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Abstract

In this paper we present a decomposition strategy for solving large scheduling problems
using mathematical programming methods. Instead of formulating one huge and unsolv-
able MILP problem, we propose a decomposition scheme that generates smaller programs
that can often be solved to global optimality. The original problem is split into subprob-
lems in a natural way using the special features of steel making and avoiding the need for
expressing the highly complex rules as explicit constraints. We present a small illustrative
example problem, and several real-world problems to demonstrate the capabilities of the
proposed strategy, and the fact that the solutions typically lie within 1-3% of the global
optimum.

Keywords: Mixed Integer Programming, Steel Making, Scheduling, Heuristics, Disaggre-
gation.

1. Introduction

Large-scale combinatorial problems arise frequently in the area of scheduling and process
synthesis. The main goal of scheduling is to assign and sequence a number of jobs into the
equipment of a given production facility within a certain time frame such that each job is
completed before its due date. The time is critical also in two other aspects: the equipment
should normally not process more than one job at a time, and in multistage production,
the previous stage of a job needs to be completed before proceeding to the next one. To
meet these requirements, either a discrete or continuous time model needs to be applied.
Scheduling problems can further be classi�ed by a number of criteria and these are discussed
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in Pinto and Grossmann (1998) and Shah (1998). The main di�culty in these types of
problems lies in the number of discrete variables that is needed for a valid representation
of the model. Because of this, Mixed-Integer Programming (MIP) approaches may require
exponential computation times and often fail to even �nd a feasible solution (Pekny and
Reklaitis, 1998). This trend can be observed in most common approaches when the problem
size is increased to real-size scales. The approaches include the uniform time discretization
(Kondili et al., 1993; Pekny and Zentner, 1994), the time-slot based approach (Pinto and
Grossmann, 1995), and continuous time approaches (Zhang and Sargent, 1996; Mockus
and Reklaitis, 1996; Ierapetritou and Floudas, 1998).

A number of strategies to overcome this problem have been proposed. Heuristic methods
using for instance genetic search (Rubin and Ragaz, 1995) may give a feasible solution,
but cannot guarantee the quality of the result. Combining Constraint Logic Programming
(CLP) methods with Mixed Integer Linear Programming (MILP) has been proposed by
Jain and Grossmann (2001) for a certain class of scheduling problems. A third category
of methods combines heuristics with mathematical programming methods which results
in a reduction of discrete variables and/or an improved relaxation of the original problem
(Elkamel et al., 1997; Lee et al., 1997; Roslöf et al., 2001). The approach proposed in this
paper belongs to the last category. Here, we apply a continuous time representation for
modeling a large-scale scheduling problem.

Production scheduling in the steel industry has been recognized as one of the most di�cult
industrial scheduling problems. It involves a number of stages, each of which has many
critical production constraints. There have been several studies only on part of the prob-
lems, e.g. continuous casting (Lally et al., 1987) and batch annealing process, including
crane operations (Moon and Hrymak 1999). Most of the methods use expert systems,
heuristics, or fuzzy logic approaches to generate feasible solutions. A brief overview on
expert systems is given by Dorn and Doppler (1996) followed by a more detailed study on
a scheduling expert system (Dorn and Shams, 1996). A thorough overview of the process
and computerized scheduling solutions including OR-techniques, AI methods and combi-
nations of these two is given in Lee et al. (1996). Apart from optimization, simulation has
also been used to verify the chosen production strategy, and to identify possible bottlenecks
and machine inconsistencies.

Modeling and solving a steel-shop scheduling problem involves handling a large number of
complicated chemistry-, geometrical- and scheduling rules. This means in practice that the
production is highly sequence dependent. Due to this complexity using a straightforward
MILP approach may require excessive computation time, even for a problem with only
10 jobs. Instead, MILP can be complemented by heuristics and in this case the fact
that the jobs (often named as heats) need to be speci�cally grouped into sequences for
the last processing stage, continuous casting, motivates a decomposition strategy. The
decomposition strategy proposed in this paper consists in �rst partitioning the customer
orders into groups of heats with similar properties, each of which is optimized as a jobshop
scheduling problem (Rich and Prokopakis, 1986). Next, each of the groups are optimally
scheduled as a �owshop problem (Birewar and Grossmann, 1989), and �nally an LP and/or
MILP method is used to properly account for setup times and to optimize the allocation of
some parallel equipment. While this decomposition strategy is not guaranteed to yield the
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global optimal schedule, it allows the solution of very large-scale problems. Whereas the
traditional MILP approaches fail to solve in reasonable time problems with 8-10 products,
it will be shown that the proposed decomposition strategy can be successfully applied
to the scheduling of close to 100 products which equals to almost one week production.
Moreover, a theoretical lower bound can be calculated to assess the quality of the solutions,
which lie within 1-3% of the global optimum.

2. Problem de�nition

The steel-making process studied consists of two electric arc furnaces (EAF), where the
melt steel is combined with scrap, and thereafter taken to argon oxygen decarburization
(AOD) and ladle metallurgy facility (LMF) units. Finally, the melt steel is solidi�ed in a
continuous caster under strictly constrained conditions. The process is illustrated in Fig.
1. There are several complicating factors in the problem such as sequence dependent setup
times, maintenance of equipment and production time limitations. Problems arising from
the metal chemistry, as well as plant geometry are not directly considered in the model.
Thus, a working scheduling model must not only consider equipment availability, but also
the temperature requirements of each product at each stage, chemistry constraints, for
instance between subsequent products and material properties, both in the products, as
well as in the equipment that operate under extreme conditions.

The continuous casting involves solidifying of the melt steel to steel slabs of a prespeci�ed
width and thickness. When a continuous steel �ow is broken, the caster needs maintenance
and the caster mold needs to be replaced, which involves costs and a delay in production.
This happens, for instance, when the product type is changed. If the two subsequent
products are very similar, it may be possible to mix them and go on without stopping,
but in the other case the caster needs to be stopped for service. Moreover, the caster can
only be run continuously for a limited number of products due to the extreme conditions.
Because of this, the continuous casting can be considered as one of the main challenges in
steel production planning, and even getting feasible solutions is not trivial.

EAF #2

Cast er

EAF #1

AOD LMF

Figure 1. The example process

The products of the steel making process are de�ned by their grade, that is basically a
product quality description, including both chemical and physical properties. Each grade
has a given production recipe including strict speci�cations of temperature, chemistry and
processing times at di�erent stages. Grades are further subdivided into sub-grades, that
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have minor di�erences to the actual grade (e.g. lower carbon content) Example: grade 555
may have a low-carbon sub-grade 555L. Given the grade constraints, production equipment
and a number of customer orders (heats), the problem is to �nd a schedule that minimizes
the makespan following the recipe for each product grade. The di�erent grade qualities
and dimensions pose chemical, as well as physical restrictions that need to be considered
in the planning stage. The model that follows is, however, a simpli�cation of the real case,
but captures the critical features.

In the following, we will use the term products for individual heats or orders, and grades
for a product type. Also, the term group will be used to express a sequenced subset of
products. In order to tackle the scheduling problem some assumptions are made. Grades
and respective sub-grades with the same slab thickness can be cast in the same sequence,
although the order is speci�ed by certain rules. Each product is characterized by its grade,
slab width and -thickness. Many of the complicated chemistry rules can be embedded into
parameters and need not be explicitly considered in the model.

3. Solution strategy

The proposed decomposition strategy involves presorting and four major optimization steps
(three MILP and one LP) as illustrated in Fig. 2. The following steps are involved in the
proposed decomposition strategy:

1. Presorting the products into product families
2. Optimal disaggregation of product families into groups
3. Scheduling each of the groups independently
4. Scheduling of all groups
5. LP-improvement problem

The main issues for each step will �rst be discussed together with an introduction of the
major concepts. This is followed by a mathematical formulation, where we �rst present
the general case and thereafter discuss some speci�c details, that may for instance, require
addition or modi�cation of certain constraints.

3.1 Presorting the products

The products (orders) need to be presorted in order to classify them into product families
that have the same grade and thickness. This is done as follows. The products are ordered
sequentially according �rst to their casting speed, next to due date, then to slab width,
followed by the grade and �nally slab thickness. Each grade is also ordered according to
their �sub-grades� which have to follow certain ordering rules. Brie�y, the ordering is done
in increasing importance such that, for example, after the last and most important sorting
of the thickness, all products with the same thickness follow each other (see Appendix
I). After the ordering, the sorting takes place simply by scanning through the list of
products starting from the top and joining subsequent products that are similar within
given tolerances. This �manual� sorting procedure provides an upper limit to the number

4



Or der s

Schedul e

DI SAGGREGATE ( MI LP)

SCHEDULE
SUBPROBLEMS

 ( MI LP)

AGGREGATE ( MI LP)

Fi nal  Schedul e

I MPROVE ( LP)

PRESORT

Pr oduct  Famili es

Gr oups

Gr oup Schedul es

Figure 2. Decomposition strategy

of sequences (or groups) needed for the continuous casting. The two lists below illustrate
a simple case with the unsorted products on the left and presorted on the right hand side,
which contains 5 product families.

Before sorting After sorting

Grade Thickness Width (in) Grade Thickness Width (in)
777 5.0 40.0 555 5.0 42.5
666L 5.0 38.5 555 5.0 37.0
555 5.0 42.5 666L 5.0 38.5
777L 5.0 43.0 666 5.0 33.0
777 6.0 45.0 777L 5.0 43.0
666 5.0 33.0 777 5.0 40.0
777 6.0 44.0 666 6.0 50.0
555 5.0 37.0 777 6.0 45.0
666 6.0 50.0 777 6.0 44.0

3.2 Optimal disaggregation of products into groups

After the presorting step the products are ordered such that a product cannot be followed
by any of its predecessors in the sorted list, except if it has exactly the same proper-
ties (grade, sub-grade, width and thickness). An upper bound for the number of groups
needed for covering all the products is obtained from the presorting. Having completed the
presorting step, each product family is disaggregated into smaller, solvable problems con-
sisting of groups. The motivation for this disaggregation lies in the last processing stage,
the continuous casting, which is done under the following assumption. A number of similar
grades can be cast in a sequence (at most Mmax products) after which the caster needs
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maintenance, typically this consists of a caster mold change that takes TMcst minutes. A
sequence cannot contain di�erent slab thicknesses and grades, and in order to ensure the
required product quality, the sub-grades in each sequence need to be ordered in a certain
way, for instance low carbon products should always precede high carbon products. Also,
the products need to be cast in decreasing width within each sequence, and the slab width
di�erence between two subsequent products within a group is restricted (�w).

This motivates the need for developing a formulation for the grouping. The matching
between products and groups, as well as the exact casting sequences are obtained as a
result from this problem. Each family of grades (grades and their corresponding sub-
grades) are grouped separately under the following conditions:

� the number of groups should be minimized since each group change imposes a TMcst

minute changeover time
� di�erent grades and slab thicknesses cannot be mixed in a group
� an overall goal is to run longer caster sequences

The grouping problem for each product family can be formulated as follows. The objective
function (1) minimizes the number of groups needed, i.e. the sum of variables, zg, that are
equal to one if any product i 2 I has been assigned to the group g 2 G, or else equal to
zero,

min
xig;zg;yii0g;qig

X
g2G

zg (1)

Although the variables zg are 0-1, they can be treated as continuous as will be seen below.
De�ning xig as the variable for assigning product i in group g, constraint (2) requires that
a product i can be assigned to only one group g (logical expression: _xig), and constraint
(3) sets an upper limit to the number of products in a group, Mmax, as well as, de�ning
the relationship between the variables xig and zg.

X
g2G

xig = 1 8i 2 I (2)

X
i2I

xig �Mmax � zg 8g 2 G (3)

Constraints (4)-(6) de�ne a continuous variable, yii0g, to be equal to one if both products i
and i0 are in the group g, else zero, which logically is equivalent to xig ^ xi0g , yii0g. This
condition can be formulated as the inequalities,

yii0g � xig + xi0g � 1 8i; i0 2 I; i < i0; 8g 2 G (4)

yii0g � xig 8i; i0 2 I; i < i0; 8g 2 G (5)

yii0g � xi0g 8i; i0 2 I; i < i0; 8g 2 G (6)
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The products in a group need to meet several requirements. The decreasing casting width
is enforced by a logical expression, yii0g ) (Wi � Wi0) for i < i0, given in Eq. (7), where
Wi is the given width of order i. In order to be able to handle the more complicated
constraints linearly, a precedence matrix, Pii0 is formed to denote if product i0 can be cast
directly after product i (Pii0 = 1) or not (Pii0 = 0). Equation (8) states that all products
except one (the last in the group) has to be followed by a suitable product, the logic
equivalence of which is (xig ^ :qig) ) (_yii0g) for Pii0 = 1; i < i0. Constraint (9) makes
sure that the sum of relaxation variables for this, qig, does not exceed one for any active
group.

(Wi �Wi0) � yii0g � 0 8i; i0 2 I; i < i0; 8g 2 G (7)
X

i02I;i0>i

Pii0 � yii0g � xig � qig 8g 2 G; 8i 2 I (8)

X
i2I

qig � zg 8g 2 G (9)

xig 2 f0; 1g

0 � zg; yii0g; qig � 1

yii0g = 0 8i; i0 2 I; i � i0

This formulation requires only one set of binary variables, xig. The other variables can be
treated as continuous, ranging between 0 and 1. Because of the pre-ordering some of the
yii0g variables can be �xed. The formulation can further be tightened through elimination
of multiple solutions by forcing the �rst groups to be active (zg+1 ) zg) and ordering the
groups by decreasing number of products. This is done in Eqs. (10) and (11).

zg+1 � zg 8g 2 G; g < jGj (10)
X
i2I

(xi;g+1 � xig) � 0 8g 2 G; g < jGj (11)

The formulation given in Eqs. (1)-(11) is capable of disaggregating orders optimally into
groups for a typical one week set of orders, where no more than 30-35 products appear per
grade. The result of this step is not only an optimal grouping strategy that minimizes the
casting setup times, but also the correct casting order, as illustrated in Fig. 3, in which a
grade with its two sub-grades (vertical and horizontal lines) containing 9 presorted products
are divided into 2 groups, or casting sequences.

Figure 3. The disaggregation step
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3.3. Scheduling each of the groups independently

After solving the optimal grouping problem, the next step of the proposed strategy is
to schedule the production independently for each group. This step is performed using
a jobshop scheduling formulation. It should, however, be noted that since the casting
sequence has already been �xed at the previous step, the same production sequence often
applies to the rest of the production. This makes the problem fairly e�cient to solve, and
the main purpose of solving the individual group schedules lies in de�ning the required
time window for each equipment, as well as handling the case of parallel units. Also, this
step takes into account certain restrictions, e.g. the maximum hold-times of the heats.
Depending on the grade, the heats should not spend more than a certain time, the hold-
time, between the AOD tap and the beginning of the casting in order to keep the heat
temperatures within a required range. Otherwise, the production of a grade may fail and
may not meet its quality requirements without additional heating. An example of this
step can be seen in Fig. 4. In the following, a simpli�ed formulation is �rst given without
the parallel EAF-units, followed by a discussion and the constraints that are needed for
handling two parallel EAF furnaces.

EAF#1

t i me

EAF#2

AOD

LMF

Cast er

heat s

Figure 4. The scheduling of groups

The objective is to schedule the products i 2 I into machines m 2 M while minimizing
an objective that combines the makespan, in-process times (the di�erence between start-
time of the �rst and last machine) and the positive slack-variables representing hold-time
violations. The coe�cients C1 and C2 in the objective function (12) are weighted such
that C2 dominates to reduce the violation of hold-times. The coe�cient C1 need not be
large since the makespan is more important, than the in-process times.

min
tim;Yii0m;t

MS ;sl
tMS + C1 �

X
i2I

�
ti;jMj � ti;1

�
+ C2 � sl (12)

The makespan is de�ned in constraint (13). The precedence constraints between the prod-
ucts are determined using a binary variable Yii0m to indicate that product i precedes i0 in
machine m. These are de�ned in Eqs. (14) and (15), where U is a valid upper bound.

tim + �im � tMS 8 i 2 I; m = jM j (13)

tim � ti0m + �i0m + T sm + T clm � U � Yii0m 8i; i0 2 I; i 6= i0; 8 m 2M;m < jM j (14)
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Yii0m + Yi0im = 1 8 i; i0 2 I; i 6= i0; 8 m 2M (15)

Constraint (14) involves machine setup and clean-up times T sm + T clm that can easily be
customized, e.g. for sequence dependent setup times. The production constraint enforcing
the order of operations is given in Eq. (16), and the hold-time is de�ned in Eq. (17).

ti;m+1 � tim + �im + T sm+1 8 i 2 I; 8 m 2M;m < jM j (16)

ti;CST � (ti;AOD + �i;AOD) � Hi;max + sl 8 i 2 I (17)

Finally, the previously sequenced continuous casting can be enforced through Eq. (18).

ti+1;m = tim + �im + T sm 8 i 2 I; i < jIj; m = jM j (18)

Yii0m 2 f0; 1g

tim; t
MS; sl � 0

The simpli�ed formulation in Eqs. (12)-(18) does not consider parallel EAF units or
variable processing times. Incorporating variable processing times is straightforward and
does not involve nonlinearities, while the processing times can just be changed to positive
variables. Handling the two parallel electric arc furnaces requires introduction of new
binary variables and complicating big-M constraints. The new variables are marked with
the superscript EAF. Two binary variables are needed: ZEAF

im to assign each product to one
of the two furnaces, and Y EAF

ii0 to de�ne the precedence of the EAF step, since electricity
can only be fed into one furnace at a time.

The sequencing constraint in (14) needs to be changed for the furnaces. In Eq. (19), the
additional big-M terms ensure that only products in the same EAF-unit are compared
(Yii0m^Z

EAF
im ^ZEAF

i0m ) ti0m � tim+�im+T sm+T clm). Constraint (20) states that exactly
one furnace is assigned to each product.

ti0m � tim + �im + T sm + T clm � U
�
1� Yii0m + 1� ZEAF

im + 1� ZEAF
i0m

�

8 i; i0 2 I; 8 m 2MEAF (19)
X

m2MEAF

ZEAF
im = 1 8 i 2 I (20)

Additional constraints are needed because of the electricity restriction above. The time
T el stands for the electricity feed and overlapping is hindered in Eq. (21) followed by the
EAF-precedence variable de�nition in Eq. (22).

X
m2MEAF

(ti0m � tim) � T el � U
�
1� Y EAF

ii0

�
8 i; i0 2 I; i 6= i0 (21)

Y EAF
ii0 + Y EAF

i0i = 1 8 i; i0 2 I; i < i0 (22)
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Constraint (15) needs to be relaxed for the furnaces to handle the case where only one
product is processed on each EAF. This is enforced through Eq. (23). The relationship
between the general precedence variables and the EAF assignment variables is de�ned in
Eq. (24),

X
m2MEAF

(Yii0m + Yi0im) � 1 8 i; i0 2 I; i 6= i0 (23)

Yii0m � ZEAF
i00m 8 i; i0 2 I; i 6= i0; (i00 = i) _ (i00 = i0); 8 m 2MEAF (24)

Because of the two parallel EAF-units, the production constraint for the following AOD-
unit needs to be rede�ned. This is done in Eq. (25) which is valid if the start-time for the
unused EAF is set to zero, as in Eq. (26).

ti;AOD � T sAOD +
X

m2MEAF

�
tim + �im � ZEAF

im

�
8 i 2 I (25)

tim � U � ZEAF
im 8 i 2 I;m 2MEAF (26)

Y EAF
ii0 ; ZEAF

im 2 f0; 1g

Introduction of the new variables and constraints in (19)-(25) makes the relaxation poorer
and increases the search space. In some cases this may result into di�culties when solving
the problems. Depending on the speci�c instance, the model can be tightened, for instance,
by alternating the furnaces, as in Eq. (27), which basically is almost as powerful as �xing
the EAF assignment a priori. In practice, this is a desired strategy which is often used
and hence, the parallel equipment should not be a complicating factor in this optimization
step. Also, another practical issue is to de�ne the same ordering for the LMF (zero-wait)
as for the caster. This is expressed in Eq. (28) and is also motivated by the fact that often
the product is taken to the caster immediately from the LMF, which also decreases the
hold-times.

ZEAF
im + ZEAF

i+1;m = 1 8 i 2 I; i < jij;m = 1 (27)

X
i02I

(Yii0m � Yi+1;i0m) = 1 8 i 2 I; i < jIj;m = jM j � 1 (28)

Even if the jobshop model is fairly complex, the problem can be solved e�ciently using
the simpli�cations above. For less than 10 products, most of the groups can be scheduled
optimally in a few seconds. This problem is solved separately for each group (see Fig.
2), and as a result we obtain valid schedules with optimal assignments and production
sequences. From these schedules the time occupation of each unit can be extracted, which
allow us to form a large-scale problem, where the optimal order of the groups is sought.
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3.4. Scheduling of all groups

Having found the optimal strategy for the grouping of the products (disaggregation), and
thereafter scheduled independently each group using the previous MILP approach, the
groups are ordered in the next step using the slot-based approach by Birewar and Gross-
mann (1989). The main idea is to focus on the scheduled groups instead of the individual
products. The principle is illustrated in Fig. 5. The �gure shows how the equipment
requirements are extracted from the group. The groups will then form time blocks which
are �nally ordered in a way that minimizes the makespan and tardiness/earliness. The
due-date for each group is the earliest one of its products and the time window for each
equipment is de�ned from the start of the �rst product to the end of the last one. Apart
from only minimizing the makespan, certain sequencing issues are considered here. The
two main issues are considering special grade requirements due to purity constraints, and
reducing the number of caster mold thickness changes.

t i me

Figure 5. The aggregation step

As shown in Fig. 5, this step is performed by only looking at the groups without considering
individual products. The problem can be solved as a �owshop scheduling problem, since
there is no parallel equipment and all the groups should follow the same production path.
After the slot-ordering has been performed, the complete production order is known, and
can be extracted by combining the results from this and the previous step.

The objective function (29) minimizes the makespan, tardiness, earliness and mold thick-
ness changes. The values of the coe�cients (C1, C2, C3) depend on the problem, but
generally the tardiness should be penalized more than earliness. These are expressed by
continuous variables. The coe�cient C3 for a thickness change that is detected here by
positive slack-variables depends on the problem, but should be fairly high to avoid unnec-
essary setup times and costs.
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min
zgl;t

S
ml
;tE
ml
;tMS;zgg0l;t

early

l
;t
tardy

l
;sl+

l
;sl�

l

tMS +
X
l2L

�
C1 � t

tardy
l + C2 � t

early
l + C3 � (sl

+

l + sl�l )
�

(29)

Only one set of binary variables is required for the slot-assignment of the groups. Con-
straints (30-31) de�ne the new binary variables zgl, i.e. each group g can only be placed
into one slot l, and each slot l must be assigned to exactly one group g. This is also
illustrated in Fig. 6. Also, a continuous variable wgg0l needs to be de�ned in Eq. (32) to
identify subsequent groups (zgl ^ zg0;l+1 ) wgg0l).

X
g2G

zgl = 1 8 l 2 L (30)

X
l2L

zgl = 1 8 g 2 G (31)

wgg0l � zgl + zg0;l+1 � 1 8 g; g0 2 G; 8 l 2 L; l < jLj (32)

g

z
g l

z
g ,l +1

l+1l
Figure 6. The slot-assignment variable

The following constraints de�ne the time boundaries for each slot. Constraint (33) simply
states that the end time, tEml, of a machine in a group is the start time, tSml, plus the total
machine time TDg;m for the group, determined in the previous scheduling step. The start

time of the �rst machine, tS
1;l, is used as a reference point in Eq. (34) that de�nes the

start times of the remaining equipment, utilizing �xed delays from the previous step, TSTg;m,
between the start times of the �rst machine and the remaining machines.

tEml = tSml +
X
g2G

TDg;m � zgl 8 m 2M; 8 l 2 L (33)

tSml = tS1;l +
X
g2G

TSTg;m � zgl 8 m 2M;m � 2; 8 l 2 L (34)

Equation (35) de�nes that the operations in the next slot should not start before the
completion of the previous one followed by a machine speci�c setup-time. The sequence,
as well as mold thickness changes in the caster, are considered in Eq. (36).
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tSm;l+1 � tEml + T sm 8 m 2M;m < jM j; 8 l 2 L; l < jLj (35)

tSm;l+1 � tEml + TCgrp +
X

g;g02G;g 6=g0

T
C;thk
gg0 � wgg0l m = jM j; 8 l 2 L; l < jLj (36)

Constraints (37) and (38) consider the electricity feed restriction and the makespan is
de�ned in (39). Constraint (40) de�nes the earliness and tardiness, both of which are
represented by positive continuous variables and the RHS term will be equal to the due
date of the group assigned to the slot. In this way the problem will never be infeasible
because of due date violations.

tS2;l+1 � tS1;l + T el 8 l 2 L; l < jLj (37)

tS1;l+1 � tS2;l + T el 8 l 2 L; l < jLj (38)

tMS � tEml 8 m 2M; l = jLj (39)

tEml + t
early
l � t

tardy
l =

X
g2G

T dueg � zgl 8 l 2 L;m = jM j (40)

The last two constraints arise from the mold thickness change. This is controlled through
a thickness code Cth

g of each group. The problem considered here has only two possible
thicknesses that are here represented by thickness codes 0 and 1. In constraint (41) either
of the positive slack-variables will be equal to one in the case of a change, depending if
we change from thickness code 1 to 0 or vice versa (LHS equals 1 or �1). Constraint (42)
restricts the total number of thickness changes.

X
g2G

�
Cth
g � zgl � Cth

g � zg;l+1
�
= sl+l � sl�l 8l 2 L; l < jLj (41)

X
l2L

�
sl+l + sl�l

�
� N th

max (42)

zgl 2 f0; 1g

tSml; t
E
ml; t

MS ; wgg0l; t
early
l ; t

tardy
l ; sl+; sl� � 0

The formulation for the aggregation (ordering of the groups) in Eqs. (29-42) can be
complemented by a number of constraints regarding, for instance, special product grades
that poses certain casting requirements. Some special grades with a low nickel content, for
example, cannot be cast arbitrarily, but need to be preceded by suitable grades that can
be called �wash grades� since their function is to clean up the equipment from undesired
substances. Because of this complexity it is often bene�cial to do the casting of special
grades in one long sequence, i.e. let all the groups with the grade follow each other. This
can be achieved by a few additional constraints. In the following example, let the special
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grade be 555 and the suitable wash grade 555�. The set of groups containing the grade is
referred to by G555.

Here, it should be recalled that the products are sorted such that all groups with the
same grade (and thickness) are adjacent. In Eq. (43) all special grades are forced to be
in subsequent slots. Constraint (44) focuses on the �rst special grade and positions the
selected �wash grade� before it,

zgl = zg+1;l+1 8 l 2 L; l < jLj; 8 g 2 G555; g + 1 2 G555 (43)

z555�;l = zg+1;l+1 8 l 2 L; l < jLj; 8 g 62 G555; g + 1 2 G555 (44)

Additional information can be embedded through similar constraints, such as a set of
groups can be ordered according to their size (number of products). Also, the formulation
allows the addition of other critical constraints and many of these will, in fact, decrease
the search space by incorporating partial decisions done o�-line.

The problem given in Eqs. (29)-(44) is solvable for up to about 30 groups (on average 80-
120 heats), and the solution gives the order in which the groups should be produced. Since
the internal order of each group has already been optimized, we know after solving this
step the complete order of production. Nevertheless, since this problem does not directly
account for individual products, it provides only an upper bound for the makespan and
may contain time gaps at the transition between the groups. Therefore, the solution can
be improved by forming a scheduling problem with �xed sequencing and assignment and
solve it as an LP.

3.5. LP-improvement problem

As discussed above, at this stage both the sequences and assignment of the products
are known. Therefore, the formulation can be simpli�ed by only writing constraints for
subsequent heats. Solving this problem will eliminate those slack times, that were formed
through the disaggregation into groups (see the improvement �t in Fig. 7). At this step,
most of the more speci�c issues are considered such as the hold-time, possible maintenance
and changeover times.

The objective is to minimize the makespan, the total processing time of each product as
well as hold-time violations. All elements needed for this formulation have already been
presented, mainly in the section of scheduling the groups. The main di�erence is that
now we only have three variables: makespan, starting times and hold-time slacks. All
discrete variables have been eliminated. The objective was already given in Eq. (12). The
makespan can be de�ned as in Eq. (13) and the timing constraints are similar to Eq. (14).
Furthermore, the hold-time violations in Eq. (17) apply also to this problem. Continuous
casting is also enforced by Eq. (18). Here, we do not need any precedence variables or
constraints, so constraint (21) can be modi�ed to control the electricity demand of EAF
simply by removing the big-M terms. With these modi�cations the general mathematical
model for this step is given by:
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Figure 7. Improving the solution

min (12)

subject to
(13); (14); (17); (18); (21)

tMS ; tim; sl � 0

The above problem is an LP that can be e�ciently solved, typically within a fraction of a
second. The main idea of this step is to improve the solution by closing some gaps that are
formed by the grouping strategy and give a more realistic estimate of the total makespan
and timing. Often this step results in a makespan which is 5-15% better than the one
obtained in the previous step.

An additional optimization step can be added which �frees� the parallel equipment and
determines an optimal assignment for those. In this example problem, the only parallel
equipment are the two EAFs. The bene�ts of this step can be observed in cases where the
parallel equipment act as a bottleneck, or when one of the equipment is unavailable due
to maintenance. To solve this step, additional binary variables are needed for the EAF
assignment. In this case, where we only have two parallel units, we would only need one
binary variable per product, for which the value zero (0) refers to one of the units and value
one (1) to the other. All constraints that do not consider the EAF stage are the same as in
the previous LP. Thus, we only need to rede�ne a few constraints and introduce constraints
for de�nition of the binary variable. The �nal step can be ignored if a detailed machine
schedule is not needed, since it does not change the production order. Even though the
previous LP provides both an upper bound and a feasible solution to this �nal MILP
problem, solving the MILP may take a considerable amount of time, when the number of
products (=number of binary variables) is large because of the big-M constraints.

4. Summary

The decomposition strategy is illustrated in Fig. 8. The modularity makes it possible to
solve some parts of the problem independently without a�ecting the rest of the problem.
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For instance, if a new product arrives, the grouping needs to be repeated only for those
product grades that the new product belongs to. Furthermore, the second step of solving
group schedules also needs to be performed only for the updated ones. The third step,
which is computationally the most demanding, needs to be re-optimized in most cases,
since changed operational parameters or due-dates etc. may either make the old solution
infeasible or signi�cantly worsen it and question the optimality.

Pr epr oce ss i ng

Scheduli ng l eve l

Post pr oce ss i ng

Gr oup t he pr oduct s
i nt o bl ocks of  1−8 

heat s ( MI LP)

Sol ve  t he scheduli ng 
pr ob l em f or  eac h bl ock  

separ at el y  ( MI LP)

Sol ve  a scheduli ng 
pr ob l em t o f i nd t he best

bl ock  or der  ( MI LP)

Sol ve  t he whol e
pr ob l em wi t h f i xed

pr ef er ence  ( LP)

Sol ve  t he pr ob l em:  
f i xed pr ef er ence  and

f r ee EAF ( MI LP)
AND/ OR

Figure 8. The decomposition strategy

The steel scheduling problem is very complex and obtaining a feasible solution can be
very di�cult for real industrial problems. Evaluating the optimality gap for the proposed
strategy is di�cult because there is no single MILP model from which a valid lower bound
can be obtained. However, a rigorous lower bound for the makespan can be determined
by considering the sum of the production and transition times, which corresponds to a
valid lower bound. To obtain this theoretical lower bound for the makespan, we �rst need
to determine the bottleneck stage and sum all production and setup times for this, and
thereafter add a minimum production and setup time for the remaining stages. Since the
optimal grouping strategy minimizes the casting setup times (section 3.2), we know that
the lower bound for the makespan is valid. However, since we are not considering possible
equipment con�icts, a physically realizable solution may have a higher objective.

5. Example

An illustrative example is �rst presented, followed by a set of large-scale scheduling prob-
lems.
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5.1. Small scale example

To illustrate the steps of the decomposition strategy, a small problem with 12 products is
considered. In this simpli�ed example, we have two di�erent grades (100,101), the grade
101 having three subgrades (101A, 101B and 101C). If these subgrades are placed into the
same sequence they must be cast in the order 101A ! 101B ! 101C ! 101. The grade,
slab width and -thickness, casting and AOD times (minutes) of the products are given in
Table 1 in random order.

Table 1. Unsorted orders
Grade Width Thick Time AOD
101 31.8 7.500 98.4 81.0

100 50.2 6.125 65.0 85.0

100 49.8 6.125 65.0 85.0

101 31.5 7.500 98.4 81.0

101B 37.6 6.125 92.0 83.0

100 49.2 6.125 65.0 85.0

101 49.8 7.500 60.0 81.0

101A 49.8 7.500 60.0 87.0

101 35.2 6.125 86.2 81.0

101A 34.2 7.500 81.1 87.0

101C 32.2 7.500 92.6 81.0

101B 27.5 7.500 110.0 83.0

In the �rst step, the products are presorted into product families by those properties that
are critical for casting, namely the width, grade and thickness. The goal is to get the
products as close as possible to a feasible casting order. As can be observed in Table 2,
the presorting procedure results in 3 product families (separated by the thicker lines) and
an upper bound of 8 for the number of groups considered. Here, the products are also
numbered for reference.

Table 2. Presorted orders
Prod Grade Width Thick Time AOD Sequence

P1 100 50.2 6.125 65.0 85.0 1

P2 100 49.8 6.125 65.0 85.0 1

P3 100 49.2 6.125 65.0 85.0 1

P4 101B 37.6 6.125 92.0 83.0 2

P5 101 35.2 6.125 86.2 81.0 2

P6 101A 49.8 7.500 60.0 87.0 3

P7 101A 34.2 7.500 81.1 87.0 4

P8 101B 27.5 7.500 110.0 83.0 5

P9 101C 32.2 7.500 92.6 81.0 6

P10 101 49.8 7.500 60.0 81.0 7

P11 101 31.8 7.500 98.4 81.0 8

P12 101 31.5 7.500 98.4 81.0 8
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The optimization problem for disaggregation into groups is then formulated based on the
presorting. In this case, three MILP problems are formulated with the product families
f1�3g, f4�5g and f6�12g (the products are divided according to their grade and thickness)
using Eqs. (1)�(11). In this step all casting rules need to be considered. This is partly
done by formulating a precedence matrix, Pii0 that de�nes which products may follow each
other. This matrix for products 6�12 is given in Table 3.

Table 3. Precedence matrix
P6 P7 P8 P9 P10 P11 P12

P6 0 0 0 0 1 0 0

P7 0 0 0 1 0 1 1

P8 0 0 0 0 0 0 0

P9 0 0 0 0 0 1 1

P10 0 0 0 0 0 0 0

P11 0 0 0 0 0 0 1

P12 0 0 0 0 0 0 0

From the table, it can be seen for instance that product 7 can be followed by products 9,
11 or 12 in a sequence. The solutions for the three product families are shown in Table 4.
Note that families 1 and 2 involve only one group each, and family 3 has been partitioned
into three groups. The products are given in the correct casting order within each group.

Table 4. Optimally grouped orders

Prod Grade Width Thick Time AOD Sequence

P1 100 50.2 6.125 65.0 85.0 1

P2 100 49.8 6.125 65.0 85.0 1

P3 100 49.2 6.125 65.0 85.0 1

P4 101B 37.6 6.125 92.0 83.0 2

P5 101 35.2 6.125 86.2 81.0 2

P7 101A 34.2 7.500 81.1 87.0 3

P9 101C 32.2 7.500 92.6 81.0 3

P11 101 31.8 7.500 98.4 81.0 3

P12 101 31.5 7.500 98.4 81.0 3

P6 101A 49.8 7.500 60.0 87.0 4

P10 101 49.8 7.500 60.0 81.0 4

P8 101B 27.5 7.500 110.0 83.0 5

The following step includes a detailed scheduling of each group using the jobshop formu-
lation (12)�(28). This is done separately for the products f1�2�3g, f4�5g, f7�9�11�12g,
f6�10g and f8g. Here we assume a �xed EAF time of 110 minutes per product of which
90 minutes is the electricity feed time (T el). A constant LMF time of 17 minutes is further
assumed. The setup time (transition time between equipment) is 5 minutes, except for the

18



gantt−1

EAF1

EAF2

AOD

LMF

CAST

Ti me [ hs]

0 4 8 12 16

gantt−2

EAF1

EAF2

AOD

LMF

CAST

Ti me [ hs]

0 4 8

gantt−3

EAF1

EAF2

AOD

LMF

CAST

Ti me [ hs]

0 4 8 12 16

gantt−4

EAF1

EAF2

AOD

LMF

CAST

Ti me [ hs]

0 4 8

gantt−5

EAF1

EAF2

AOD

LMF

CAST

Ti me [ hs]

0 4 8

Figure 9. Solutions from the group scheduling problems

caster for which it is 20 minutes. No clean-up times are considered. The results of the 5
scheduling problems are presented as Gantt-charts in Fig. 9.

The results are mainly used for extracting information on equipment occupancy. That
is, the start-time of the �rst job and the end-time of the last one at each equipment are
registered, and used to formulate a slot-ordering problem in which the order between the
groups is determined as illustrated in Fig. 5. In this example we do not have any special
grades so the �owshop formulation in (29)�(42) is applied. In the caster, the setup time
between groups is assumed to be 60 minutes and a thickness change adds additional 30
minutes to this. The optimal order of the groups is 2 ! 1 ! 4 ! 3 ! 5 and the slot-
ordering problem results in a makespan of 26 hours 23 minutes. The �nal LP reduces the
makespan to 24 hours 43 minutes (1483.7 mins), which represents a 6% improvement. This
�nal solution is presented in the Gantt chart of Fig. 10. The complete solution procedure
of this small example problem required about 1.5 CPU-s using GAMS/XPRESS-MP on a
667MHz PIII running Redhat Linux.

When evaluating the optimality for this example problem the casting turns out to be the
bottleneck. The sum of the casting times is 973.7 minutes, which added with the minimum
changeover times (3 � 60+ 90 = 270 min) results in 1243.7 minutes for the casting process.
If we add to this the EAF-time (110 min), LMF-time (17 min), the shortest AOD-time (81
min) and the required transition times (2 � 5 + 20 = 30 min) we obtain the theoretically
shortest possible makespan for the production 1481.7 minutes (24 hours 41.7 minutes),
which di�ers only 2 minutes from the predicted solution of 24 hours 43 minutes! This
means that the solution lies within 0.1% of the global optimum, which is an indication
of that we have found a global or near global optimal solution to the small-scale example
problem.
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Figure 10. Final schedule of the small example problem

5.2. Industrial-scale examples

A number of real-size problems are considered in this section which are based on a one
week schedule of a steel plant with about 80 orders. For these problems we report in Table
5 the number of grades and subgrades, the number of products and groups needed (casting
sequences), the theoretical lower bound, the predicted makespan (days:hours:minutes) and
the solution time for two di�erent optimality tolerances in GAMS (5 and 10%). As can be
seen from Table 5 the predicted schedules lie between 1% and 3% of the theoretically opti-
mal makespan. These solutions are shorter than one week, which indicates a considerable
improvement of the schedules.

Information of the subproblems for example problem 1 is displayed in Table 6. The prob-
lems were solved using GAMS-19.5/XPRESS-MP on a PIII, 667MHz PC running Redhat
Linux. The termination criteria for each subproblem was an optimality tolerance of 5%
(10%) or a maximum of 10000 CPU-s (166.7 mins). In most of the MILP problems either
one of the grouping problems or the slot-ordering problem was terminated by the time
limit, but in most of these cases, a good solution was found early in the search. Thus,
the resulting MILP solution is very good even if optimality cannot be proved. The most
important fact is that we can obtain a feasible solution to each of the problems, which is
not trivial due to the large number of complicating production constraints.
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Table 5. Results of industrial scale problems

Problem Grades/ Products Groups Lower Makespan1 CPU-min1 Makespan2 CPU-min2

subgrades bound

1 9/20 82 25 5:11:22 5:13:07 171.7 5:13:52 7.2

2 10/17 80 20 5:05:52 5:08:44 334.5 5:08:53 168.7

3 10/18 86 24 5:18:19 5:21:02 172.7 5:21:45 133.6

4 9/17 84 21 5:12:34 5:14:42 173.6 5:15:14 9.7

5 9/16 83 19 5:10:53 5:13:33 169.9 5:14:46 90.7

1 optimality tolerance 5% 2 optimality tolerance 10%

Table 6. Results of example problem 1

Subproblem Problems Time range Avg. time Variables (0-1) Constraints

solved (CPU-s) (CPU-s) (largest) (largest)

1. Presorting 1 N/A N/A � �

2. Grouping 12 0�174.7 19.4 1361 (160) 4304

3. Scheduling 25 0�15.54 1.26 283 (224) 544

4. Slot-ordering 1 � 10029.75 15977 (618) 15643

5. LP-improvement 1 � 0.10 658 (�) 815

The presorting does not require the solution of mathematical programming problems and
is performed in a fraction of seconds. Table 6 reveals that possible bottlenecks in the
computation can be found in subproblems 2 and 4 that are the most CPU-consuming
problems. It is interesting to note that, for instance, formulating all 82 products in example
1 as a single scheduling problem using the model for subproblem 3, results in 74,000
equations and 34,000 variables of which more than 33,000 are discrete. Obviously such
a large problem is virtually impossible to solve. Although the proposed strategy has not
yet been fully applied on-site, simulations with Automod (Banks, 2000) have shown that
a production increase of 2-4% can be expected compared to the present manual schedules
that require 4-5 working days.

6. Conclusions

A decomposition algorithm for solving complex scheduling problems in the steel making
industry has been presented. The algorithm relies on disaggregating the original problem
and solving a sequence of smaller MILP problems for each group, followed by an MILP for
all the groups. The rest of the solution steps need to be solved only once if the problem
conditions do not change.

Numerical results have shown that the proposed approach can be successfully applied
to industrial scale problems. While global optimality cannot be guaranteed, comparison
with theoretical estimates indicate that the method produces solutions within 1-3% of the
global optimum. It should be noted, however, that since we are dealing with a short-term
scheduling problem, obtaining good feasible solutions is of more relevance than obtaining
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exact optimal solutions.

Finally, it should be noted that the general structure of the proposed approach naturally
would allow the consideration of other types of problems, especially such where the physical
problem provides a basis for decomposition. The modularity also provides increased �exi-
bility by making it possible to customize and modify the solution strategy where needed.
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Nomenclature

Indices
g index of group
i index of products
l index of slot
m index of machines

Sets
G set of groups
I set of products
L set of slots
M set of machines
MEAF set of EAF

Parameters
C1; C2; C3 cost coe�cients in the objective function
Cth
g thickness code for products (0 or 1)

�w maximal width di�erence between subsequent products within a group
Hi;max maximal hold-time for product i
U big-M constant with upper values for various purposes
Mmax maximal number of products in a group
N th
max maximum number of thickness changes

Pii0 precedence matrix: 1 if product i0 is allowed to follow product i, else 0
T el electricity feed time for one EAF
T dueg due (order) date for group g

TDgm duration of processing group g in machine m

TSTgm start time of group g in machine m

T
C;thk
gg0 changeover-time between di�erent thicknesses
TMcst maintenance time between groups in the caster
TCgrp changeover-time between groups

T clm clean-up time of machine m

22



T sm setup time for machine m
Wi slab width of product i
�im production time of product i on machine m

Variables
Yii0m binary sequencing variable between products i and i0 on machine m
Y EAF
ii0 binary sequencing variable for products i and i0 on the parallel EAF-units
ZEAF
im binary variable to couple each product i to one EAF-unit.

qig continuous variable for last product in a group
sl a slack variable for hold-time violations
sl+l positive slack variables for mold change (slab thickness)
sl�l negative slack variables for mold change (slab thickness)
tMS makespan
tim start-time of product i on machine m
t
early
l earliness of the products in slot l

t
tardy
l tardiness of the products in slot l
tEml end time of operation of machine m in slot l
tSml start time of operation of machine m in slot l
xig binary variable to assign product i to group g

yii0g continuous variable indicating that both products i and i0 are in group g

zg continuous variable for the use of group g

wgg0l continuous variable for the sequence of groups g and g0 in slots l and l + 1
zgl binary variable assigning group g to slot l
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APPENDIX 1 - preordering algorithm

The preordering algorithm takes into consideration the casting rules and requirements and
forms an initial casting order. Here, the main parameter of a product is its grade.

Rules:

� Only one grade and its subgrades can be in the same sequence
� Casting should be done in sequences of 1 to N products
� A sequence can only contain products with the same thickness
� Within each sequence, casting is done in decreasing width
� The due dates in a sequence should not vary more than within a speci�ed tolerance
� The di�erence between casting speeds of subsequent products may be limited

Having a list of products and their main properties, the following algorithm can be applied.

Algorithm:

1: Order the products according to increasing speed
2: Order the products according to increasing duedate
3: Order the products according to decreasing width
4: Order the products according to increasing grade
5: Order the products according to increasing thickness
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