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Abstract.
Generalized disjunctive programming (GDP) is an extension of the disjunctive pro-

gramming paradigm developed by Balas. The GDP formulation involves Boolean and
continuous variables that are specified in algebraic constraints, disjunctions and logic
propositions, which is an alternative representation to the traditional algebraic mixed-
integer programming formulation. After providing a brief review of MINLP optimiza-
tion, we present an overview of GDP for the case of convex functions emphasizing the
quality of continuous relaxations of alternative reformulations that include the big-M
and the hull relaxation. We then review disjunctive branch and bound as well as logic-
based decomposition methods that circumvent some of the limitations in traditional
MINLP optimization. We next consider the case of linear GDP problems to show how
a hierarchy of relaxations can be developed by performing sequential intersection of dis-
junctions. Finally, for the case when the GDP problem involves nonconvex functions,
we propose a scheme for tightening the lower bounds for obtaining the global optimum
using a combined disjunctive and spatial branch and bound search. We illustrate the
application of the theoretical concepts and algorithms on several engineering and OR
problems.
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AMS(MOS) subject classifications.

1. Introduction. Mixed-integer optimization provides a framework
for mathematically modeling many optimization problems that involve dis-
crete and continuous variables. Over the last few years there has been a
pronounced increase in the development of these models, particularly in
process systems engineering (see Grossmann et al, 1999; Kallrath, 2000;
Mendez et al, 2006).
Mixed-integer linear programming (MILP) methods and codes such as
CPLEX, XPRESS and GUROBI have made great advances and are cur-
rently applied to increasingly larger problems. Mixed-integer nonlinear
programming (MINLP) has also made significant progress as a number of
codes have been developed over the last decade (e.g. DICOPT, SBB, a-
ECP, Bonmin, FilMINT, BARON, etc.). Despite these advances, three
basic questions still remain in this area: a) How to develop the “best”
model?, b) How to improve the relaxation in these models?, c) How to
solve nonconvex GDP problems to global optimality?

Motivated by the above questions, one of the trends has been to represent
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discrete/continuous optimization problems by models consisting of alge-
braic constraints, logic disjunctions and logic relations (Raman and Gross-
mann, 1994; Hooker and Osorio, 1999). The basic motivation in using these
representations is: a) to facilitate the modeling of discrete/continuous op-
timization problems, b) to retain and exploit the inherent logic structure of
problems to reduce the combinatorics and to improve the relaxations, and
c) to improve the bounds of the global optimum in nonconvex problems. In
this paper we provide an overview of Generalized Disjunctive Programming
(Raman and Grossmann, 1994), which can be regarded as a generalization
of disjunctive programming (Balas, 1985). In contrast to the traditional
algebraic mixed-integer programming formulations, the GDP formulation
involves Boolean and continuous variables that are specified in algebraic
constraints, disjunctions and logic propositions. After providing a brief
review of MINLP optimization, we address the solution of GDP problems
for the case of convex functions for which we consider the big-M and the
hull relaxation MINLP reformulations. We then review disjunctive branch
and bound as well as logic-based decomposition methods that circumvent
some of the MINLP reformulations. We next consider the case of linear
GDP problems to show how a hierarchy of relaxations can be developed
by performing sequential intersection of disjunctions. Finally, for the case
when the GDP problem involves nonconvex functions, we describe a scheme
for tightening the lower bounds for obtaining the global optimum using a
combined disjunctive and spatial branch and bound search. We illustrate
the application of the theoretical concepts and algorithms on several engi-
neering and OR problems.

2. Review of MINLP Methods. Since GDP problems are often
reformulated as algebraic MINLP problems we provide a brief review of
these methods. The most basic form of an MINLP problem is as follows:

min Z = f(x, y)
s.t. gj(x, y) ≤ 0 j ∈ J (MINLP)

x ∈ X, y ∈ Y

where f : Rn → R1, g : Rn → Rmare differentiable functions, J is the index
set of constraints, and x and y are the continuous and discrete variables,
respectively. In the general case the MINLP problem will also involve
nonlinear equations, which we omit here for convenience in the presen-
tation. The set X commonly corresponds to a convex compact set, e.g.
X = {x∣x ∈ Rn, Dx ≤ d, xL ≤ x ≤ xU}; the discrete set Y corresponds to
a polyhedral set of integer points, Y = {y∣y ∈ Zm, Ay ≤ a}, which in most
applications is restricted to 0-1 values, y ∈ {0, 1}m. In most applications of
interest the objective and constraint functions f(), g() are linear in y (e.g.
fixed cost charges and mixed-logic constraints): f(x, y) = cT y + r(x),
g(x, y) = By + ℎ(x).The derivation of most methods for MINLP assumes
that the functions f and g are convex.
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Methods that have addressed the solution of problem (MINLP) include
the branch and bound method (BB) (Gupta and Ravindran, 1985; Borchers
and Mitchell, 1994; Stubbs and Mehrotra, 1999; Leyffer, 2001), Generalized
Benders Decomposition (GBD) (Geoffrion, 1972), Outer-Approximation
(OA) (Duran and Grossmann, 1986; Yuan et al., 1988; Fletcher and Leyf-
fer, 1994), LP/NLP based branch and bound (Quesada and Grossmann,
1992; Bonami et al, 2008), and Extended Cutting Plane Method (ECP)
(Westerlund and Pettersson, 1995, and Westerlund and Porn (2002)).
As discussed in Grossmann (2002) these algorithms can be classified in
terms of the following basic subproblems that are involved in these meth-
ods:
NLP Subproblems.
a) NLP relaxation

min Zk
LB = f(x, y)

s.t. gj(x, y) ≤ 0 j ∈ J
x ∈ X, y ∈ YR

yi ≤ �k
i i ∈ IkFL

yi ≥ �k
i i ∈ IkFU

(NLP1)

where YR is the continuous relaxation of the set Y, and IkFL, I
k
FU are index

subsets of the integer variables yi, i ∈ I, which are restricted to lower and
upper bounds, at the k’th step of a branch and bound enumeration proce-
dure. If IkFU = IkFL = ∅ (k=0), (NLP1) corresponds to the continuous
NLP relaxation of (P1), whose optimal objective function Z0

LB provides an
absolute lower bound to (MINLP)..
b) NLP subproblem for fixed yk:

min Zk
U = f(x, yk)

s.t. gj(x, y
k) ≤ 0 j ∈ J

x ∈ X
(NLP2)

which yields an upper bound Zk
U to (MINLP) provided (NLP2) has a fea-

sible solution. When this is not the case, we consider the next subproblem:
c) Feasibility subproblem for fixed yk:

min u
s.t. gj(x, y

k) ≤ u j ∈ J
x ∈ X, u ∈ R1

(NLPF)

which can be interpreted as the minimization of the infinity-norm measure
of infeasibility of the corresponding NLP subproblem. Note that for an
infeasible subproblem the solution of (NLPF) yields a strictly positive value
of the scalar variable u.
MILP cutting plane.
The convexity of the nonlinear functions is exploited by replacing them with
supporting hyperplanes, that are generally, but not necessarily, derived
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at the solution of the NLP subproblems. In particular, the new values
yK(or (xK , yK)) are obtained from a cutting plane MILP problem that is
based on the K points, (xk, yk) , k = 1, 2...K generated at the K previous
steps:

min ZK
L = �

st � ≥ f(xk, yk) + ∇f(xk, yk)T
[

x− xk

y − yk

]

gj(x
k, yk) + ∇gj(x

k, yk)T
[

x− xk

y − yk

]

≤ 0 j ∈ Jk

⎫





⎬





⎭

k = 1, ..K

x ∈ X, y ∈ Y

(M-MIP)
where JK ⊆ J . When only a subset of linearizations is included, these
commonly correspond to violated constraints in problem (P1). Alterna-
tively, it is possible to include all linearizations in (M-MIP). The solution
of (M-MIP) yields a valid lower bound ZK

L to problem (MINLP), which is
nondecreasing with the number of linearization points K.
The different methods can be classified according to their use of the sub-
problems (NLP1), (NLP2) and (NLPF), and the specific specialization of
the MILP problem (M-MIP) as seen in Fig. 1.

Fig. 1. Major Steps in the different MINLP Algorithms
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The number of computer codes for solving MINLP problems has increased
in the last decade. The program DICOPT (Viswanathan and Grossmann,
1990) is an MINLP solver that is available in the modeling system GAMS
(Brooke et al., 1998), and is based on the outer-approximation method. For
handling nonconvexities, slack variables are introduced in the master prob-
lem. Since the bounding properties cannot be guaranteed for this extension,
the search for nonconvex problems is terminated when there is no further
improvement in the objective of the feasible NLP subproblems, which is a
heuristic that works reasonably well. A similar code to DICOPT, AAOA, is
available in AIMMS. Codes that implement the branch-and-bound method
using subproblems (NLP1) include the code MINLP BB that is based on
an SQP algorithm (Leyffer, 2001) and is available in AMPL, and the code
SBB which is available in GAMS (Brooke et al, 1998). Both codes as-
sume that the bounds are valid evern though the original problem may be
nonconvex. The code �–ECP that is available in GAMS implements the
extended cutting plane method by Westerlund and Pettersson (1995), in-
cluding the extension by Westerlund and Prn (2002). The code MINOPT
(Schweiger and Floudas, 1998) also implements the OA and GBD methods,
and applies them to mixed-integer dynamic optimization problems. The
open source code Bonmin (Bonami et al, 2008) implements the branch and
bound method, the outer-approximation and an extension of the LP/NLP
based branch and bound method in one single framework. FilMINT (Ab-
hishek, Linderoth and Leyffer, 2006) also implements a variant of the the
LP/NLP based branch and bound method. Codes for the global optimiza-
tion that implement the spatial branch and bound method include BARON
(Sahinidis, 1996), LINDOGlobal (Lindo Systems, Inc.), and Couenne (Be-
lotti, 2009).

3. Nonlinear Generalized Disjunctive Programming. An alter-
native approach for representing discrete/continuous optimization prob-
lems is by using models consisting of algebraic constraints, logic disjunc-
tions and logic propositions (Beaumont,1991; Raman and Grossmann,1994;
Turkay and Grossmann, 1996; Hooker and Osorio, 1999; Hooker, 2000; Lee
and Grossmann, 2000). This approach not only facilitates the develop-
ment of the models by making the formulation process intuitive, but it also
keeps in the model the underlying logic structure of the problem that can
be exploited to find the solution more efficiently. A particular case of these
models is generalized disjunctive programming (GDP) (Raman and Gross-
mann, 1994) the main focus of this paper, and which can be regarded as
a generalization of disjunctive programming (Balas, 1985). Process Design
and Planning and Scheduling are some of the areas where GDP formula-
tions have shown to be successful.
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3.1. Formulation. The general structure of a GDP can be repre-
sented as follows (Raman & Grossmann, 1994):

Min Z = f(x) +
∑

k∈K ck

s.t. g(x) ≤ 0

∨
i∈Dk

⎡

⎣

Yik

rik(x) ≤ 0
ck = ik

⎤

⎦ k ∈ K (GDP)

Ω (Y)=True

xlo ≤ x ≤ xup

x ∈ Rn , ck ∈ R1, Yik ∈ {True, False}

where f : Rn → R1 is a function of the continuous variables x in the
objective function, g : Rn → Rl belongs to the set of global constraints,
the disjunctions k ∈ K, are composed of a number of terms i∈Dk , that
are connected by the OR operator . In each term there is a Boolean vari-
able Yik, a set of inequalities rik(x) ≤ 0, rik : Rn → Rj , and a cost
variable ck. If Yik is true, then rik(x) ≤ 0 and ck = ik are enforced;
otherwise they are ignored. Also, Ω(Y ) = True are logic propositions for
the Boolean variables expressed in the conjunctive normal form Ω(Y ) =

∧
t=1,2,..T

[

∨
Yjk∈Rt

(Yjk) ∨
Yjk∈Qt

(¬Yjk)

]

where for each clause t, t=1,2. . . .T, Rt

is the subset of Boolean variables that are non-negated, and Qt is the subset
of Boolean variables that are negated. As indicated in Sawaya & Gross-
mann (2008), we assume that the logic constraints ∨

j∈J
Yik are contained in

Ω(Y ) = True.

There are three major cases that arise in problem (GDP): a) linear func-
tions f, g and r b) convex nonlinear functions f, g and r c) nonconvex
functions f, g and r. Each of these cases require different solution methods.

3.2. Illustrative Example. The following example aims at illustrat-
ing how the GDP framework can be used to model the optimization of a
simple process network shown in Fig 2 that produces a product B by con-
suming a raw material A. The variables F represent material flows. The
problem is to determine the amount of product to produce (F8) with a
selling price P1, the amount of raw material to buy (F1) with a cost P2
and the set of unit operations to use (i.e. HX1, R1, R2, DC1) with a cost
c k k ∈ {HX1, R1, R2, DC1} , in order to maximize the profit.
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Fig. 2. Process network example

The generalized disjunctive program that represents the problem can be
formulated as follows:

MaxZ = P1 F8 − P2 F1 −
∑

k∈K ck

s.t.
F1 = F3 + F2 (1)
F8 = F7 + F5 (2)

⎡

⎣

YHX1

F4 = F3

cHX1 = HX1

⎤

⎦ ∨

⎡

⎣

¬YHX1

F4 = F3 = 0
cHX1 = 0

⎤

⎦ (3)

⎡

⎣

YR2

F5 = �1F4

cR2 = R2

⎤

⎦ ∨

⎡

⎣

¬YR2

F5 = F4 = 0
cR2 = 0

⎤

⎦ (4)

⎡

⎣

YR1

F6 = �2F2

cR1 = R1

⎤

⎦ ∨

⎡

⎣

¬YR1

F6 = F2 = 0
cR1 = 0

⎤

⎦ (5)

⎡

⎣

YDC1

F7 = �3F6

cDC1 = DC1

⎤

⎦ ∨

⎡

⎣

¬YDC1

F7 = F6 = 0
cDC1 = 0

⎤

⎦ (6)

YR2 ⇔ YHX1 (7)
YR1 ⇔ YDC1 (8)

Fi ∈ R , ck ∈ R1, Yk ∈ {True, False} i ∈ {1, 2, 3, 4, 5, 6, 7, 8}
k ∈ {HX1, R1, R2, DC1}
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where (1) represents the objective function, (2) and (3) are the global
constraints representing the mass balances around the splitter and mixer
respectively, the disjunctions (4),(5),(6) and (7) represent the existence or
non-existence of the unit operation k , k ∈ {HX1, R1, R2, DC1}with their
respective characteristic equations and (8) and (9) the logic propositions
which enforce the selection of DC1 if and only if R1 is chosen and HX1 if
and only if R2 is chosen. For the sake of simplicity we have presented here
a simple linear model. In the actual application to a process problem there
would be thousands of nonlinear equations.

3.3. Solution Methods.
In order to take advantage of the existing MINLP solvers, GDPs are often
reformulated as an MINLP by using either the Big-M (BM) (Nemhauser
& Wolsey (1988)), or the Convex Hull (CH) (Lee & Grossmann (2000))
reformulation. The former yields:

MinZ = f(x) +
∑

i∈Dk

∑

k∈K ikyik

s.t. g(x) ≤ 0
rik(x) ≤ M(1− yik) k ∈ K, i ∈ Dk (BM)
∑

i∈Dk
yik = 1 k ∈ K

Ay ≥ a

x ∈ Rn, yik ∈ {0, 1} k ∈ K, i ∈ Dk

where the variable yik has a one to one correspondence with the Boolean
variable Yik.

Note that when yik = 0 and the parameter M is large enough, the associated
constraint becomes redundant; otherwise, it is enforced. Also, Ay = a is
the reformulation of the logic constraints in the discrete space, which can
be easily accomplished as described in Williams (1985) and discussed in
Raman and Grossmann (1991). The convex hull reformulation yields,

MinZ = f(x) +
∑

i∈Dk

∑

k∈K ikyik

s.t.
x =

∑

i∈DK
vik k ∈ K

g(x) ≤ 0
yikrik(�

ik/yik) ≤ 0 k ∈ K, i ∈ Dk (CH)
0 ≤ �ik ≤ yikUv k ∈ K, i ∈ Dk
∑

i∈Dk
yik = 1 k ∈ K

Ay ≥ a

x ∈ Rn, vik ∈ R1, ck ∈ R1, yik ∈ {0, 1} k ∈ K, i ∈ Dk
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As it can be seen, the CH reformulation is less intuitive than the BM.
However, there is also a one to one correspondence between (GDP) and
(CH).
Note that the size of the problem is increased by introducing a new set
of disaggregated variables �ik and new constraints. On the other hand,
as proved in Grossmann and Lee (2003) and discussed by Vecchietti, Lee,
Grossmann (2003), the CH formulation is at least as tight and generally
tighter than the BM when the discrete domain is relaxed (i.e. 0 ≤ yik ≤
1, k ∈ K, i ∈ Dk ) . This is of great importance considering that the
efficiency of the MINLP solvers heavily rely on the quality of these relax-
ations.
It is important to note that on the one hand the term yikrik(�

ik/yik) is
convex if rik(x) is a convex function. On the other hand the term requires
the use of a suitable approximation to avoid singularities. Sawaya & Gross-
mann (2007) proposed the following reformulation which yields an exact
approximation at yik = 0and yik = 1 for any value of � in the interval
(0,1), and the feasibility and convexity of the approximating problem are
maintained.
yikrik(�

ik/yik) ≈ ((1− ")yik + ")rik(�
ik/((1− ")yik+ "))− "rik(0)(1− yik)

Note that this approximation assumes thatrik(x) is defined at x = 0
In order to fully exploit the logic structure of GDP problems, two other
solution methods have been proposed for the case of convex nonlinear
GDP, namely, the Branch and Bound method (Lee & Grossmann, 2000),
which builds on the concept of disjunctive Branch and Bound method by
Beaumont(1991) and the Logic Based Outer Approximation method
(Turkay and Grossmann, 1996).
The basic idea in theB&B method is to directly branch on the constraints
corresponding to particular terms in the disjunctions, while considering the
convex hull of the remaining disjunctions. Although the tightness of the
relaxation at each node is comparable with the one obtained when solving
the CH reformulation with a MINLP solver (as described in section 2),
the size of the problems solved are smaller and the numerical robustness is
improved.

For the case of Logic Based Outer Approximation methods, similar
to the case of OA for MINLP, the main idea is to solve iteratively a Master
problem given by a Linear GDP, which will give a lower bound of the solu-
tion and an NLP subproblem that will give an upper bound. As described
in Turkay and Grossmann (1996), for fixed values of the Boolean Variables,
Yîk = true , Yik = false with î ∕= i, the corresponding NLP subproblem
(SNLP) is as follows:

Min Z = f(x) +
∑

k∈K ck
s.t. g(x) ≤ 0
rik(x) ≤ 0
ck = ik

}

for Yik = true i ∈ Dk, k ∈ K (SNLP)
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xlo ≤ x ≤ xup

x ∈ Rn , ck ∈ R1, Yik ∈ {True, False}

It is important to note that only the constraints that belong to the active
terms in the disjunction (i.e. associated Boolean variable Yik = True) are
imposed. This leads to a substantial reduction in the size of the problem
compared to the direct application of the traditional AO method on the
MINLP reformulation (as described in section 2). Assuming that L sub-
problems are solved in which sets of linearizations ℓ = 1, 2....L are generated
for subsets of disjunction terms Lik = {ℓ∣Y ℓ

ik = True}, one can define the
following disjunctive OA master problem (MLGDP):

Min Z = �+
∑

k∈K ck
s.t.
� ≥ f(xℓ) +∇f(xℓ)T (x− xℓ)
g(xℓ) +∇g(xℓ)T (x − xℓ) ≤ 0

}

ℓ = 1, 2....., L

∨
i∈Dk

⎡

⎣

Yik

rik(x
ℓ) +∇rik(x

ℓ)(x − xℓ) ≤ 0 ℓ ∈ Lik

ck = ik

⎤

⎦ k ∈ K (MLGDP)

Ω(Y ) = True

xlo ≤ x ≤ xup

� ∈ R1, x ∈ Rn , ck ∈ R1, Yik ∈ {True, False}

It should be noted that before applying the above master problem is neces-
sary to solve various subproblems (SNLP) for different values of the Boolean
Variables Yik so as to produce one linear approximation of each of the terms
i ∈ Dk in the disjunctions k ∈ K. As shown by Turkay and Grossmann
(1996) selecting the smallest number of subproblems amounts to solving a
set covering problem, which is of small size and easy to solve. It is impor-
tant to note that the number of subproblems solved in the initialization is
often small since the combinatorial explosion that one might expect is in
general limited by the propositional logic. Moreover, terms in the disjunc-
tions that contain only linear functions are not necessary to be considered
for generating the subproblems. This frequently arises in Process Networks
since they are often modeled by using two terms disjunctions where one of
the terms is always linear (see remark below). Also, it should be noted that
the master problem can be reformulated as an MILP by using the big-M or
Convex Hull reformulation, or else solved directly with a disjunctive branch
and bound method.

Remark

In the context of process networks the disjunctions in (GDP) typically arise
for each unit i in the following form:
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⎡

⎣

Yi

ri(x) ≤ 0
ci = i

⎤

⎦ ∨

⎡

⎣

¬Yi

Bix = 0
ci = 0

⎤

⎦ i ∈ I

in which the inequalities ri apply and a fixed cost gi is incurred if the
unit is selected (Yi); otherwise (¬Yi) there is no fixed cost and a subset of
the x variables is set to zero.

3.3.1. Example. We present here numerical results on an example
problem dealing with the synthesis of a process network that was originally
formulated by Duran and Grossmann (1986) as an MINLP problem, and
later by Turkay and Grossmann (1986) as a GDP problem. Fig. 3 shows
the superstructure that involves the possible selection of 8 processes. The
Boolean variables Yj denote the existence or non-existence of processes 1-
8. The global optimal solution is Z*=68.01, consists of the selection of
processes 2,4,6 and 8

Fig. 3. Superstructure for Process Network

The model in the form of the GDP problem involves disjunctions for the
selection of units, and propositional logic for the relationship of these units.
Each disjunction contains the equation for each unit (these relax as convex
inequalities). The model is as follows:

Objective function:

MinZ = c1 + c2 + c3 + c4 + c5 + c6 + c7 + c8 + x2 − 10x3 + x4 −15x5 −
40x9 + 15x10 + 15x14 + 80x17 − 65x18 + 25x9 − 65x18 +25x19 − 60x20 +
35x21 − 80x22 − 35x25 + 122
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Material balances at mixing/splitting points:

x3 + x5 − x6 − x11 = 0

x13 − x19 − x21 = 0

x17 − x9 − x16 − x25 = 0

x11 − x12 − x15 = 0

x6 − x7 − x8 = 0

x23 − x20 − x22 = 0

x23 − x14 − x24 = 0

Specifications on the flows:

x10 − 0.8x17 ≤ 0

x10 − 0.4x17 ≥ 0

x12 − 5x14 ≤ 0

x12 − 2x14 ≥ 0

Disjunctions:

Unit 1:

⎡

⎣

Y1

ex3 − 1− x2 ≤ 0
c1 = 5

⎤

⎦ ∨

⎡

⎣

¬Y1

x2 = x3 = 0
c1 = 0

⎤

⎦

Unit 2:

⎡

⎣

Y2

ex5/1.2 − 1− x4 ≤ 0
c2 = 8

⎤

⎦ ∨

⎡

⎣

¬Y2

x4 = x5 = 0
c2 = 0

⎤

⎦

Unit 3:

⎡

⎣

Y3

1.5x9 − x8 + x10 ≤ 0
c3 = 6

⎤

⎦ ∨

⎡

⎣

¬Y3

x8 = x9 = x10 = 0
c3 = 0

⎤

⎦

Unit 4:

⎡

⎣

Y4

1.5(x12 + x14)− x13 = 0
c4 = 10

⎤

⎦ ∨

⎡

⎣

¬Y4

x12 = x13 = x14 = 0
c4 = 0

⎤

⎦

Unit 5:

⎡

⎣

Y5

x15 − 2x16 = 0
c5 = 6

⎤

⎦ ∨

⎡

⎣

¬Y5

x15 = x16 = 0
c5 = 0

⎤

⎦

Unit 6:

⎡

⎣

Y6

ex20/1.5 − 1− x19 = 0
c6 = 7

⎤

⎦ ∨

⎡

⎣

¬Y6

x19 = x20 = 0
c6 = 0

⎤

⎦

Unit 7:

⎡

⎣

Y7

ex22 − 1− x21 = 0
c7 = 4

⎤

⎦ ∨

⎡

⎣

¬Y7

x21 = x22 = 0
c7 = 0

⎤

⎦

Unit 8:

⎡

⎣

Y8

ex18 − 1− x10 − x17 = 0
c8 = 5

⎤

⎦ ∨

⎡

⎣

¬Y8

x10 = x17 = x18 = 0
c8 = 0

⎤

⎦
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Propositional Logic

Y1 ⇒ Y3 ∨ Y4 ∨ Y5;Y2 ⇒ Y3 ∨ Y4 ∨ Y5;Y3 ⇒ Y1 ∨ Y2;Y3 ⇒ Y8

Y4 ⇒ Y1 ∨ Y2;Y4 ⇒ Y6 ∨ Y7;Y5 ⇒ Y1 ∨ Y2;Y5 ⇒ Y8

Y6 ⇒ Y4;Y7 ⇒ Y4;Y5 ⇒ Y8;Y6 ⇒ Y4;Y7 ⇒ Y4

Y8 ⇒ Y3 ∨ Y5 ∨ (¬Y3 ∧ ¬Y5)

Specifications

Y1 ∨ Y2;Y4 ∨ Y5;Y6 ∨ Y7

Variables

xj , ci ≥ 0, Yi = {True, False} i = 1, 2...8, j = 1, 2.....25

The following Table 1 shows a comparison between the three solu-
tion approaches presented before. Master and NLP represent the number
of master problems and NLP subproblems solved to find the solution. It
should be noted that the Logic-Based Outer-Approximation method re-
quired solving only 3 NLP subproblems to initialize the master problem
(MGDLP), which was reformulated as an MILP using the convex hull re-
formulation.

Table 1: GDP Solution Methods Results

Outer Approximation* B&B Logic Based OA **
NLP 2 5 4
Master 2 0 1

* Solved with DICOPT through EMP (GAMS) **Solved with LOGMIP
(GAMS)

3.4. Linear Generalized Disjunctive Programming. A particu-
lar class of GDP problems arises when the functions in the objective and
constraints are linear. The general formulation of a Linear GDP as de-
scribed by Raman and Grossmann (1994) is as follows:

MinZ = dTx+
∑

k ck
s.t. Bx ≤ b

∨
i∈Dk

⎡

⎣

Yik

Aikx ≤ aik
ck = ik

⎤

⎦ k ∈ K (LGDP)

Ω(Y ) = True

xlo ≤ x ≤ xup
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x ∈ Rn, ck ∈ R1, Yik ∈ {True, False} , k ∈ K , i ∈ Dk

The big-M formulation reads:

MinZ = dTx+
∑

i∈Dk

∑

k∈K ijyik

s.t. Bx ≤ b
Aikx ≤ aik +M(1− yik) k ∈ K, i ∈ Dk (LBM)
∑

i∈Dk
yik = 1 k ∈ K

Ay ≥ a

x ∈ Rn, yik ∈ {0, 1} k ∈ K, i ∈ Dk

while the CH formulation reads:

MinZ = dTx+
∑

i∈Dk

∑

k∈K ijyik
s.t.

x =
∑

i∈DK
vik k ∈ K

Bx ≤ b
Aik�

ik ≤ aikyik k ∈ K, i ∈ Dk (LCH)
0 ≤ �ik ≤ yikUv k ∈ K, i ∈ Dk
∑

i∈Dk
yik = 1 k ∈ K

Ay ≥ a

x ∈ Rn, vik ∈ R1, ck ∈ R1, yik ∈ {0, 1} k ∈ K, i ∈ Dk

As a particular case of a GDP, LGDPs can be solved using MIP solvers
applied on the LBM or LCH reformulations. However, as described in
the work of Sawaya and Grossmann (2007) two issues may arise. Firstly,
the continuous relaxation of LBM is often weak, leading to a high number
of nodes enumerated in the branch and bound procedure. Secondly, the
increase in the size of LCH due to the disaggregated variables and new con-
straints may not compensate the strengthening obtained in the relaxation,
resulting in a high computational effort. In order to overcome these issues,
Sawaya and Grossmann (2007) proposed a cutting plane methodology that
consists in the generation of cutting planes obtained from the LCH and
used to strengthen the relaxation of LBM. It is important to note, how-
ever, that in the last few years, MIP solvers have improved significantly
in the use of the problem structure to reduce automatically the size of the
formulation. As a result the emphasis should be placed on the strength of
the relaxations rather than on the size of formulations. With this in mind,
we present next the last developments in Linear GDPs.
Sawaya & Grossmann (2008) proved that any Linear Generalized Disjunc-
tive Program (LGDP) that involves Boolean and continuous variables can
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be equivalently formulated as a Disjunctive Program (DP), that only in-
volves continuous variables. This means that we are able to exploit the
wealth of theory behind DP from Balas (1979,1985) in order to solve LGDP
more efficiently.
One of the properties of disjunctive sets is that they can be expressed in
many different equivalent forms. Among these forms, two extreme ones
are the Conjunctive Normal Form (CNF), which is expressed as the in-
tersection of elementary sets (i.e. sets that are the union of half spaces),
and the Disjunctive Normal Form (DNF), which is expressed as the union
of polyhedra. One important result in Disjunctive Programming Theory,
as presented in the work of Balas (1985), is that we can systematically
generate a set of equivalent DP formulations going from the CNF to the
DNF by using an operation called basic step (Theorem 2.1, Balas (1985)),
which preserves regularity. A basic step is defined as follows. Let F be the
disjunctive set in RF given by F =

∩

j∈T

Sj whereSj =
∪

i∈Qj

Pi , Pi a polyhe-

dron, i∈ Qj . For k, l ∈ T, k ∕= l, a basic step consists in replacing Sk

∩

Sl

with Skl =
∪

i ∈ Qk

j ∈ Ql

(Pi

∩

Pj). Note that a basic step involves intersecting

a given pair of disjunctions Sk and Sl.

Although the formulations obtained after the application of basic steps on
the disjunctive sets are equivalent, their continuous relaxations are not. We
denote the continuous relaxation of a disjunctive set F =

∩

j∈T

Sj in regular

form where each Sj is a union of polyhedra, as the hull-relaxation of F (or
h-rel F ). Here ℎ−rel F :=

∩

j∈T

cl conv Sj and cl conv Sj denotes the closure

of the convex hull of Sj. That is, if Sj =
∪

i∈Qj

Pi, Pi = {x ∈ Rn, Aix ≤ bi},

then cl conv Sj is given by, x =
∑

i∈Qj
vi, �i ≥ 0,

∑

i∈Qj
�i = 1, Aivi ≤

bi�i i ∈ Qj . Note that the convex hull of F is in general different from its
hull-relaxation.

As described by Balas (Theorem 4.3., Balas (1985)), the application of a
basic step on a disjunctive set leads to a new disjunctive set whose re-
laxation is at least as tight, if not tighter, as the former. That is, for
i=0,1,. . . .,t let Fi =

∩

j∈Ti

Sj be a sequence of regular forms of a disjunc-

tive set, such that: i) F0 is in CNF, with P0 =
∩

j∈T0

Sj , ii) Ft is in

DNF , iii) for i=1,. . . .,t, Fi is obtained from Fi-1 by a basic step. Then
ℎ− rel F0 ⊇ ℎ− rel F1 ⊇ .... ⊇ ℎ− rel Ft. As shown by Sawaya and Gross-
mann (2008), this leads to a procedure to find MIP reformulations that are
often tighter than the traditional LCH.

3.4.1. Illustration . Let us consider the following example:
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MinZ = x2

s.t. 0.5x1 + x2 ≤ 1

⎡

⎣

Y1

x1 = 0
x2 = 0

⎤

⎦∨

⎡

⎣

¬Y1

x1 = 1
0 ≤ x2 ≤ 1

⎤

⎦ (LGDP1)

0 ≤ x1,2 ≤ 1

x1,2 ∈ R, Y1 ∈ {True, False}

An equivalent formulation can be obtained by the application of a basic
step between the global constraint (or one term disjunction) 0.5x1+x2 ≤ 1
and the two terms disjunction.

MinZ = x2

s.t.
⎡

⎢

⎢

⎣

Y1

x1 = 0
x2 = 0

0.5x1 + x2 ≤ 1

⎤

⎥

⎥

⎦

∨

⎡

⎢

⎢

⎣

¬Y1

x1 = 1
0 ≤ x2 ≤ 1
0.5x1 + x2 ≤ 1

⎤

⎥

⎥

⎦

(LGDP2)

0 ≤ x1,2 ≤ 1
x1,2 ∈ R, Y1 ∈ {True, False}

As it can be seen in the Fig. 4, the hull relaxation of the later formulation
is tighter than the original leading to a stronger lower bound.

Fig. 4. a-Projected feasible region of LGDP1 , b-Projected feasible region of relaxed

LGDP1 , c-Projected feasible region of relaxed LGDP2

3.4.2. Example. Strip Packing Problem (Hifi, 1998) . We ap-
ply the new approach to obtain stronger relaxations on a set of instances for
the Strip Packing Problem. Given a set of small rectangles with width Hi
and length Li and a large rectangular strip of fixed width W and unknown
length L. The problem is to fit the small rectangules on the strip (without
rotation and overlap) in order to minimize the length L of the strip
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The LGDP for this problem is presented below (Sawaya & Grossmann,
2006).

MinZ = lt
s.t.

lt ≥ xi + Li∀i ∈ N

[

Y 1
ij

xi + Li ≤ xj

]

∨

[

Y 1
ij

xi + Li ≤ xj

]

∨

[

Y 1
ij

xi + Li ≤ xj

]

∨

[

Y 1
ij

xi + Li ≤ xj

]

xi ≤ UBi − Li ∀i ∈ N

Hi ≤ yi ≤ W ∀i ∈ N

lt, xi, yi ∈ R1
+, Y

1,2,3,4
ij ∈ {True, False}∀i, j ∈ N, i < j

In Table 2, the approach using basic steps to obtain stronger relaxations is
compared with the original formulation.

Table 2: Comparison of sizes and lower bounds between original
and new MIP reformulations

Convex Hull Formulation Fromulation w. Basic Steps
Instance Vars 0-1 Constr. LB Vars 0-1 Constr. LB
4 Rectang. 102 24 143 4 170 24 347 8
25 Rectang. 4940 1112 7526 9 5783 1112 8232 27
31 Rectang. 9716 2256 14911 10.64 11452 2256 15624 33

It is important to note that although the size of the reformulated MIP
is significantly increased when applying basic steps, the LB is greatly im-
proved.

3.5. Nonconvex Generalized Disjunctive Programs. In general,
some of the functions f , rik or g might be nonconvex, giving rise to a non-
convex GDP problem. The direct application of traditional algorithms to
solve the reformulated MINLP in this case, such as Generalized Benders
Decomposition (GBD) (Benders, 1962 and Geoffrion, 1972) or Outer Ap-
proximation (AO) (Viswanathan & Grossmann, 1990) may fail to find the
global optimum since the solution of the NLP subproblem may correspond
to a local optimum and the cuts in the master problem may not be valid.
Therefore, specialized algorithms should be used in order to find the global
optimum (Horst & Tuy, 1996 and Tawarmalani & Sahinidis, 2002).

With this aim in mind, Lee & Grossmann (2003) proposed the following
two-level branch and bound algorithm.

The first step in this approach is to introduce convex underestimators of
the nonconvex functions in the original nonconvex GDP. This leads to:
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Min Z = f̄(x) +
∑

i∈Dk

∑

k∈K ijyik
s.t. ḡ(x) ≤ 0

∨
i∈Dk

⎡

⎣

Yik

r̄ik(x) ≤ 0
ck = ik

⎤

⎦ k ∈ K ( RGDPNC )

Ω(Y ) = True

xlo ≤ x ≤ xup

x ∈ Rn , ck ∈ R1, Yik ∈ {True, False}

where f̄ , r̄ik, ḡ are convex and the following inequalities are satisfied
f̄(x) ≤ f(x), r̄ik(x) ≤ rik(x), ḡ(x) ≤ g(x). Note that suitable convex un-
derestimators for these functions can be found in Tawarmalani & Sahinidis
(2002)

The feasible region of (RGDPNC) can be relaxed by replacing each dis-
junction by its convex hull. This relaxation yields the following convex
NLP

MinZ = f̄(x) +
∑

i∈Dk

∑

k∈K ijyik
s.t. x =

∑

i∈DK
vik k ∈ K

ḡ(x) ≤ 0

yik r̄ik(�
ik/yik) ≤ 0 k ∈ K, i ∈ Dk (RGDPRNC)

0 ≤ �ik ≤ yikUv k ∈ K, i ∈ Dk
∑

i∈Dk
yik = 1 k ∈ K

Ay ≥ a

x ∈ Rn, vik ∈ R1, ck ∈ R1, yik ∈ [0, 1] k ∈ K, i ∈ Dk

As proven in Lee & Grossmann (2003) the solution of this NLP formulation
leads to a lower bound of the global optimum.

The second step consists in using the above relaxation to predict lower
bounds within a spatial branch and bound framework. The main steps
in this implementation are described in Fig. 5. The algorithm starts by
obtaining a local solution of the nonconvex GDP problem by solving the
MINLP reformulation with a local optimizer (e.g. DICOPT), which will
give an upper bound of the solution (ZU ). Then, a bound contraction
procedure is performed as described by Zamora and Grossmann (1999).
Finally, a partial branch and bound method is used on RGDPNC as de-
scribed in Lee & Grossmann (2003) that consists in only branching on
the Boolean variables until a node with all the Boolean variables fixed is
reached. At this point a spatial branch and bound procedure is performed
as described in Quesada and Grossmann (1995).
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Fig. 5. Steps in Global Optimization Algorithm

While the method proved to be effective in solving several problems, a ma-
jor question is whether one might be able to obtain stronger lower bounds
to improve the computational efficiency.

Recently, Ruiz & Grossmann (2009) proposed an enhanced methodology
that builds on the work of Sawaya & Grossmann (2008) to obtain stronger
relaxations. The basic idea consists in relaxing the nonconvex terms in the
GDP using valid linear over, underestimators previous to the application of
basic steps. This leads to a new Linear GDP whose continuous relaxation
is tighter and valid for the original nonconvex GDP problem. The imple-
mentation of basic steps is not trivial, Ruiz & Grossmann (2009) proposed
a set of rules that aim at keeping the formulation small while improving the
relaxation. Among others, it was shown that intersecting the global con-
straints with the disjunctions lead to a Linear GDP with the same number
of disjuncts but a stronger relaxation.

The following example illustrates the idea behind this approach to obtain
a stronger relaxation in a simple nonconvex GDP. Fig. 6 shows a small
superstructure consisting of two reactors, each characterized by a flow-
conversion curve, a conversion range for which it can be designed, and its
corresponding cost as can be seen in Table 3. The problem consists in
choosing the reactor and conversion that maximize the profit from sales of
the product considering that there is a limit on the demand.
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Fig. 6. Two reactor network

Table 3: Data for the reactors

Reactor Curve* Range Cost
a b X lo Xup Cp

I -8 9 0.2 0.95 2.5
II -10 15 0.7 0.99 1.5

The characteristic curve is defined as F = aX + b in the range of conversions

[Xlo, Xup] where F and X are the flow of raw material and conversion respec-

tively.

The bilinear GDP model, which maximizes the profit, can be stated as
follows:

MaxZ = �FX − F − CP

s.t. FX ≤ d

⎡

⎢

⎢

⎣

Y11

F = �1X + �1

X lo
1 ≤ X ≤ Xup

1

CP = Cp1

⎤

⎥

⎥

⎦

∨

⎡

⎢

⎢

⎣

Y21

F = �2X + �2

X lo
2 ≤ X ≤ Xup

2

CP = Cp2

⎤

⎥

⎥

⎦

(GDP1NC)

Y11∨Y11 = True

X, F,CP ∈ R1, F lo ≤ F ≤ Fup, Y11, Y21 ∈ {True, False}

The associated Linear GDP relaxation is obtained by replacing the bilinear
term, FX, using the McCormick convex envelopes:

MaxZ = �P − F − CP

s.t. P ≤ d
P ≤ FX lo + FupX − FupX lo; P ≤ FXup + F loX − F loXup

P ≥ FX lo + F loX − F loX lo; P ≤ FXup + FupX − FupXup
⎡

⎢

⎢

⎣

Y11

F = �1X + �1

X lo
1 ≤ X ≤ Xup

1

CP = Cp1

⎤

⎥

⎥

⎦

∨

⎡

⎢

⎢

⎣

Y21

F = �2X + �2

X lo
2 ≤ X ≤ Xup

2

CP = Cp2

⎤

⎥

⎥

⎦

(GDP1RLP0)
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Y11∨Y11 = True

X, F,CP ∈ R1, F lo ≤ F ≤ Fup, Y11, Y21 ∈ {True, False}

Intersecting the improper disjunctions given by the inequalities of the re-
laxed bilinear term with the only proper disjunction (i.e. by applying five
basic steps), we obtain the following GDP formulation,

MaxZ = �P − F −CP (GDP1RLP1)

s.t.
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Y11

P ≤ d
P ≤ FXup + F loX − F loXup

P ≤ FX lo + FupX − FupX lo

P ≥ FX lo + F loX − F loX lo

P ≥ FXup + FupX − FupXup

F = �1X + �1

X lo
1 ≤ X ≤ Xup

1

CP = Cp1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∨

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Y21

P ≤ d
P ≤ FXup + F loX − F loXup

P ≤ FX lo + FupX − FupX lo

P ≥ FX lo + F loX − F loX lo

P ≥ FXup + FupX − FupXup

F = �2X + �2

X lo
2 ≤ X ≤ Xup

2

CP = Cp2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Y11∨Y11 = True

X, F,CP ∈ R1, F lo ≤ F ≤ Fup, Y11, Y21 ∈ {True, False}

Fig. 7 shows the actual feasible region of (GDP1NC) and the projection on
the F-X space of the hull relaxations of (GDP1RLP0) and (GDP1RLP1),
where clearly the feasible space in (GDP1RLP1) is tighter than in
(GDP1RLP0). Notice that in this case the choice of reactor II is infeasible.

Fig. 7. a-Projected feasible region of GDP1NC , b-Projected feasible region of

relaxed GDP1RLP0, c-Projected feasible region of relaxed GDP1RLP1



22 IGNACIO E. GROSSMANN AND JUAN P. RUIZ

3.5.1. Example. Water Treatment Network (Galan and Gross-

mann , 1998). This example corresponds to a synthesis problem of a dis-
tributed wastewater multicomponent network (See Fig 8), which is taken
from Galan and Grossmann (1998). Given a set of process liquid streams
with known composition, a set of technologies for the removal of pollutants,
and a set of mixers and splitters, the objective is to find the interconnec-
tions of the technologies and their flowrates to meet the specified discharge
composition of pollutant at minimum total cost. Discrete choices involve
deciding what equipment to use for each treatment unit.

Fig. 8. Water treatment superstructure

Lee and Grossmann (2003) formulated this problem as the following non-
convex GDP problem:

MinZ =
∑

k∈PU CPk

f j
k =

∑

i∈Mk
f j
i ∀jk ∈ MU

∑

i∈Sk
f j
i = f j

k ∀jk ∈ SU

∑

i∈Sk
�ki = 1 k ∈ SU

f j
i = �ki f

j
k ∀j i ∈ Sk k ∈ SU

∨
ℎ∈Dk

⎡

⎢

⎢

⎣

Y P ℎ
k

f j
i = �jℎ

k f j
i′ , i ∈ OPUk, i

′ ∈ IPUk, ∀j

Fk =
∑

j f
j
i , i ∈ OPUk

CPk = ∂ikFk

⎤

⎥

⎥

⎦

k ∈ PU

0 ≤ �ki ≤ 1 ∀j, k

0 ≤ f j
i , f

j
k ∀i, j, k

0 ≤ CPk ∀k

Y P ℎ
k ∈ {true, false} ∀ℎ ∈ Dk ∀k ∈ PU
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The problem involves 9 discrete variables and 114 continuous variables with
36 bilinear terms. Table 4 shows the computational performance when the
Lee and Grossmann (2003) relaxation is used within a spatial branch and
bound framework with the one proposed in Ruiz & Grossmann (2009) work.

Table 4 Lower bounds of proposed framework
Global Op-
timum

Lower Bound (Lee
& Grossmann Re-
laxation)

Lower Bound
(Ruiz & Gross-
mann Relaxation)

Best
Lower
Bound

1214.87 400.66 431.9 431.9

As it can be seen, an improved lower bound was obtained (i.e. 431.9 vs
400.66) which is a direct indication of the reduction of the relaxed feasible
region. The column “Best Lower Bound”, can be used as an indicator of
the performance of the proposed set of rules to apply basic steps. Note
that the lower bound obtained in this new approach is the same as the one
obtained by solving the relaxed DNF, which is quite remarkable. A further
indication of tightening is shown in Table 5 where numerical results of the
branch and bound algorithm proposed in section 6 are presented. As it can
be seen the number of nodes that the spatial branch and bound algorithm
requires before finding the global solution is significantly reduced.

Table 5 Performance of proposed methodology with spatial B&B.
Global Optimization Tech-
nique using Lee & Gross-
mann Relaxation

Global Optimization Tech-
nique using Ruiz & Gross-
mann Relaxation

Global
Opti-
mum

Nodes Bound
contract.
(% Avg)

CPU
Time
(sec)

Nodes Bound
contract.
(% Avg)

CPU
Time
(sec)

1214.87 408 8 176 130 16 115

Table 6 shows the size of the LP relaxation obtained in each methodol-
ogy. Note that although the proposed methodology leads to a significant
increase in the size of the formulation, this is not translated proportionally
to the solution time of the resulting LP. This behavior can be understood
by considering that in general, the LP pre-solver will take advantage of the
particular structures of these LPs.

Table 6 Size of the LP relaxation for example problems
Size of the LP Relaxation

Lee & Grossmann Ruiz & Grossmann
Constraints Variables Constraints Variables

544 346 3424 1210
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