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Abstract

In this paper two strategies are presented to reduce the combinatorial complexity when solving
single stage and multistage optimization scheduling problems that involve cost minimization
and due dates. These problems can naturally be decomposed into assignment and sequencing
subproblems. The proposed strategies rely on either combining mixed-integer programming
(MILP) to model the assignment part and constraint programming (CP) for modeling the
sequencing part, or else combining MILP models for both parts. The subproblems are solved
sequentially by adding integer cuts to the first MILP to generate new assignments. Results are
presented for both single and multistage systems.

Keywords: Mixed Integer Programming, Constraint Programming, Hybrid Strategy, Multi-
stage Scheduling.

1. INTRODUCTION

With increased computational power and algorithmic developments Mixed-Integer Linear Pro-
gramming (MILP) has become a competitive alternative for solving scheduling and related
combinatorial optimization problems in chemical engineering. Examples of MILP-models for
scheduling are given, for instance, in Pekny and Reklaitis (1998), Shah (1998) and Pinto and
Grossmann (1998). The advantage of an MILP-approach is that it provides a general framework
for modeling a large variety of problems such as multiperiod planning, job shop scheduling and
supply chain management problems. However, the major difficulty lies in the computational
expense that may be involved in solving large-scale problems, which is due to the computa-
tional complexity of MILP problems which are NP-hard. Therefore, solving MILP models
without simplification through the use of heuristics can often make this approach prohibitive
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for industrial applications. To reduce the combinatorial explosion in scheduling problems, logic
based optimization methods have emerged (Hooker, 2000). These include Generalized Disjunc-
tive Programming (GDP) (Raman and Grossmann, 1994) and Constraint Programming (CP)
(Hentenryck, 1989). GDP is based on the idea of representing discrete and continuous op-
timization problems through equations, disjunctions and logic propositions, and in terms of
Boolean and continuous variables. CP is similar to GDP in that it also involves equations,
logic statements and disjunctions. However, the most important difference is that CP has
high-level constructs known as global constraints that are procedural and implicit in nature,
which can make it possible to express the models in a very compact form. In contrast, GDP
gives rise to declarative models that are expressed through explicit equations. Furthermore,
while GDP problems can be solved through branch and bound, or reformulated as MILPs,
CPs are solved through implicit enumeration techniques coupled with techniques for domain
reduction of variables, which in turn are based on constraint propagation techniques. In the
case of scheduling, these correspond for instance to edge finding methods (Carlier and Pinson,
1989) that have proved to be efficient in solving certain types of jobshop scheduling problems.

Software for MILP has been available for over two decades. Current codes include OSL (IBM,
1992), ILOG CPLEX (ILOG, 2001) and XPRESS-MP (Dash Associates, 1999). For logic based
optimization methods software has emerged only in recent years. Perhaps the most popular
software for solving CPs has been ILOG Solver (ILOG, 1999), ECLiPSe (Wallace et al., 1997)
and CHIP (Dincbas et al., 1988). While for general purpose problems ILOG Solver is often less
effective than MILP, the special extension for scheduling, ILOG Scheduler, has proved to be
quite effective, particularly for discrete manufacturing scheduling problems where feasibility is
a major issue. Domain reduction techniques perform well for these problems since they have
finite or discrete domains.

Interest for combining MILP and CP has arisen recently (Ottosson et al., 2001), because
these methods have proved to be successful in solving complementary classes of problems:
MILP when optimization is the dominating aspect, and CP when feasibility is the major
concern. The main objective of developing hybrid MILP/CP strategies is to try to use their
complementary strengths in an efficient manner. A major goal of this paper is to classify and
further develop hybrid methods for solving scheduling problems, as well as bringing up some
issues that have until now been discussed only in the OR-literature. In the following section,
we will review some of the recent developments made for the scheduling models. We then
describe two decomposition strategies that either integrate MILP and CP, or are composed of
two MILP subproblems. The application of the strategies is illustrated in the single stage batch
plant, and in multiple stage batch plants. The former problem has been addressed before by
Jain and Grossmann (2001), while the latter is a new application for hybrid models in which
the generation of cuts is significantly more difficult.

2. BACKGROUND

There has been considerable research on methods for solving MILP problems (Nemhauser and
Wolsey, 1988). Recently the most significant development has been in new software implemen-
tations that can increasingly solve larger problems (e.g. CPLEX, XPRESS-MP). Most of these
apply the Branch and Bound method for handling the integer variables, in which the greatest
bottleneck arises from the potentially large integer search space due to the exponential number
of possible combinations. The effectiveness of MILP methods depends further on the size of
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the linear programming (LP) subproblems, and on the gap between the objective value for the
optimal solution and the initial LP subproblem. General approaches to overcome this bottle-
neck include preprocessing and Branch and Cut algorithms (Johnson et al., 2000) in which
extra cuts are added to the MILP to strengthen its relaxation gap, as for instance the lift and
project cuts by Balas et al. (1996).

Constraint programming applies constraint propagation at every node for reducing the domain
of all the variables (Hentenryck, 1989; Marriott and Stuckey, 1999). The variable domains may
be continuous, discrete or boolean. An empty domain means that the node is infeasible and can
be fathomed. Branching is performed on domains that contain more than one element (variable
value). CP was originally developed for solving feasibility problems, but has also been extended
to solve optimization problems by placing the objective function in an inequality constraint
that is less than or equal to the incumbent solution. The search terminates when the domain
of this constraint is empty and all nodes are fathomed. It should be noted that although
CP methods are often efficient in solving discrete feasibility problems, the performance in
optimization depends highly on the propagation algorithms used and on how constrained the
problem is.

In MILP all the constraints are evaluated simultaneously, while CP evaluates the effect of
constraints sequentially by communicating through variable domains. Consequently, it is gen-
erally difficult to obtain the optimal solution for loosely constrained CP problems. On the
other hand, MILP methods require all constraints to be linear equalities or inequalities due to
the LP based model. This restriction does not apply for CP problems, in which all algebraic
constructs are allowed together with some special constructs, known as global constraints, such
as “all different” or “cumulative” constraints (ILOG, 1999).

Apart from the algorithmic development for improving the solution of multistage scheduling
problems, a number of different modeling approaches have been presented in the chemical
engineering literature. The general idea of these is mostly to split the large problem into
smaller units or to apply some supporting heuristics. Examples of this can be seen for instance
in Pinto and Grossmann (1995), who used a slot-based MILP scheduling model combined with
single machine scheduling algorithms. In contrast, in Méndez et al. (2001) the variables of
a multistage flowshop problem are split into assignment and sequencing, in a similar fashion
as in Ierapetritou and Floudas (1998) for the STN model, in order to reduce the number
if 0-1 variables. Wang and Zheng (2001) presented a hybrid approach where the authors
combine simulated annealing and genetic algorithm for a job-shop scheduling problem in a
parallel framework. When trying to solve large-scale problems, the former strategies suffer
from combinatorial explosion and weak relaxations due to the big-M terms, while the latter
cannot guarantee the solution quality.

3. DECOMPOSITION STRATEGIES

We assume in this paper that we deal with general scheduling problems that involve cost
minimization with due dates and sequence independent setup times. Assuming this type of
problems motivated by the work of Jain and Grossmann (2001), we consider decomposition
strategies for scheduling into assignment and sequencing levels as shown in Fig. 1. As can be
seen, the main idea is to determine optimal assignments of jobs to units or machines at the
high level, and then perform feasible sequencing of the jobs for the given assignments at a lower
level. Since the latter may not give rise to a feasible sequence, cuts are derived and added to
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the assignment problem to generate a new assignment. We explore in this paper the cases when
an MILP is used for the assignment subproblem which is driven by optimization, and either
CP or MILP is used to solve the sequencing subproblem, which is dominated by feasibility
concerns. These strategies are applied to both single- and multistage scheduling problems.

Job
Assignrrent
Sequencing

I\b A
Feasible?
Yes

Figure 1. Decomposition strategy

A review of different integration strategies has been reported in Jain and Grossmann (2001).
These authors proposed an integration strategy using a hybrid MILP/CP model consisting of
two subproblems, as shown in Fig. 1. One subproblem deals with the assignment of orders to
units which is modeled as an MILP. The other subproblem deals with the sequencing of orders
for a fixed assignment and it is modeled as a CP problem. These subproblems are integrated
in a decomposition strategy in which the MILP is solved as a master problem relaxing the
sequencing constraints, while the CP is solved as a feasibility subproblem for the sequencing.

Consider a scheduling problem where a complete MILP model can be expressed as follows.

min cTu+cla (1)

subject to
Au+ Bz +Dv+ Ey<a (2)
Au+B'z+D'v+ E'y <d (3)

u€e R* ve R, x e Z% ye 7Y

The problem has both continuous (u,v) and discrete variables (z,y), and assumes that only
the variables (u,z) are present in the objective function. It is also assumed that the MILP
problem can be divided into two parts. One part is suitable for the MILP framework, i.e. the
objective function and constraints (2) give rise to tight LP-relaxations. The other part leads
to a feasibility problem given by constraints (3) that exhibit poor LP-relaxation. The former
variables and constraints form the core of the MILP subproblem, and the latter ones are left
either for the CP subproblem, or for a MILP with fixed assignments. The main difference
compared to earlier approaches is that neither of the subproblems are given in complete form
as MILP or CP problems.

If the same problem were to be modeled as a CP, more constructs can be utilized and thus
some variable definitions may be different, but equivalence relations can be established between
these two models. The corresponding CP model is as follows,
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subject to
G(a,7,7,§) <0 (5)

Here, the u, %, v,y are the corresponding CP variables and D is their domain. Typically the
constraint set generated for the CP is much smaller than that for the MILP, but the CP may
have difficulties in finding a solution and proving the optimality, mainly due to the lack of
linear programming relaxations.

In Strategy I, which is the one that was proposed by Jain and Grossmann (2001), we consider
a hybrid model where the complicating MILP constraints in Eq. (3) are replaced by their CP
equivalent, G(u, z, v, y) < 0 for fixed (u, 7).

min cu+cla (6)
subject to
Au+ Bz +Dv+ Ey<a (7)
(u, ) < (4, T) (8)
G(u, z, v, §) <0 (9)

ueE R we RV, x e Z*,ye ZY
i, %, 0,5 €D

Note that the objective function (6) is exactly the same as for the MILP model, and that the
equivalence in (8) relates the MILP and CP variables. The variables (v,y) and (7, J) may or
may not be directly connected, depending on the specific problem. The MILP subproblem is
then given by (6), (7) and integer cuts that are added at each major iteration, while the CP
subproblem is given by (9) for fixed values of @, z. By solving the relaxed MILP problem, we
obtain an optimal solution that satisfies the constraint sets in (7). This solution can be used to
derive a partial CP solution through the equivalence relations (8) and the feasibility problem
for fixed (u, x) will verify if a solution satisfying the constraints (9) can be found. If this is the
case, then the optimal solution is found and the hybrid algorithm will terminate. Else, if the
CP solution is infeasible, then as many infeasible solutions as possible need to be eliminated
by cuts that are added to the next relaxed MILP problem.

In Strategy II, the required MILP model (1)-(3) is used except that it is solved by decomposing
it into two levels: (a) an assignment part consisting of (1) and (2) with integer cuts, and a
sequencing part consisting of the constraints in (3) for fixed u and z. In other words, the only
difference with Strategy I is that instead of solving a CP subproblem for the sequencing part,
we solve a feasibility MILP problem. Although the MILP sequencing problem has in general
poor relaxation, the advantage is that it is simplified and reduced in size when fixing the job
assignments. Furthermore, one can resort to the same solver in both phases.
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The following sections of this paper apply the two strategies to single stage and multistage
scheduling problems. The former was studied previously by Jain and Grossmann (2001), while
the latter has not been addressed before with a hybrid decomposition strategy.

4. SINGLE-STAGE PARALLEL SCHEDULING PROBLEM
4.1. Strategy I

Strategy I of the previous section was proposed by Jain and Grossmann (2001) and applied
to a single-stage scheduling problem for parallel dissimilar machines. The approach reduced
dramatically the computation time and reruns with expanded data sets in Harjunkoski et al.
(2000) demonstrated the robustness of the method. The main idea lies in that the assignment
of orders to equipment is performed with a relaxed MILP master model, while the sequencing
is performed with a CP model. This is motivated by the fact that assignment problems tend
to solve well with MILP and using CP for the sequencing allows the usage of special scheduling
constructs that may improve the solution efficiency. The decomposition is demonstrated in

Fig. 2.
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Figure 2. MILP/CP decomposition for a single-stage problem

The resulting hybrid MILP/CP model reported in Jain and Grossmann (2001) is given below.
Egs. (10)-(14), (20) and (21) form the MILP assignment problem and the CP sequencing
problem is defined by Egs. (15)-(19) and (22)-(24).

min Z Z CimYim (10)

1€l meM
subject to
ts; >r; Viel (11)
ts; <d; — Z PimYim Viel (12)
meM
S Yim=1 Viel (13)
meM
Zyimpim < mazx{d;} —min{r;} Vme M (14)
/LEI (2 (2
if (yim = 1) then (z; =m) Viel, Vme M (15)
istart > r; Viel (16)
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i.start < d; —p,, Viel 17

t.duration =p,, Viel 18

¢ requires q,, Vi€l 19

ts; >0 20

Yim €{0,1} Viel, Vme M 21

zeM Yiel 22

istart € 7/ Viel

(
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(
(23
(

)
)
)
)
)
)
)
)

t.duration € 7 Viel 24
In the above model, I is the set of jobs and M is the set of machines. The assignment is
represented by the binary variable y;,,, and the cost of each assignment is given by C},,. Thus,
the objective function (10) minimizes the total assignment or processing cost. Eq. (11) states
that the starting time, ts;, of a job should be greater than its release date, r;. Similarly, Eq.
(12) defines that job i should be started before its due date, d;, subtracted with the required
production time, p;,,, on the assigned machine. These constraints reduce the search space.
Constraint (13) ensures that each job is assigned to exactly one machine. The search space is
further reduced by Eq. (14) that limits the total production time on each machine to less than
the time between the latest due date and earliest release date. The only variables of the MILP
problem are the binary assignment variables and the positive starting times. The link between
the MILP and CP subproblems is defined by Eq. (15) where the assignment is transformed
to the CP problem through variable subscripts. In the sequencing problem the start time is
defined correspondingly with Eqgs. (16)-(17), and the duration is defined in Eq. (18). Note
that the ¢.duration and i.start are built-in variables in OPL. Constraint (19) utilizes a special
ILOG Scheduler construct 'requires’ and states that each job ¢ needs resources from one of the
machine pools g. The model ends with the variable definitions in Eqs. (21)-(24).

Analyze solutions
add new cuts
Infeasible
Solve assignnent . . Solve sequencing
problemMLP. Fxasignnents problens CP.
(10)—(14) + cuts L (15)—(19)

Al feasible

v
Optimal solution
found. STGP

Figure 3. Hybrid Strategy 1

The iterative Strategy I, whose convergence was proved by Jain and Grossmann (2001), is
presented in Fig. 3. Since the problem is a single-stage scheduling problem, it should be noted
that the sequencing subproblems can be solved separately for each machine since they become
decoupled when fixing the job assignments. Solutions of the CP problems can be used to
generate cuts that are incorporated to the MILP master problem. If one of the assignments
cannot be sequenced, the assignment is infeasible and the cut that eliminates this assignment
from the next MILP can be expressed as,



Zaim-yim SZaim—l Yme M (25)
i€l el

where a;,, are 0-1 coefficients for the assignment variables y;,,. As an example, if all the
assignments in Fig. 2 were to be infeasible, the cuts would be as follows:

Y11 + Y31+ ys1 < 2
Y22 +yaz < 1

Y63 < 0

Note that these cuts also eliminate all supersets of the assignments. The alternating MILP
and CP problems are solved until all sequencing problems result in feasible solutions as shown
in Fig. 3. It should be pointed out that if no solution can be obtained for the relaxed MILP
problem, then the original problem is also infeasible. A detailed description of the method can
be found in Jain and Grossmann (2001). Five scheduling problems, each with two new data
sets that are more complex than the ones in Jain and Grossmann (2001), given in Appendix A,
have been solved using OPL-Studio 3.5 on a 933MHz Pentium III computer running Redhat
Linux. The results are shown in Table 1.

Table 1. Single-stage scheduling results

Problem, Obj CPU-s Details of hybrid method
data value MILP CP Hybrid* Tter Cuts sub-MILP  sub-CP
1,1 26 0.01 0.03 0.32 2 1 0.00 0.00
1,2 21 0.02 0.01 0.34 1 0 0.00 0.00
2,1 60 0.41 0.01 0.77 14 17 0.26 0.06
2,2 46 0.15 0.03 0.36 1 0 0.00 0.00
3,1 104 56.93 1.81 5.67 24 37 3.77 0.06
3,2 85 5.53 0.22 0.28 1 0 0.00 0.00
4,1 116 347.97 277.64 2.17 14 22 1.32 0.10
4,2 105 136.57 17.25 1.08 15 15 0.49 0.10
5,1 159 | >130000" 189244.33 10.04 29 64 8.40 0.17
5,2 144 | >1300002 5925.66 2.89 26 35 2.09 0.26

*) CPU-time also includes infeasible problems and overheads (problem loading, cut generation)
1) Best solution obtained at this point: 160
2) Optimal solution found but not verified

In Table 1 we first show the solution times of the complete MILP and CP formulations, followed
by the total CPU-time needed by the hybrid strategy. The last four columns give the number
of iterations and cuts used by the hybrid strategy and how big a part of the solution time
was spent in solving the MILP assignment and CP sequencing subproblems. Note that the
CPU-time reported for the CP subproblems is a sum of the feasible problems only, since ILOG
Solver and Scheduler do not give any solution information on infeasible problems. Therefore,
the difference between the total time and the sum of sub-MILP and sub-CP times is caused
mainly by infeasible sequencing problems, and to a smaller extent by overheads such as problem
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loading and the generation of cuts. It should also be stressed that the hybrid Strategy I is
guaranteed to yield the same optimal solution as the MILP and CP methods.

4.2. Strategy II

We consider in this section an MILP-MILP Strategy II, where instead of solving one large
MILP problem we solve two smaller MILP subproblems iteratively. The assignment problem
is given by equations (10)-(14), while the MILP feasibility problem is for sequencing the jobs,
i, that have been assigned to machine m’, here declared as set I’. Let the variable x;;; be the
sequencing variable, which is equal to one if job ¢ precedes job i’ and else zero. The MILP
sequencing model is then as follows,

main 0 (26)
subject to
ts; >r; Yee I (27)
ts; < d; — Pim! Vie I’ (28)
Ty +wis =1 Vi, )e Il i>1i (29)
tsir > t8; + Dim' — m%a:{di} (1 —zy) Vi) el i#4 (30)
tel’

Tir € {0, 1} ts; > 0

The objective function is simply a “dummy” value of zero to define a feasibility problem (i.e. all
feasible points have zero objective value). Constraints (27)-(28) are as before with the exception
that here we only consider one machine, m’. Only one of the two alternative sequences is valid
and this is stated in Eq. (29), followed by the final constraint (30), that defines the starting
times, using the latest due date as the big-M parameter. It should be noted that in the
implementation it is convenient to define the objective function as min ) . > ., 4 in order
to expedite the branch and bound search since this objective will tend to take the discrete
variables out of the basis.

In Strategy II, the assignment problem is exactly the same as before. Also, the number of
iterations and cuts should be almost the same, since we still solve a feasibility problem, only
now using MILP. Since the sequencing problems are significantly smaller than the complete
MILP formulation this approach should also simplify the sequencing part of the problem.

Table 2. Single-stage scheduling results with the hybrid MILP-MILP strategy
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Problem, Obj Total® Details of hybrid method
data value CPU-s Iter Cuts Assign Sequence
1,1 26 0.43 2 1 0.01 0.01
1,2 21 0.32 1 0 0.00 0.00
2,1 60 1.13 13 15 0.36 0.21
2,2 46 0.42 1 0 0.00 0.03
3,1 104 12.71 23 38 7.53 0.85
3,2 85 0.52 1 0 0.01 0.12
4,1 116 5.05 12 20 2.08 1.40
4,2 105 4.32 15 15 0.23 0.88
5,1 159 41.54 28 63 23.53 7.32
5,2 144 162.00 27 35 4.22 10.90

*) OPU-time also includes infeasible problems and overheads

(problem loading, cut generation)

Table 2. shows the results for the same test problems. The results show a significant improve-
ment compared to the stand-alone MILP and CP models (see Table 1). Clearly the largest
benefit is obtained through the decomposition of the original problem. Even if both Strategy I
and Strategy II perform well, it needs to be pointed out that the total times that also include
the time spent on solving infeasible sequencing problems, are very different. In general, MILP
spends much more time on verifying infeasibility. In Strategy I, the infeasible subproblems
do not require more than 35% of the total CPU-time in any of the example problems, but
detecting infeasibility in Strategy II typically takes 50% of the total time. In problem 5,2 this
takes more than 90% of the CPU-time and the performance is an order of magnitude worse
than with Strategy I. Consequently, even if the hybrid MILP-CP and MILP-MILP approaches
both result in significant improvements, CP seems to be more suitable for feasibility sequencing
problems.

5. MULTISTAGE SCHEDULING PROBLEM

The final part of this paper focuses on a new application of the decomposition strategies to
the multistage case. As will be seen, a major difference is that the cuts are considerably more
complex to derive. We consider a variation of the multistage batch scheduling problem by
Pinto and Grossmann (1995). The problem involves a multi-stage batch plant with dissimilar
parallel equipment in each stage that must process a given number of orders that have specified
due dates and that are to be processed at each stage. The chosen objective is to minimize the
assignment or processing costs of the orders. The MILP optimization of this jobshop problem
is often very expensive to solve. An example of the problem type is shown in Fig. 4.
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Figure 4. Multistage scheduling problem

The problem may contain some topological restrictions. Some units may not be able to process
all orders. Furthermore, some production paths may be restricted as shown in Fig. 4, where,
for instance, unit 7 can only be followed by unit 9.

We propose first a hybrid MILP/CP model for solving the multistage scheduling problem
with Strategy I. The problem is decomposed into two subproblems: assignment problem and
sequencing problem. In the case of single-stage scheduling, it was possible to solve each se-
quencing problem separately and an infeasible CP problem indicated that the assignment was
invalid. In the multistage case this is unfortunately not possible, since the stages and machines
are connected. Consequently, there are two main complications of which the first one is that
the sequencing problem needs to be solved simultaneously for every job and machine, which
results in large CP subproblems. The second complication comes from the fact that infeasible
CPs do not provide useful information about the reason for the infeasibility. Therefore, the
CP will be relaxed to minimize infeasibility (violation of due dates) to yield better cuts. As
for Strategy II, using a similar treatment as in section 4.2, we replace the CP subproblem for
sequencing by an equivalent MILP subproblem.

The multistage scheduling problem can, of course, be expressed either as a pure MILP or CP
problem. We will first present these models and then discuss their possible strengths and
weaknesses.

5.1. MILP model

In the following MILP model, the set I corresponds to jobs, set M refers to machines and K
is the set of stages. The assignment variables, y;,,, are 0-1 variables relating job ¢ to machine
m. The sequencing variables, x;;, are equal to one if product 7 precedes product i’ in stage
k, else zero. In the models below, coefficients are given in uppercase and variables in lowercase
letters.

min Z Z Cim * Yim + Z Cr, * Zm (31)

1€l meM meM
subject to
Z Yim =1 Viel, Vke K (32)
meM (k)
Yim < z2m Vi€, Vme M (33)
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cir <T? Vielk=|K| (34)

> . Y (T7+T5+Th)  Viel VkeK (35)
meM (k)
Cik < ik — Y. Yim (T, +Ts)  VielLk<|K| (36)
meM (k+1)

Cire > Citg + Tt + Ty — U (1 — @ik + 1 — Yim + 1 — yirm,)
Vi,i' € I,i <, Vk € K, Ym € M(k) (37)

cik > cig+ T + T —U- (Tiirk + 1 — Yim + 1 — Yirm)

Vi,i' e I,i <1, Vk € K, VYm € M (k) (38)
Yim =0  Viel, Yme M, (i,m)e B (39)
Yim, + Yim, <1 Vie I, V(my,my) € M (40)
> Yim - (Th, +T3,) < maz { T — min (Th, +T3) o —
il el ke sk ™ €M), (Gm)gB
min Q T7 + ) min (TP, +T%,) Vk € K, Ym € M(k) (41)
el m' €M (k'),(i,m')¢B

k' €K k'<k

Yim> Lii'k S {07 ]-} Zm Cik 2 0

The objective function (31) minimizes the assignment costs. The coefficient, C! | is a general
assignment cost that may be associated, for instance, with the processing time, while the second
coefficient, C}/ , represents a one-time cost, such as initialization or startup costs for a specific
unit. Here we apply a fixed value C), = 10 for all problems, even though the main idea is to
avoid the activation of an extra unit if this only leads to a minimal saving. The assignment
constraint (32) states that each job i has to be processed on exactly one unit m at every stage
k. Machines of a certain stage k belong to the set M (k). Equation (33) states that units that
are in use also need to be initialized. The finishing time, ¢;z, of job ¢ in stage k is defined in Eqs.
(34)-(36), which enforce it to be less than the due date (7)), greater than the release date (77)
added with a machine-dependent setup time, (T7%) and the processing (77) time and, finally,
less than the starting time of the next stage. The sequencing is performed by the constraints
(37)-(38), of which only one may be true. This is enforced by the big-M terms including the
assignment and sequencing variables. The three last constraints will reduce the search space.
Forbidden assignments are specified in Eq. (39), where B is a set of forbidden (job,machine)
combinations. Similarly, constraint (40) prohibits any job i to go from machine m; to ma,
if these are part of the set of non-existing processing paths, M. Constraint (41) reduces the
search domain by making sure that the total processing time of the jobs on a machine will fit
between 1) the maximum due date subtracted with the shortest processing and setup times
of all later stages, and 2) the minimum release date plus the shortest processing times of all
earlier stages. This is illustrated in Figures 5a and 5b.

12



Processing tires

Rel ease dates
m, \ \ \ \ \ \ \
m, [ — \ \ \ \
m, — — '\
m, e — Due dates
m, ] [ p
m, N

stage 1 stage 2 stage 3 stage 4

Figure 5a. Processing times for two jobs in 11 machines

The time domain can be reduced significantly by using constraint (41), which may eliminate
a large number of invalid assignments. In Figure 5a, there are two products (black and gray)
and their corresponding processing times on each unit. Notice that stage 3 contains only two
parallel units, while the rest of the stages have three parallel units. The constraint is applied
on stage 3 and the result is shown in Figure 5b.

P
stage 3

Figure 5b. Available timeframe for stage 3

Although the MILP model represents exactly the given problem, it has the drawback that the
number of binary variables is relatively large mainly due to the three-indexed variables, which
may lead to a combinatorial explosion. Also, the relaxations of the sequencing constraints are
very weak and this formulation is intractable for solving large scheduling problems. To try
to overcome this problem one can decompose the MILP using Strategy Il in which we solve
subproblems given by (31)-(35) and (39)-(41) for the assignment part and the constraints in
(36)-(38) as a feasibility MILP for the sequencing part. This sequencing subproblem can also
be modeled as a CP problem using Strategy I.

5.2. CP model

The complete multistage scheduling problem can be modeled as a CP problem as shown in
this section. The constraint programming model may benefit from a large variety of special
constructs designed for solving scheduling problems. Therefore, the CP model differs clearly
from the corresponding MILP representation and is given below. Here, the syntax is based on
OPL (ILOG, 2001) and specific CP names for global constraints,

min Z Z Cl. * Yim + Z Cl - zm (42)

iel meM meM
subject to
Stageli, 1].start > T} Viel (43)
Stage[i,|K|l.end < T¢  Viel (44)
Stageli, k] requires s Viel, Vke K (45)

activityHasSelectedResource(Stageli, k], s, tool[m]) = dur[i, k] = TF + T,
Viel, Vke K, Yme M (46)
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not activityHasSelectedResource(Stage[i, k|, s, tool[m])
Vie I, Vke K, Ym e M|m ¢ M(k) (47)

not activityHasSelectedResource(Stageli, k], s, tool[m))
Viel, Yk e K, Ym € M(k)|(i,m) € B (48)

activityHasSelectedResource(Stageli, k], s, tool[m1]) =

not activityHasSelectedResource(Stage[i, next(k)], s, tool[ms))
Viel, Vke K, Ymy,my € M | k < |K|,(my,ms) € M (49)
Stageli, k] precedes Stage|i, next(k)] Viel, Vke K | k< |K| (50)
activityHasSelectedResource(Stage[i, k], s, tool[m]) = yim = 1, 2m =1
Viel, Vke K, Yme M (51)
min {1}, + T} < durli, k] < max (TP +T5} Viel VkeK

(52)
Yim € {0,1} Zm, durfi, k] >0

Before discussing the model in detail, several general concepts need to be clarified. In ILOG
OPL-Studio, that was used to combine MILP and CP, the two main components are activities
and resources. Resources are, for instance, machines and activities are processes that require
the resources, such as processing a job in a stage. In this CP problem, Stage is an activity
that has a given duration. Its starting and finishing times, Stage.start, Stage.end are variables
that will be evaluated during the solution procedure. Furthermore, tool[m] is a set of unary
resources, i.e. resources that can process only one activity at a time. The other resource, s,
is an alternative resource of tool specifying that any of the given resources can be selected
to perform the task. CP uses these concepts when assigning the activities to the available
resources in order to generate feasible solutions.

The objective function (42) is exactly as in the MILP model. Eqs. (43)-(44) state that the
starting time of the first stage should be greater than the release date and the finishing time for
the last stage of each job should be less than the due date. Constraint (45) requires one of the
alternative resources to process each stage. Due to the fact that we have a multistage problem
with dissimilar parallel equipment, the duration of an activity is defined as a variable, the value
of which is specified in Eq. (46) depending on the assignment. Constraint (47) eliminates the
use of equipment from other stages and in Eq. (48) forbidden job-machine combinations are
enforced. Note the use of the global constraint activityHasSelectedResource. Forbidden paths
are enforced in constraint (49) and the order of stages is specified in constraint (50). Constraint
(51) is needed only to link the objective function variables to the CP-model. The domain of
the duration variable, dur[i, k], is reduced in the last constraint (52).

The CP model is more compact than the MILP, but may not necessarily perform well with a
given objective function, which only considers assignment costs. In general, CP is better suited
for solving feasibility problems.
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5.3. Results for MILP and CP models

Ten multistage scheduling problems, the data of which are presented in Appendix B, were
solved using both the MILP and the CP strategies. The problem sizes and the results are
presented in Table 3. It can be seen that although both representations can fully capture the
problems, they both suffer from combinatorial explosion.

Table 3. Multistage scheduling results using MILP and CP models

Problem, Obj MILP Ccp
data value vars (0/1) constr CPU-s vars constr CPU-s
1,1 39 60 (48) 96 0.13 84 140 0.02
1,2 112 60 (48) 96  0.03 84 140 0.02
2,1 03 112 (96) 190 4.43 124 210 0.13
2,2 188 112 (96) 190 0.78 124 210 0.32
3,1 o6 198 (176) 463 446.60 182 409 4.23
3,2 1113 198 (176) 447 0.35 182 393 1374.97
4,1 149 396 (360) 718 27.30 306 772 447.17
4,2 946 396 (360) 718 1.43 306 772 359.01
9,1 111 572 (528) 1330 4041.66 392 1226  292.98
0,2 704 572 (528) 1330 2767.83 392 1226  712.61

Table 3 shows the results of five problems with two different data sets. The significance of the
chosen data can be seen very clearly, especially in problems 3,1 and 3,2 where the performance
varies by several magnitudes. It is interesting to note that MILP and CP show almost opposite
behaviors. These problems have also different forbidden paths (none in 3,2), which explains
the dissimilarity in the number of constraints. The results show that MILP over-performs CP
in only a few of the problems, most likely because of its capability of using lower and upper
bounds to eliminate large sets of feasible solutions. To summarize, the two methods are very
different in performance, as can be clearly observed in the four largest problems.

5.4. Strategy I: Hybrid MILP-CP model

In this section we will investigate if Strategy I for the single-stage hybrid approach can be
further developed to handle multistage scheduling. This involves several complications, for
instance, the dimension of the problem is multiplied by each stage. Furthermore, in the mul-
tistage case we cannot solve the sequencing problem separately for each machine. Instead, all
equipment need to be considered simultaneously in order to be able to coordinate between
the stages and ensure that the obtained schedule is feasible. Thus, Strategy I will alternate
between the solution of one MILP assignment problem and the solution of one CP sequencing
problem. It is also important to observe that rather than determining whether a CP subprob-
lem is feasible or infeasible, it is convenient for the generation of cuts to relax the due dates in
the CP-subproblem by introducing slacks, which are then minimized to zero in the objective
function. The slightly modified strategy is shown in Fig. 6.
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Analyze solutions
P
add newcuts
Non-zero slacks

A 4
Solve assignrrent , Solve sequencing
problemMLP, Fix assignrents problemCP.
(53)—(60) + cuts (62)—(67)
Zero slacks

Optimal solution
found. STOP

Figure 6. The multistage hybrid strategy

Here we actually need to perform optimization in the CP-step, instead of doing a simple
feasibility check. This can be expected to significantly slow down the performance. The hybrid

MILP-CP mathematical model for Strategy I is then as follows,

min Z Z Cln* Yim + Z Cll - zm

1€l meM meM

subject to
Z Yim =1 Viel, Vke K
meM (k)

Viel, Yme M (55)
Viel k=|K| (56)
Viel, Vke K

Yim S Zm,
cik < T}

cik > > Yim- (T] + T +Th,)
meM (k)
Ym =0  Viel VYme M, (i,m)e B
Yimq + Yimo <1 Vi € [, V(ml, mz) € M (59)
Z Yim (TP +T5) < maz { Tf — min (Tt +T)) ¢ —
e ke K K>k ™ EMK),(Gm))¢B

min Q T/ + Y min (TP, +T5,) Vi € K, Ym € M(k) (60)
el ek k' <k " €M), (1;m ) EB

Yim € {0,1} Zm, Cik, > 0

if (yim = 1) then (2, =m) Vie I, Vk € K, Vm € M(k) (61)

min Z (Cl-s;+C!-1;) (62)

i€l

(63)

subject to
Stageli, 1].start > T Viel
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Stageli, | K|].end < T¢ + s; Viel
>0« ;=1 Viel
Stageli, k] requires tool|[m] Viel, Vk e K, Ym € M(k), ziz =m
Stage[i, k] precedes Stage|i, next(k)] Viel, Vke K | k< |K|
si,l; >0

The MILP assignment part of the problem is given by Eqs. (53)-(60), that are exactly as in the
original MILP model. Only the complicating sequencing variables and constraints have been
removed. The link between the assignment and the corresponding CP sequencing problem is
created by Eq. (61). The sequencing problem in Eqgs. (62)-(67) is formulated for a given
assignment. The objective function (62) minimizes a weighted sum of the total violation of the
due dates and the number of late orders through a slack variable that relaxes the due dates,
as defined in Eq. (64). Here, we use the coefficients C] = 1 and C] = 1000. Equation (65)
activates the flag (I; = 1) if product 7 is late. The fixed assignment is transferred to the CP-
problem in constraint (66). Constraints (63) and (67) are identical to the original CP model.
This formulation is used to first find an assignment and then try to get a valid schedule for it.
After each iteration, cuts need to be added to eliminate invalid assignments.

5.5. Integer Cuts

The integer cuts for the MILP assignment subproblem are maybe the most critical elements in
the strategy. The simplest alternative is to eliminate all assignments with only one cut. The
general form of the cut is given in Eq. (68) and the cut is determined by the coefficients a;y,.
The result of an assignment problem is illustrated by Fig. 7a, where 6 jobs are assigned to 2
stages, each of which have two parallel equipment.

1€l meM 1€l meM

Sll

Wmmm

3 S (T

2 4

Figure 7a. Optimal assignment

Having a fixed assignment, we need to find a sequence that meets the due dates. In the
multistage case, a feasibility problem is not solved, but an optimization problem minimizing
the number of late jobs and the slack variables. The result of the sequencing problem is shown
in Fig. 7b where it can be observed that a working schedule can not be generated using the
given assignment.

1 due date
Sl
2 Vzzzzzzzzzzzz2ZZA NN [T
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Figure 7b. Best sequence for the fixed assignment

The assignment is therefore invalid and must be excluded from future iterations. If the prod-
ucts are denoted by A,B,C,D,E,F starting from the top-left, the cut that excludes this exact
assignment, CUT 1, can be written as,

Yyar + Y2 +Yc2 +Yp2 + Ye2 + Yr2 +Ya3z +yp3 +yc3 +yps + ye3 +yr3z < 11 (69)

This cut excludes only the given assignment from the next iteration and does not exclude any
supersets or more general cases. Consequently, the cut is weak and can be expected to result
in a large number of iterations for solving the MILP and CP subproblems. This is shown in
the example runs in Table 5.

A stronger cut is necessary for obtaining better performance. In the following, CUT 2 that
focuses on the late jobs is suggested. This cut does not include all products or machines
and therefore it will exclude a larger number of possible solutions. The cut eliminates the
bottlenecking assignments by tracing for each late job a zero-wait path from the last stage to
the first stage. This strategy produces one cut per late job and the principle is given below.

For each late job:

select the late job in its last stage (k = |K]), add it to the cut (a;, = 1,m € M(k)) and

find every bottleneck path. There are two possibilities.

1. if selected job follows immediately another job in the same stage (machine), select the
other job and add it to the cut (aj_1,, =1)

2. else, move to previous stage (k = k — 1) and add the assignment (ajm, =1,m € M(k))
to the cut

There must be at least one bottleneck path for each late job from the last stage to zero-time
(or release date) because of the minimization of slack variables. Applying this principle to the
earlier example would result in two cuts for CUT 2:

Y2 + yc2 +Yp2 + yr2 + yEs < 4 (70)
Y2 +Yo2 + Yp2 + YE2 + Yr2 + yr3 < 5 (71)

These cuts are more efficient, since they cut out a large number of supersets. Consequently,
the convergence should also be faster. A drawback is that these cuts are strictly speaking
heuristic since in few cases they may cut off the true optimal solution. However, we would like
to emphasize that we have found CUT 2 to be valid in most of the problems we have solved
(e.g. see Table 5). An alternative cut, CUT 3, can be obtained if the second step is modified
to,

2. else, add all earlier assignments on the machine to the cut, move to previous stage
(k =k —1) and add the assignment (a;,, = 1,m € M(k)) to the cut

It should be noted that CUT 3 is still heuristic, although it is valid for most of the cases we
tested. In the example case, this will result in two weaker cuts,

yB2 +Yc2 + Yp2 + Ye2 + Yas +yss + yYcs + yps + yes < 8 (72)
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yB2 +Yc2 +Yp2 + Yr2 + Yr2 +ya3 +yBs +Yycs +Yps + yes + yr3z < 10 (73)

In general, the fewer products a cut involves, the stronger it can be considered. These three
different cuts are referred to as CUT 1, CUT 2 and CUT 3. The three example cases are
presented in Figures 8a, 8b and 8c. In the two latter figures, the cuts are illustrated with gray
color and hatching.

pzzzz222222Z S Y (I

Figure 8b. CUT 2

Figure 8c. CUT 3

It should be emphasized that only CUT 1 can theoretically guarantee the optimal solution.
While we have found CUT 2 and CUT 3 to be valid in most problems, we show in Appendix C
two specific example problems where the either or both of these two cuts eliminate the optimal
solution. The results of these problems are given in Table 4.

Table 4. Non-optimal example runs (CPU-s/it/cuts)

Problem | Optimal MILP CUT 1 CUT 2 CUT 3
Example 1 | 3761  3761' (60000) 37047 (1000) 3781 (27.52/42/48) 3761 (259.42/158/273)
Example 2 | 427 427 (55.08) 4272 (1000) 434 (51.81/53/71) 431 (655.44/284/393)

1) Optimal solution found, but not verified at the CPU-time limit

2) Non-confirmed solution at the CPU-time limit (lower bound)

Table 4 presents the solutions, where it can be seen that the objectives obtained with CUT 2
and CUT 3 are higher. For the different strategies we report the solution and CPU-time.

5.6. Results for Strategy I

The example problems in Table 3 were resolved using hybrid Strategy I and applying all three
cut strategies discussed above. In Table 5, we report the CPU-times (MILP and CP), the
number of iterations and cuts needed by each of the strategies. The solution process was
stopped after a given time limit, 1000 CPU-s. Note that in this case solution is infeasible
because it does not meet the due dates. These cases are marked with lines (—). It should be
noted that in all cases the CUT 2 strategy obtained the rigorous solutions.

Table 5. Multistage scheduling results with hybrid MILP and CP Strategy I
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Problem, CUT 1* CUT 2 CUT 3*
data it/cuts CPU (MILP/CP) |[it/cuts CPU (MILP/CP) it/cuts CPU (MILP/CP)
1,1 5/4 0.11 (0.06/0.05) 5/4 0.06 (0.04/0.02) 5/4 0.11 (0.06/0.05)
1,2 3/2 0.05 (0.03/0.02) 3/2 0.03 (0.02/0.01) 3/2 0.04 (0.03/0.01)
2,1 259/258 106.38 (99.22/7.16) | 16/19 0.74 (0.33/0.41) 45/73 3.24 (2.09/1.15)
2,2 16/15 0.43 (0.19/0.24) 4/3 0.10 (0.05/0.05) 5/4 0.13 (0.07/0.06)
3,1 - - 29/45 8.69 (4.20/4.49) 87/179 59.54 (45.47/14.07)
3,2 74/73 11.25 (7.82/3.43) 5/5 0.38 (0.07/0.31) /7 0.40 (0.12/0.28)
4,1 - - 17/22  28.76 (0.84/27.92) 98/182 236.95 (39.10/197.85)
4,2 - - 20/26 10.95 (0.90/10.05) 33/47  13.72 (2.05/11.67)
5,1 - - 43/56 318.41 (21.99/296.42) | — -
5,2 2/1 13.72 (0.06/13.64) 2/2 13.73 (0.08/13.65) 2/2 13.59 (0.06/13.53)

*) Entries with '~ were stopped after 1000 CPU-s

The results show that CUT 1 is generally not very effective for this type of scheduling problems,
even though it is the only one that can guarantee an optimal solution to the multistage problem.
The weak cuts result in very large a number of iterations for the fairly small problem 2,1.
Compared to the pure MILP and CP strategies of Table 3, CUT 2 performs very well and the
number of cuts is low. Only example problem 4,1 is somewhat slower than the original MILP
solution, and example 5,1 takes slightly longer than the original CP solution. It can also be
noted that the CP-subproblems are large and often take almost the entire CPU-time. The cuts
are therefore extremely important to the performance. CUT 3 is not able to perform as well as
CUT 2, mostly because of the increased number of iterations. From these example problems,
we can see that the rigorous CUT 1 is not applicable for larger multistage scheduling problems.
However, CUT 2 emerged as the best choice since it is able to reduce the computational time
by one order of magnitude.

5.7. Results for Strategy II

Because of the fact that optimization is required in the sequencing part (minimization of slacks),
the MILP subproblems for Strategy II could be expected to be well suited for the multistage
problem. The MILP formulation for the multistage sequencing problem can be obtained with
minor changes. It is given in Eqgs. (74)-(80).

min Z (Cl-s;+C!-1;) (74)
1=y
subject to
cir <T¢+s; Vielk=|K| (75)
o =T +T5 +TP Viel, Vke K, Yme M(k), yim = 1 (76)
s <U-; Viel (77)
cik < Ciggr1— TP —T5  YieIVke€ K,k<|K|, Vme M(k+1),yim =1 (78)
cikk > Cig + T+ Ty — U= (1 — 4501)
Vi,i' € I,i < i, Vk € K, Ym € M(k), yim = Yirm = 1 (79)

cik > cik + Tir, + Ty, — U iy
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Vi,i' e Ii<i, Vk € K, VYm € M(k), Yim = Yirm = 1 (80)

Tiirg, li € {0,1} Cik,Si > 0

In the following, we will revisit the examples and only use the heuristic, CUT 2, to see how
Strategy II performs. The results are given in Table 6.

Table 6. Multistage scheduling with Strategy IT using CUT 2

Problem, CUT 2

data it/cuts CPU (MILP/MILP)
1,1 5/4 0.19 (0.04/0.15)
1,2 3/2 0.11 (0.03/0.08)
2.1 16/19  2.82 (0.31/2.51)
2,2 4/3 0.70 (0.05/0.65)
3,1 40/61  57.76 (11.33/46.43)
3,2 5/4 0.72 (0.06/0.66)
41 22/32  435.46 (1.23/434.23)
4,2 16/21  12.97 (0.53/12.44)
5,1 —* -

5,2 2/2  540.30 (0.19/540.11)

*) Could not be solved in 1000 CPU-s

The optimization results in Table 6 show that Strategy II performs slightly worse than Strategy
I (see Table 5) because the MILP sequencing subproblems take more time than the CP sub-
problems. Problem 5,1 could not even be solved within the given time limit (1000 CPU-s) and
the reason for this is most likely the poor relaxations combined with large number of discrete
variables. It seems that CP with its specific scheduling constructs is more efficient in solving
the sequencing part of the hybrid strategy than the more general MILP, also in the case where
the feasibility check involves optimization of some slack variables.

6. CONCLUSIONS

The main objective of this paper has been to classify and consider methods for using hybrid
models for solving scheduling problems that involve cost minimization with due dates, and
sequence independent setup times. It was shown that decomposition schemes can be developed
in which the MILP effectively solves very well the assignment problem, and either CP or MILP
are applicable to the sequencing part. The single-stage approach in Jain and Grossmann (2001),
that uses CP for sequencing was revisited, and the Strategy II, in which MILP is used for both
subproblems, was proposed for solving the single-stage problem. The algorithm proved to
be robust with different data sets. It could also be concluded that replacing the CP-part of
the single-stage problem with MILP actually dropped the performance by almost an order of
magnitude, but was still significantly superior in comparison to using only MILP or only CP
models. Motivated by the encouraging results of a single-stage case, Strategies I and II were
applied to the more complex multistage scheduling problem. Two cuts (CUT 2, CUT 3) were
proposed which were found to greatly reduce the computational times, with CUT 2 being the
more effective of the two. Although these cuts are not rigorous, they were found to yield the
correct solution in most of the test problems. Finding a rigorous and strong cut for the hybrid
strategy, improving the performance of the sequencing problem or disaggregating the large-size
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problems in some other way are open questions to be explored in future work for the multistage
case.
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APPENDIX A

The data used for the single stage scheduling problems is given in the tables below.

Table 7. Single stage problem 1 (2 machines, 3 jobs)

Data set 1 Data set 2
dates duration/cost dates duration/cost
Job |release due M1 M2 release due M1 M2
1 20 169 103/10 143/6 20 160 57/10 77/6
2 30 169 63/8 83/5 30 130 37/8 47/5
3 40 219 113/12 163/7 40 210 57/12 77/7

Table 8. Single stage problem 2 (3 machines, 7 jobs)

10 289 73/12 123/7 103/10 10 280 17/12 37/7 27/10

Data set 1 Data set 2

dates duration/cost dates duration/cost
Job |release due M1 M2 M3 release due M1 M2 M3
1 20 169 103/10 143/6 123/8 20 160 57/10 77/6 67/8
2 30 139 63/8 83/5 73/6 30 130 37/8 47/5 37/6
3 40 219 113/12 163/7 133/10 40 210  27/12 47/7 37/10
4 50 289 63/10 123/6 83/8 50 280  37/10 67/6 47/8
5 100 249 103/8 163/5 123/7 100 240 27/8 47/5 377
6
7

20 239 103/12 83/7 103/10 20 230 17/12 27/7 17/10

Table 9. Single stage problem 3 (3 machines, 12 jobs)

Data set 1 Data set 2

dates duration/cost dates duration/cost
Job |release due M1 M2 M3 release due M1 M2 M3
1 20 360 103/10 143/6 123/8 20 360 57/10 77/6 67/8
2 30 330 63/8 83/5 73/6 30 330 37/8 47/5 37/6
3 40 310 113/12 163/7 133/10 40 310  27/12 47/7 37/10
4 50 380 63/10 123/6 83/8 50 380 37/10 67/6 47/8
5 100 340 103/8 163/5 123/7 100 340 27/8 47/5 37)7
6 10 380 73/12 123/7 103/10 10 380 17/12 37/7 27/10
7 20 330 103/12 133/10 103/11 20 330 17/12 27/10 17/11
8 40 250 43/9 103/5 83/7 40 250 27/9 57/5 47)7
9 100 380 23/10 43/6 33/8 100 380 47/10 67/6 67/8
10 10 390 73/8 143/5 113/7 10 390 37/8 57/5 277
11 50 300 83/15 163/9 123/12 50 300 27/15 37/9 27/12
12 20 200 33/13 63/7 53/10 20 200 27/13 67/7 47/10
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Table 10. Single stage problem 4 (5 machines, 15 jobs)
Data set 1 Data set 2
dates duration/cost dates duration/cost
Job |release due M1 M2 M3 M4 M5 release due M1 M2 M3 M4 M5

1 20 330 103/10 143/6 123/8 113/9 133/9 20 330 57/10 77/6 67/8 57/9 67/9
2 30 340 63/8 83/5 73/6 63/7 737 30 340 37/8 47/5 37/6 37/7 AT/7
3 40 310 113/12 163/7 133/10 113/11 123/10 | 40 310  27/12 47/7 37/10 27/11 37/10
4 50 330 63/10 123/6 83/8 73/9  83/8 50 330 37/10 67/6 47/8 37/9 47/8
5 100 340 103/8 163/5 123/6 123/7 133/7 100 340 27/8 47/5 37/6 277 27/7
6 10 340 73/12 123/7 103/10 83/11 93/10 10 340 17/12 37/7 27/10 27/11 27/10
7 20 330 103712 133/10 103/11 113712 123/11 | 20 330 17/12 27/10 17/11 17/12 17/11
8 40 250 43/9 103/5 83/7 53/9  63/8 40 250 27/9 57/5 47/7 37/9 37/8
9 100 380 23/10 43/6 33/8 23/9  33/8 100 380 47/10 67/6 67/8 57/9 57/8
10 10 370 73/8 143/5 113/6 83/7  103/6 10 370 27/8 57/5 37/6 27/7 37/6
11 50 300 83/15 163/9 123/12 103/14 113/13 50 300 27/15 37/9 27/12 27/14 27/13
12 20 200 33/13 63/7 53/10 43/12 53/11 20 200 27/13 67/7 47/10 37/12 37/11
13 40 320 43/9 103/5 73/6 53/8  63/7 40 320 17/9 37/5 37/6 27/8 27/7
14 60 200 23/10 43/6 43/8  33/10 33/9 60 200 27/10 57/6 57/8 27/10 37/9
15 20 250 73/8 143/5 133/6 103/7 113/7 20 250 47/8 77/5 67/6 AT/T B7/7

Table 11. Single stage problem 5 (5 machines, 20 jobs)

Data set 1 Data set 2

dates duration/cost dates duration/cost
Job |release due M1 M2 M3 M4 M5 release due M1 M2 M3 M4 M5

1 20 330 103/10 143/6 123/8 113/9 133/9 20 330 57/10 77/6 67/8 57/9 67/9
2 30 340 63/8 83/5 73/6 63/7 737 30 340 37/8 47/5 37/6 37/7 AT/7
3 40 310 113/12 163/7 133/10 113/11 123/10 | 40 310  27/12 47/7 37/10 27/11 37/10
4 50 330 63/10 123/6 83/8 73/9 83/8 50 330 37/10 67/6 47/8 37/9 47/8
5 100 340 103/8 163/5 123/6 123/7 133/7 100 340 27/8 47/5 37/6 277 27/7
6 10 340 73/12 123/7 103/10 83/11 93/10 10 340 17/12 37/7 27/10 27/11 27/10
7 20 330 103712 133/10 103/11 113712 123/11 | 20 330 17/12 27/10 17/11 17/12 17/11
8 40 250 43/9 103/5 83/7 53/9  63/8 40 250 27/9 57/5 47/7 37/9 37/8
9 100 380 23/10 43/6 33/8 23/9  33/8 100 380 47/10 67/6 67/8 57/9 57/8
10 10 370 73/8 143/5 113/6 83/7  103/6 10 370 27/8 57/5 37/6 27/7 37/6
11 50 300 83/15 163/9 123/12 103/14 113/13 50 300 27/15 37/9 27/12 27/14 27/13
12 20 200 33/13 63/7 53/10 43/12 53/11 20 200 27/13 67/7 47/10 37/12 37/11
13 40 320 43/9 103/5 73/6 53/8  63/7 40 320 17/9 37/5 37/6 27/8 27/7
14 60 200 23/10 43/6 43/8  33/10 33/9 60 200 27/10 57/6 57/8 27/10 37/9
15 20 250 73/8 143/5 133/6 103/7 113/7 20 250 47/8 77/5 67/6 AT/T 57/7
16 20 340 33/9 83/5 73/7 53/9  63/8 20 340 27/9 47/5 37/7 27/9 37/8
17 30 370 63/10 123/6 103/8 73/9  83/8 30 370 37/10 67/6 47/8 37/9 47/8
18 70 380 23/8 83/5 63/6 133/7 43/6 70 380 27/8 47/5 37/6 27/7 27/6
19 60 320 43/15 73/9 63/12 53/14 53/13 60 320 17/15 37/9 27/12 27/14 27/13
20 0 300 53/13 73/7 73/10 63/12 63/11 0 300 17/13 27/7 17/10 17/12 17/11
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APPENDIX B

The data for the multistage scheduling problems is given in the tables below. The data given
above the table refers to both data sets. Forbidden assignments are marked with the processing
time 'F’.

Table 12. Multistage problem 1 (4 machines, 2 stages, 4 jobs)

Stage 1 = [M1,M2], Stage 2 = [M3,M4]

Data set 1 Data set 2
dates duration/cost dates duration/cost
Job |release due M1 M2 M3 M4 release due M1 M2 M3 M4
1 20 800 171/1 171/1 110/1 96/1 20 800 115/14 120/13 110/8 196/2
2 50 600 111/2 100/2 86/1 96/1 50 800 120/12 110/12 110/11 196/11
3 0 800  151/1 151/1 96/1 96/1 10 800 120/12 110/12 110/11 196/11
4 0 1000 161/1 161/3 90/1 96/1 100 800 160/10 160/25 90/32 222/10
Setup[m] = [80,80,40,40] Setup[m] = [20,25,43,20]

Table 13. Multistage problem 2 (4 machines, 2 stages, 6 jobs)

Stage 1 = [M1,M2], Stage 2 = [M3,M4]

Data set 1 Data set 2
dates duration/cost dates duration/cost
Job |release due M1 M2 M3 M4 release due M1 M2 M3 M4

1 0 800 171/1 171/1 96/1 96/1 100 800 151/10 171/10 86/10 96/10

2 0 600 111/2 111/2 96/1 96/1 | 200 600 101/20 111/20 86/13 96/10

3 0 800  151/1 151/1 96/1 96/1 10 800 131/18 151/18 86/13 96/10

4 0 1000 161/2 161/1 96/1 96/1 0 600 121/28 161/14 76/13 96/10

5 0 800 161/1 161/1 96/1 96/1 50 800 141/16 161/16 86/13 96/10

6 0 800  111/1 111/3 96/1 96/1 0 800 91/10 111/30 80/12 96/10

Setup[m| = [80,80,40,40] Setup[m] = [20,40,20,20]
Table 14. Multistage problem 3 (6 machines, 2 stages, 8 jobs)
Stage 1 = [M1,M2,M3], Stage 2 = [M4,M5,M6]
Data set 1 Data set 2
dates duration/cost dates duration/cost
Job | release due M1 M2 M3 M4 M5 M6 release due Ml M2 M3 M4 M5 M6
1 0 800 F 171/1 171/1 95/1 96/1 96/1 | 200 800 F 171/85 171/90 95/100 96/100 96/110
2 0 600 101/2 111/2 111/1 95/1 96/1 96/1 | 100 600 101/50 111/52 111/41 95/91 96/91 96/91
3 0 800  141/1 151/1 151/1 95/1 96/1 96/1 | 50 800 141/100 151/110 151/90 95/50 96/50 96/55
4 0 1000 160/2 161/1 161/1 95/1 96/1 96/1 0 1000 160/20 161/10 161/10 95/61 96/61 96/61
5 0 800 160/1 161/1 161/1 95/1 96/1 96/1 0 800 160/80 161/80 161/90 95/110 96/120 96/130
6 0 800 160/1 161/1 161/1 95/1 96/1 96/1 0 800 160/70 161/70 161/70 95/40 96/40 96/30
7 0 1500 160/1 161/1 161/1 95/1 96/1 96/1 300 1500 160/100 161/100 161/100 95/90 96/90 96/100
8 0 1200 111/1 111/3 111/1 95/1 96/1 96/1 200 1200 111/10 111/30 111/40 95/45 96/45 96/45
Setup[m| = [80,80,75,40,40,40] Setup[m| = [80,80,75,40,40,40]
Forbidden paths = [M1—>M6, M2—>M5]
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Table 15. Multistage problem 4 (6 machines, 3 stages, 10 jobs)

Stage 1 = [M1,M2], Stage 2 = [M3,M4], Stage 3 = [M5,M6]

Data set 1 Data set 2
dates duration/cost dates duration/cost
Job |release due M1 M2 M3 M4 M5 M6 release due Ml M2 M3 M4 M5 M6
1 0 800 181/4 F 120/4 121/4 95/2 96/2 100 800 181/46 F 120/24 121/24 95/22 95/32
2 0 600 101/2 111/2 120/3 121/3 95/2 96/2 | 50 600 101/42 111/52 120/23 121/23 95/33 95/43
3 0 800  141/3 151/4 110/2 111/2 95/2 F 0 700 141/39 151/34 110/14 111/12 93/13 F
4 0 1000 160/5 161/5 120/3 121/4 95/2 96/2 | 300 1100 160/15 161/15 120/13 121/14 92/13 95/12
5 0 2000 160/5 161/5 120/3 121/4 95/2 96/2 | 400 2000 160/25 161/32 120/32 121/42 91/13 95/15
6 0 1800 160/6 161/5 120/3 121/3 95/2 96/2 200 1800 140/61 161/56 120/34 121/30 95/20 95/28
7 0 900 160/5 161/5 120/4 121/4 95/2 96/2 | 100 800 160/48 111/57 120/41 121/40 94/26 95/29
8 0 1200 160/6 161/5 120/3 121/4 95/2 96/2 | 200 1200 140/64 111/51 120/37 121/41 95/22 95/22
9 0 100 160/4 161/4 120/3 121/3 95/2 96/2 | 400 1600 140/36 101/45 120/39 121/40 95/16 95/15
10 0 1200 111/2 111/3 120/2 121/2 95/2 96/1 0 1200 111/22 111/33 120/27 121/39 95/25 95/38
Setup[m] = [80,80,25,25,40,40] Setup[m] = [80,80,25,25,40,40]
Forbidden paths = [M1—>M3] Forbidden paths = [M1—>M3]

Table 16. Multistage problem 5, data set 1 (8 machines, 3 stages, 12 jobs)

Stage 1 = [M1,M2,M3,M4], Stage 2 = [M5,M6], Stage 3 = [M7,M8]

Data set 1
dates duration/cost
Job |release due M1 M2 M3 M4 M5 M6 M7 M8
1 100 800 151/1 131/1 F 120/1 100/2 95/1 90/2 80/3
2 0 600 101/1 111/1 111/1 120/1 100/2 95/1 90/2 80/3
3 140 800 141/1 151/2 162/2 120/1 100/2 95/1 F 80/3
4 200 1000 120/1 125/2 125/2 120/1 100/2 95/1 90/2 80/3
5 400 2000 120/1 125/2 125/2 120/1 100/2 95/1 90/2 80/3
6 0 800 120/1 125/2 125/3 120/1 100/2 95/1 90/2 80/3
7 150 900 120/1 120/2 120/3 120/1 100/2 95/1 90/2 80/3
8 200 1200 120/1 120/2 120/3 120/1 100/2 95/1 90/2 80/3
9 0 600 120/1 120/2 120/3 120/1 100/2 95/1 90/2 80/3
10 220 1200 120/1 120/2 120/3 120/1 100/2 95/1 90/2 80/3
11 600 2300 120/1 120/2 120/3 120/1 100/2 95/1 90/2 80/3
12 300 1800 111/1 111/2 112/3 120/1 100/2 95/1 90/2 80/3
Setup[m] = [40,40,40,40,25,20,40,20]
Forbidden paths = [M1—>M5,M2—>M5,M5—>M7,M6—>M7]
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Table 17. Multistage problem 5, data set 2 (8 machines, 3 stages, 12 jobs)

Stage 1 = [M1,M2,M3,M4], Stage 2 = [M5,M6], Stage 3 = [M7,M8]

Data set 1
dates duration/cost

Job |release due M1 M2 M3 M4 M5 M6 M7 M8
1 100 1800 151/10 131/10 F 110/11 110/20 85/21 90/22 90/23
2 100 1600 131/10 111/10 111/10 110/12 110/20 85/15 90/21 90/30
3 200 600 161/15 151/25 162/25 110/14 110/20 85/10 F 90/30
4 200 1200 135/10 125/22 125/22 110/12 110/20 85/13 90/22 90/34
5 400 1200 135/10 125/22 125/22 110/21 110/20 85/13 90/22 90/34
6 100 1400 135/10 125/22 125/23 110/21 110/20 85/13 90/22 90/34
7 150 700 130/10 120/22 120/23 120/22 100/20 85/13 90/22 90/34
8 200 1200 130/10 120/22 120/23 120/22 100/24 85/14 90/22 90/32
9 50 900 130/12 120/12 120/14 120/22 100/24 85/11 90/22 90/32
10 220 1300 130/12 120/12 120/14 120/22 100/24 85/12 90/20 90/32
11 600 2000 130/12 120/12 120/23 120/22 100/24 85/12 90/20 90/30
12 300 1400 121/12 111/12 112/23 120/10 100/22 85/12 90/20 90/30

Setup[m] = [10,10,10,20,30,30,15,20]

Forbidden paths = [M1—>M5,M2—>M5,M5—>M7,M6—>M7]
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APPENDIX C

The two problems below explore the weakness of the heuristic cuts and demonstrates a case
where an optimal solution could not be obtained by either CUT 2 and CUT 3.

Table 18. Example 1, where CUT 2 fails (6 machines, 3 stages, 10 jobs)

Stage 1 = [M1,M2], Stage 2 = [M3,M4], Stage 3 = [M5,M6]

CUT 2 non-optimal
dates duration/cost
Job | release due M1 M2 M3 M4 M5 M6
1 0 700 151/151 F 120/120 121/121 135/135 96/96
2 0 900 101/202 211/422 120/120 121/121 125/125 96/96
3 0 1100 131/131 171/171 110/110 111/111 125/125 F
4 0 1000 140/280 191/191 120/120 121/121 115/230 96/96
5 0 1200 140/140 200/200 120/120 121/121 145/145 96/96
6 0 1300 130/130 151/151 120/120 121/121 135/135 96/96
7 0 1300 150/150 171/171 120/120 121/121 125/125 96/96
8 0 1000 110/110 141/141 120/120 121/121 115/115 96/96
9 0 1600 100/100 151/151 120/120 121/121 115/115 96/96
10 0 1200 91 /91 211/633 120/120 121/121 115/115 96/96
Setup[m] = [60,80,25,25,40,40]
Forbidden paths = [M1—>M3]

Table 19. Example 2, where both CUT 2&3 fail (6 machines, 3 stages, 10 jobs)

Stage 1 = [M1,M2], Stage 2 = [M3,M4], Stage 3 = [M5,M6]

CUT 2 & 3 non-optimal
dates duration/cost

Job |release due M1 M2 M3 M4 M5 M6
1 0 700 51/15 F 22/8 12/12 35/13 36/16
2 100 600 51/4 21/5 22/12 12/11 25/12 36/16
3 200 600 31/9 17/11 21/14 11/11 25/15 F
4 150 400 40/8 49/9 22/15 12/12 15/23 26/16
5 200 500 40/4 50/3 22/14 12/12 45/14 46/16
6 200 800 30/3 35/5 22/14 12/12 35/13 36/19
7 100 600 50/5 57/7 12/10 12/12 25/22 26/19
8 150 500 10/5 14/4 24/11 24/12 15/21 26/19
9 400 600 10/3 15/5 22/20 21/25 15/25 16/29
10 0 500 9/9 11/6 22/20 21/21 15/25 16/29

Setup[m] = [60,80,25,25,40,40]

Forbidden paths = [M1—>M3]
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