use the traditional flexibility index 

to quantify the ability of a process to tolerate uncertain parameters. 

In this work, we consider a special class of systems, where all the inequalities are quadratic 

or linear in θ, and linear in z. Quadratic terms of uncertain parameters are common in chemical 

processes, such as the product of inlet temperature and heat capacity flowrate in heat exchanger 

networks (HEN), the product of flowrate and contaminant concentration in water networks, 

and the product of demand and price of product in planning problems. Although general 

algorithms can solve the flexibility index problem of these systems, one cannot expect they 
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will take advantage of the special structure to accelerate the computation. Therefore, a more 

efficient iterative procedure, which is quite different from the existing algorithms, is proposed 

in this paper to solve the flexibility index problem for this class of systems. 

The proposed algorithm in this paper is inspired by the work of Zhang et al,3 in which a 

duality-based method is proposed to solve the flexibility analysis problem of linear systems 

that is much more efficient than the active-set method.7 In this work, we extend this method to 

nonlinear systems, which are linearized, yielding a lower bound problem which can be 

efficiently solved by the duality-based method. An upper bound is easily obtained since the 

critical point of this special class of system lies at a vertex as proved in the following section. 

By iteratively solving the upper bound and lower bound problems, the gap is closed without 

the need of branching. Although the proposed method is for a limited class of nonlinear systems, 

the efficient computational performance on several examples including HEN, process networks 

and unit commitment, shows that it is a promising method. 

The remainder of this article is organized as follows. In the next section, the problem is stated 

mathematically and the property of vertex solution is proved. The new flexibility index 

algorithm is developed in the subsequent section. In section 4, we apply this new algorithm to 

four numerical examples, and compare it with the active-set method. Finally, the conclusions 

are presented in section 5. 

2. Problem statement 

The inequalities of this class of system can be written as: 

 0,T T T

j j j j jf Q a b z c j J           (8) 
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where the Hessian matrix jQ  is an n n   matrix, {1,2,..., }J m  is the set of constraints, 

ja  and jb  are column vectors, and jc  are constants. If all the elements of jQ  are zero, 

then Eq. (8) becomes a linear system. If jf , j J  , are convex, i.e., jQ  are positive semi-

definite, the flexibility index problem of this system has a vertex solution. Below we derive a 

weaker condition, under which the vertex solution can also be guaranteed as shown in the 

following proposition. 

Proposition 1. If 0jiiq  , i I  , j J , then the flexibility index problem of (8) will 

have a vertex solution. 

Proof. Based on Theorems 2 and 3 proved by Swaney and Grossmann,4 if all the constraints 

jf , j J , are jointly quasi-convex in z and one-dimensional quasi-convex (1-DQC) in θ, then 

the solution of the flexibility index problem will lie at a vertex of the hyperrectangle T(δ). 

Obviously, jf  is quasi-convex in z. Therefore, we only need to prove that jf  is 1-DQC in 

θ. 

Define    1 2 1

1 1,..., ,..., , ,..., ,...,
T T

i n i n ie
 

               , where β is a scalar, and 

ie  is the ith unit vector, i.e., the ith column of the identity matrix. For fixed d and z, jf  is 1-

DQC in θ if and only if 

        1 2 1 2max , , , , , , , 1 , [0,1]j j jf d z f d z f d z            (9) 

Since the linear and constant terms are convex, they are 1-DQC. Therefore, only the quadratic 

term needs to be considered. The quadratic term of the right-hand side (QRHS) of Eq. (9) can 

be written as follows: 
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     

   

     

     

1 1 1 1

1 1

21 1 1 1 2

21 1 1 1 2

QRHS 1 1

1 1

1 1 1

1 1 1

T

i j i

T

i j i

T T T T

j j i i j i j i

T T T

j j i i j jii

e Q e

e Q e

Q Q e e Q e Q e

Q Q e e Q q

       

     

        

        

            

          

      

      

  (10) 

If 1 1 2 2T T

j jQ Q    , the quadratic term of the left-hand side (QLHS) of Eq. (9) will be 

1 1T

jQ   . By substituting 2 1

ie      into 1 1 2 2T T

j jQ Q     , we get 

1 1 2 0T T

j i i j jiiQ e e Q Q       . Since 0 1 1     and 0jiiq   , the following inequality 

holds: 

 
     

     

21 1 2

1 1 2

1 1 1

1 1 1 0

T T

j i i j jii

T T

j i i j jii

Q e e Q q

Q e e Q q

      

      

    

      
  (11) 

Therefore, the following inequality is obtained: 

 
1 1QLHS QRHST

jQ     (12) 

which means Eq. (9) holds. It is similar when 
1 1 2 2T T

j jQ Q    . 

Therefore, jf  is jointly quasi-convex in z and 1-DQC in θ, and hence the solution lies at a 

vertex.                     ■ 

Note that, 0jiiq  , i I  , are merely necessary conditions for jQ  to be positive semi-

definite. Therefore, it is not as restrictive as the condition that jf  is convex, and furthermore 

it may in fact correspond to a nonconvex function. The following parts will restrict the diagonal 

elements of jQ , j J , to be non-negative to guarantee a vertex solution. 

3. New algorithm for the flexibility index problem 

3.1 Basic idea 

To better understand the basic idea of this algorithm, the duality-based flexibility index 
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algorithm for linear systems is introduced first. 

Consider the following linear inequality constraints: 

 0f A Bz C      (13) 

for which the flexibility index problem has a vertex solution. Therefore, the flexibility index 

problem can be stated in an alternative way: 

 
 

,
min max

s.t. 0

1 ,

{0,1}

x z

N

i i i i i i

n

F

A Bz C

x x i I

x 






     



  

         



  (14) 

The interpretation of this formulation is that, for every vertex direction, i.e., every possible 

combination of x, the distance from the nominal point to the boundary of the feasible region is 

maximized. Among these distances, the shortest is chosen to make the hyperrectangle be totally 

inscribed in the feasible region.15 

For a given vertex direction x, and by substituting i  into Eq. (13), the inner maximization 

problem can then be replaced by its dual, which is a minimization problem and can be merged 

with the outer minimization problem. The obtained single-level problem is shown as follows: 

  

,
min ( )

. . 0

1 1

0

{0,1}

T N

x

T

i i i i ji j

j J i I

n

F A C

s t B

x x a

x 


 



  



 

 

  



      





   (15) 

Problem (15) is an MINLP since there are bilinear terms i jx   in the constraint. However, 

the bilinearity of binary and continuous variables can be eliminated by replacing i jx   by a 

new non-negative continuous variable ij  together with the following constraints:16 
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ij j i

ij j

ij i

M M x

M x

 



 

 



  





  (16) 

where M   is a big-M parameter. If 0ix  , then 0ij  ; if 1ix  , then ij j  , which is 

exactly equivalent to the result of i jx  . Therefore, problem (15) is equivalent to the following 

MILP: 

 

 

, ,
min ( )

. . 0

1

, ,

, ,

, ,

0, 0

{0,1}

T N

x

T

ji i j i i ij

j J i I

ij j i

ij j

ij i

n

F A C

s t B

a

M M x i I j J

i I j J

M x i I j J

x 

 

 



 



    

 

 



 

  

 

  



       

     

   

   

 





  (17) 

However, this reformulation is not applicable to the flexibility index problem of quadratic 

systems as shown in the following since the inner maximization problem is nonlinear in δ. 

 
 

,
min max

s. t . 0,

1 ,

{0,1}

x z

T T T

j j j j

N

i i i i i i

n

F

Q a b z c j J

x x i I

x 




  

     



     

         



  (18) 

We are inspired by the outer-approximation (OA) algorithm for convex MINLP,17 in which 

the nonlinear constraints are replaced by their supporting hyperplanes to construct a master 

MILP to provide a lower bound, and subsequently, the integer variables are fixed to the optimal 

solution of the master MILP to construct a nonlinear programming (NLP) subproblem to 

provide an upper bound. By iteratively solving the master problem and the subproblem, they 

will converge to the optimal solution. Similarly, we can develop the subproblem and master 
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problem for this nonlinear min-max problem, where however the NLP subproblem may have 

multiple local optima. 

If all the binary variables x are fixed, meaning fixed vertex direction, problem (18) is an 

NLP, and provides an upper bound of the flexibility index, similar to the subproblem in the OA 

algorithm. However, the master problem is quite different from that used in the OA algorithm 

in two aspects: (a) the constraints are nonconvex in the min-max problem, OA will cut off some 

of the feasible region; (b) for the case where the constraints are convex, OA will yield an upper 

bound of the flexibility index instead of a lower bound since the inner problem is a 

maximization problem. On the contrary, if we use an overestimation of the function to replace 

OA, i.e., underestimation of the function, the master problem will yield a lower bound of the 

flexibility index. 

Here, we use a nonlinear convex function to compare OA and overestimation. Consider the 

following constraint: 

 
2

1 1 22 2 0f          (19) 

The nominal point is (1.5, 5)N   , and the expected deviations are 1 1    , 2 2    , 

respectively. 

Firstly, we apply OA at two points, 1 (0, 2)   and 2 (3, 5)  . Equation (19) is therefore 

replaced by two linear inequalities, which are the tangents of f at the two points, as seen in 

Figure 1(a). 

 
1 1 2

2 1 2

2 2 0

4 7 0

f

f

 

 

    

   
  (20) 

For comparison, the range in which we overestimate the constraint is 10 3  , 22 8  . 
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Therefore, the constraint is overestimated by the following inequality, in which the nonlinear 

term is replaced by its secant, as seen in Figure 1(b). 

 
3 1 2 2 0f        (21) 

The corresponding feasible regions are shaded in Figure 1(a) and Figure 1(b), in which the 

solid and dotted rectangles are the flexible regions for the original and linearized systems, 

respectively. The feasible region of the second case is derived from Eq. (21) together with the 

bounds of the uncertain parameters. It is clear that after applying OA to the constraint, the 

feasible region is enlarged. Therefore, we will obtain an upper bound of the flexibility index if 

we solve the flexibility index problem for the linearized system. On the contrary, if the 

constraint is overestimated, the feasible region is totally inscribed in the original one. Therefore, 

as expected, we obtain a lower bound of the flexibility index. 

Details about the subproblem, master problem, properties of the master problem, and the 

algorithm are given in the following four subsections. 

 

Figure 1. Feasible regions of the linearized systems. (a) OA and (b) overestimation. 

3.2 Subproblem 

The subproblem, which will provide an upper bound, is the inner maximization problem with 



13 

fixed x, as shown below. In difference to the subproblem in the OA algorithm, this subproblem 

is always feasible as long as the nominal point is feasible, and this is always the case. 

  

 

*

,

2

1

( ) max

s. t . 0,

1 ,

z

T T

j jii i jik jki i k j j j

i i k i

N

i i i i i i

x

f q q q a b z c j J

x x i I


 

  

    

 

 



        

         

    (S) 

As required by the assumption of the alternative formulation of the flexibility index, and 

given that (S) is nonconvex, if (S) has multiple local solutions, the smallest one is chosen to 

guarantee the feasibility of the entire path from the nominal point to the boundary. For some 

systems, it can be difficult to solve because the constraints are nonconvex in δ, and we need to 

guarantee the smallest local maximum to be obtained. But for this quadratic system, although 

nonconvex, we can add some extra constraints to make the solution of (S) to be unique and 

satisfy the requirement. 

By substituting i  into jf , jf  becomes a function of x, δ and z, and hence can be denoted 

by  , ,jf x z . For fixed x, jf  is quadratic and/or linear in δ and linear in z. Hence, (S) can 

be rewritten in compact form as: 

 

*

,

2

( ) max

s.t. 0,

z

T

j j j j j

x

f q p b z c j J


 

 



       
  (22) 

where the coefficients jq , jp , and jc  are functions of x: 
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   

     

   

      

 

2

1

1

1

1 1

2 1

1 1

1

j jii i i i i

i

jik jki i i i i k k k k

i k i

N

j jii i i i i i

i

N N

jik jki k i i i i i k k k k

i k i

ji i i i

q x q x x

q q x x x x

p x q x x

q q x x x x

a x x

 

   

  

     

 

 

   

 

 

   

 



       

               

      

                

    









     
2

1

i

i

N N N N

j jii i jik jki i k ji i j

i i k i i

c x q q q a c   



 

  

     



  

  (23) 

 

Figure 2. The range of δ for different constraints 

For fixed control variables z, the range of δ for every inequality in (22) can be derived 

analytically since all the inequalities are quadratic. Assume 
L

j  and 
U

j  are roots of 0jf   

and 
L U

j j  , the range of δ for the jth inequality is L U

j j     if 0jq  , and L

j   or 

U

j   if 0jq  . These ranges can be divided into three typical cases as shown in Figure 2. 

The first case corresponds to constraints with positive jq  which are convex, and the feasible 

region is a continuous interval. The second case corresponds to constraints with negative jq  

which are nonconvex and right-hand half plane symmetry axis, then the feasible region is two 

disjunctive half open intervals and will lead to multiple local optima. The last case is similar to 

the second one but with left-hand half plane symmetry axis, and will not lead to multiple local 
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optima. The linear constraints ( 0jq  ) are neglected in the figure. It is clear from Figure 2 that 

there are two maxima of δ, among which δ1 is a local maximum and δ2 is the global maximum. 

As required by the assumption of the alternative formulation of the flexibility index problem, 

we need to guarantee that the solution of (22) is the smallest maximum δ1. The only reason 

that problem (22) has multiple local maxima lies in the constraints with negative jq   and 

right-hand half plane symmetry axis. Therefore, for those constraints we can add some extra 

constraints as shown below to make sure δ does not cross the intermediate infeasible region. 

The vertical red thick line in Figure 2 gives a graphical illustration. 

 , ,  0, 0
2 2

j j

j

j j

p p
j J q

q q
       

 
  (24) 

Note that if there exists some j such that constraint (24) is active after solving the problem, 

then the active constraint should be removed and the problem needs to be re-solved. This is 

because if constraint (24) is active, the corresponding jf  is always less than zero and the 

intermediate infeasible interval vanishes. Therefore, jf  will not lead to multiple optima. 

3.3 Master problem 

As mentioned in Section 3.1, the nonlinear constraints need to be overestimated to derive the 

master problem. Therefore, we need to derive a linear or piecewise linear function 
l

jf  (the 

superscript l means linear), such that 
l

j jf f   in the hyperrectangle 

( ) { | }U L UT F       , where UF  denotes the upper bound of the flexibility index F, and 

L , U are given by 

 
L N U

U N U

F

F

  

  





  

  
 (25) 
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In this hyperrectangle, the convex quadratic term in (18) can be overestimated by its secant: 

  
   

   
2 2

2
2

U L

i iL L L U L U

i i i i i i i iU L

i i

 
        

 


     


 (26) 

The overestimation of the bilinear term is based on the McCormick relaxation as shown 

below:18,19 

 min( , )L U U L U L L U

i k k i i k i k k i i k i k                  (27a) 

 max( , )L L L L U U U U

i k k i i k i k k i i k i k                  (27b) 

By keeping Eq. (27a) unchanged and multiplying －1 to Eq. (27b), we get, 

 min( , )p L U U L U L L U

i k ik k i i k i k k i i k i kw                   (28a) 

 min( , )n L L L L U U U U

i k ik k i i k i k k i i k i kw                      (28b) 

Therefore, p

ikw   and n

ikw   are the overestimations of i k    and i k  , respectively. By 

replacing the positive and negative bilinear terms in (18) together with their signs by 
p

ikw  and 

n

ikw , respectively, the master problem for (18) with piecewise linear constraints is shown in 

(M1). The upper bound of δ is explicitly added to make the problem tighter, although this 

constraint is not essential. 

 

   

 

 

, , ,

( , )

( , )

min max

s. t .

0,

min , , ( , )

min

p n

p

n

L

x z w w

l L U p

j jii i i ji i jik jki ik

i i k I

n T L U

jik jki ik j jii i i j

ii k I

p U L L U L U U L p

ik k i i k i k k i i k i k

n L L

ik k i i k

F

f q a q q w

q q w b z q c j J

w i k I

w




  

 

           

   







      

       

      

  

 

 

 

 

, , ( , )

1 ,

{0,1}

L L U U U U n

i k k i i k i k

N

i i i i i i

U

n

i k I

x x i I

F

x 

       

    



 

     

         





  (M1) 
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The sets pI   and nI   are defined by {( , ) | , , , , 0}p

jik jkiI i k i k I i k j J q q         and 

{( , ) | , , , , 0}n

jik jkiI i k i k I i k j J q q        , respectively. By substituting p

ikw   and n

ikw  

into l

jf , l

jf  becomes a function of θ and z. Since θ is a function of x and δ, l

jf  can also be 

a function of x, δ and z. Note that this is different from the traditional use of McCormick 

relaxation, in which every bilinear term is replaced by w, and w is bounded by the following 

inequalities: 

 , , ,U L L U

ik k i i k i kw i k I i k             (29a) 

 , , ,L U U L

ik k i i k i kw i k I i k             (29b) 

 , , ,L L L L

ik k i i k i kw i k I i k             (29c) 

 , , ,U U U U

ik k i i k i kw i k I i k             (29d) 

The feasible region is enlarged after using the traditional McCormick relaxation. Therefore, it 

will provide an upper bound of the flexibility index instead of a lower bound. 

The inner maximization problem of (M1) includes min operators of two linear functions. A 

conventional technique is to introduce binary variables, and then use disjunctions to represent 

the choice of the two linear functions. However, this will lead to a mixed-integer bilevel liner 

programming with binary variables in both levels, which is much harder to solve than bilevel 

linear programming with binary variables only in the outer level. 

Actually, the result of the min operators in the inner problem is determined by the outer level 

variables x. To simplify the presentation, we consider the case of  i i       and 

k k      (see Appendix A for other cases). The results of the min operators are given in 

Propositions 2 and 3. 
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Proposition 2. For the bilinear terms in Eq. (28a) with positive coefficients, if 0ix  , then 

p U L L U

ik k i i k i kw         ; if 1ix  , then p L U U L

ik k i i k i kw         , regardless of kx , i < k. 

Proof. Let us consider 0ix   first. Since ix  is fixed to zero, but kx  is not fixed, i  and 

k  can be expressed as functions of δ: 

 

N

i i i

N

k k k

   

   





  

  
 (30) 

Together with Eq. (25), the first term in the min operator of p

ikw  in (M1) minus the second 

one can be written as 

 

 

   

     

     

    2

U L L U L U U L

k i i k i k k i i k i k

U L L U L U U L

k k i i i k i k i k

U N U N

k k i i i i k i

N U N U N U N U

i i k k i i k k

U U U

i k k k i i i

F F

F F F F

F F F

           

         

         

       

        

     

   

      

      

     

           

         

            k i k       

 (31) 

Recall that we assume i i      and k k     , then Eq. (31) is equal to 0 if 0kx  , 

i.e., 
N

k k k        ; and can be simplified to the following equation if 1kx   , i.e.,

N

k k k       . 

    U U

i k k k i iF F                       (32) 

It is clear that ∆ ≤ 0 always holds if 0ix  . Therefore, 
p

ikw  is equal to the first term of the 

min operator if 0ix  , i.e., 
p U L L U

ik k i i k i kw         . 

The proof for 1ix   is similar, and is omitted for simplicity.        ■ 

Proposition 3. For the bilinear terms in Eq. (28b) with negative coefficients, if 0ix  , then 

n L L L L

ik k i i k i kw          ; if 1ix  , then 
n U U U U

ik k i i k i kw          , regardless of kx , i < k. 

Proof. Similar to the proof of Proposition 2.            ■ 
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Based on Propositions 2 and 3, the min operators in (M1) can be rewritten as the following 

disjunctions: 

 , ( , )
i i p

p U L L U p L U U L

ik k i i k i k ik k i i k i k

x x
i k I

w w           

   
             

 (33) 

 , ( , )
i i n

n L L L L n U U U U

ik k i i k i k ik k i i k i k

x x
i k I

w w           

   
               

 (34) 

The disjunctions in Eqs. (33) and (34) are reformulated as mixed-integer constraints with 

the big-M method.20 Then, (M1) can be reformulated as the following more tractable min-max 

programming without the min operators in the inner level. 

 

   

 

 

 

, , ,

( , )

( , )

1 1 1

2 2

min max

s. t .

0,

,

{ , }, ( , )

1

p n

p

n

L

x z w w

L U p

jii i i ji i jik jki ik

i i k I

n T L U

jik jki ik j ji i i j

ii k I

s s s s

i ik ik i ik k ik i

s

s s s

i ik ik i ik

F

q a q q w

q q w b z q c j J

Mx w a b d Mx

s p n i k I

M x w a b




  

 

 

 







     

       

     

   

    

 

 

   

 

2 1 ,

{ , }, ( , )

1 ,

{0,1}

s

k ik i

s

N

i i i i i i

U

n

d M x

s p n i k I

x x i I

F

x 

    



 

  

   

         





  (M2) 

where , , , {1,2}s s s

hik hik hika b d h  , denote the corresponding coefficients and constants of the 

linear functions in Eqs. (33) and (34) for { , }s p n , while 
s

ikw  represents the aggregation 

of 
p

ikw  and 
n

ikw  in (M1). 

Similar to the dual-based method for linear systems introduced in section 3.1, we can obtain 

the following MINLP by replacing the inner maximization problem by its dual. The variables 

λ, μ, υ, and η are the multipliers associated with the inequalities in (M2). 
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L L U N L U
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j i i

s s N s N s

hik hik i hik k hik

s h i k I

s s s

i ik ik i ik

s s si k I i k I i k I

s s N s N s

hik hik i hik k hik

i k

F q a q c

a b d

Mx M Mx

a b d

   
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  

  
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  

 
        

 
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L U
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j i

s s s s

hik i i i hik hik k k k hik

s h i k I

s s

hik i hik k

Mx M Mx F

q a x

a x b x

a b
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      
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

  

  
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

 

   

            

       

   

 

     



 

   

 
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s s s s
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jik jki j hik hik

j h h

n n
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a x b x

a b

B

q q i k I

q q i k
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

  

  


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

 



       

     



     

     

 

 

 

  

  

 

)

, , , 0

0,1

n

n

I

x 

   







  

where 1 2[ , ,..., ]
j

T

nB b b b . 

It should be noted that although there are binary variables in the inner problem, it can be 

rigorously converted to its dual since the binary variables belong to the outer problem. An 

illustrative example is presented in Appendix B to explain this. With the technique in section 

3.1, by introducing auxiliary variables, (M3) is reformulated as the following MILP, which is 

the final version we actually solve. 

(M3) 
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3.4 Properties of the master problem 

There are four versions of master problems, from (M1) to (M4). It is interesting to 

investigate their relations. In most instances, all the four problems are equivalent, but there are 

some exceptions as listed in Table 1. The reason for this lack of equivalence is two-fold: one 

lies in introducing big-M parameters for an unbounded problem, and the other is dualizing an 

infeasible problem. 

Table 1. Exceptions when reformulating the master problems 

(M1) to (M2) 

If (M1) is unbounded, i.e., the inner maximization problem of 

(M1) is unbounded for every x, then the result of (M1) is plus 

infinity. But (M2) has a finite positive optimum since M is finite. 

(M2) to (M3) 

If for some (or all) vertex directions, the inner maximization 

problem of (M2) is infeasible, then (M2) has a positive optimum 

(or infeasible). But (M3) is unbounded and the result is minus 

infinity since the dual of an infeasible problem is unbounded. 

(M3) to (M4) 

If (M3) is unbounded, then the result of (M3) is minus infinity. 

But (M4) has a finite negative optimum, since Mλ, Mμ, and Mυ are 

finite. 

Since (M4) is the master problem we actually solve, we only need to consider the exceptions 

between (M1) and (M4). It can be concluded from Table 1 that, 

(1) If (M1) is unbounded, then its optimum is plus infinity. But (M4) has a finite positive 

optimum since (M2) has a finite positive optimum. 
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(2) If for some (or all) vertex directions, the inner maximization problem of (M1) is 

infeasible, then it has a positive optimum (or infeasible). But (M4) has a negative 

optimum. 

For all the other scenarios except these two exceptions, (M1) and (M4) have the same result. 

Let x* denote the optimal solution of (M4), and * *( )x  the optimal value of the subproblem 

(S). The relations of , ,L UF F F , and * *( )x  are given in Propositions 4 and 5. 

Let X+ denote the set of x in which *( ) Ux F  , X= the set of x in which *( ) Ux F  , and 

X
－
 the set of x in which *( ) Ux F  . As shown in Appendix C, the feasible region of (M1) 

for a fixed design d will look like this: 

(1) It is inscribed in the intersection of ( )UT F   and the feasible region of the original 

problem. 

(2) If X Xx    , the vertex (1 )N UF x x              of ( )UT F   is on the 

boundary of the feasible region. If Xx   , the vertex 

*( ) (1 )N x x x              is outside of the feasible region. 

Proposition 4. If UF F , then L UF F F  . 

Proof. If UF F  , then X   , and hence X X 
  contains all the vertex directions. 

According to the aforementioned summary, all the vertices of ( )UT F  are on the boundary of 

the feasible region of (M1). Therefore, for every x, the inner maximization problem of (M1) 

has the same optimum UF , and hence the optimum of (M1) is UF , i.e., F. Since the inner 

maximization problem of (M1) is bounded and feasible for every vertex, (M1) and (M4) have 

the same optimum. Therefore, L UF F F                  ■ 



24 

Proposition 5. If UF F , then * *( )L UF F x F   . 

Proof. Since l

jf  is an overestimation of jf  in ( )UT F , and l

j jf f  only occurs at the 

vertices/boundaries of ( )UT F . Therefore, in a smaller ( )T F , l

j jf f  is always satisfied. 

We can then obtain the following inequality: 

 
( ) ( )

max min max max min max 0l

j j
z zT F j J T F j J

f f
    

    (35) 

If the nominal point is feasible in (M1), then its flexibility index must be less than F, and 

(M1), (M4) have the same optimum. On the other hand, if the nominal point is infeasible in 

(M1), then (M4) has a negative optimum. In either case, LF F  always holds. 

Next, we only need to prove * *( ) Ux F   since * *( )x F   always holds. Based on the 

conclusions in Appendix C, if X Xx   , ( , , ) 0Ud x F  ; if Xx  ,  *, , ( ) 0d x x   . 

If the inner maximization problem of (M1) is feasible for every Xx  , the solution x* must 

be in the set X
－
 since we need to choose the smallest δ such that ( , , ) 0d x   . In this case, 

(M1) and (M4) have the same solution. Therefore, * *( ) Ux F  . On the other hand, if there 

are some Xx   that are infeasible in the inner maximization problem of (M1), the optimum 

of (M4) will be negative, and one of these x will be the solution of (M4). In either case, 

* *( ) Ux F   always holds.                ■ 

3.5 Algorithm 

The proposed duality-based algorithm is shown in Figure 3, and the procedure is as follows: 

Step 1: Choose an initial vertex direction 0x , such as setting all elements to zero (i.e., vertex 

direction for lower bounds). Choose a stopping criterion ε. 

Step 2: Use 0x  to solve the subproblem (S) with the constraint in Eq. (24), and the result 
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is *

0( )x . Set *

0( )UF x . 

Step 3: Set L N UF      , and U N UF      . Use these parameters to construct 

and solve the master problem (M4), the optimal results are LF  and x*. 

Step 4: If U LF F   , stop; otherwise, set *

0x x , and return to step 2. 

The convergence of the proposed algorithm is proved in the following proposition. 

Proposition 6. The proposed algorithm will converge to the optimal solution in a finite 

number of iterations regardless of the choice of 0x . 

Proof. Let F denote the flexibility index, and Fx  denote the direction that the flexibility 

index is obtained, i.e., *( )Fx F  . If 0

Fx x , then in the first iteration UF F . According 

to Proposition 4, L UF F F  , therefore, the algorithm converges to F in one iteration. 

If 0

Fx x , and let the superscript in the parentheses denote the number of iteration. In the 

first iteration, 
(1) *

0( )UF x F  . According to Proposition 5,  (1) * *(1) (1)L UF F x F   . 

In the second iteration,  (2) * *(1) (1)U UF x F  , meaning UF  is strictly decreasing. Since 

the number of vertices is finite, UF  will finally be equal to F; and the corresponding LF  

will also be equal to F. Therefore, the algorithm will converge to F in a finite number of 

iterations regardless of 0x .               ■ 
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Figure 3. Flowchart of the proposed duality-based flexibility index algorithm 

4. Numerical examples 

In the following, four examples are presented to compare the traditional active-set method 

with the proposed duality-based method. The first one is a small problem to show the details 

of the proposed method, the second one is a small HEN, the last two are a process network 

problem, and a security constrained unit commitment problem to compare the computational 

performance of different methods. All models are solved in GAMS 24.8.2, the MINLP in the 

active-set method is solved by BARON 16.12.7,21 and the NLP and MILP in the proposed 

duality-based method are solved by CONOPT 3 and CPLEX 12.7, respectively. The 
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computation is carried out on an Intel CoreTM i5-6200U laptop at 2.30 GHz with 8GB RAM. 

4.1 Small problem 

This problem is designed to show some diagrams to illustrate the details of the algorithm. 

Assume that there are two uncertain parameters 1  and 2 , no control variables. The nominal 

values and expected deviations are 1 7N   , 2 8N   , 1 4    , 2 6    , respectively. The 

following two constraints must be satisfied. 

 
1 1 2

2 1 2

100

10

f

f

 

 

 

   
 (36) 

Problem (S) is solved with four different x, and the solutions of four vertex directions are 

shown in Figure 4. Note that, when solving problem (S) with x = (0, 0), an extra constraint 

like the one in Eq. (24) should be added to guarantee the smallest optimum is obtained. 

 1 2 2 1

1 22

N N   


 

 

 

  


 
  (37) 

The two curves are the boundary of the feasible region, and the four arrows represent the 

maximum distance from the nominal point to the boundary. The flexibility index 0.51F   

corresponds to the smallest vertex solution, and its corresponding flexible region is marked by 

the solid rectangle. The dotted rectangle is the reference rectangle, i.e., the expected flexible 

region. 
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Figure 4. Vertex solutions and the feasible region 

The proposed algorithm is carried out step by step to show the details. The big-M parameters 

used in this problem are M = 100, 1M M M     , and these big-M parameters are also 

used in the subsequent three examples. It takes two iterations to obtain the optimal solution, 

and the results of the subproblem (S), master problem (M4) and some intermediate results are 

given in Table 2. 

Table 2. Results of the small problem with x0 = (0, 0) 

Iter 

subproblem (S) master problem (M4) 

x0 
*  FU LF  

*x  

1 (0, 0) 0.863 0.863 0.353 (1, 1) 

2 (1, 1) 0.51 0.51 0.51 (1, 1)1 

Note: 1 This optimal value can be any combination of x, since every direction yields the same result in the last iteration. 

In the first iteration, we start from x0 = (0, 0) to solve the subproblem, and the upper bound 

of the flexibility index is 0.863. The range in which jf   is overestimated is 

 1 1 1, 3.546,10.454L U       , and  2 2 2, 2.819,13.181L U       . We can then construct 
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the master problem in the form of (M1), as shown below: 
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  (38) 

Its corresponding feasibility function is stated in the following: 
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  (39) 

The feasible region is depicted in Figure 5, in which the black dot in the center is the nominal 

point, the dotted rectangle is the region in which the constraint is overestimated, i.e., the 

hyperrectangle ( )UT F  . The shaded area and the solid rectangle with 0.353LF    are the 

feasible region and flexible region for the master problem, respectively. We also depict the 

feasible region for the original problem in Figure 5, corresponding to the region between the 

two blue solid curves. 

In the first iteration, X+={(0, 1), (1, 0)}, X=={(0, 0)}, X
－
={(1, 1)}. The graph is consistent 

with the aforementioned conclusions about the feasible region in section 3.4. The three vertices 

of ( )UT F   along the directions in X X 
  are on the boundary, and the vertex 

corresponding to the maximum deviation along the direction in X
－
 in the original problem is 
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outside of the feasible region. There is only one element in X
－
, which is exactly the critical 

direction for the original problem. Therefore, the solution will converge in the next iteration. 

 

Figure 5. Feasible region in the first iteration with x0 = (0, 0) 

 

Figure 6. Feasible region in the second iteration with x0 = (0, 0) 

In the second iteration, we use the optimal solution x* of the first iteration as the vertex 

direction to solve the subproblem, and the new upper bound of the flexibility index is 0.51, 

which is exactly the flexibility index. Therefore, X
－
 is empty, and all the vertices of ( )UT F  

are on the boundary of the feasible region, which means ( )UT F  is exactly the same as the 
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feasible region of the master problem as shown in Figure 6. Hence, the optimum of the master 

problem, 0.51, is equal to UF , and the algorithm converges in two iterations. 

If we start from x0 = (0, 1), the results are given in Table 3. In the first iteration, the master 

problem (M4) has a negative optimum which means that the constraints are greatly 

overestimated, such that even the nominal point is infeasible in the linearized system as shown 

in Figure 7. Strictly speaking, this is not a flexibility index problem since the nominal point is 

infeasible. If we solve problem (38) directly, the only solution is x*= (0, 1), and the algorithm 

cannot converge. But in practice, we solve (M4) instead, which dualizes the inner 

maximization problem of (M1). As discussed in section 3.4, if there are infeasible directions 

in (M1), the optimum of (M4) will be negative and the optimal value of x will be one of these 

infeasible directions. 

Table 3. Results of the small problem with x0 = (0, 1) 

Iter 

subproblem (S) master problem (M4) 

x0 
*  FU LF  

*x  

1 (0, 1) 1.608 1.608 -25.849 (1, 1) 

2 (1, 1) 0.51 0.51 0.51 (1, 1) 

The conclusions about the feasible region of the master problem are still valid. In this case, 

X+ is empty, X=={(0, 1)}, and X
－

={(0, 0), (1, 0), (1, 1)}. We can only exclude the single 

direction in X=. But fortunately, the optimal solution x* is exactly the critical direction for the 

original problem. Therefore, the algorithm converges in the next iteration, just like starting 

from x0 = (0, 0). 
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Figure 7. Feasible region in the first iteration with x0 = (0, 1) 

4.2 Heat exchanger network 

This example of a small HEN is a modification of the example introduced by Grossmann 

and Floudas.7 There are two hot streams, two cold streams, three heat exchangers and one 

cooler in the HEN, as shown in Figure 8. The uncertain parameters are the inlet temperatures 

of the four streams and the heat capacity flow rates of H1 and C2, namely, T1, T3, T5, T8, FH1, 

and FC2. All the nominal values are shown in Figure 8, the expected deviations for the inlet 

temperatures are ±5 K, and the expected deviations for the heat capacity flows of H1 and C2 

are assumed to be ±0.3 kW/K and ±0.5 kW/K, respectively. The only control variable lies in 

the heat load of the cooler (Qc). 
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Figure 8. HEN with six uncertain parameters and one control variable 

The inequality constraints are given as follows: 
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  (40) 

The traditional active-set method and the proposed duality-based method are applied to 

analyze the flexibility index of this system. The results, which yield F = 0.174, are given in 

Table 4. Although the MILP problem in the proposed duality-based method has more variables 

than the MINLP problem in the active-set method, the duality-based method requires less time 

to solve this small example (0.094 s vs. 0.32 s).  
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Table 4. Flexibility index results of the HEN 

Method 

# of bin. 

variables 

# of cont. 

variables 

# of 

constraints 

# of 

iterations2 

F 

Solution 

time [s] 

Active-set 12 23 52 - 0.174 0.320 

Duality 0/61 2/1451 12/3441 2 0.174 0.0943 

Notes: 1 The first number denotes the subproblem, the second denotes the master problem 

2 The number of iterations in the duality-based method 

3 Summation of all time used in the solvers 

It is clear from Table 4 that the active-set method has much fewer constraints and continuous 

variables than the MILP problem in the duality-based method, but it takes longer to solve. The 

reasons are two-fold. On one hand the active-set method has to solve a complex MINLP 

problem with nonconvex bilinear terms, while the duality-based method only needs to solve 

some small NLPs with 1zn   variables (where zn  is the number of control variables) and 

easier MILPs; on the other hand, the MINLP in the active-set method usually has more binary 

variables than the MILP in the duality-based method, because the former has jn  (number of 

constraints) binary variables, while the latter has n  (number of uncertain parameters) binary 

variables, and there are usually more constraints than uncertain parameters. 

The performance of the duality-based method depends on the initial vertex direction used to 

solve the subproblem. If the optimal vertex direction is used as the initial vertex direction, only 

one iteration is needed. Here, the duality-based method is tested with all possible initial vertex 

directions as shown in Table 5. There are six uncertain parameters. Therefore, the number of 
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possible initial vertex directions is 26 = 64. All the runs yield the correct result, and on average, 

they take 2.4 iterations and 0.16 seconds to converge. 

Table 5. Statistics of duality-based method with all possible initial vertex directions 

Initial Iterations Time [s] Initial Iterations Time [s] 

0 2 0.124 32 1 0.078 

1 2 0.250 33 2 0.094 

2 2 0.094 34 2 0.11 

3 2 0.109 35 2 0.156 

4 2 0.126 36 2 0.141 

5 3 0.157 37 2 0.094 

6 2 0.109 38 2 0.11 

7 3 0.234 39 2 0.173 

8 2 0.110 40 2 0.11 

9 2 0.110 41 2 0.141 

10 2 0.110 42 2 0.188 

11 2 0.172 43 2 0.125 

12 2 0.266 44 2 0.094 

13 2 0.110 45 2 0.11 

14 2 0.125 46 2 0.125 

15 2 0.108 47 2 0.156 

16 3 0.359 48 3 0.189 
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17 3 0.171 49 3 0.234 

18 3 0.204 50 3 0.265 

19 3 0.156 51 3 0.14 

20 3 0.172 52 3 0.172 

21 3 0.173 53 3 0.327 

22 3 0.202 54 4 0.218 

23 3 0.156 55 3 0.234 

24 2 0.109 56 3 0.204 

25 2 0.124 57 3 0.171 

26 2 0.094 58 3 0.156 

27 2 0.109 59 3 0.171 

28 2 0.109 60 3 0.187 

29 2 0.126 61 3 0.359 

30 2 0.141 62 3 0.172 

31 2 0.109 63 3 0.235 

4.3 Planning of process network 

Consider a process network consisting of 6 processes and 10 chemicals as shown in Figure 

9.22 The following planning model of this process network is the one used by Zhang et al.3 

 0 min

ˆ1

, ,
jj

t

j ij it ij it jt jt j

t i Ii I

Q P P W D Q j J t T    

 


       

 
 

     (41a) 

 0 max

ˆ1

, ,
jj

t

j ij it ij it jt jt j

t i Ii I

Q P P W D Q j J t T    

 


       

 
 

     (41b) 
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 max , ,it iP P i I t T      (41c) 

 max , ,
j

jt jt jj j t

j J

W W D j J t T  



       (41d) 

 0, ,itP i I t T      (41e) 

 0, ,jtW j J t T      (41f) 

 

Figure 9. Process network superstructure 

In this model, I, J, and T are sets of processes, chemicals, and time periods, respectively. 
0

jQ , 

min

jQ , and max

jQ  are the initial, minimum and maximum inventories, respectively. itP  is the 

total amount of chemicals produced by process i in time period t. ij  denotes the conversion 

fraction of chemical j by process i with respect to the total amount. Therefore, the amount of 

chemical j consumed or produced by process i in time period t is given by ij itP . ˆ
jI  and jI  

are sets of processes producing and consuming chemical j, respectively. jtW   denotes the 

purchased amount of raw material j in time period t, and jtD  denotes the demand for product 

j in time period t. J  is the set of raw materials (chemicals 1 to 4). The data is available in the 

supplementary material. 

Equations (41a) and (41b) ensure that the inventory level lies within the bounds at every 
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point in time. Equation (41c) corresponds to the capacity constraint. Equation (41d) is the 

purchase limit for raw materials. As stated by Zhang et al.,3 it is assumed that the purchase limit 

of chemical j depends on the demand of products consuming j, denoted by the set jJ . The 

qualitative explanation is that as the demand increases, the availability of its corresponding raw 

materials decreases. For example, the purchase limit of acetylene is affected by the demand of 

acetaldehyde and acrylonitrile. The coefficient jj    describes how much the availability is 

affected by the demand. Equations (41e) and (41f) are nonnegativity constraints. 

In this model, the coefficient jj   and the demand jtD  for products (chemicals 5 to 10) are 

considered to be uncertain parameters, and itP   and jtW   are the control variables. For 

different number of time periods, 
TN , the number of uncertain parameters, control variables, 

and constraints are 6 7TN  , 10 TN , and 40 TN , respectively. 

The flexibility index problem for this process network with 
TN   uncertain parameters 

varying from 1 to 4 is solved by the active-set method and the proposed duality-based method, 

as shown in Table 6. The time limit for each case is one hour. 

In the smallest instance ( 1TN  ), both methods can solve the flexibility index problem to 

optimality quite efficiently. The active-set method is slightly faster than the duality-based 

method since the latter needs to solve 2 NLPs and 2 MILPs, which are not significantly easier 

than the small MINLP in the former. As the problem size increases, the number of binary 

variables and bilinear terms in the active-set method increases quickly. Therefore, the duality-

based method becomes superior to the active-set method. In the larger instances ( 3TN   , 

4TN  ), the active-set method can obtain the correct result, but it cannot prove optimality. The 
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lower bound does not improve (remains zero) during the computation. However, the proposed 

duality-based method can solve all the instances within one minute. 

Table 6. Flexibility index results of the process network problem 

TN  Method 

# of bin. 

variables 

# of cont. 

variables 

# of 

constraints 

# of 

Iterations 

F 

Gap 

[%] 

Solution 

time [s] 

1 

Active-set 40 105 159 - 2.131 0 0.51 

Duality 0/13 24/646 53/1747 2 2.131 0 0.58 

2 

Active-set 80 201 301 - 0.829 0 198.5 

Duality 0/19 40/1770 99/4932 2 0.829 0 5.0 

3 

Active-set 120 297 443 - 0.556 100 3600 

Duality 0/25 56/3374 145/9557 2 0.556 0 18.8 

4 

Active-set 160 393 585 - 0.050 100 3600 

Duality 0/31 72/5458 191/15,622 2 0.050 0 51.7 

Another observation is that, it takes only a few iterations to converge to the optimum in the 

duality-based method, regardless of the number of uncertain parameters and the choice of the 

initial vertex direction. There is no theoretical guarantee of this property, but the direction 

corresponding to the smallest deviation in the original problem tends to also have the smallest 

deviation in the master problem. 

4.4 Security constrained unit commitment problem 

In this example, we consider the unit commitment model, which arises in electric power 

systems.23 It deals with the scheduling of I power generators over T time periods in a power 
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generation plant. The MINLP model, which involves uncertainties in the power generated, 

consists of the following constraints: 

  2

1 1
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a b p c p y SD z SU C
 
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 
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 L U

t t tR R R t     (42e) 

 , 1 ,it i t ip p RU i t     (42f) 

 , 1 ,it i t ip p RD i t     (42g) 

where constraint (42a) is the convex objective function in the original scheduling problem 

solved by Niknam et al.24, but we introduce an upper limit of cost in the flexibility index 

problem. Equation (42b) is the spinning reserve constraint. Equation (42c) sets the power 

limit for every generator at every time period. Equation (42d) ensures that the carbon dioxide 

emissions satisfy the emission limit. Equation (42e) sets the spinning reserve limit for every 

time period. Equations (42f) and (42g) are the ramp rate limits. 

In this model, the spinning reserve tR  are the control variables, the uncertain parameters 

correspond to the generated power itp , and all the others are constants. In particular, 
ity  and 

itz  are binary variables in the original scheduling problem, but in the flexibility index problem 

they are fixed to the optima of the scheduling problem. All the constraints except Eq. (42a) 

are linear, and there are only quadratic terms with positive coefficients in the nonlinear 
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constraint. Therefore, the proposed duality-based method is applicable. 

We consider a case consisting of 10 units and 24 time periods. The data is available from the 

website www.minlp.org/library/problem/index.php?i=41&lib=MINLP. The corresponding 

flexibility index problem is a very large problem with 240 uncertain parameters, 24 control 

variables, and 1034 constraints. The nominal operating point is the optimal solution of the 

scheduling problem, in which all the generators are forced to operate during all time periods. 

This can simplify the formulation of the flexibility index problem, since we do not need to deal 

with the special case where some generators are shut down. The expected deviation is set to be 

5 percent of the nominal value, and the spinning reserve can only be adjusted within 10 percent 

of the nominal value. To avoid the flexibility index being zero, the upper limit of the total cost 

UC  is 700,000 $/h, which is greater than the optimal cost. The emission limit UE  is 200,000 

g higher than the value (15,500,000 g) used in the original scheduling problem. The power 

limit 
U

ip  of every generator is 10 MW higher than the original value. The ramp rate limits 

iRU  and 
iRD  are 10 MW/h higher than the original values. 

The flexibility index problem is solved by the active-set method and the proposed duality-

based method, and the results are shown in Table 7. 

Table 7. Flexibility index results of the unit commitment problem 

Method 

# of bin. 

variables 

# of cont. 

variables 

# of 

constraints 

# of 

Iterations 

F 

Solution 

time [s] 

Active-set 1034 2334 3609 - 0.258 206.9 

Duality 0/240 25/249,196 1034/744,506 2 0.258 51.5 

http://www.minlp.org/library/problem/index.php?i=41&lib=MINLP
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Both methods yield the same result (F = 0.258), but the duality-based method is significantly 

faster than the active-set method (51.5 s vs. 206.9 s). The reason is the same as the one 

explained in the second example for HEN. The master problem of the duality-based method 

can be very large, since we have to introduce new variables and new constraints for every 

combination of binary variables and constraints to eliminate the nonlinearity. However, it only 

takes less than 30 seconds to solve the large MILP since the relaxed MILP (RMIP) has the 

same optimum as the MILP, although the binary variables are not integral in the RMIP. In 

contrast, the optimum of the relaxed MINLP of the active-set method is zero. 

5. Conclusions 

In this work, we have presented a new flexibility index algorithm for systems in which all 

the inequalities are quadratic or linear in θ, and linear in z. This class of system is proved to 

have a vertex solution if all the diagonal elements of jQ , j J , are non-negative. Based on 

this property, the subproblem, which provides an upper bound of the flexibility index, is easily 

obtained. Similar to the idea of OA in convex MINLP, the master problem is constructed by 

overestimating the nonlinear constraints, providing a lower bound of the flexibility index. After 

eliminating the min operators in the inner maximization problem, dualizing the inner 

maximization problem, and introducing new variables and constraints, the master problem is 

reformulated as a tractable MILP. By iteratively solving the subproblem and the master 

problem, the algorithm can be guaranteed to converge to the flexibility index. 

Four computational studies, which include a small example HEN, a process network and unit 

commitment, are presented to illustrate its applicability in solving flexibility index problem. 
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The results show that the proposed algorithm is more efficient than the active-set method, 

especially for large-scale problems with more constraints than uncertain parameters. 

Finally, this algorithm is not restricted to quadratic systems. It can be directly extended to 

inequalities with univariate convex nonlinear terms, since they can be overestimated by their 

secants just like the quadratic terms. For general nonlinear systems with vertex solutions, this 

algorithm also provides a promising approach. If one can develop the overestimation satisfying 

these conditions: (1) the overestimation is linear or piecewise line, (2) the overestimation is 

equal to the original function at all the vertices of ( )UT F  , and greater than the original 

function inside of ( )UT F , (3) the maximum of the overestimation in ( )UT F  lies at a vertex, 

the algorithm in this work can also be applied to the general systems, but the master problem 

must be reformulated in a similar way. 
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Notation 

ia , 
ib , 

ic  = coefficients of quadratic cost function of unit i 

UC  = upper limit of the total cost 

UE  = emission limit for the system 

iEC  = emission coefficient for unit i 

itp  = generated power of unit i at time t 

L

ip  = lower power limit of unit i 
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U

ip  = upper power limit of unit i 

tR  = spinning reserve at time t 

L

tR  = lower spinning reserve requirement at time t 

U

tR  = upper spinning reserve requirement at time t 

iRD  = ramp down limit of unit i 

iRU  = ramp up limit of unit i 

iSD  = shutdown cost for unit i 

iSU  = startup cost for unit i 

ity  = whether unit i is shut down at time t 

itz  = whether unit i is started up at time t 
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Appendix A: Other cases for reformulating the min operators in (M1) 

(1) / /i i k k           : 

If 1ix   and 0kx  , p L U U L

ik k i i k i kw         ; otherwise, p U L L U

ik k i i k i kw         . 

(2) / /i i k k           : 

If 0ix   and 1kx  , p U L L U

ik k i i k i kw         ; otherwise, p L U U L

ik k i i k i kw         . 

(3) / /i i k k           : 

If 1ix   and 1kx  , 
n U U U U

ik k i i k i kw          ; otherwise,
n L L L L

ik k i i k i kw          . 

(4) / /i i k k           : 

If 0ix   and 0kx  , n L L L L

ik k i i k i kw          ; otherwise, n U U U U

ik k i i k i kw          . 

Appendix B: Example for converting mixed integer linear min-max problem 

to its dual 

Let us consider the following min-max problem with a disjunction in the constraint similar 

to (M1): 

 

{0,1}
min max

s.t.

T

y x
c x

y y

Ax b Dx e



   
       

  (B1) 

It can be decomposed to two maximization problems, and subsequently convert them to their 

dual respectively. 

 

If 0 If 1

min min
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0 0

T T

T T

y y
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 
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 

 

 

 
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  (B2) 

where λ and μ are the dual variables for the two linear inequalities, respectively. 

The result of problem (B1) is the minimum of two problems in (B2). Another method to 
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solve problem (B1) is to apply big-M reformulation as shown below. 

 

 

{0,1}
min max

s.t.

1

T

y x
c x

Ax b My

Dx e M y



 

  

  (B3) 

By using the dual of the inner problem, it can be rewritten as 

 

   
{0,1} ,

min min 1

s.t.

, 0

T T
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b My e M y
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 
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 

 


     
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  (B4) 

If y is fixed to be 0, μ will be 0 to minimize the objective function as long as M b e  , 

which is exactly the same as the first scenario of problem (B2). On the other hand, λ will be 0 

if y is fixed to be 1 and M e b  , corresponding to the second scenario of problem (B2). 

This shows that problem (B1) is equivalent to problem (B4) if M b e  . Therefore, the 

reformulation from (M2) to (M3) is correct if M is sufficiently large. 

Appendix C: Properties of the feasible region of (M1) 

We consider the feasibility function ( , )d   of (M1): 

 ( , ) min max{ , , }l L U

j
z j J

d f     


     (C1) 

Since θ is a function of x and δ, ( , )d   can also be denoted by ( , , )d x  . We can draw 

some conclusions about the feasible region of (M1) defined by ( , ) 0d    in the following: 

(1) In the hyperrectangle ( )UT F , 0L    and 0U    always hold. But outside of 

( )UT F , ( , ) 0d   . Therefore, the feasible region can be regarded as the intersection 

of ( )UT F  and ( , ) 0l d   , where ( , ) min maxl l

j
z j J

d f 


 . 

(2) Since 
l

jf   is an overestimation of jf   in ( )UT F  , 
l

j jf f  , j J   , always hold, 

therefore, ( , ) ( , )l d d     must hold, which means the feasible region of (M1) must 
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be contained in the one of the original problem. 

(3) Since l

jf  is equal to jf  at all the vertices of ( )UT F , ( , )l d   is equal to ( , )d   

at all the vertices of ( )UT F  . If X Xx    , the vertex 

(1 )N UF x x              is feasible in the original problem. Therefore, 

( , , ) ( , , ) 0l U Ud x F d x F   , but ( , , ) 0Ud x F   since one of the last two terms in 

Eq. (C1) is equal to zero. If Xx  , the vertex *( ) (1 )N x x x              is 

on the boundary of the feasible region of the original problem, therefore, 

   * *, , ( ) , , ( ) 0l d x x d x x     , and hence  *, , ( ) 0d x x   . 


