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ABSTRACT 

In this work a systematic framework is introduced to synthesize the optimal separation 

process of azeotropic mixtures. The proposed framework, which can handle an 

arbitrary number of components, consists of two main steps: a system analysis and a 

state-space superstructure algorithm. The system analysis is composed of some 

equation-oriented algorithms to supply basic information for the superstructure, 

including structure of the composition space, existence of unchangeable points and 

candidate operations. It is shown that the proposed superstructure featuring 

multi-stream mixing is superior to previous ones because it significantly expands the 

feasible area. Moreover, detailed design parameters such as number of stages and 

reflux ratio are derived. Additionally, flowsheet feasibility test rules are constructed to 

facilitate the analysis of the process, and are able to be used as heuristic methods to 

guide the design of ternary or quaternary systems. Two industrial cases are presented to 

illustrate the proposed framework. 
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Introduction 

Separation of azeotropic mixtures is common in the chemical industry, but its optimal 

flowsheet design still faces many challenges. Unlike ideal systems, the first issue with 

azeotropic mixtures is separation feasibility. Products of columns are restricted within 

so-called distillation regions1 and compartments2, 3. With the help of useful geometric 

tools such as residue curve maps (RCMs), considerable research work has been done 

for testing the feasibility of columns. Besides the pioneering work presented in a series 

of articles by Doherty and his co-workers, other researchers have also made notable 

contributions. Fien and Liu4, and Widagdo and Seider5’s excellent reviews cover this 

research area up to 1994 and 1996, respectively. Works during this period have mainly 

focused on ternary or quaternary systems, since they are easily visualized. After 

Fidkowski et al.6 developed a homotopy-based method for locating all azeotropes, 

Rooks et al.7 proposed an equation-based approach for determining distillation region 

structures of multicomponent homogeneous mixtures using the adjacency and 

reachability matrix. The work of Rooks et al. makes it quite convenient for studying 

azeotropic systems with more than four components. More recently, Thong et al.3 

extended the analysis of column feasibility to multicomponent systems using a 

manifold method. 

On the basis of the knowledge of separation feasibility, column sequencing problems 

have attracted the attention of a number of researches. Doherty and his co-workers 

used RCMs to study the sequencing problem, first for homogeneous azeotropic 

distillation8 and then for heterogeneous azeotropic distillation9. Later, Safrit and 



Westerberg10 studied the separation sequence synthesis for batch azeotropic distillation 

process; Thong et al.11, 12 developed a systematic procedure to synthesize column 

sequences for multicomponent homogeneous systems based on their previous work3 of 

column feasibility and a set of recycle rules. Actually, a key problem of azeotropic 

distillation process synthesis is how to deal with recycle streams. Selecting proper 

recycle streams significantly improves the flowsheet performance, both in terms of 

purity and recovery. Tao et al.13 proposed some rules to generate process alternatives 

with recycle streams. Later, Liu et al.14 further studied the performance of recycle 

streams in different types of splits. The above approaches are mainly based on heuristic 

rules. Mathematical and algorithmic methods have also been applied15-19. However, 

most of these approaches are limited to three component homogeneous systems15-18. 

Bauer et al.15-17 searches the optimal scheme from a superstructure consisting of a 

sequence of preferred separations. However, this methodology results in a very large 

number of constraints for the prospective schemes. Ismail et al.18 utilized a generalized 

modular framework to simultaneously solve for the entrainer selection and the column 

sequencing problem. However, the number of modules has to be determined using a 

trial-and-error procedure, since columns and their interconnection are not 

pre-postulated. Yeomans et al.19 developed a generalized disjunctive programming 

(GDP) model based on the STN superstructure of Sargent20 for the optimal design of 

thermally coupled distillation, which is capable of being applied to azeotropic systems, 

but their model lacks the flexibility of the location of intermediate streams motivated 

by mixing and splitting. Feng et al.21 proposed an algorithm for synthesizing an 



azeotropic distillation system based on their previous work22 of partitioning the 

composition space and then identifying candidate operating units. However, their 

method leads to processes that lack flexibility of multi-stream mixing and splitting of 

streams for different operation units. Moreover, although the authors claimed their 

method is applicable to multicomponent systems, it is difficult to derive an automated 

workflow. In fact, as the number of components increases, it is laborious to identify 

candidate operations. Finally, since their objective function is rather simplified, it lacks 

a proper evaluation method to assess the flowsheet.  

In this work, a systematic framework is constructed for the flowsheet synthesis for 

separation process of azeotropic mixtures. The proposed framework is applicable to 

both homogeneous and heterogeneous systems with arbitrary number of components. 

The core of the framework is a state-space superstructure algorithm, which has been 

first proposed by Bagajewicz et al.23, 24 as a representation of mass and heat exchange 

network. In this article, a modified superstructure is developed to represent separation 

network of azeotropic mixtures. In addition, a system analysis made up of several 

equation based algorithms is used for supplying basic information for constructing the 

superstructure with the given system.  

Perfect Recovery 

Due to the existence of distillation boundaries, high purities and high recoveries of 

certain components are usually difficult to obtain in the separation of azeotropic 

mixtures. Either high purity is obtained with poor recovery, or high recovery is 

obtained with low purity. For azeotropic distillation, mixing with recycle streams is the 



most basic way to improve separation performance, but it is not always effective. 

Hence, at the beginning of the flowsheet design task, it is necessary to identify which 

species are able to be separated with both high purity and high recovery by distillation 

and mixing, and which ones are not. After that, proper auxiliary methods are 

introduced to facilitate the separation. In this work, a method that applies to the entire 

flowsheet is developed for detecting the limitation of azeotropic distillation. 

If all the species are able to be separated with both high purities and high recoveries, 

we denote it perfect recovery. Later we show that attaining perfect recovery depends 

on the topological structure of the mixture’s RCMs, starting from the following 

mixing-distillation pair and separation validity lemma. 

Mixing-Distillation Pair and Separation Validity Lemma 

First, for a concise formulation of the overall model, assume that 

(1) Any distillation is performed in simple columns, with one feed and two products. 

(2) Distillation boundaries are linear, so no distillation boundary crossing separation is 

considered. 

Vogelpohl25 showed that azeotropes behave like pure components and consequently a 

distillation region or compartment is equivalent to a hypothetical ideal system 

composed of its vertex singular points. Consider a system of A, B and C (see Figure 

1(a)), where the entire composition space is divided into three compartments�,� and 

�. A stream e  located at point P in compartment � is represented in terms of molar 

flow of its vertex singular points X, C and A, i.e., ( , , )e e ee fx fc fa .  



Another stream u  located at the azeotrope X is produced by some column in the 

flowsheet and requires further rectification. Similar to e , u  is represented as 

 ,0,0uu fx . First mix u  with e , then use two sharp separations in sequence to 

separate the mixture into three products  11 ,0,0vv fx  located on azeotrope X, 

 22 0, ,0vv fc  located on the pure component point C and  33 0,0, vv fa  located on 

the pure component point A (see Figure 1(b)). The sequence of the two separations is 

not important here, because the final products will be the same. According to mass 

balance of the overall flowsheet: 

1e u vfx fx fx    (1) 

2e vfc fc       (2) 

3e vfa fa       (3) 

From the above equations, it is seen that 2v  of the pure component C is totally 

supplied by e , which means that u  is not further separated, i.e., mixing with e  in 

region � does not facilitate further rectification of u . In other words, mixing with 

any stream in the same compartment of the azeotrope stream does not facilitate the 

azeotropic distillation. This is the so-called mixing-distillation pair validity lemma, 

which reflects the natural behavior of linear distillation boundaries quantitatively. 

Unchangeable Point and Perfect Recovery Rule 

In a similar way, mixing with any point in compartment � or � also does not 

facilitate further separation of u , which means u  has reached the limit of azeotropic 

distillation. Since u  is located at azeotrope X, we call X an unchangeable point. 



Let us consider the other azeotrope Y in this RCMs. According to the 

mixing-distillation pair validity lemma, we know that mixing with any stream located 

in compartment �  or �  will not facilitate further separation of the stream 'u  

located at Y. However, mixing with stream e  located in compartment � is helpful. 

With a proper flowrate of e , the mixture of 'u  and e  will be placed in compartment 

�. Since the column feed is located in compartment �, 'u  is represented in terms of 

the molar flow of compartment�’s vertex singular points, i.e., ' ' ''( , , )u u uu fx fc fa . 

Obviously, 'ufc  is negative, i.e., ' 0ufc  . Also, we use two sequential sharp 

separations to separate the mixture into three products  1'1' ,0,0vv fx  located on 

azeotrope X,  2'2 ' 0, ,0vv fc  located on the pure component point C and 

 3'3 ' 0,0, vv fa  located on the pure component point A (see Figure 1(c)). Applying the 

constraints of mass balance: 

' 1'e u vfx fx fx    (4) 

' 2'e u vfc fc fc    (5) 

' 3'e u vfa fa fa    (6) 

It is seen from these equations that component A of 'u  is removed by sacrificing part 

of component C of e . This part of e  leads to an increase of the stream located at 

azeotrope X. 

For any near sharp separation, the two column products are either pure components or 

streams located on distillation boundaries, compartment boundaries or composition 

boundaries. Therefore, whether these boundary streams are capable of further 

rectification decides the recovery levels. Boundary streams are represented in terms of 



their vertex singular points so that feasibility of perfect recoveries is based on the 

topological property of these vertex singular points.  

If a point corresponds to the intersection of all compartments, it is called an 

unchangeable point, e.g., X in Figure 1(a). On the other hand, if a point is not the 

intersection of all compartments, it is called a changeable point. Streams located at 

unchangeable points are not able be further separated without other auxiliary methods 

such as decanting, extractive distillation, membrane-aided distillation, and 

pressure-swing distillation. However, streams located at changeable points are able to 

be further separated by sacrificing some component of the entrainer, and finally are 

transformed into streams located at unchangeable points. Hence, unchangeable points 

cause infeasibility of a perfect recovery flowsheet of azeotropic distillation, and 

therefore, the perfect recovery rule is stated as follows: 

 

Flowsheet feasibility test rule 1: perfect recovery rule 

For a separation process involving only mixing and azeotropic distillation, perfect 

recoveries should involve no unchangeable points in the RCMs. 

 

Unfortunately, according to Serafimov26’s classification of topological structures for 

ternary azeotropic systems, unchangeable points exist in almost all topological 

structures.  

The Proposed Framework 

In order to synthesize the optimal separation process of azeotropic mixtures, a 



systematic framework is proposed in this work. The framework consists of the 

following three steps. 

1. Apply a system analysis to explore the composition space structure, i.e., 

compartments and liquid-liquid phase regions, to identify unchangeable points and 

to define candidate operations. 

2. For each unchangeable point, select proper auxiliary methods. In this article, we 

use decanting to facilitate the separation in a heterogeneous system, and extractive 

distillation for a homogeneous system. In this step, several candidate entrainers for 

extractive distillation are selected and the best one is decided in the next step. 

3. Use the state-space superstructure algorithm to find the optimal flowsheet. The 

overall optimization problem is formulated as a mixed-integer nonlinear 

programming (MINLP) model. 

System Analysis 

As mentioned in the previous section, the system analysis involves three basic tasks: 

(1) Explore structure of the composition space 

(2) Identify unchangeable points 

(3) Define candidate operations 

For a three or four component system, these items are also able to be implemented with 

conventional geometric methods. But for multicomponent systems, the following 

equation-oriented method is more efficient. 



Explore composition space structure 

For azeotropic mixtures, distillation boundaries make it rather difficult to assess the 

feasibility of a proposed separation. In different regions of the composition space, the 

potential products of feasible separations are different. Before defining candidate 

operations, it is necessary to explore the structure of the entire composition space, i.e., 

identify all distillation regions and compartments, and additional homogeneous and 

heterogeneous regions for a system with liquid-liquid envelopes. The algorithm for 

identifying distillation regions and compartments that is mainly based on the work of 

Rooks et al.7 and Thong et al.3, is summarized as follows: 

 

Algorithm 1: identify distillation regions and compartments 

1. For the given azeotropic mixture system, specify the pressure and choose a VLE 

model. Identify all azeotropes and determine their stability using the method 

proposed by Fidkowski et al.6 

2. Apply the algorithm proposed by Rooks et al.7 to generate the directed adjacency 

matrix and its related reachability matrix, and then identify all distillation regions. 

3. For each distillation region, use the algorithm proposed by Thong et al.3 to search 

for all compartments. 

 

If there is a liquid-liquid envelope, homogeneous and heterogeneous regions also need 

to be identified. The procedure proposed in this work is implemented with the 

following algorithm: 



 

Algorithm 2: identify homogeneous and heterogeneous regions 

1. For a given compartment identified by Algorithm 1, write the equation of the 

liquid-liquid envelope skeleton points in the compartment: 

  0LL c         (7) 

 1 2, , ,
T

Mc c cc    (8) 

2. For other points in the compartment, e.g., P and Q, if  PLL c and  QLL c  have 

the same sign, then P and Q are in the same region; otherwise they are in the 

different regions. 

3. Distinguish homogeneous and heterogeneous region: 

In one of the two identified regions, for a point P which is not the liquid-liquid 

envelope skeleton point ske , if: 

P ske ske
ske SKE




 c c        (9) 

1ske
ske SKE




            (10) 

0    ske ske SKE      (11) 

then the region with P is a heterogeneous region; otherwise, it is a homogeneous 

region. 

4. Repeat step 1-3 for any other compartment. 

Identify unchangeable points 

It has been demonstrated in section 2 that the existence of unchangeable points is of 

great importance in azeotropic distillation flowsheet. Before developing the process 



optimization model, identifying unchangeable points is helpful to make a judgment of 

the limitation of azeotropic distillation and then select effective auxiliary methods. 

From the definition of unchangeable points, a direct geometric method is developed to 

identify unchangeable points by finding the intersection of all the compartments. But 

for multicomponent systems, a matrix-oriented method is much more convenient. A 

generalization of the geometric method is described as follows: 

 

Algorithm 3: indentify unchangeable points 

1. According to the result of Algorithm 1, generate the incidence matrix I . Every 

row of I  denotes a compartment, and every column of I  denotes an azeotrope 

ranked in the order of boiling temperature. If an azeotrope is the vertex of the 

compartment, then the corresponding element of I  is set to 1, otherwise it is set to 

0. 

2. For each column, if all elements of the column are 1, then the corresponding 

azeotrope is an unchangeable point; otherwise it is a changeable point. 

 

For the system shown in Figure 1(a), the incidence matrix is written as follows: 

X Y

1 0

1 1

1 1

 
  

 
  

I
¢ ñ

¢ ò

¢ ó

 

Therefore, X is an unchangeable point, and Y is a changeable point. For an element 

whose value is 0, streams located in its corresponding compartment are used to change 

the composition of its corresponding changeable point, for example, e  in 



compartment � helps to remove composition A of 'u . 

Define candidate operations 

Based on the results of the former steps, feasible separations of each compartment are 

defined in this step. In this work, for simplicity of the model and to reduce 

computational complexity with process optimization, we consider only sharp 

separations in simple columns between adjacent components. For a system of more 

than four components, quite a few of such separations exist and many of them are 

superfluous. Some rules are embedded in this step to screen out superfluous 

separations by considering the relationship among compartments. The basic idea is to 

avoid the repetition of separations of the same species. In other words, separations 

between a pure component and a changeable point which contains it are undesired. 

These candidate operations are generated by the following algorithm: 

 

Algorithm 4: define candidate operations 

1. Select a compartment, and then define its augmented incidence matrix I' . 

Compared with the incidence matrix I , its columns include additional pure 

component points. 

2. For homogeneous systems, check the corresponding column of each pure 

component point. If there is only one non-zero element in the column, then the pure 

component is removed from this compartment. Otherwise, eliminate the row 

containing the changeable point with the pure component, until there is no such 



row or there is only one non-zero element left; then the pure component is removed 

from the compartment corresponding to the remaining rows. The corresponding 

row of the changeable point at which the composition of the pure component is 

greater has priority to be eliminated. For heterogeneous systems, no row is 

eliminated, since the unchangeable point is possible to be broken in the whole 

heterogeneous region. 

3. For homogeneous systems, eliminate rows containing changeable points sharing 

components with the unchangeable point. For the left rows, if there is an adjacent 

pure component removed, the unchangeable point is also removed in the 

corresponding compartment. 

4. Repeat Steps 1-3 for all the other compartments. 

5. For each compartment, generate separation sequences for the selected singular 

points which need to be removed in the compartment as illustrated in Figure 2, 

with the gray and black point representing pure components or unchangeable 

points and white points representing other azeotropes. By treating each singular 

point as a pseudo component in an ideal system, the column sequence problem 

inside a compartment is the same as the conventional sharp split distillation 

synthesis, and is presented by several binary trees. 

For the system shown in Figure 1(a), the incidence matrix is written as follows: 

X Y C B A

1 0 1 0 1

1 1 0 0 1

1 1 0 1 0

 
  

 
  

I'
¢ ñ

¢ ò

¢ ó

 

In this system, A is removed in compartment �, not in compartment �, for the 



unchangeable point Y in compartment � contains A. B is removed in compartment �, 

and C is removed in compartment �. The unchangeable point X is removed in 

compartment �. 

Superstructure 

With the information supplied by the system analysis, a state-space superstructure is 

constructed for the separation network design of azeotropic mixtures (see Figure 3). 

The superstructure consists of three interconnected blocks, a distribution network 

(DN), an RCM operator (OP-RCM) and an auxiliary operation operator (OP-AO). 

Inside the DN, a series of mixers and splitters are placed with connections among all of 

them. Mixers and splitters are both ranked by the average temperature of their 

corresponding vertex singular points. Candidate operations generated by the system 

analysis are configured in OP-RCM, whereas the selected auxiliary operations are 

arranged in OP-AO. If decanting is selected for facilitating the separation, a series of 

decanters appear in OP-AO, whereas if extractive distillation is chosen, a series of 

extractive distillation columns are then embedded. The specific information of each 

block is described in the next section. 

Mathematical Model 

Distribution network 

Every stream in the flowsheet has two basic attributes, one is flowrate and the other is 

composition. To specify a stream, we attach it with an operation unit. Specifically, 

  in or out
unitf  denotes the flowrate of input or output stream of unit , while the vector 



  in or out
unitc , i.e.,    ,1   ,2   ,   ,, , , , ,

Tin or out in or out in or out i in or out M
unit unit unit unitc c c c  , denotes the composition 

of the stream. Due to the normalization constraint   ,

1

1
M

in or out i
unit

i

c


 , the composition of 

a stream is mapped into a point in an (M-1)-dimensional rectangular coordinate system, 

represented using a reduced vector 

  ˆin or out
unitc    ,1   ,2   ,   , 1, , , , ,

Tin or out in or out in or out i in or out M
unit unit unit unitc c c c   . 

In a typical azeotropic distillation process, impure products of columns are recycled 

and mixed with other streams for further separation. If the stream is not located at an 

unchangeable point, the recycle improves the process performance. The main task of 

the DN is to provide opportunities of mixing and splitting among recycle streams, feed 

streams and entrainer streams. These streams are first split into several sub-streams 

when flowing into the DN. These splitters are indicated using a set SP , which is the 

subset of UNIT . The sub-streams are then sent into mixers to mix with one another to 

generate proper feed streams for the distillation columns. These mixers are indicated 

using a set MX , also the subset of UNIT . When flowing out of the DN, the mixtures 

are split into its different separation sequences. These mass balance constraints are 

written as follows: 

in
,     sp sp mx

mx MX

f fs sp SP


               (12) 

out
,     mx sp mx

sp SP

f fs mx MX


              (13) 

out out in
,     mx mx sp mx sp

sp SP

f fs mx MX


    c c     (14) 

where ,sp mxfs  denotes the flowrate out of splitter sp  to mixer mx . Note that equation 

(14) is bilinear. 

Since output streams of mixer mx  and input streams of splitter sp  are corresponding 



to column feeds and products, respectively, out
mxc  and in

spc  are restricted in some 

regions of the composition space. More specifically, as the potential column feed, out
mxc  

will be located in some regions identified by algorithms 1 and 2, while the column 

product in
spc  will be located in the boundary surface of the corresponding region. 

These stream location constraints are represented using the following equations: 

   ˆ  , ,  0    ,  
mx mx

out
bs mx bs mx MXmx MX bs BS       n c s   (15) 

   ˆ  , ,  0    ,  
sp sp

in
bs sp bs sp SPsp SP bs BS       n c s      (16) 

where the vector 
mxbsn  or 

spbsn  denotes the normal vector of the corresponding 

boundary surface of mixer mx  output or splitter sp  input; the vector 
mxbss  or 

spbss  

denotes the composition vector of any singular point in the corresponding boundary 

surface;  , ,    stands for less than, more than or equal, which is determined by 

substituting a certain composition vector in the corresponding region into the above 

equations. 

OP-RCM 

With algorithm 4, the candidate operations are generated, i.e., a series of azeotropic 

distillation columns. The action of OP-RCM is to organize these operations in a 

convenient and efficient way. In this article, we use a forest structure composed of a set 

of binary trees to represent it. Every binary tree corresponds to a simple column 

sequence, which we call an azeotropic distillation tree. The depth of each binary tree is 

for optimization, so a hierarchy representation of these binary trees is proposed. Each 

binary tree is divided into several stages, with each stage corresponding to a simple 



column. Hence, the number of stages depends on the maximum depth of each 

separation tree. Each stage of a binary tree has one feed , adtr

in
adtr kf and two products, 

1
, adtr

out
adtr kf  and 2

, adtr

out
adtr kf . 1

, adtr

out
adtr kf  stands for the flowrate of the pure component stream, 

while 2
, adtr

out
adtr kf  stands for the flowrate of the impure stream containing azeotropes. 

1
, adtr

out
adtr kf  flows out of OP-RCM as a final product, while 2

, adtr

out
adtr kf  is split into two 

sub-streams with one flowing into the next stage for further separation and the other 

flowing out of OP-RCM into other blocks, i.e., DN or OP-AO. The mass balance 

around each azeotropic distillation column is written as: 

1 2
, , ,     ,

adtr adtr adtr

in out out
adtr k adtr k adtr k adtr ADTRf f f adtr ADTR k K           (17) 

1 2
, , , , , ,

                                                      ,  
adtr adtr adtr adtr adtr adtr

in in out in out in
adtr k adtr k adtr k adtr k adtr k adtr k

adtr ADTR

f f f

adtr ADTR k K

    

  

c c c
  (18)  

,1     ,  
mx

in out
adtr mx mx MXf f adtr ADTR mx MX               (19) 

,1     ,  
adtr

in out
adtr mx mx MXadtr ADTR mx MX   c c                (20) 

,

2
, ,( 1)     ,

adtr adtr adtr kadtr

out in in
adtr k adtr k sp adtr ADTRf f f adtr ADTR k K         (21) 

,

2
,adtr k adtradtr

in out
sp adtr kc c   (22) 

where ADTR  denotes the set of azeotropic distillation trees; ADTRK  denotes the 

stages of adtr ; ( , )ADTRADTR K  , a subset of UNIT , denotes the column in stage k  

of adtr ; MXADTR  denotes the corresponding adtr  of mixer mx ; , adtradtr ksp  

denotes the corresponding splitter sp  of column ( , )adtradtr k . 

The modified Fenske-Underwood-Gilliland (FUG) method proposed by Liu et al.27 is 

adopted to predict the design performance of the columns. To use the FUG method for 

shortcut design of azeotropic distillation columns, the natural composition vector has 

to be transformed into an expanded composition vector in terms of all singular points. 



For instance, the natural composition vector of the column feed stream is represented 

as: 

 ,1 ,2 , ,
, , , , ,, , , , ,

adtr adtr adtr adtr adtr

Tin in in in i in M
adtr k adtr k adtr k adtr k adtr kc c c c   c   (23) 

where M is the number of components. 

Its expanded composition vector is written as: 

 ,1 ,2 , ,
, , , , ,, , , , ,

adtr adtr adtr adtr adtr

Tin in in in j in N
adtr k adtr k adtr k adtr k adtr kc c c c   c       (24) 

where N is the number of singular points. If the number of azeotropes is A , then 

N M A  . 

The transformation is performed using a transformation matrix T : 

 

1 1 1 1
1 2
2 2 2 2

1 2

1 2

1 2

j N

j N

i
j i i i i

j N

M M M M
j N

C C C C

C C C C

C
C C C C

C C C C

 
 
 
 

  
 
 
 
  

T

 

 

     

 

     

 

  (25) 

Tc c                              (26) 

where each column of T  refers to an azeotrope, and each column vector represents 

the azeotrope’s composition. 

With the transformed composition vector, the FUG method is then used: 
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where , adtr

D
adtr kc  and , adtr

B
adtr kc  are the expanded composition vectors of the distillate and 

bottom streams, respectively; LK,HK
, adtradtr k  denotes the relative volatility between the light 

key and the heavy key of column ( , )adtradtr k ; , adtradtr k  is the common root of 

Underwood equation of column ( , )adtradtr k ; , adtradtr kNmin , , adtradtr kN , , adtradtr kRmin and 

, adtradtr kR  are the minimum number of stages, number of stage, minimum reflux ratio, 

and reflux ratio of columns ( , )adtradtr k , respectively; , adtradtr kkr  is the reflux ratio 

coefficient, it’s value is between 1.2 and 2. 

Liu et al.27 mentioned that the relative volatility between singular points is derived in 

the following way: first choose a point in a compartment and calculate its equilibrium 

gas phase composition, then represent both the liquid and gas phase composition in 

terms of singular points, and finally, calculate the relative volatility between the 

compartment’s vertex point according to its definition. In each compartment, the 

equilibrium of a set of points with uniform distribution as the liquid composition is 

calculated with the Aspen Plus process simulator. However, many pairs locate in 

different compartments, which make the results meaningless, which is due to the 

curvature of the distillation boundaries and fuzziness of compartment boundaries. 



Vogelpohl25 suggested that the relative volatilities between a binary azeotrope and its 

two pure components are calculated as follows: 

,

s
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


  

where i  and k  are the s calculated by the chosen VLE model; s
ip  and s

ip  are the 

saturated pressure calculated by Antoine Equation. For a pure component, its activity 

coefficient is set to 1. For an azeotrope, the product s
az azp  is defined as follows: 

s s s
az az A A B B azp p p p      

where A and B are the two pure components of the azeotrope. 

When a ternary or quaternary azeotrope is present in the system, the corresponding 

relative volatilities are defined as the initial slope of * /y x  along the distillation 

boundaries. This is a generalization of the following fact: in a binary system, the 

* /y x  curve is written as follows: 
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and the initial slope equals the relative volatility  . Compared with simulation results, 

Vogelpohl’s method is more accurate and is therefore used in this article. 

Finally as shown by several simulation results, assume constant molar flow inside the 

columns, and that the feed streams of the columns are saturated liquid, i.e., 1q  . 

Consequently, the condenser duty and the reboiler duty are calculated as follows: 
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where , adtr

C
adtr kr  and , adtr

R
adtr kr are the average latent heat of distillate and bottom stream 

of column ( , )adtradtr k , respectively.  

OP-AO 

In the OP-AO block, auxiliary methods are embedded. According to the selected 

auxiliary method, OP-AO has different representations. Here two options for decanting 

and extractive distillation are introduced.  

OP-AO with decanting 

When there is a liquid-liquid envelope in the system and decanting is involved in 

OP-AO for dealing with unchangeable points, the mixer output streams located in the 

heterogeneous regions are split into the corresponding azeotropic distillation tree and 

potential decanting operation: 

,1   
mx mx

out in in
mx adtr decf f f mx MX   

  (35)
 

where 
mx

in
decf  denotes input stream of the corresponding decanter of the mixer mx . 

The mass balance constraints are written as follows: 

1 2     in out out
dec dec decf f f dec DEC                  (36) 

1 1 2 2     in in out out out out
dec dec dec dec dec decf f f dec DEC      c c c   (37) 

OP-AO with extractive distillation 

When using extractive distillation for facilitating further separation of unchangeable 

points, the output streams of OP-RCM located at unchangeable point are sent to 

OP-PO. The model of extractive distillation column also uses the FUG method. 



However, since the extractive distillation column has two feeds, it has to be mapped 

into a simple column for detailed design. The feed of the mapped simple column is the 

stream located at the unchangeable point, and the products are the two corresponding 

pure species, with the relative volatility between the light key and heavy key in 

extractive distillation columns relevant to the flowrate of the entrainer and the reflux 

ratio. On the basis that the relative volatility increases with the entrainer’s 

concentration, we simply assume that the relative volatility is proportional to the 

composition of entrainer in the liquid phase: 

, 0 +1    LK HK ed
ed ed D

ed ed ed
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fe R f
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
  (38) 

where ED  is the set of extractive distillation columns; 0
ed  is the proportionality 

coefficient; edfe  is the feed entrainer flowrate. When there is no entrainer feed, the 

relative volatility is 1, and hence the stream located at the unchangeable point is not 

able to be separated. While with a constant entrainer feed, the relative volatility is more 

than 1, it decreases when the reflux ratio increases, since the entrainer is diluted by the 

reflux.  

On the other hand, from the Underwood equation, with a sharp separation of the 

unchangeable point stream, the relation between the minimum reflux ratio and the 

relative volatility is derived as follows: 
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 Equation 38 and 39 indicate that there is a linear relation between the reflux ratio and 

the minimum reflux ratio: 
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Naturally, the reflux ratio has to be greater than the minimum reflux ratio. Let 

ed edR Rmin , the minimum entrainer flowrate is then as follows: 

min
0 ,
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f
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In this way, the same FUG method is used as mentioned before. 

Objective Function 

The total annualized cost (TAC) is used in this article as the objective function, 

including column cost and utility cost: 
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where coly  denotes the existence of the column col ; colN  denotes the number of 

stages of the column col ; the set COL  denotes all columns in the flowsheet;  ,  , 

h  and c  
are relevant annualized cost coefficients. 

Solution Strategy 

Finally, the overall synthesis problem is formulated as an MINLP model. In this article, 

the model is solved using the DICOPT28 solver in GAMS environment, with CONOPT 

and CPLEX embedded for NLP and MIP sub-problems respectively. In order to 

maximizing the likelihood of finding the global optimum solution, several starting 

points are used in the solution of the example problems. Due to the strong nonlinearity 

mainly caused by the FUG equations, initial feasible solutions are rather difficult to be 



obtained. In this work, a two-stage solution strategy is proposed to improve the 

efficiency of solving the model. In the first stage, a reduced NLP model without 

detailed column design is solved by minimizing the random total column load: 

random total column load = in
COL COL

col COL

rand f

 �   (44) 

where COLrand  is a set of random weights for each column load. Specially, when 

COLrand  are all set to 1, the objective becomes the total column load. The reduced 

model only deals with mass balance equations. Its nonlinearity is aroused by the 

product of the flowrate and the composition of streams. Therefore, it is bilinear and 

easy to solve. Since the solution satisfies all the mass balance constraints, the 

corresponding scheme is a feasible one. Apply the modified FUG method to the 

feasible scheme, its detailed design parameters are easily calculated and consequently 

a feasible solution for the overall model is obtained. In the second stage, the feasible 

solution is used as the initial guess, and then solve the original MINLP model using the 

DICOPT solver. The random weight for each column load ensures that several random 

starting points are generated for the overall model, which enhances the solution 

performance to achieve the global optimum solution. The scale of the random weights 

COLrand  affect the random level of the generated starting points for the second stage, 

which is very important for covering the entire solution space. If the scale of COLrand  

is too small, the generated starting points probably hit the same one, whereas if the 

scale of COLrand  is too large, the solution in the second stage often lost feasibility. It 

is found that the scale of COLrand  is better to be ten times of the scale of column feeds 

in the scheme. And in the two example cases, the overall iteration steps are assumed to 



be 100. 

Illustration and Discussion 

In this section, two industrial cases are studied to demonstrate the effectiveness of the 

proposed framework. One is the ethanol-water-toluene system for the purpose of 

producing anhydrous ethanol, and the other is the MTBE-methanol-isobutene-butane 

system for the illustration of mixtures with more than three components. 

The ethanol-water-toluene system 

The linearized RCMs of ethanol, water and toluene system is shown in Figure 4. The 

composition space is divided into three distillation regions, which are further divided 

into two compartments each. Moreover, some compartments are divided into 

homogeneous and heterogeneous regions by the liquid-liquid envelope. Since an 

unchangeable point H is identified, decanting is used to facilitate further separation. 

The superstructure with decanting for this system is shown in Figure 5. There are 900 

variables (with 10 binary variables) and 530 constraints in the model, and the average 

CPU time is 2.55s for the overall model during each iteration. 

With a feed of 37.3% ethanol and 62.7% water, the solution of the optimal flowsheet is 

shown in Figure 6. It is the same as the solution of Feng et al.21, but since the number 

of stages and reflux ratio are optimized, about 10% potential reduction of TAC is 

obtained. This is because in this case the distillate flowrate related to heat duties 

dominates the overall cost. This flowsheet is similar to the one used in industry (see 

Figure 7), and in fact identical when columns 1 and 3 in the industrial scheme are 



combined into the water column in this flowsheet. As a result, some additional capital 

cost is saved.  

However, the allocation of the feed stream to the ethanol column, the decanter and the 

water column is sensitive to its composition distribution. As seen in Figure 8, if the 

feed contains more ethanol, the optimal flowsheet is different and multi-stream mixing 

and splitting appear. In fact, there are two main approaches to dehydrate the ethanol: 

one is to remove most of the water in the water column and then use the ternary 

azeotrope to remove the left; the other is to remove the water totally by the ternary 

azeotrope. Figure 8 also shows that a diluted feed favors the former one, whereas a 

concentrated feed favors the latter one. The decanter is capable of adjusting the feed 

composition and forms hybrid approaches between the two. When the major 

dehydration method shifts from the former one to the latter one, a peak value of the 

optimal TAC is present. Table 1 shows the influence of feed allocation on TAC. The 

inherent reason is that the thermodynamic property of the system renders that the 

column load dominates the TAC. Since the boiling point of the binary azeotrope X is 

close to ethanol and consequently their relative volatility is nearly 1, the operation line 

of the ethanol column usually lies on EH, which makes the number of stages and reflux 

ratio of the ethanol column changes little. On the other hand, the relative volatility 

between X and water is large enough, and therefore, the column load has stronger 

effect on the TAC than the number of stages and reflux ratio. The former dehydration 

method takes advantage on the total column load with a diluted feed, and it reverses 

with a concentrated feed.  



Next we will show the superstructure in this work is superior to the one proposed by 

Feng et al.21 from the two-column flowsheet. One column is for producing pure 

ethanol, and the other is for producing pure water, with some stream containing toluene 

recycling in the flowsheet as an entrainer. Assume the operating line of the ethanol 

column is the one shown in Figure 9, and then the operating line of water column can 

be located in three regions: compartment 1, homogeneous of compartment 2, or 

heterogeneous region of compartment 2. Then Q, R, S and P will be where the DN 

input streams located. With the constraint of mass balance, another flowsheet 

feasibility test rule is constructed: 

 

Flowsheet feasibility test rule 2 

The feed to the columns has to lie in the convex polygon area bounded by the lines 

between the DN input streams.  

 

So Figure 9(a) is infeasible, while Figures 9(b) and 9(c) are feasible. For the model of 

Feng et al.21, the feasible area with only two-stream mixing is the skeleton according to 

the lines between the DN input streams. However, for the model of ours, the feasible 

area with multi-stream mixing and stream splitting is the whole convex area bounded 

by the lines between the DN input streams as seen in Figure 10. Hence, the 

multi-stream mixing and the stream splitting significantly enlarge the feasible area. 

In addition, due to the lack of multi-stream mixing, the model of Feng et al.21 fails to 

deal with point 4 in an alternative two-column flowsheet (see Figure 11), and therefore 



it will significantly reduce the recovery level. If the lines between a point and the other 

DN input stream points intersect no operation lines after removing the self-loop, we 

call these isolated points. The flowsheet feasibility test rule 3 is then stated as follows:  

 

Flowsheet feasibility test rule 3 

Isolated points are only dealt with multi-stream mixing. 

 

For the above two reasons, multi-stream mixing and stream splitting significantly 

improve the recovery rate. 

The MTBE-methanol-isobutene-butane system 

The linearized RCMs of MTBE, methanol, isobutene and butane are shown in Figure 

12. Two distillation regions Z-Y-X-Methanol and Z-Isobutene-Y-Butane-X-MTBE are 

identified by the system analysis, and the latter distillation region is further divided 

into three compartments Z-Y-X-MTBE, Z-Y-Butane-MTBE and 

Z-Isobutene-Butane-MTBE. An unchangeable point Z is identified. Since it is a 

homogeneous system, we use extractive distillation with water as an entrainer to 

facilitate the separation. The superstructure with extractive distillation for this system 

is shown in Figure 13. There are 1099 variables (with 51 binary variables) and 840 

constraints in the model, and the average CPU time is 5.72s for the overall model 

during each iteration. 

The optimal design with a feed of 4.5% isobutene, 8.5% butane, 75% methanol and 



12% MTBE is shown in Figure 14. The feed first removes methanol and leaves a 

mixture located on distillation boundary XYZ. With the help of mixing with isobutene, 

MTBE and butane in the mixture are released, and changeable points X and Y are 

transformed into unchangeable point Z. For a minimum flowrate of isobutene, the 

mixer output stream is exactly located on the compartment boundary ZBM. Then the 

stream located at the unchangeable point Z is separated using extractive distillation. 

This flowsheet is used for illustrating the effectiveness of the proposed framework, 

since the system is treated as a non-reacting system and the unchangeable point Z is 

broken by extractive distillation. Compared with this scheme, Z is broken by the 

reaction of isobutene and methanol which yields MTBE in an industrial scheme. To 

optimize such systems, a reaction block in the OP-AO is required, which will be 

considered in our future work. 

Conclusion 

In this work, a systematic and efficient methodology has been proposed for 

synthesizing the optimal separation process of azeotropic mixtures. Compared with 

current methods, the present method is believed to be superior in the following aspects. 

First, the superstructure allows the flowsheet to be more flexible and efficient. Mixing 

provides more degrees of freedom for crossing the distillation boundaries, and the 

splitting allows a process stream to be sent into different operation units for a higher 

efficiency. Based on the above facts, some rules were proposed for the feasibility test 

of recycle streams. Second, the system analysis is well suited for large numbers of 

components involved in the system. Since it is quite difficult to obtain perfect recovery 



process using only distillation and mixing, especially for a homogeneous system, 

detection of unchangeable points before the optimization determines the recovery 

limitation of specific component and suggests the use of other technologies such as 

pressure swing distillation and extractive distillation. Third, A TAC (Total Annualized 

Cost) objective function has been proposed for assessing the cost of practical processes 

by detailed design parameters (i.e., stage number, reflux ratio). The TAC accounts for 

the number of stages and the reflux ratio calculated by a shortcut method. 
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Figure 6. The solution of case 1 with a feed of 37.3% ethanol 



 
Figure 7. The industrial scheme for producing anhydrous ethanol 



 

 

Figure 8. The optimal feed allocation and TAC 
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Figure 9. Illustration of rule 2



 

 
Figure 10. Comparison between models of Feng et al. and ours



 

 

Figure 11. The alternative two-column flowsheet



 

 
Figure 12. RCMs of the MTBE-methanol-isobutene-butane system
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Figure 13. The superstructure with extractive distillation



 

 

Figure 14. The solution of case 2 
 



Tables 
Table 1. Comparison between different feed allocation with a feed of 80% ethanol 
 
Feed allocation Optimal Only to water 

column 

Only to ethanol 

column 

Feed to ethanol column 60.963 0 100 

Feed to decanter 39.037 0 0 

Feed to water column 0 100 0 

Ethanol column: number of 

stages 

32.9 31.5 33.0 

Ethanol column: reflux ratio 2.369 3.268 2.133 

Water column: number of stages 23.2 29.2 22.7 

Water column: reflux ratio 1.611 1.107 1.741 

Ethanol column load 157.03 124.859 175.796 

Water column load 55.159 123.668 50.543 

Total load 212.189 248.527 226.339 

Capital cost 42852 45359 42635 

Utility cost 59638 70216 64831 

TAC 102490 115575 107466 

 

 


