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Abstract

Engineering systems are typically maintained during planned, or unplanned, downtimes in between operation
periods. If the duration of the downtime or the budget of the maintenance is an active constraint, all desired
maintenance actions cannot be conducted. Seeking of the optimal subset of maintenance actions is referred
to as selective maintenance optimization. In this work, we link the statistical analysis of lifetime data
into selective maintenance optimization, focusing on datasets with bathtub-shaped failure rates. Regarding
this context, we highlight the importance of choosing a relevant failure model for a given dataset with a
bathtub-shaped failure rate. We also propose two improvements to the efficiency of mixed integer non-
linear programming (MINLP)-based selective maintenance optimization. The first of these improvements
is the preclusion of component replacements that, due to the infant mortality period of the component,
reduce the reliability (this is only applicable to components with a bathtub-shaped failure rate). The second
is the convexification of two MINLP models involving only replacement, or replacement and repair. The
improvements enable our MINLP-based methods to tackle large-scale selective maintenance optimization
problems with up to 700 to 1000 system components (depending on whether the repair action is included).

Keywords: reliability, selective maintenance optimization, component replacement, component repair,
bathtub-shaped failure rate

1. Introduction

Industrial plants should ideally be robust and reliable in continuous operation. Unexpected component
failures at the plant may cause costly disruptions to the operation. In order to avoid disruptions, the
operators of the plant schedule major shutdowns, enabling maintenance operations to be conducted for the
components (e.g., electrical drives, pumps, and fans) of the plant. As these shutdowns are expensive, both in
terms of direct maintenance costs and lost production time, the maintenance operations that are performed
during a shutdown should be carefully selected. Such decision-making is challenging because a modern
industrial plant may consist of hundreds – or even thousands – of individual components with various levels
of criticality.

Selective maintenance, first introduced by Rice et al. (1998), aims at finding the optimal subset of
maintenance actions to be performed for a multicomponent system. In single-objective optimization, the
objective is to maximize the reliability of the system for the next operation window, subject to maintenance
duration and/or cost constraints, or vice versa. Alternatively, the reliability maximization and the main-
tenance duration and/or cost minimization can be considered as a multiobjective optimization problem,
the solution of which yields a Pareto optimal set of solutions, representing the best trade-offs between the
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objectives. Selective maintenance has been applied to various fields, ranging from aircraft maintenance (in
between flight operations) to maintenance shutdowns of large industrial plants. The connecting factor in
these applications is that the system has predefined operating windows, and maintenance actions can only
be conducted in between the windows.

After the pioneering work by Rice et al. (1998), several improvements and extensions have been reported
in the selective maintenance literature. Cassady et al. (2001a) extended the approach in two ways. First, they
considered components with time-dependent failure rates by characterizing the component lifetimes using
the Weibull distribution (Weibull, 1951). Second, they expanded the selection of maintenance actions to 1)
the minimal repair of a failed component, 2) the replacement of a failed component and 3) the replacement
of a functioning component1. Cassady et al. (2001b) extended the problem definition to permit systems with
any component arrangement. Rajagopalan & Cassady (2006) improved the efficiency of the original solution
strategy by Rice et al. (1998), i.e. a total enumeration strategy, by more than two orders of magnitude by
four individual improvements (which include, for example, defining upper and lower bounds for the variables
and the objective function). Khatab et al. (2007) proposed two heuristic search algorithms, which iteratively
add repair actions for failed components, having the highest improvement in the reliability of the system,
until the cost or time constraint is saturated. Lust et al. (2009) proposed a heuristic search algorithm that
is able to assign both minimal repair and replacement actions to the components. The authors report that,
on a set of six optimization problems, their heuristic search algorithm yields solutions, the reliabilities of
which are at most 3.71% worse than the optimal reliability. The benefit of heuristic algorithms is that they
can quickly find a good solution. Lust et al. (2009) also applied the branch-and-bound and tabu search
(Glover, 1989) methods to the selective maintenance problem.

Galante & Passannanti (2009) proposed a variation of the algorithm by Kettelle Jr (1962), which is
capable to identify non-dominated maintenance decision vectors in the space of reliability and maintenance
cost for serial systems. The variation extends the algorithm to serial-parallel systems. The authors applied
the modified algorithm to a large-scale preventive maintenance optimization of ship components. Certa et al.
(2011) extended the method by Galante & Passannanti (2009) to be suitable for multi-objective selective
maintenance optimization, in which the objectives are to minimize the cost and duration of maintenance
actions subject to a minimum reliability requirement.

Recently, further extensions have been proposed in the literature, in order to improve the relevance to
industrial applications. In reality, possible maintenance actions may not be restricted to minimal repair
or replacement, but to include also intermediate choices, i.e. imperfect maintenance. Liu & Huang (2010)
extended the selection of actions in selective maintenance by relating the cost of the maintenance action to
its quality via the Kijima type II model (Kijima et al., 1988; Kijima, 1989), in which a maintenance action
reduces the (virtual) age of the component by the factor c from the range [0, 1]. Zhu et al. (2011) included
an intermediate (imperfect) maintenance action as an addition to minimal repair and replacement by mod-
eling both the age reduction factor and the hazard rate increase, the information of which was assumed
to be known. Khatab et al. (2018) included the assignment of repair personnel to maintenance actions in
their selective maintenance optimization model. Diallo et al. (2018) extended to problem definition from
serial-parallel systems to serial n-out-of-k systems, i.e. a stage is functioning if n out of k components are
functioning. In the aforementioned studies, the reliability objective, or constraint, corresponds to a single op-
eration window. Maillart et al. (2009) used stochastic dynamic programming to solve optimization problems
with two and infinite operation windows. However, they conclude that the (computationally most expen-
sive) model with infinite number of operation windows yields only minimal improvement in the expected
number of successful missions in comparison to models with a one and two operation windows. Amaran et al.
(2015) formulated a mixed-integer linear programming (MILP) model for long-term turnaround planning
of integrated chemical sites, allowing the shutdowns of the sites to occur at different times. Their model
is linear because it is defined based on the minimum maintenance frequency for each component, instead
of the system reliability. Biondi et al. (2017) included the degradation of plant components into an MILP
process scheduling model. They model degradation to reduce the maximum capacity of the components, or
to restrict their operation modes.

1Rice et al. (1998) only considered the second of these maintenance actions.
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The component lifetimes in selective maintenance literature are commonly assumed to follow either the
exponential or Weibull distributions (Cao et al., 2018). In the case of the former, the underlying assumption
is that the failure rates are constant. Thus, only corrective maintenance actions for failed components are
sensible; the replacement of a functioning component would have no influence on the system reliability. The
Weibull distribution, on the other hand, can be used to describe components with increasing, constant or
decreasing failure rates. However, the distribution is not suitable for modeling non-monotone failure rates.

In reality, many engineering components have a non-monotone bathtub-shaped failure rate, which is a
combination of decreasing infant mortality rate, a constant random failure rate and an increasing failure
rate due to degradation. A wide range of parametric distributions has been proposed in the literature to
model such failure rates. Our aim here is only to provide a brief overview of these distributions. Mudholkar
& Srivastava (1993) proposed an exponentiated Weibull distribution. Xie et al. (2002) also proposed an
extension to the Weibull distribution that is flexible to model bathtub-shaped failure rates. El-Gohary
et al. (2013) proposed a generalized Gompertz distribution (Gompertz, 1825). All the above mentioned
distributions have three parameters. Sarhan & Apaloo (2013) proposed a four-parameter model that is a
generalization of both models by Xie et al. (2002) and El-Gohary et al. (2013). Jiang (2013) proposed a
new three-parameter finite support model, and showed evidence that finite support models yield good fits
to data with bathtub-shaped failure rates. The model parameters are typically fitted to the data by the
maximum likelihood method, or by the maximum spacing method (see Jiang (2013)).

In a recent review paper, Cao et al. (2018) stress the lack of data-driven approaches in selective main-
tenance literature. For the operators of the plant, the starting point for selective maintenance is typically
some, perhaps limited, dataset of component lifetimes. However, in the corresponding literature, the aspect
of data availability is often omitted, and the starting point is typically defined as a given lifetime distribu-
tion with arbitrarily chosen parameters. As Cao et al. (2018) point out, the linking of lifetime data with
corresponding distribution parameters, in the context of selective maintenance, has not been discussed in
the literature. Therefore, as the first contribution of this paper, we link the statistical analysis of component
lifetime data to the selective maintenance. More specifically, we study two lifetime datasets with bathtub-
shaped failure rate distributions (Meeker & Escobar, 1998; Aarset, 1987), and use the failure rate models by
Sarhan & Apaloo (2013) and Jiang (2013).

When considering only a single maintenance break, the selective maintenance decision-making can be
formulated as a mixed-integer nonlinear programming (MINLP)2. The algebraic term of the reliability of a
serial-parallel system involves products of decision variables, which typically results in a non-convex MINLP
problem. Recently, Ye et al. (2018) presented a convexified form of the reliability algebraic term. However,
instead of selective maintenance, their work considered the reliability design of a new chemical plant. The
convexified model is guaranteed to find the global optimum with a non-global MINLP solver. The authors
showed that the solution time of their convexified model, using the non-global solver DICOPT (Viswanathan
& Grossmann, 1990), was around half of that of the nonconvex model, using the global solver BARON
(Tawarmalani & Sahinidis, 2005), for an example problem containing 42 binary variables. Further, in order
to also avoid non-linearity, Diallo et al. (2018) proposed a two-stage approach, in which they first transform
the problem into multi-dimensional multiple-choice knapsack problem and then solve it using MILP.

As far as we are able to ascertain, the largest selective maintenance problems reported, and solved
to optimality, in the literature3 have 200 system components (Galante & Passannanti, 2009), if only one
maintenance action (e.g. replacement or repair) is considered, and 28 system components(Lust et al.,
2009) if two (or more) maintenance actions are considered. It is also worth noticing that, regarding the
latter category, Diallo et al. (2018) studied a problem with slightly fewer system components (23) – but
report roughly three orders of magnitude smaller computational time than Lust et al. (2009), due to the
linearization approach mentioned above. Evolutionary algorithms, as well as other heuristic approaches,
provide an alternative solution method to tackle large-scale selective maintenance problems. However, with
these approaches, the optimality of the solution cannot be guaranteed.

2The reader may wish to consult papers by Grossmann (2002) and Belotti et al. (2013) for general reviews of MINLP, and
the paper by Kronqvist et al. (2019) for a review of solution methods for convex MINLP problems.

3We consider here only studies with a single maintenance break.
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In order to improve the efficiency of selective maintenance optimization for industrial-scale problems,
while still guaranteeing the optimality of the solution, the second contribution of this paper is two concurrently
applicable improvements to the efficiency of MINLP based optimization. First, our statistical analysis shows
that the component-specific reliability is reduced if the age of the component and the next planned operation
window are within certain limits. This reduction is caused by the infant mortality period of new components.
We preclude component replacements in such cases by variable preassignments, which reduces the size of
the decision space. Second, we modify the aforementioned convexification of the reliability expression by
Ye et al. (2018) to be applicable to selective maintenance optimization with replacement action. Further,
we also derive the corresponding convexification applicable to selective maintenance optimization with both
replacement and repair actions.

Nomenclature

Sets

K Set of stages
Jk Set of parallel units in stage k
Sk,m Subset m of Jk
Sk Power set of Jk: Sk = {S|S ⊆ Jk}
Sx
k,i Repair subset of Jk on stage k

Sy
k,i Replacement subset of Jk on stage k

Indices

k Stage
i A ternary partition of Jk
j Parallel unit
m A subset of Jk

Parameters

α, β, γ, λ, kw Failure model parameters (used as variables in failure model fitting)
αj,k,i Ternary parameter indicating to which subset (no action, repair, replacement) unit j at

stage k belongs in partition i
ωj,k,m Binary parameter indicating if unit j at stage k belongs to the mth subset of Sk
a Age of a component
ak,j Age of component j at stage k
di Binary parameter indicating if experiment i ended in failure
Fk,j Binary parameter indicating if component j at stage k is functioning before the mainte-

nance shutdown
F (t) Cumulative failure function
h(t) Failure rate
R(t) Reliability function
R0
k,j Reliability of the component j at stage k, if the component is not replaced or repaired

Rx
k,j Reliability of the unit j at stage k, if the component is repaired

Ry
k,j Reliability of the unit j at stage k, if the component is replaced

∆Rx
k,j Improvement in the reliability of the unit j at stage k, if the component is repaired

(∆Rx
k,j = Rx

k,j −R0
k,j)

∆Ry
k,j Improvement in the reliability of the unit j at stage k, if the component is replaced

(∆Ry
k,j = Ry

k,j −R0
k,j)

cyk,j Cost of replacing unit j at stage k
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cxk,j Cost of repairing unit j at stage k

cbudget,q Cost upper bound for the maintenance at the budget level q of the ε-constraint method
cperson Cost of hiring a maintenance person
Tbreak The duration of the maintenance break
t Time
ti End time of experiment i (may also be the failure time, see parameter di)
tyk,j Replacement duration of unit j at stage k

txk,j Repair duration of unit j at stage k

tw Next operation window
L Likelihood function

Variables

λp Number of maintenance personnel involved in the maintenance operations
ctot Total cost of the maintenance operations
R′k Reliability of stage k
Rsys System reliability

R̃sys Logarithm of the system reliability
Tbreak Duration of the maintenance break
Tsum Sum of maintenance action durations
wk,i Binary variable used in the Convex Replacement-Repair (CRR) model
xk,j Binary variable defining whether unit j at stage k is repaired
yk,j Binary variable defining whether unit j at stage k is replaced
zk,m Binary variable used in the Convex Replacement (CR) model

2. Data analysis

Each component in an engineering system has an underlying failure rate, which is rarely explicitly known.
However, the operators of the system can obtain implicit observations of the failure rate by collecting the
lifetime data of the components while operating the system, or by running accelerated lifetime tests on
individual components. The collected data are then fed to statistical models, in order to estimate the failure
rate of the component.

As indicated in the introduction, the scope of this work is on lifetime datasets with bathtub-shaped
failure rates. We have chosen to use two datasets reported by Aarset (1987) (Table 1) and Meeker &
Escobar (1998) (Table 2), which we refer to as Datasets 1 and 2, respectively. Dataset 1 has no censored
data points, whereas Dataset 2 is right-censored at 300 time units, which means that, even if no failure has
occurred, the experiment is terminated at this point.

Table 1: Lifetime dataset 1 (Aarset, 1987), consisting of failure times of 50 components. The dataset is a one-dimensional
array, reported on multiple lines.

0.1 0.2 1 1 1 1 1 2
3 6 7 11 12 18 18 18
18 18 21 32 36 40 45 46
47 50 55 60 63 63 67 67
67 67 72 75 79 82 82 83
84 84 84 85 85 85 85 85
86 86
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Table 2: Lifetime dataset 2 (Meeker & Escobar, 1998), consisting of failure times of 30 components. Sign ‘+’ indicates that
the data point is right-censored.

2 10 13 23 23 28
30 65 80 88 106 143
147 173 181 212 245 247
261 266 275 293 300+ 300+

300+ 300+ 300+ 300+ 300+ 300+

Despite the scope being at bathtub-shaped failure rates, the failure models and optimization methods
we discuss herein are also applicable to lifetime datasets with monotonically increasing failure rates4. If
the failure rate is constant (i.e. the exponential lifetime distribution) or monotonically decreasing, the
replacement action become irrelevant. The reason is that the replacement of a functioning component is
not sensible, as, in this case, the actions would not improve the reliability of the component. The reader
may consult the paper by Aarset (1987), for a statistical method of identifying whether a dataset has a
bathtub-shaped, or monotonically increasing or decreasing failure rate.

In the next two subsections, we present the algebraic equations of the failure rate h(t) and cumulative
failure function F (t) of the aforementioned failure models by Jiang (2013) and Sarhan & Apaloo (2013). We
have chosen to use these models because they are reported to yield good fits to datasets having a bathtub-
shaped failure rate, in comparison to other models reported in the literature. In addition, they represent
two different classes of bathtub-shaped failure models; the former represents the class with finite support,
whereas the latter the class of models with infinite support.

2.1. Failure rate model by Jiang (2013)

The failure rate h(t) and cumulative failure function F (t) of the model by Jiang (2013), having three
adjustable model parameters, are defined as

h(t) =
β

t+ η
+

1

γ − t

F (t) = 1− 1− t/γ
(1 + t/η)β

, β, η, γ > 0, t < γ,

(1)

(2)

where β, γ, and η are the adjustable model parameters. The model is defined so that when t→ γ the failure
rate h(t) approaches infinity, i.e. the finite support. The author indicates that the feature enables the model
to adapt to failure models with a rapidly increasing failure rate during the wear-out phase.

2.2. Failure rate model by Sarhan & Apaloo (2013)

Sarhan & Apaloo (2013) define their model, which they refer to as the exponentiated modified Weibull
extension distribution, to be a generalization of three models: the generalized Gompertz distribution (El-
Gohary et al., 2013), the modified Weibull extension distribution (Xie et al., 2002) and the exponentiated
Weibull distribution (Mudholkar & Srivastava, 1993). The model involves four adjustable parameters, and
its failure rate h(t) and cumulative failure function F (t) are

h(t) =
λβγ

(
t
α

)β−1
e(t/α)

β+λα(1−e(t/α)β )

[1− eλα(1−e(t/α)β )]1−γ + eλα(1−e(t/α)β ) − 1

F (t) = [1− eλα(1−e
(t/α)β )]γ , λ, α, β, γ > 0, t ≥ 0,

(3)

(4)

where λ, α, β and γ are the adjustable model parameters.

4With the caveat that, in this case, the aforementioned decision-space reduction by variable preassignments is no longer
relevant.

6



2.3. Parameter training

Let us next collect optimized parameters for both failure models on Datasets 1 and 2. Typically, the
parameters are trained by maximizing the likelihood, or log-likelihood5, of the model. The likelihood function
of a failure model is defined as

L =

n∏
i=1

h(ti)
diR(ti), (5)

where n is the number of points, and parameter di indicates whether component i has failed at time ti.
Further, R(ti) is the reliability of the component, i.e. the probability of the component being functioning
at time t = ti, given that it is new and functioning at time t = 0. The reliability R(t) is the complement
probability of the cumulative failure function F (t):

R(t) = 1− F (t). (6)

The log likelihood of a failure model is then

logL =

n∑
i=1

[di log h(ti) + logR(ti)]. (7)

Sarhan & Apaloo (2013) use the maximum log-likelihood estimate to determine the model parameters,
and report them for both datasets 1 and 2. However, when analyzing Dataset 2, they assume that the
right-censored values are actual failure times.

According to Jiang (2013), the maximum (log-)likelihood estimate may not be suitable for failure models
with finite support, because the parameter defining the upper bound of the support can converge to the
largest non-censored datapoint, in the case of which the log-likelihood approaches infinity (typically, this
behavior is not seen if the largest observation is right-censored). Therefore, she defines another cost function,
referred to as the extended maximum spacing method, in order to optimize the model parameters for datasets,
in which the largest observation is not right-censored. Jiang (2013) reports the optimized model parameters
for Dataset 2, which she determines based on the maximum log-likelihood estimate, but does not analyze
Dataset 1. The maximum log-likelihood estimate behaves well on Dataset 2 because the largest observations
of the dataset are right-censored. As a summary, we lack the optimized parameters for the failure model by
Jiang (2013) on Dataset 1 and the failure model by Sarhan & Apaloo (2013) on Dataset 2.

We tune these parameters by maximizing the extended maximum spacing of the former and the log-
likelihood of the latter. In order to solve the optimization problem, we use SLSQP (sequential least squares
programming) (Kraft, 1988) as the optimization method, and initialize the optimization runs from 100 ran-
domized starting points. The optimized model parameters and the corresponding log-likelihoods for Dataset
1 are listed in Table 3, in which the parameters for the failure model by Jiang (2013) are obtained from
her paper and for that of Sarhan & Apaloo (2013) by the multi-start SLSQP approach. The corresponding
values for Dataset 2 are listed in Table 4, in which the parameters for the failure model by Sarhan & Apaloo
(2013) are obtained from their paper and for that of Jiang (2013) by the multi-start SLSQP approach. In
both tables, we list, as a reference, the model parameters and log-likelihoods of exponential and Weibull
distributions, which we also generate by the multi-start SLSQP approach. The adjustable parameter of the
exponential distribution is λ and those of Weibull distribution are λ and kw.

The statistical assessment of which of these trained models has the best fit for the datasets falls outside
the scope of this work. Suitable metrics for this are for example the Akaike information criterion (AIC)
(Akaike, 1974) and the Kolmogorov-Smirnov test (Massey Jr, 1951). As we indicated in the introduction, we
have chosen the two bathtub-shaped failure models as representative models from the literature, and show
also the distributions obtained by the exponential and Weibull distribution on the same datasets. The latter
two are the most commonly used distributions in selective maintenance optimization (Cao et al., 2018). Our

5As the logarithm function is strictly increasing, maximizing the logarithm of the function f is equivalent to maximizing
the function f .
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Table 3: Optimized model parameters for the studied failure models on Datasets 1 (Aarset, 1987). The methods used for
training are the maximum a log-likelihood estimate (MLE) and extended maximum spacing method (EMSM).

model method trained parameters logL
exponential MLE λ = 45.686 -241.09

Weibull MLE λ = 44.913, kw = 0.94904 -241.00
Jiang (2013) EMSM β = 3.3588e-2, γ = 88.201, η = 0.13517 -217.60

Sarhan & Apaloo (2013) MLE α = 49.05, β = 3.148, γ = 0.145, λ = 7.181e-5 -213.86i

i The values are from the paper by Sarhan & Apaloo (2013).

Table 4: Optimized model parameters for the studied failure models on Datasets 2 (Meeker & Escobar, 1998). See Table 3 for
explanations of the cost functions.

model method trained parameters logL
exponential MLE λ = 241.41 -142.70

Weibull MLE λ = 242.59, kw = 0.92679 -142.62
Jiang (2013) MLE β = 6.6737e-2, γ = 452.35, η = 9.5118 -141.36ii

Sarhan & Apaloo (2013) MLE α = 260.19, β = 4.3280, γ = 0.14848, λ = 9.5159e-5 -141.23

ii The values are from the paper by Jiang (2013).

purpose here is to highlight the differences in the resulting failure rate h(t) and cumulative failure functions
F (t), and use bathtub-shaped failure models to generate inputs for selective maintenance optimization.

Figures 1(a) and 1(b) visualize the failure rate h(t) and cumulative failure function F (t), respectively, of
the trained models on Datasets 1. Figure 1(b) also shows the empirical failure distribution function. The
failure rate of the models by Sarhan & Apaloo (2013) and Jiang (2013) have fundamentally the same shape,
and in both models, the failure rate increases rapidly at around t = 75. However, during the mid-life period
(t ≈ 10 . . . 65) of the component, the model by Sarhan & Apaloo (2013) predicts a lower failure rate than the
model by Jiang (2013). When looking at the cumulative failure distribution, the model by Sarhan & Apaloo
(2013) follows the empirical distribution closer than the model by Jiang (2013). Arguably, this is due to the
additional flexibility provided by the additional model parameter. The cumulative failure distributions of
the exponential and Weibull distributions are nearly identical because the trained model parameter kw of
the Weibull distribution is close to unity.

Figures 2(a) and 2(b) visualizes the corresponding information of the trained models on Dataset 2. In
this case, all four models predict fairly similar failure behavior before a lifetime of around t = 300 (Figure
2(b)), at which point the remaining functioning components are right-censored. Beyond t = 300, the trained
model by Sarhan & Apaloo (2013) is the most pessimistic about the length of the remaining lifetime. This
can be clearly seen in the rapidly increasing failure rate. The trained model by Jiang (2013) is also more
pessimistic about the remaining lifetime than the trained exponential and Weibull distributions. The reason
is that the latter two do not capture the underlying increasing failure rate in the dataset. It is also worth
noticing that during the mid-life period of the component (t ≈ 25 . . . 175) the trained model by Sarhan &
Apaloo (2013) predicts a lower failure rate than that by Jiang (2013), which further predicts a lower failure
rate than the trained exponential and Weibull distributions (Figure 2(a)).
2.4. Maintenance actions

In this section, we transform the trained failure models into a format that can be used as an input
for selective maintenance optimization. The selective maintenance actions we consider in this work are
1) minimal repair of a failed component, 2) replacement of a failed component and 3) replacement of a
functioning component.

Let us now consider a component j located at stage k in a system of components (see Figure 3 as an
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(c) Improvement in reliability based on the failure model
by Jiang (2013).
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(d) Improvement in reliability based on the failure model
by Sarhan & Apaloo (2013).

Figure 1: Fitting of failure models to Dataset 1 (Aarset, 1987). Subfigures (c) and (d) are contour plots of the reliability
improvement if a functioning component (k, j) is replaced, ∆Ry

k,j (Eq. 13). In the white regions of the plot, the improvement

is negative, which means that the replacement is not sensible.
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(b) Cumulative failure function F (t)
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(c) Improvement in reliability: model by (Jiang, 2013)
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(d) Improvement in reliability: model by (Sarhan &
Apaloo, 2013)

Figure 2: Fitting of failure models to Dataset 2 (Meeker & Escobar, 1998). Subfigures (c) and (d) are contour plots of the
reliability improvement if a functioning component (k, j) is replaced, ∆Ry

k,j (Eq. 13). In the white regions of the plot, the

improvement is negative, which means that the replacement is not sensible.
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example arrangement). The system is functioning if at least one component j at every stage 1 . . . |K| is
functioning, where K is the set of stages. Otherwise, the system is failed. For the sake of simplicity, we
assume in this work that all components of the system have an identical failure behavior. However, this
assumption could easily be relaxed by conduction the data analysis individually for each component. We
indicate the state of the component (k, j) at the start of the maintenance break by the binary parameter
Fk,j , such that if Fk,j = 1 the component is functioning.

Figure 3: An example arrangement of plant stages k. Here, stages k = {1, 2, 3} only have a single component (no redundancy),
and stages k = {4, 5, 6} and k = {7, 8, 9} have two and three parallel components, respectively.

The three above described maintenance actions were first considered by Cassady et al. (2001a), who
modeled the component reliabilities using the Weibull distribution. The authors correctly state that, in an
ideal case where the time (and cost) constraints are not active,

• a failed component should be replaced, if its shape parameter kw > 1,

• a failed component should be minimally repaired, if its shape parameter kw ≤ 1,

• a functioning component should be replaced, if its shape parameter kw > 1, and

• no maintenance action should be assigned to a functioning component, if its shape parameter kw ≤ 1.

In the previous section, we saw that, for both Datasets 1 and 2, the trained shape parameter of the
Weibull distribution kw < 1. This means that the failure rate is predicted to be decreasing, and thus,
ideally, all failed components should be minimally repaired and no maintenance action should be assigned to
functioning components. The failure model would never recommend replacing a component, as it does not
identify the wear-out periods in the datasets. The same always applies the exponential distribution, which
by definition has a constant failure rate. This highlights the importance of identifying the type of failure
behavior in datasets, and accordingly using a relevant failure model.

The choice of maintenance action affects the reliability of the component during the next operation
window. We define these reliabilities using the conditional reliability

R(a+ tw | a) =
R(a+ tw)

R(a)
, (8)

where tw is the length of the next operation window and a is the age of the component at the start of
the maintenance break. The conditional reliability R(a + tw | a) is the probability of a component being
functioning at age a+ tw, taken that it was functioning at age a.

Thus, the resulting reliabilities of the component (k, j) are
R0
k,j = R(ak,j + tw | ak,j)Fk,j

Rx
k,j = R(ak,j + tw | ak,j)

Ry
k,j = R(tw | 0)

(9)

(10)

(11)

where R0
k,j , R

x
k,j , and Ry

k,j correspond to situations where no maintenance action is assigned to the com-
ponent, the component is repaired or the component is replaced, respectively. Throughout the equations

11



of this work, we denote repair and replacement actions by letters ‘x’ and ‘y’, respectively. For the sake of
easier notation later in this work, we define two new parameters{

∆Rx
k,j = Rx

k,j −R0
k,j = R(ak,j + tw | ak,j)

∆Ry
k,j = Ry

k,j −R
0
k,j = R(tw | 0)−R(ak,j + tw | ak,j)Fk,j ,

(12)

(13)

the former of which defines the change in the reliability if the component is repaired and the latter of which
the corresponding change if the component is replaced. In the former equation, the term R0

k,j = 0, as only
a failed component can be repaired (Fk,j = 0).

As reliability is always nonnegative, ∆Rx
k,j ≥ 0 and ∆Ry

k,j ≥ 0 for all failed components. Interestingly,

when the failure rate of a functioning component (k, j) is bathtub-shaped, its ∆Ry
k,j may be either positive

or negative. Figures 1(c) and 1(d) depict the contour plots of ∆Ry
k,j in a space of the component age a

and the length of next operation window tw using the trained failure models by Jiang (2013) and Sarhan
& Apaloo (2013), respectively, on the Dataset 1. Figures 1(c) and 1(d) depict the corresponding plots
on Dataset 2. On both datasets, general appearances of the plots are similar, despite being generated by
different failure models. The clearest visible difference is the different shape of the top left corner of the
isocurves. The corner is sharp when using the failure model by Jiang (2013) and smooth when using that
by Sarhan & Apaloo (2013). The reason is that the former model has finite and the latter infinite support.

Finally, we wish to highlight the region of negative ∆Ry
k,j in the bottom left corner of the plots on

both datasets (indicated by the white color). Replacing a (functioning) component lying in this region is
not sensible because the action would reduce its reliability. This behavior is caused by the infant mortality
period of the component having a bathtub-shaped failure rate. In section 5.1, we will exploit this observation
by preassigning binary variables corresponding to such components to zero, in order to reduce the decision
space of the optimization problem.

3. Mathematical models

In this section, we define two mathematical models for selective maintenance optimization. In the first
(Section 3.1), the maintenance actions are restricted to replacement only, whereas the second (Section 3.2)
includes both replacement and minimal repair. Replacement and repair actions on the component j at
the stage k are modeled as binary variables yk,j and xk,j , respectively. An action (replacement or repair)
is conducted, if the corresponding binary variable equals one. We here define the two models separately
because, later in Section 5, we will convexify both of them, and examine their applicability to large-scale
problems.

3.1. Non-convex replacement model

Let us start with the replacement model, and consider a stage k in the system of |K| parallel stages.
The stage k is functioning if at least one of its |Jk| components is functioning. Therefore, its reliability is

R′k = 1−
∏
j∈Jk

(1−R0
k,j(1− yk,j)−R

y
k,jyk,j), k ∈ K, (14)

where Ry
k,j and R0

k,j are the alternative reliabilities of the component (k, j) during the next operation
window if the component is or is not replaced, respectively. These parameters were defined in Eqs. 11 and
9, respectively. Using Eq. 13, Equation 14 simplifies into

R′k = 1−
∏
j∈Jk

(1−R0
k,j −∆Ry

k,jyk,j), k ∈ K. (15)

As the system consists of |K| stages in series, its reliability is

Rsys =
∏
k∈K

R′k. (16)
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By definition, selective maintenance optimization features constraints that limit the number of mainte-
nance actions that can be performed. In the literature, the two most commonly considered constraints are
time and cost budgets. We define our model here by considering a situation where the replacement of a
component (k, j) incurs the cost cyk,j and requires a working time tyk,j by a maintenance person. The number

of personnel assigned to the maintenance break is an integer variable 6 p. We model the total duration
required to perform the maintenance actions as the variable Tsum, defined as

Tsum =
∑
k∈K

∑
j∈Jk

tyk,jyk,j . (17)

The total duration of the maintenance break is constrained to Tbreak. Thus, in order to finish all maintenance
actions in time, the number of maintenance personnel p needs to satisfy constraint

Tsum ≤ Tbreakp. (18)

The total cost then defined as
ctot =

∑
k∈K

∑
j∈Jk

cyk,jyk,j + cpersonp, (19)

where cperson is the cost of involving one maintenance person in the maintenance break.
For the operators planning the maintenance actions for the system, it is beneficial to know the trade-off

between the conflicting maximum systems reliability Rsys and the minimum total cost ctot. This trade-off
can be determined by solving the bi-objective MINLP optimization problem, defined as

max
y,p

Rsys,−ctot
subject to Eqs. 15 - 19.

(20)

We solve this optimization problem by the ε-constraint method (Haimes et al., 1971), by transforming the
minimization of the total cost into the following iteratively-relaxed constraint

ctot ≤ cbudget,q, (21)

where cbudget,q is the cost upper bound of the budget level q. At each budget level q, we then solve the
MINLP optimization problem

max
y,p

Rsys,q

subject to Eqs. 15 - 19, 21,
(NCR)

which we refer to, later in this work, as the Non-Convex Replacement (NCR) model.

3.2. Non-convex replacement-repair model

In this section, we define the second model, involving both replacement and minimal repair actions.
Using the two actions, the reliability of stage k is defined as

R′k = 1−
∏
j∈Jk

(1−R0
k,j(1− yk,j − xk,j)−R

y
k,jyk,j −R

x
k,jxk,j), k ∈ K, (22)

where R0
k,j , R

x
k,j and Ry

k,j are the alternative reliabilities of the component (k, j), depending on the assigned
maintenance action. These reliabilities were defined in Eqs. 9, 10 and 11, respectively. Again, using the
changes in the reliabilities (in this case, Eqs. 12 and 13), the equation simplifies into

R′k = 1−
∏
j∈Jk

(1−R0
k,j −∆Ry

k,jyk,j −∆Rx
k,jxk,j), k ∈ K. (23)

6This variable can also be used to represent the number of maintenance teams, or any other unit of workforce.

13



During one maintenance break, the component (k, j) can only be either replaced or repaired, and repaired
only if it is failed at the start of the maintenance break. Accordingly, we here use the following constraints,
defined by Cassady et al. (2001a):

{
yk,j + xk,j ≤ 1, k ∈ K, j ∈ Jk
Fk,j + xk,j ≤ 1, k ∈ K, j ∈ Jk.

(24)

(25)

In order to define the corresponding cost model, we define two new parameters cxk,j and txk,j , which are
the cost and duration of repairing the component (k, j), respectively. The total duration of performing all
maintenance actions is then

Tsum =
∑
k∈K

∑
j∈Jk

tyk,jyk,j +
∑
k∈K

∑
j∈Jk

txk,jxk,j , (26)

and the total cost
ctot =

∑
k∈K

∑
j∈Jk

cyk,jyk,j +
∑
k∈K

∑
j∈Jk

cxk,jxk,j + cpersonp. (27)

As a summary, at every budget level q of the ε-constraint method, we solve the following MINLP optimization
problem:

max
x,y,p

Rsys,q

subject to Eqs. 16, 18, 21, 23 - 27,
(NCRR)

which we refer to as the Non-Convex Replacement-Repair (NCRR) model.

4. Illustrative examples

Before considering any large-scale problems, let us here define and examine an illustrative small-scale
example problem. We solve the problem in Section 4.1 using the non-convex replacement and replacement-
repair models, defined in Sections 3.1 and 3.2, respectively, and highlight the differences in between the
obtained results (Section 4.2). Finally, in Section 4.3, we demonstrate, using the latter model, the differences
in the final Pareto optimal solutions when the reliability parameters are based on the same failure data but
determined using the two different bathtub-shaped failure models.

4.1. Optimization problem

We define our example system to comprise five different types of components, the cost and replace-
ment/repair durations of which are presented in Table 5. Component types I and II represent those that
are relatively cheap to replace/repair but are located in inconvenient locations, i.e. accessing them requires
unbuilding other components of the system. Component types III to V represent those that are the opposite.

Table 5: Component catalog (items I - V).

Component type I II III IV V
cost of replacement cy [kEUR] 1 3 5 7 8
cost of repair cx [kEUR] 0.5 0.3 1.4 1 2
duration of replacement ty [h] 30 10 5 7 8
duration of repair tx [h] 20 5 2 5 3

The example system has the component arrangement shown in Figure 3 consisting of three single, three
double and three triple stages of components in series, i.e. |J1| . . . |J3| = 1, |J4| . . . |J6| = 2, |J7| . . . |J9| = 3.
Table 6 lists the component types lying at each location in the arrangement, which we generated by drawing
them randomly from the component catalog (Table 5).
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Table 6: Component types of the system.

stage k
component type 1 2 3 4 5 6 7 8 9
unit j 1 I IV IV V IV II I I I

2 I III V III I IV
3 I V II

We assume that all components have a failure behavior equivalent to that yielding the Dataset 1, and
use the trained model by Sarhan & Apaloo (2013) to predict the reliability parameters R0

k,j , R
x
k,j and Ry

k,j .
Dataset 1 does not have units in its original reference (Aarset, 1987). In order to place our illustrative
example into a reasonable time-scale, we assume that the lifetimes of Dataset 1 are months. Further, we
define the length of the next operation window to be tw = 10 months, the length of the maintenance break to
be Tbreak = 50 h, and the cost of hiring a maintenance person to be cperson = 4 kEUR. The age distribution
of the components is drawn randomly from the range of {10, 20, . . . , 70} months. In addition, four out
of 18 components in the system are failed at the start of the maintenance break. Table 7 shows the age
distribution, as well as the failed components, in the system.

Table 7: Ages of the components at the start of the maintenance break. Failed components (Fk,j = 0) are indicated by crosses.

stage k
age ak,j [month] 1 2 3 4 5 6 7 8 9
unit j 1 20 50 70 70 10 10 70 60 20

2 70 30 40 40 40 10
3 40 70 40

4.2. Results from the replacement and replacement-repair models

We generate the Pareto front of solutions to the illustrative example by starting from the total budget
cbudget,1 = 0 kEUR, and iteratively increasing it by 0.5 kEUR until cbudget,110 = 54.5 kEUR. At each
budget level, we solve Models NCR and NCRR by the global MINLP solver BARON 18.5.8 (Tawarmalani &
Sahinidis, 2005), using the relative optimality criterion of 10−6. Table 8 summarizes the size of the MINLP
optimization problem when solving it by the two models.

Table 8: The number of variables and constraints in Models NCR and NCRR for the optimization problem defined in Section
4.1, and the average CPU time when solving the models by BARON.

model variables constraints average CPU time [s]
binary integer scalar

NCR 18 1 12 14 0.01
NCRR 36 1 12 50 0.01

Figure 4 presents the solutions obtained by iteratively solving Models NCR and NCRR, as well as illus-
trations of representative solutions (duplicate and dominated solutions are filtered). Both sets of solutions
are Pareto optimal to their own optimization problems. However, if we examine them all as solutions to
Model NCRR, only two solutions obtained by solving Model NCR are Pareto optimal (representative solu-
tions (1) and (5)). The gap between the two frontiers demonstrates the general improvement in the solutions
when including the repair action in the model. In the literature, Liu & Huang (2010) obtained a similar
result when comparing models with and without imperfect maintenance actions.

Representative solution (1) is the trivial solution where no maintenance actions are performed. Represen-
tative solutions (2) and (4) are those with the lowest total cost ctot while still yielding a functioning system
(Rsys > 0) after the maintenance break, obtained by Models NCRR and NCR, respectively. The obvious
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Figure 4: Pareto fronts obtained from the non-convex replacement (NCR) and replacement-repair (NCRR) models. The plot
visualizes also representative solutions (1)-(7) from the Pareto front, showing their the maintenance actions, the resulting
component age distribution (after the maintenance operations) and the number of maintenance personnel involved, p.

difference is that in the former the failed component (3, 1) repaired, whereas in the latter it is replaced.
On the other hand, representative solutions (6) and (7) are those with the highest system reliability Rsys.
It is worth noticing that in these solutions none of the functioning components younger than 50 months is
replaced. The reason for this is that, for all of these components, the parameter ∆Ry

k,j < 0 (see Figure 1).
As a reference, we also generate results by a slightly modified version of the heuristic search algorithm

by Lust et al. (2009), which we have implemented in Python. In this case, all solutions the algorithm yields
for Models NCR and NCRR are Pareto optimal. However, because of its additive way of constructing the
solutions, the algorithm cannot find all solutions lying at the Pareto fronts.

4.3. Decision-making based on different failure models

In the previous section, we used reliability parameters predicted by the trained failure model by Sarhan &
Apaloo (2013). The purpose of this section is to examine how different the decision-making of maintenance
actions is if the reliability parameters are instead predicted by the other bathtub-shaped failure model, i.e.
the one by Jiang (2013).

Figure 5(a) shows the comparison of results obtained by solving the illustrative example, defined in
Section 4.1, by Model NCRR using the reliability parameter predictions from the two different failure
models. Starting from the bottom left corner of both Pareto fronts, the first 12 solutions are the same.
Representative solution (2) shows the maintenance actions and the resulting component age distribution
of the 12th solution. Pairwise, the solutions have the same total cost ctot, but different system reliability
Rsys. Representative solution (2) has the system reliability of Rsys = 0.5134, if determined by the reliability
parameters from the failure model by Sarhan & Apaloo (2013), and Rsys = 0.3617, in the case of those from
the failure model by Jiang (2013). The reason for the difference is that the trained model by Jiang (2013)
predicts a higher failure rate during the mid-life period (t ≈ 10 . . . 65) of the components than the model by
Sarhan & Apaloo (2013), see Figure 1(a). Representative solutions (3) and (4) are different (see the actions
assigned for components (7,1) (8,1)).
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The solutions at the top right end of the Pareto fronts (representative solutions (5) and (6)) maximize
the system reliability Rsys for the next operation window. The solutions are otherwise the same, but in (5)
the component (2,1) is not replaced, whereas in (6) it is replaced. The reason for this difference is that the
parameter ∆Ry

2,1 is negative when determined by the failure model by Sarhan & Apaloo (2013), and positive
when determined by that by Jiang (2013) (see the point (a = 50, tw = 10) in Figures 1(c) and 1(d)).

In order to further examine the differences in the decision-making, we defined another illustrative example
problem, which is the same as the one in Section 4.1, but with the following changes. First, the components
are assumed to have a failure behavior equivalent to that yielding the Dataset 2. Second, we create a new
randomized instance of the component type arrangement (Table 9). Third, the length of the next operation
window is changed to tw = 60 months, and we draw the component ages (randomly) from the range of [60,
120, . . . , 300] months. Table 10 shows the randomized age distribution and failed components.

Table 9: Component arrangement of the system (the second instance).

stage
component type 1 2 3 4 5 6 7 8 9
unit 1 III II V I I I I IV II

2 III I V IV I IV
3 II V IV

Table 10: Ages of the components at the start of the maintenance break (the second instance). Failed components (Fk,j = 0)
are indicated by crosses.

stage
age a [month] 1 2 3 4 5 6 7 8 9
unit 1 120 300 60 180 240 240 120 60 300

2 60 240 240 60 240 60
3 240 240 240

Figure 5(b) shows the obtained Pareto fronts with the two different failure models. Unlike the previously
studied system instance, this instance is functioning at the start of the maintenance break. If no maintenance
is performed during the break (representative solution (1)), the system has predicted reliabilities of Rsys =
0.1682 (Jiang, 2013) and Rsys = 0.0370 (Sarhan & Apaloo, 2013). The reason for the difference is that
the system has many relatively old components, for which the failure model by Sarhan & Apaloo (2013)
predicts significantly higher failure rates than the model by Jiang (2013), see Figure 2(a). On the other
hand, for the representative solution (3), laying at the other extremes of the Pareto fronts, the predicted
system reliabilities are in the opposite order: Rsys = 0.4567 (Sarhan & Apaloo, 2013) and Rsys = 0.4058
(Jiang, 2013). In this case, the system has relatively young components, which then mostly operate in their
mid-life period (t ≈ 25 . . . 175) during the next operation window. In Section 2.3, we pointed out that the
failure model by Sarhan & Apaloo (2013) predicts a lower failure rate than the model by Jiang (2013) for
components in their mid-life period, which explains the difference in the system reliabilities. Solutions on
the Pareto fronts between representative solutions (2) and (3) are pairwise the same.

As a summary, we here made a comparison between the two representative bathtub-shaped failure models,
which both compare well against other models in the literature. We observe that, if these models are used
to predict reliability parameters based on the same lifetime dataset, significantly different system reliability
predictions are obtained, and the decisions of the maintenance actions are also partially different. This
highlights the importance of carefully choosing a relevant failure model, and tuning its model parameters,
for a given lifetime dataset.
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(a) Dataset 1

(b) Dataset 2

Figure 5: Comparison of the obtained results in the illustrative example when using the reliability parameters from the failure
models by Jiang (2013) and Sarhan & Apaloo (2013). The results are generated by solving the non-convex replacement-repair
(NCRR) model. As the failure models yield different reliability parameters the results are Pareto fronts of different optimization
problems.
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5. Large-scale selective maintenance optimization

As already mentioned in the introduction, the number of individual replaceable/repairable components in
a real industrial system (e.g. a chemical production plant, power plant or ship) is in the order of hundreds,
or even thousands – far beyond the size of the illustrative example. Earlier, in Section 1, we listed the
largest selective maintenance optimization problems reported, and optimally solved, in the literature. In
this section, we investigate two improvements to the MINLP model formulations, in order to reduce the
computational cost of such large-scale problems while still guaranteeing the global optimality.

5.1. Variable preassignment
In Section 2.4, we derived parameters ∆Ry

k,j and ∆Rx
k,j , indicating the changes in the reliability of the

component (k, j) if being replaced or repaired, respectively. We observed that, if the failure model has
a bathtub-shaped failure rate, the parameter ∆Ry

k,j (Eq. 13) is negative in a certain region in the space
of component age a and next operation window tw, see Figures 1(c), 1(d), 2(c) and 2(d). This means
that replacing such (functioning) component is not sensible because it would undesirably reduce the system
reliability. Such actions, although being possible, were correctly not included in any of the Pareto optimal
solutions of the illustrative example (Section 4.1).

Thus, as the first improvement, we define preassignments that preclude replacements, a priori known to
reduce the system reliability, from the decision space:

yk,j = 0, ∀k, j ∈ {(k, j)|∆Ry
k,j ≤ 0}. (28)

In general, reducing the size of the decision space is likely to reduce the computational effort of solving the
optimization problem.

5.2. Convexification of the replacement model
Solving Models NCR and NCRR with optimality guarantees requires a global optimization method7,

because of the non-convex algebraic equations (Eqs. 15 and 23) defining the system reliability. Convexifi-
cation of these equations would enable the models to be solved with a non-global MINLP method, such as
the Generalized Benders Decomposition (Geoffrion, 1972), the Outer-approximation (Duran & Grossmann,
1986), or the Extended Cutting Plane (Westerlund & Pettersson, 1995) method. These methods are, in gen-
eral, computationally less intensive than global optimization methods (Kronqvist et al., 2019). Therefore,
we convexify, in this section and Section 5.4, both Models NCR and NCRR, respectively. This is the latter
of our two investigated improvements.

Let us start with the non-convex replacement (NCR) model. The objective function Rsys, defined in
Eq. 16, is the product of the stage reliabilities R′k, k ∈ K. As each of these reliabilities include multi-linear
terms (Eq. 15), the objective function is nonlinear and non-convex. Ye et al. (2018) proposed a linearization
of a constraint nearly equal to Eq. 15, which enables the convexification of the objective function. They
conduct the linearization by first expanding the products of linear terms in Eq. 15 into summations of multi-
linear terms, and then linearizing the resulting multi-linear terms. However, in their model, the constraint
equivalent to Eq. 15 does not include term −R0

k,j . In the following, we describe the convexification proposed
by Ye et al. (2018) and highlight the difference caused by the additional term.

Let us first expand the product of linear terms in Eq. 15 into the summation of multi-linear terms. In
order to enable the expansion, we denote the power set of Jk by Sk = {S|S ⊆ Jk}. As an example, if stage
k = 1 consists of three parallel units, the power set S1 = {∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}.
Further, we denote the mth set of Sk (i.e. the mth subset of Jk) by Sk,m. Using the newly defined sets, Eq.
15 can be expanded into

R′k = 1−
∏
j∈Jk

(1−R0
k,j −∆Ry

k,jyk,j)

= 1−
∑

Sk,m∈Sk

( ∏
j∈Sk,m

(−∆Ry
k,jyk,j)

∏
j∈Jk\Sk,m

(1−R0
k,j)
)
, k ∈ K.

(29)

7In the illustrative example, we used the global MINLP solver BARON.
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In the model by Ye et al. (2018), the term −Rk,j is absent, and therefore the last product becomes unity,
which simplifies the equation. As the additional term is present in our case, this simplification cannot be
performed.

The above mentioned power set Sk of Jk can be systematically generated for any finite number of parallel
units by the equation

ωj,k,m =

⌊
mod(m− 1, 2j)

2j−1

⌋
, k ∈ K, (30)

where the binary parameter ωj,k,m defines whether unit j at stage k belongs to the mth set of Sk.
Next, we describe the linearization of Eq. 29. First, we introduce a new binary variable zk,m, defined as

zk,m =
∏

j∈Sk,m

yk,j , k ∈ K,Sk,m ∈ Sk. (31)

The following logic propositions hold for zk,m (Glover & Woolsey, 1974)

zk,m ⇔ (
∧

j∈Sk,m

yk,j), k ∈ K,Sk,m ∈ Sk, Sk,m 6= ∅

zk,m = 1, k ∈ K,Sk,m = ∅.
(32)

Raman & Grossmann (1991) reformulated these conditions into the following two linear inequalities

zk,m ≤ yk,j , k ∈ K, j ∈ Sk,m, Sk,m ∈ Sk, Sk,m 6= ∅ (33)

zk,m ≥
∑

j∈Sk,m

yk,j − |Sk,m|+ 1, k ∈ K,Sk,m ∈ Sk. (34)

Using Eq. 31, the linearized form of Eq. 29 becomes

R′k = 1−
∑

Sk,m∈Sk

( ∏
j∈Sk,m

(−∆Ry
k,jyk,j)

∏
j∈Jk\Sk,m

(1−R0
k,j)
)

= 1−
∑

Sk,m∈Sk

( ∏
j∈Sk,m

yk,j
∏

j∈Sk,m

−∆Ry
k,j

∏
j∈Jk\Sk,m

(1−R0
k,j)
)

= 1−
∑

Sk,m∈Sk

(
zk,m

∏
j∈Sk,m

−∆Ry
k,j

∏
j∈Jk\Sk,m

(1−R0
k,j)
)
, k ∈ K.

(35)

Finally, the original objective function (Eq. 16) can be replaced by its logarithm:

R̃sys = lnRsys = ln

( ∏
k∈K

R′k

)
=
∑
k∈K

lnR′k. (36)

As logarithmic functions are always monotonic, maximizing R̃sys is equivalent to maximizing Rsys. Each
term in the above summation (Eq. 35) is concave, and thus the new objective function is also concave.
Maximizing a concave function is equivalent to minimizing a convex function.

The nonlinear equality constraint in Eq. 36 still has a non-convex feasible region. Nevertheless, as the
left hand side of the constraint, R̃sys, is our objective function (of the maximization type), we can relax the
constraint to be an inequality constraint (less than or equal to)

R̃sys ≤
∑
k∈K

lnR′k. (37)
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As each term lnR′k, k ∈ K is concave, the inequality constraint has a convex feasible region. Thus, the
Convex Replacement (CR) model, which is a convex MINLP, is

max
y,p

R̃sys,q

subject to Eqs. 17 - 19, 21, 33 - 35, 37.
(CR)

In Eq. 37, terms lnR′k, k ∈ K approach infinity when R′k → 0. In order to avoid numerical problems,
we define a lower bound of 10−8 for variables R′k, k ∈ K when implementing Model CR (this also applies
later to models CRR and CRR2).

5.3. Results: replacement models

Let us now investigate the efficiency, as well as the goodness of the obtained solutions, when solving
Models NCR and CR by global and non-global solvers on large-scale problems. Moreover, we study whether
the inclusion of the preassignment (Eq. 28) improves the efficiency.

We study ten large-scale selective maintenance optimization problems, having n = {100, 200, . . . , 1000}
components. In order to facilitate an easy generation of similar problems with a varying number of compo-
nents, we define a basic arrangement of 100 components (Figure 6), in which |J1|, |J2| = 1, |J3| . . . |J8| = 2,
|J9| . . . |J18| = 3, and |J19| . . . |J32| = 4. This is the arrangement of the optimization problem with 100
components. We generate the component arrangements of the problems with n ≥ 200 by aligning multiple
basic arrangements in series. As an example, the optimization problem with 300 components consists of
three of these basic arrangements and has, therefore, six stages with a single component, 18 stages with two
parallel components, and so on.

Figure 6: A basic arrangement of 100 components, used to define large-scale selective maintenance optimization problems.
The arrangements consisting of 200 to 1000 components are generated by aligning two to ten, respectively, of these basic
arrangements in series.

We again draw component types to the arrangements randomly from a component catalog, which we
have here extended to consist of ten types (those listed in both Tables 6 and 11). We assume that the
components have a failure behavior equivalent to that of Dataset 2, and use the failure model by Sarhan
& Apaloo (2013) to generate the reliability parameters. Here, the cost of involving a maintenance person
cperson = 4 kEUR, the duration of the maintenance break Tbreak = 100 h, and the planned next operation
window tw = 30 months. We draw component ages randomly from the range of {30, 60, . . . , 330} months,
and choose randomly 20% of the components to be failed prior to the maintenance break.

Table 11: Component catalog (items VI - X).

Component type VI VII VIII IX X
cost of replacement cy [kEUR] 2 5.5 7.5 10 12
cost of replacement cx [kEUR] 1.5 2 1 6 4
duration of replacement ty [h] 5 7 11 8 12
duration of repair tx [h] 9 2 5 15 6

When using the MINLP models, we approximate the Pareto front by solving optimization problems
corresponding to 100 budget levels of the ε-constraint methods, such that cbudget,100 is 2% more than that
of the solution where all sensible replacements (for which ∆Ry

k,j > 0) are conducted.
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We solve Model NCR using both the global solver BARON 18.5.8 (with the relative optimality criterion
of 10−6) and the non-global solver DICOPT 28 (Bernal et al., 2019). It is to be noticed that the latter may
not yield the global optimum for Model NCR. We solve Model CR using DICOPT 2. For brevity, we refer to
DICOPT 2 simply as DICOPT in the remainder of this paper. As the model is convex, also the non-global
solver is guaranteed to find the global optimum. The MINLP models are implemented in GAMS 25.1.3
software. For each budget level of the ε-constraint method, we define an upper computational time limit
of 3600 seconds. Moreover, we generate reference results by the slightly modified version of the heuristic
search algorithm by Lust et al. (2009). All results are generated on Intel(R) Core(TM) i5-7300U processor.

When using DICOPT, we use CONOPT 3.17I (Drud, 1994) as the nonlinear programming solver. As
the corresponding mixed integer programming (MIP) solver, we tested both CPLEX 12.8.0.0 (IBM, 2018)
and GUROBI 8.1.0 (Gurobi Optimization, LLC, 2019). Without the preassignment, CPLEX was more
efficient than GUROBI on all ten optimization problem instances, and, with preassignment, on eight out
of ten optimization problem instances. A detailed comparison of the computational times is presented in
Appendix A. The differences in the optimized system reliability Rsys (when using the different MIP solvers)
were insignificant, within 0.0134%. Therefore, we here report the results generated with CPLEX as the MIP
solver, and use the same MIP solver later in Section 5.5.

Regarding the results, we monitor the relative differences in the optimized system reliability Rsys and
the required computational time. These results are listed in Tables 12 and 13, respectively. Further,
Figure 7 shows a graphical representation of the computational times. Experiments with each component
arrangement size involve solving optimization problems with a number of budget levels, i.e. 100 when solving
Model NCR or CR by DICOPT or BARON and a problem-specific number when using the heuristic search
by Lust et al. (2009). Therefore, in order to enable a fair comparison, we report the average values of the
relative differences in the optimized system reliability and computational times across the budget levels.

Table 12: The average relative difference (%) in the optimized system reliability Rsys. The reference results are those obtained
by solving Model CR with DICOPT with the preassignment.

NCR / NCR / CR / CR / NCR / NCR / heuristic
n BARON BARON / DICOPT DICOPT / DICOPT / DICOPT / search

preassign. preassign. preassign. (Lust et al., 2009)
100 0.0000 0.0000 0.0000 0.0000 -13.9622 -13.8441 -0.5772
200 -0.0000 -0.0006 0.0000 0.0000 -18.5247 -0.4511 -0.6166
300 0.0504 0.0505 0.0000 0.0000 -47.7391 -1.0091 -1.0515
400 0.0038 0.0034 0.0000 0.0000 -90.5637 -1.5098 -0.9297
500 0.0230 0.0262 0.0134 0.0000 -97.6209 -1.7322 -1.3383
600 0.0156 0.0123 -0.0071 0.0000 -97.7227 -10.2149 -1.3073
700 -0.0204 0.0082 -0.0000 0.0000 -99.9996 -67.7728 -1.4197
800 -0.1512 0.0003 -0.0010 0.0000 -99.9861 -9.9553 -1.3513
900 - - 0.0001 0.0000 -100.0000 -100.0000 -1.1251
1000 - - 0.0000 0.0000 -100.0000 -98.8919 -1.1022

The relative differences in the system reliability are reported with respect to those obtained by solving
Model CR by DICOPT with preassignment. When the system reliability Rsys is close to zero, even a
very small absolute difference in the obtained results would cause a major relative difference, misleading
the interpretation of the results. Therefore, we have filtered the lower end of the Pareto fronts where the
reference system reliability Rsys < 0.001. Consequently, results of at most 10 out of 100 budget levels were
filtered, which occurred on the system arrangement of n = 1000 components.

The system reliabilities obtained by solving Model NCR by BARON and Model CR by DICOPT, with
or without preassignment, were on average within 0.1512% from each other (Table 12). This value occurs
when comparing the results of solving Model NCR by BARON without the preassignment and the reference

8In this work, unless otherwise stated, we use DICOPT 2 with solver parameters: stop 1, infeasder 1.
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Table 13: The average computational times (s) to generate one of the solutions approximating the Pareto front. The results
are listed for optimization problems with varying number of components, n.

NCR / NCR / CR / CR / NCR / NCR / heuristic
n BARON BARON / DICOPT DICOPT / DICOPT / DICOPT / search

preassign. preassign. preassign. (Lust et al., 2009)
100 0.35 0.27 0.35 0.11 0.04 0.04 0.01
200 0.80 0.65 1.51 0.41 0.08 0.06 0.05
300 1.49 1.03 1.51 0.40 0.08 0.09 0.09
400 40.46 3.94 3.76 0.38 0.07 0.09 0.16
500 20.13 6.21 6.51 0.74 0.08 0.09 0.27
600 121.16 92.54 10.36 0.81 0.05 0.11 0.41
700 360.53 60.68 13.82 1.14 0.04 0.11 0.52
800 1081.33 709.32 17.76 1.87 0.04 0.12 0.71
900 - - 25.39 1.74 0.04 0.04 0.88
1000 - - 124.69 3.06 0.04 0.04 1.09

method on the problem involving 800 components (the worse results are obtained by the former approach).
On this problem instance, the former approach is terminated prematurely on 17 out of 100 optimization
runs, due to the computational timeout of 3600 s, which explains the sub-optimality of the results. The
remaining results are on average within 0.0505% from each other.

The system reliabilities obtained by the heuristic search were, on average, 1.082% lower than the reference
results. When solving NCR by DICOPT with or without preassignment, the algorithm has a tendency to
converge to solutions where no replacements are conducted, which results in significantly lower system
reliabilities. Consequently, the obtained reliabilities are, on average, 0.4511 to 100% lower that the reference
results.

Both when solving Model NCR by BARON or Model CR by DICOPT, the inclusion of the preassignment,
in general, reduces the required computational time. The reduction is more significant in the case of the
latter, for which the difference is at least an order of magnitude for problems with more than 600 components.
With preassignment, solving Model CR by DICOPT requires on average less computational time than solving
Model NCR by BARON in all of the 10 studied component arrangements. On problems with 400 components
or more, the difference is an order of magnitude or more, whereas, on smaller problems, it is around a factor
of two. Without preassignment, solving Model CR by DICOPT requires on average less computational time
than solving Model NCR by BARON for problems involving 400 or more components. For problems with
less than 400 components, the computational times are similar.

At 800 components, the average computational time of solving a single budget level of Model NCR by
BARON with or without preassignment is around 1000 s, which means that approximating the Pareto front
by 100 budget levels requires around 27.8 h. Therefore, as the computational time presumably increases
further, we have not solved Model NCR by BARON for problems involving more than 800 components.

The heuristic search algorithm by Lust et al. (2009) and solving Model NCR by DICOPT require less
computational time than the above discussed approaches. However, these approaches do not necessarily
yield the global optimum (Table 12). Moreover, solving Model NCR by DICOPT fails to find a solution
other than the trivial solution (involving no maintenance actions) on many problem instances.

5.4. Convexification of the replacement-repair model

In Section 5.2, we convexified Model NCR by reformulating the multi-linear terms in Eq. 15. In
this section, we reformulate Model NCRR by following the same principle. First, we revisit the original
formulation of Eq. 23, defined as

R′k = 1−
∏
j∈Jk

(1−R0
k,j −∆Ry

k,jyk,j −∆Rx
k,jxk,j), ∀k ∈ K
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Figure 7: Average computational times to generate one solution lying at the (approximated) Pareto front. NCR and CR
are abbreviations of the Non-Convex and Convex Replacement models. The dashed lines are added to the plot for better
visualization. They do not represent values in between the points.

In order to get rid of the multilinearity from the production, we define Ik as the index set of all possible
partitions of Jk into the three subsets of repair (Sx

k,i), replacement (Sy
k,i), and no action (Jk \ (Sx

k,i ∪S
y
k,i)):

Ik = {i|Sxk,i ⊆ Jk, S
y
k,i ⊆ Jk, S

x
k,i ∩ S

y
k,i = ∅}, ∀k ∈ K (38)

Resembling the linearizing efforts for the replacement-only case, the partitions can be ordered with respect
to ternary numbers. Table 14 shows the labeling for a stage with two units, where the indicator αj,k,i in
row j and column i being equal to 0 means that unit j belongs to the no-action subset in partition i, while
1 means repair, and 2 means replacement. For example, the two values in column i = 6 are 1 and 2, which
put together to form 12, the ternary form of 5=6-1. The general formula for αj,k,i is

αj,k,i =

⌊
mod (i− 1, 3|Jk|−j+1)

3|Jk|−j

⌋
∀j ∈ Jk, k ∈ K, i ∈ Ik. (39)

Table 14: An example enumeration of set partitions.

i ∈ Ik
αj,k,i 1 2 3 4 5 6 7 8 9

j ∈ Jk 1 0 0 0 1 1 1 2 2 2
2 0 1 2 0 1 2 0 1 2

Based on Eq. 38, the original formulation (Eq. 23) can be unfolded as

R′k = 1−
∑
i∈Ik

∏
j∈Jk\(Sx

k,i∪S
y
k,i)

(1−R0
k,j)

∏
j∈Sy

k,i

(−∆Ry
k,jyk,j)

∏
j∈Sx

k,i

(−∆Rx
k,jxk,j), ∀k ∈ K. (40)

Now, we introduce new binary variables wk,i and let

wk,i =
∏
j∈Sx

k,i

xk,j
∏
j∈Sy

k,i

yk,j , ∀i ∈ Ik, k ∈ K, (41)
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with which the formulation in Eq. 40 can be written as

R′k = 1−
∑
i∈Ik

wk,i[
∏

j∈Jk\(Sx
k,i∪S

y
k,i)

(1−R0
k,j)

∏
j∈Sy

k,i

(−∆Ry
k,j)

∏
j∈Sx

k,i

(−∆Rx
k,j)], ∀k ∈ K. (42)

The multilinear term in Eq. 41 can be transformed into the following linear inequalities:

wk,i ≤ xk,j , ∀i ∈ Ik, j ∈ Sx
k,i, k ∈ K (43)

wk,i ≤ yk,j , ∀i ∈ Ik, j ∈ Sy
k,i, k ∈ K (44)

wk,i ≥
∑
j∈Sx

k,i

xk,j +
∑
j∈Sy

k,i

yk,j − |Sx
k,i| − |S

y
k,i|+ 1, ∀i ∈ Ik, k ∈ K. (45)

Note that if Sx
k,i and/or Sy

k,i are empty sets, Eqs. 43 and/or 44 are redundant. For example, for i ∈ Ik such

that Sx
k,i = ∅ and Sy

k,i = ∅, wk,i ≡ 1 .
With that, we present the Convex Replacement-Repair model (CRR) as follows:

max
x,y,p

R̃sys,q

subject to Eqs. 18, 21, 24 - 27, 37, 42 - 45.
(CRR)

Another way to express Eq. 41 as linear inequalities involving the new binary variables wk,i and the
original ones xk,j and yk,j is shown in Appendix B. We refer to this model as the alternative Convex
Replacement-Repair model (CRR2). The alternative model involves more binary variables, but has fewer
inequalities for the cases where |Jk| ≥ 3, and is tighter than the model presented in this section. However,
based on our results, which we will presented in the next section, the average computational times of the
two models seem similar. Due to this reason, and for the sake of readability, we have moved the description
of the alternative model to the attachmentsupplementary material.

5.5. Results: replacement-repair models

In this section, we return to the selective maintenance optimization problems, presented in Section 5.3,
and solve them using replacement-repair models. We use both the non-convex Model NCRR and convexified
Models CRR and CRR2, and, as a reference, the heuristic search by Lust et al. (2009). Again, we solve
the non-convex model by both BARON and DICOPT, and convex models by DICOPT. All results are
generated with and without the preassignment (Eq. 28). In Section 5.3, we studied ten optimization
problem instances. As the computational cost of replacement-repair models is, in general, higher than that
of replacement models, we report results only for the first seven optimization problem instances, involving
100 to 700 components.

Table 15 lists the average relative differences in the optimized system reliability Rsys in the obtained
results, in which the reference results are those obtained by solving Model NCRR by DICOPT with preassign-
ment. The average relative differences obtained by solving Model NCRR by BARON with the preassignment
and Models CRR and CRR2 by DICOPT with the preassignment are within 0.0413%. Solving Models CRR
and CRR2 by DICOPT without preassignment is computationally expensive, and we were therefore only
able to generate results for problem instances involving up to 400 components. However, for this problem
size, the results were already on average 33.33 and 28.28%, respectively, worse than the reference results,
due to multiple premature terminations caused by reaching the computational time limit.

The results obtained by solving Model NCRR by BARON without the preassignment were, on average,
up to 0.6225% worse than the reference results. This occurred on the problem instance involving 700
components. In this case, eight out of 100 optimization runs were terminated due to the computational
time limit of 3600 s, which seems to be the main reason causing sub-optimality in the results. Regarding
the non-global optimization methods, the heuristic search and solving Model NCRR by DICOPT with the
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preassignment yield results that are on average 2.28 and 2.21%, respectively, worse than the corresponding
reference results. Solving the non-convex Model NCRR by DICOPT with the preassignment yields more
robust results than solving non-convex Model NCR with the same approach (Section 5.3). However, without
the preassigment, the optimization runs again often converge to the trivial solution, involving no maintenance
actions.

Table 15: The average relative difference (%) in the optimized system reliability Rsys. The reference results are those obtained
by solving Model CRR with DICOPT with the preassignment.

NCRR / NCRR / CRR / CRR / CRR2 / CRR2 / NCRR / NCRR / heuristic
number of BARON BARON / DICOPT DICOPT / DICOPT / DICOPT / DICOPT / DICOPT / search

components n preassign. preassign. preassign. preassign. (Lust et al., 2009)
100 -0.0103 0.0000 0.0000 0.0000 0.0000 0.0000 -5.1079 -3.1702 -1.3722
200 -0.0344 -0.0001 0.0000 0.0000 0.0000 0.0000 -24.4838 -0.0601 -0.5163
300 -0.1343 0.0413 -0.0000 0.0000 -0.0000 0.0000 -70.1091 -0.0467 -1.2762
400 -0.1201 0.0051 -33.3319 0.0000 -28.2843 0.0000 -73.6336 -0.0193 -1.2242
500 -0.1314 0.0003 - 0.0000 - -0.0035 -96.7744 -2.2350 -7.1207
600 -0.1471 0.0323 - 0.0000 - 0.0000 -97.5206 -3.1210 -2.4324
700 -0.6225 -0.0104 - 0.0000 - 0.0000 -99.8366 -7.2751 -1.5015

Table 16 shows the average computational times of tested approaches on the seven optimization problem
instances (see Fig. 8 for a graphical visualization of these results). As we already indicated in Section
5.4, the computational times of solving CRR and CRR2 by DICOPT with or without the preassignment
are similar. In both cases, the inclusion of the preassignment reduces the average computational time by
around an order of magnitude. When solving Model NCRR by BARON, the inclusion of the preassignment,
in general, slightly enhances the efficiency; however, the opposite result is obtained on problem instances
having 300 and 700 components.

Table 16: The average computational times (s) to generate one of the solutions (approximating) the Pareto front.
NCRR / NCRR / CRR1 / CRR1 / CRR2 / CRR2 / NCRR / NCRR / heuristic

number of BARON BARON / DICOPT DICOPT / DICOPT / DICOPT / DICOPT / DICOPT / search
components n preassign. preassign. preassign. preassign. (Lust et al., 2009)

100 0.49 0.48 4.33 0.43 4.04 0.49 0.04 0.06 0.06
200 1.24 1.09 170.15 11.78 79.81 10.07 0.09 0.09 0.16
300 3.06 2.48 78.40 3.73 42.85 4.96 0.10 0.14 0.35
400 23.06 50.15 993.72 6.79 1105.24 8.08 0.11 0.15 0.63
500 32.70 13.25 - 132.66 - 116.65 0.12 0.18 0.89
600 259.19 120.63 - 20.64 - 26.31 0.16 0.21 1.33
700 651.98 711.82 - 65.51 - 72.32 0.15 0.22 1.75

Opposite to the replacement models (Section 5.5), here the convexification does not improve the efficiency
in the studied problem size range. With the preassignment, the solution times of solving the convex Models
CRR and CRR2 by DICOPT are similar to solving the non-convex Model NCRR by BARON. Without
the preassignment, the former approaches have worse efficiency than the latter. Regarding the non-global
approaches, solving Model NCRR by DICOPT with the preassignment9 requires less computational time
than the heuristic search.

Finally, let us examine the results of a representative problem instance, containing 300 components.
Figure 7 visualizes the obtained discretized Pareto fronts using both Models CR and CRR, as well as
representative solutions on the Pareto fronts. Despite the larger scale, similar features are also visible here
as earlier in the results of the illustrative example (Figure 4). First, as Model CRR includes both the
replacement and repair actions, its Pareto optimal solutions dominate those of Model CR, where only the
replacement action is included. Second, in representative solution (5), all failed components and functioning
components, for which ∆Ry > 0, are replaced. Third, representative solution (4) is otherwise the same as
representative solution (5), but all failed components, for which ∆Ry < 0, are repaired, instead of being
replaced.

9Comparing the same approach without the preassignment is irrelevant because the approach is not robust (see Table 15).
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Figure 8: Average computational times to generate one solution lying at the (approximated) Pareto front. NCRR is abbreviation
of the Non-Convex Replacement-Repair models, and CRR and CRR2 for the first and second Convex Replacement models.

5.6. Additional remarks

Warm start. When generating the Pareto front using the ε-constraint method, the final solution of
budget level q is a feasible and presumably good initial solution for the optimization run at budget level
q + 1. Let us refer to this initialization strategy as the warm start. In integer programming, a good initial
solution has the potential to improve the solution efficiency, as regions with less fit objective function values
can be eliminated from the search space early in the process. We tested the warm start with some solution
approaches, but it provided only minor or no improvement to the solution efficiency. The improvement
was the clearest when solving Model CR by DICOPT with preassignment, in which the solution times were
reduced, on average, 16.77% across the ten optimization problem instances.

The augmented penalty in DICOPT. The system reliabilities obtained solving the non-convex
Models NCR and NCRR by BARON are, on average, at most 0.0505 and 0.0413%, respectively, higher than
solving the corresponding convex Models CR and CRR by DICOPT (all with the preassignment). Both
occurred with the problem instance of 300 components (see Tables 13 and 16). As DICOPT is expected to
solve convex non-linear optimization problems to the optimality (with the machine precision), we further
investigated the reason for sub-optimal results on these two problems instances.

DICOPT is a combination of the Outer-approximation method, equality relaxation and augmented
penalty (Viswanathan & Grossmann, 1990). To our understanding, the reason for DICOPT to yield sub-
optimal results on some problem instances is in the slack variables that the augmented penalty introduces to
the optimization problem. In the augmented penalty approach, the linear outer-approximations of the non-
linear constraints are relaxed by adding a positive slack to each new inequality. These slacks are minimized
together with the original objective function by penalizing its weighted sum, using as a coefficient 1000
times the marginal of the original nonlinear constraint. In the case that the original constraint is not active,
then its corresponding slack variable is not included in the objective, and in the limit where the inequality
is defining the subproblem solution, the penalization in the objective tends to transform the relaxed cut
into a hard constraint. This heuristic has been useful for obtaining feasible solutions to non-convex MINLP
problems but may lead to convergence to suboptimal solutions for convex MINLP problems if the optimal
solution of the objective function plus the penalized objective is not the same as the one of the original
objective function. To the best of our knowledge, this has been the first report in the literature of a convex
MINLP problem where DICOPT fails to find the global optimal solution.
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Figure 9: The discretized Pareto fronts of the problem with 300 components, using both Models CR (replacement) and CRR
(replacement-repair). Representative solutions are plotted along with the number of maintenance personnel p.

When we solved the two problem instances with 300 components by DICOPT with the augmented
penalty suppressed10 the average relative differences were only -0.0003 and 0.00005%, respectively, which
supports our hypothesis.

6. Discussion

In this work, we convexified both the replacement and replacement-repair models NCR and NCRR,
respectively. In the former, the solution efficiency improved, whereas, in the latter, it became worse without
the preassignment and was similar with the preassignment. Presumably, the main reason for this is that
the number of new binary variables, introduced by the convexification, increases at different rates in these
models with respect to the number of components in the system. The number of new binary variables is∑
k∈K 2|Jk| in Model CR and

∑
k∈K 3|Jk| in Model CRR and

∑
k∈K 3|Jk| + 2

∑
k∈K 2|Jk| in Model CRR2,

where |Jk| is the number of parallel components at stage k of the system.
Except for the preassigment, the approaches we present in this work are also applicable to systems

where the components have an increasing failure rate. The preassignment is not applicable because for
such components the improvement in reliability if replaced, ∆Ry, is always positive. The results where the
preassigment is not used provide a rough indication of the efficiency of the approaches on such systems. It is
also worth noticing that, when the failure rates are bathtub-shaped, the length of the next operation window
tw and the age distribution of the components are likely to have an effect on how much the preassigment
improves the efficiency. Presumably, the more components lie in the non-sensible region (Figs. 1(c), 1(d),
2(c) and 2(d)), the more the preassigment enhances the efficiency.

10Using solver parameters: stop 1, infeasder 1, feaspump 1, fp cutoffdecr 1e-6, fp iterlimit 100, fp stalllimit 100, fp integercuts
0, fp softcuts 0.
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Based on the results, our recommendation for selective maintenance problems, involving only one main-
tenance action, is to use the convex Model CR, or its variation, and solve it by DICOPT. For problems
involving two maintenance actions, our recommendation is to use the non-convex Model NCRR and solve
it by BARON. If global optimality is not required, the heuristic search algorithm by Lust et al. (2009) is
a robust choice, which in our experiments yielded for the replacement and replacement-repair models, on
average, 1.082 and 2.28% sub-optimal results, respectively, with shorter computational time than the global
optimization approaches.

In comparison to the literature (see Section 1), we have expanded the largest problems reported, and
solved to the optimality, from 200 to 1000 components in the case of one maintenance action and from 28
to 700 in the case of two maintenance actions. In our experiments, the average computational time per a
solution in the former is 124.7 s (Model CR solved by DICOPT) and in the latter 652.0 s (Model NCRR
solved by BARON). Here, we have listed the average computational times without preassignment because it
would not be applicable to the optimization problems in the reference studies (these studies do not consider
bathtub-shaped failure rates).

Finally, in this work, we have assumed that the failure data of components are available. Moreover, we
assumed that the components of the system have identical failure behavior. In reality, system components,
especially those located at different system stages, are likely to have different failure behavior. Collecting
the failure data of all different component types in the system is a challenging and time-consuming task,
especially if accelerated lifetime tests are not applicable. For example, the lifetime of pumps or drives,
used in a chemical production plant, may be more than ten years. Therefore, collecting a dataset extensive
enough, in terms of both the number of data points and the right-censoring time, for selective maintenance
optimization may take many years. In some cases, the information of the failure rate may be obtained from
the component supplier. However, this information might come from an experiment conducted in a different
operating environment or limited to only the warranty period of the component.

In Section 4.3, we demonstrated how optimal maintenance actions differ already if the failure rates
are determined from the same dataset using different bathtub-shaped failure models. Future work should
investigate what is the sensitivity of maintenance decisions to the number of data points in the dataset,
and how long the components in the dataset should be operated (i.e. at what age a data point may be
right-censored).

7. Conclusions

In this paper, we first linked bathtub-shaped failure rate models to selective maintenance optimization.
Our sensitivity study shows that even if we start from the same failure data, but use different bathtub-shaped
failure rate models (Jiang, 2013; Sarhan & Apaloo, 2013) (which, in the literature, are both considered to be
suitable for the failure datasets studied in this work), the objective function space changes such that clearly
different selective maintenance decisions become optimal. This highlights the importance of carefully fitting
a suitable failure model to the failure data.

Second, in order to enhance the solution efficiency, we convexified selective maintenance optimization
models, including 1) only replacement or 2) both replacement and repair actions. Moreover, we derived a
preassignment of variables corresponding to components, the replacement of which would undesirably reduce
the component-specific reliability (the reduction is caused by the infant mortality period of the bathtub-
shaped failure rate). Such components can be identified prior to the optimization procedure using our data
analysis method. In our experiments, the inclusion of the preassignment in the convexified models CR, CRR
and CRR2 reduced the solution time by roughly an order of magnitude when using the non-global solver
DICOPT. When solving non-convex Models NCR and NCRR by the global solver BARON, we observed, in
general, similar behavior but with smaller reduction in the computational times. With the preassignment,
solving the convexified replacement Model CR by DICOPT requires significantly less computational time
than solving the equivalent non-convex Model NCR by BARON – the difference being an order of magnitude
or more for problems involving ≥ 400 components. In the corresponding comparison of the models including
also the repair action, the convexification did not reduce the computational time but the times were similar.
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We demonstrated the approaches presented in this paper on selective maintenance optimization problems
consisting of up to 1000 system components, when only the replacement action is included, and up to 700
system components, when both replacement and repair actions are included.
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Appendix A. Comparison of the solution times with CPLEX and GUROBI

Table A.17 lists the numerical results when solving the Model CR by DICOPT with CPLEX 12.8.0.0
or GUROBI 8.1.0 as the MIP solver. The lower solution times with and without the preassignment are
highlighted by the bold font.

Table A.17: Comparison of average solution times, in seconds, of Model CR using DICOPT with CPLEX or GUROBI as the
MIP solver.

without preassignment with preassignment
n CPLEX GUROBI CPLEX GUROBI

100 0.35 0.58 0.11 0.09
200 1.51 2.78 0.41 0.62
300 1.51 3.00 0.40 0.46
400 3.76 6.23 0.38 0.26
500 6.51 11.15 0.74 1.08
600 10.36 28.73 0.81 0.88
700 13.82 48.64 1.14 2.41
800 17.76 61.50 1.87 3.50
900 25.39 93.86 1.74 2.88
1000 124.69 143.44 3.06 4.59

Appendix B. Alternative convexification of the non-convex replacement-repair model (NCRR)

Let us start by defining Mk as the index set of the subsets of Jk:

Mk = {m|Sk,m ⊆ Jk}, ∀k ∈ K

We introduce new binary variables uk,m and vk,m, such that

uk,m =
∏

j∈Sk,m

xk,j , ∀m ∈Mk, k ∈ K (B.1)

vk,m =
∏

j∈Sk,m

yk,j , ∀m ∈Mk, k ∈ K. (B.2)

Based on the definition of wk,i in Eq. 41, we have

wk,i = uk,mvk,m′ , ∀i ∈ Ik, Sk,m = Sxk,i, Sk,m′ = Syk,i, k ∈ K (B.3)
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Therefore, alternatively, we can use of the relationships described in Eqs. B.1, B.2 and B.3 and transform
them into the following linear inequalities:

uk,m ≤ xk,j , ∀m ∈Mk, j ∈ Sk,m, k ∈ K (B.4)

uk,m ≥
∑

j∈Sk,m

xk,j − |Sk,m|+ 1, ∀m ∈Mk, k ∈ K (B.5)

vk,m ≤ yk,j , ∀m ∈Mk, j ∈ Sk,m, k ∈ K (B.6)

vk,m ≥
∑

j∈Sk,m

yk,j − |Sk,m|+ 1, ∀m ∈Mk, k ∈ K (B.7)

wi ≤ uk,m, ∀i ∈ Ik, Sk,m = Sxk,i, k ∈ K (B.8)

wi ≤ vk,m, ∀i ∈ Ik, Sk,m = Syk,i, k ∈ K (B.9)

wi ≥ uk,m + vk,m′ − 1, ∀i ∈ Ik, Sk,m = Sxk,i, Sk,m′ = Syk,i, k ∈ K (B.10)

Similar to the formulation in Section 5.4, constraints over empty sets do not apply. For example, for
m ∈Mk such that Sk,m = ∅, we have both uk,m ≡ 1 and vk,m ≡ 1 .

The alternative Convex Replacement-Repair model (CRR2) is defined as

max
x,y,p

R̃sys,q

subject to Eqs. 18, 21, 24 - 27, 37, 42, B.4 - B.10.
(CRR2)

The corresponding summation of (B.4) and (B.8) implies (43). The corresponding summation of (B.6)
and (B.9) implies (44). The corresponding summation of (B.5), (B.7), and (B.10) implies (45). Therefore,
the linear relaxation of (B.4) - (B.10) is at least as tight as that of (43) - (45). In other words, any point
(integral or fractional) that satisfies (B.4) - (B.10) will satisfy (43) - (45).
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