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Abstract 

This paper presents two new multiple-time grid, continuous-time mixed integer linear program 

(MILP) models for the short-term scheduling of multistage, multiproduct plants featuring equipment 

units with sequence dependent changeovers. Their main difference results from the explicit 

consideration of changeover tasks as model variables rather than implicitly through model 

constraints. The former approach is more versatile in terms of type of objective function that can be 

efficiently handled (minimization of total cost, total earliness and makespan) and, despite generating 

larger mathematical problems, it is also a better performer in single stage problems. The latter is 

better suited for multistage problems, where the former approach has some difficulties even in 

finding feasible solutions, particularly as the number of stages increases. The performance of both 

formulations is compared to other mixed integer linear program and constraint programming 

models. The results show that multiple time grid models are better suited for single stage problems 

or when minimizing total earliness, that the constraint programming model is the best approach for 
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makespan minimization and that the continuous-time model with global precedence variables is the 

best overall performer. 

1. Introduction 

Scheduling problems can be tackled by a variety of optimization approaches as well as other 

solution methods1. For instance, mathematical programming (MP) models, usually leading to mixed 

integer linear programming (MILP) problems, have received considerable attention in the literature. 

The focus has ranged essentially from specific to general types of network configurations, from pure 

batch to pure continuous type of processes, from short-term to periodic modes of operation and from 

discrete to continuous representations of time. While some are more robust than others, small 

changes in the characteristics of the problem can make some MP models highly inefficient, even 

non-applicable. Constraint programming (CP)2, originally developed to solve feasibility problems, 

has also been extended to solve optimization problems, particularly scheduling problems. CP and 

MP approaches have complementary strengths3 and some researchers4-8 have already taken full 

advantage of this, by developing hybrid methods that are considerable more efficient than the 

standalone approaches. 

Most of the recent MP scheduling models are based on a continuous-time representation5,9-16. 

Those employing one or more time grids9-12,14,16 focus on general multipurpose plants and on the 

development of increasingly efficient models. An important recent advance was the introduction by 

Sundaramoorthy and Karimi16 of a formulation without big-M constraints that proved more efficient 

than other competing methods. Discrete-time formulations for scheduling of multipurpose plants go 

further back in time starting with the seminal paper of Kondili et al.17 that also had the merit of 

introducing the state-task network (STN) process representation, and which was soon followed by 

the resource-task network (RTN) based model of Pantelides18. Discrete and continuous-time 

approaches have complementary strengths and a mixed-time representation model has recently been 

presented by Maravelias19 for the simultaneously optimization of scheduling and supply chain 

management problems. 

While recent reviews1,20 have appeared in the literature that discuss the relative merits of the 

various MP and CP approaches, they rely on performance data that often involve different problems 
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and distinct hardware and software tools. This paper avoids such limitations by following a more 

hands-on approach, where as much as six alternative models are tested on the solution of a large set 

of example problems concerning the short-term scheduling of single/multistage, multiproduct batch 

plants, featuring sequence dependent changeovers. Also analysed is the influence of the objective 

function on model performance. 

This paper can be viewed as the third part of an extensive comparative study, where the previous 

two have focused on single stage21 and multistage22 problems featuring either sequence independent 

changeovers (setup times) or none at all. However, this paper goes beyond a mere comparison 

between different methods, since two of them are new. Both are multiple time grid continuous-time 

models that are extensions to the one presented by Castro and Grossmann22 with respect to the 

handling of sequence dependent changeovers. They are conceptually different on how changeover 

tasks are handled: either explicitly, which is a more general approach in terms of variety of objective 

functions that can be handled efficiently, or implicitly in the model constraints, which has the 

advantage of generating smaller sized models. Another important novel aspect is the combination of 

processing and changeover tasks into a single set of tasks, which contributes to both reduction in the 

number of model variables and solution degeneracy, and this is done for one of the new continuous-

time models, as well as for the discrete-time model. The other approaches involved in the 

comparison include a continuous-time model with global precedence sequencing variables5 (SV), a 

CP model based on OPL Studio modelling language23 and a hybrid MILP/CP model (single stage 

only). Not included is the single grid, continuous-time model of Castro et al.14, simply because it 

was shown to be a poor performer in the previous studies21-22 and due to the fact that the number of 

event points required to find the optimal solution would increase even more with the consideration 

of changeover tasks, which would inevitably lead to even larger MILPs. Other uniform time grid 

continuous-time formulations11,16 are expected to have similar drawbacks and thus are also not 

considered. 

The rest of the paper is structured as follows. Section 2 defines the scheduling problem under 

consideration. Section 3 gives a thorough description of the problem highlighting some of the 

conceptually different approaches that can be used to model it. Concerning the handling of 
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changeovers, two alternative, continuous-time modelling options will be identified leading to the 

development of two new MILP models that are presented in sections 4 and 5. The other featured 

approaches are described in section 6, while section 7 presents the detailed computational studies. 

The strengths and limitations of each approach are summarized in section 8, while the conclusions 

are left for section 9. 

2. Problem definition 

In this paper, the short-term scheduling problem of multistage, multiproduct batch plants is 

considered. Given are: a set of product orders i∈I that must follow a sequence of processing stages, 

k∈K, to reach the condition of final products; a set of available equipment units m∈M, each 

belonging to a single stage, with set Mk including those units belonging to stage k. Given also are the 

duration of the processing tasks, pi,m, and those of the cleaning tasks, cli,i’,m; the release, ri and due 

dates, di, all being enforced as hard constraints. Additional data consisting of the processing cost of 

order i in machine m, ci,m, is required whenever the objective is the minimization of the total cost. 

It is assumed that all orders go through all stages, that there is a unique sequence of stages for all 

orders, and that unlimited intermediate storage (UIS) is available between stages. Non-zero 

processing times are required to allow for an order to be processed on a given machine. Hence, the 

set of orders that can be processed in machine m is defined by   }0:{ , MmpIiI mim ∈∀>∈= . It is 

also assumed that any given order is only executed once over the time horizon. This makes it 

possible to define cli,i,m=0. 

3. Conceptual representation: process vs. model entities 

Processes involving sequence dependent changeovers are generally more difficult to model than 

those involving sequence independent setup times or no setup times at all. Some models, like those 

using global precedence sequencing variables (SV) (see section 6.1) or based on constraint 

programming (CP) (see section 6.3) hardly require any changes. In contrast, time-grid based 

approaches need to be significantly altered, both discrete- (DT) and continuous-time approaches, the 

latter irrespective of being single or multiple time grid models. Naturally, model adaptability to a 

different type of problem is directly related to the types of variables and constraints that are used, 
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which in turn are derived from some conceptualization. When developing a model, the modeler must 

make a few fundamental decisions that will have a major impact on its structure and performance. 

For this specific type of scheduling problem there are two main decisions. The first concerns the 

way in which the processing and cleaning tasks are modeled. The second concerns the treatment of 

time. 

The processing and cleaning tasks can be handled either explicitly, as model variables, or 

embedded in some of the model constraints. Time grid-based approaches consider the processing 

tasks explicitly and binary variables are used to identify their starting time point on the grid. 

Concerning changeover tasks, discrete-time17-18 and continuous-time RTN-based24 models define 

them explicitly whereas continuous-time STN-based9-12 as well as constraint programming models2 

consider them implicitly. Continuous-time models based on sequencing variables5,13 consider all 

types of tasks implicitly. 

The two new multiple time grid continuous-time models that are given in the next couple of 

sections handle changeover tasks in an opposite way. The first, and more general one (in terms of 

variety of objective functions that it can handle), uses a set of binary variables tmiiN ,,',  that identify 

the execution of order i in unit m starting at time point t, together with the changeover task to allow 

for order i’ to immediate follow on the same equipment. This grouping of processing and cleaning 

tasks into a single set of variables, instead of considering them separately, is a novel idea that 

improves the performance of the model due to the use of fewer variables and reduces the degeneracy 

since the cleaning task is performed immediately after the processing task has ended. Note also that 

it is possible to have i=i’ in cases where i will be the last order to be processed on the machine under 

consideration (the duration of the combined task is equal to that of just the processing task since 

cli,i,m=0), although it is not mandatory that all the machines end with such tasks since many will be 

non-limiting machines that can have cli,i’,m≠0 without compromising the optimal solution. 

3.1. Resource task network process representation 

The use of combined processing and changeover tasks (named DO in the illustrations) gives rise to 

the Resource Task Network2 (RTN) process representations given in Figure 1 and Figure 2, which 

5 



are the basis of both the multiple time grid continuous-time formulation (see section 4) and the 

discrete-time representation (see section 6.2). It is important to emphasize that the tasks time index 

(t) is not important for the representation, meaning that the RTNs are valid despite the fact that index 

t has a slightly different meaning in each formulation, as it will be seen later on. Thus, three indices 

remain (two order indices and one machine index). The execution of a task involves 

consumption/production of several resources that, although treated in exactly the same way by the 

mathematical formulations, are split into three different types to facilitate model understanding: a) 

the equipment resources (the elements of set M); b) the material states, which are directly associated 

to the order i under consideration and to the stage k where the material is produced; c) the cleaning 

states, which are linked to the order (i) that equipment unit m is ready to handle. Due to large 

number of resources involved and for the sake of clarity, we have divided the overall RTN into two 

superstructures. While Figure 1 focuses on the first two resource types and on the material states 

modifications due to the processing part of the task, Figure 2 focuses on cleaning states changes 

caused by the changeover part of the task. The former RTN applies for a given order (i.e. I1), while 

the latter for a given machine (i.e. M1). 

DO_I1_I1_M|M1|
Duration=p1,|M1|

I1,K1

M1

M|M1|

.

.

.

Stage 1

DO_I1_I1_M(|M1|+1)
Duration=p1,|M1|+1

DO_I1_I1_M(|M1|+|M2|)
Duration=p1,|M1|+|M2|

I1,K2

M(|M1|+1)

Stage 2

M(|M1|+|M2|)

... I1,K(|K|-1)

DO_I1_M(|M|-|Mk|+1)
Duration=p1,|M|-|Mk|+1

DO_I1_I1_M|M|
Duration=p1,|M|

I1,K|K|

M(|M|-|Mk|+1)

Stage K

M|M|

DO_I1_I1_M1
Duration=p1,1

DO_I1_I2_M1
Duration=p1,1+cl1,2,1

DO_I1_I|I|_M1
Duration=p1,1+cl1,|I|,1

...

DO_I1_I|I|_M|M1|
Dur.=p1,|M1|+cl1,|I|,|M1|

...

DO_I1_I2_M(|M1|+1)
Dur.=p1,|M1|+1+cl1,2,|M1|+1

DO_I1_I|I|_M(|M1|+1)
Dur.=p1,|M1|+1+cl1,|I|,|M1|+1

...

...

DO_I1_I|I|_M(|M1|+|M2|)
Dur.=p1,|M1|+|M2|+cl1,|I|,|M1|+|M2|

.

.

.

DO_I1_I2_M(|M|-|Mk|+1)
Dur.=p1,|M|-|Mk|+1+cl1,2,|M|-|Mk|+1

DO_I1_I|I|_M(|M|-|Mk|+1)
Dur.=p1,|M|-|Mk|+1+cl1,|I|,|M|-|Mk|+1

DO_I1_I|I|_M|M|
Dur.=p1,|M|+cl1,|I|,|M|

...

...

.

.

.

  

Figure 1. RTN process representation for order I1, featuring a total of |M| machines and |K| stages 
(changes on the units cleaning states omitted for simplification). 
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In Figure 1, the equipment units and material states (circles) are represented within the boundaries 

of the corresponding stage (vertical dash lines). For example, stage 2 (K2) includes all machines 

belonging to set M2, whose elements are those of set M with numbers (if equipment numbering is 

based on an ordered distribution of units among stages) ranging from |M1|+1 to |M1|+|M2|. A 

particular combined task, represented as a rectangle (e.g. DO_I1_I2_M(|M1|+1), consumes both the 

equipment unit (e.g. M(|M1|+1)) where it is processed and the corresponding material state, which is 

associated to the stage prior to the one the task belongs to (e.g. I1,K1). Both resources are consumed 

when the task begins. The same task also produces two resources, but now these events can occur at 

different points in time. While the same equipment unit is produced when the task ends (e.g. 

M(|M1|+1)), thus regenerating the equipment resource (the associated dashed lines have arrows in 

both ends), the material state (e.g. I1,K2) can be produced earlier (whenever cli,i’,m≠0), exactly pi,m 

time units after the task has started. This is the reason why the origin of the arrow that denotes the 

production of the material resource is further to the left. It is also worth noting that the explicit 

consideration of material states as model variables is only possible when using a single time grid, 

like for the discrete-time formulation (see section 6.2). The multiple time grid continuous-time 

formulation (see section 4) uses different sets of variables and constraints. 

I|I|,M1

I2,M1

I1,M1

M1

DO_I1_I1_M1
Duration=p1,1

DO_I1_I2_M1
Duration=p1,1+cl1,2,1

DO_I1_I|I|_M1
Duration=p1,1+cl1,|I|,1

DO_I2_I2_M1
Duration=p2,1

DO_I2_I1_M1
Duration=p2,1+cl2,1,1

DO_I2_I|I|_M1
Duration=p2,1+cl2,|I|,1

DO_I|I|_I2_M1
Dur.=p|I|,1+cl|I|,2,1

DO_I|I|_I1_M1
Dur.=p|I|,1+cl|I|,1,1

DO_I|I|_I|I|_M1
Duration=p|I|,1

... ... ...

.

.

.

 

Figure 2. RTN process representation for unit M1, showing all possible cleaning states (changes on 
the orders material states omitted for simplification). 

For the combined task to be executed in an equipment unit, it must be in an appropriate cleaning 

state. For unit M1, the several possibilities are illustrated in Figure 2. Tasks with the same order 

index (i=i’) consume and produce the same cleaning state (besides the equipment resource), 

respectively at the start and end of the task. However, tasks involving different orders are more 
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frequent and involve different cleaning states. For example, task DO_I2_I1_M1 consumes resources 

M1 and I2,M1 at its start and produces resources M1 and I1,M1 at its end. The initial cleaning state 

of every equipment will be a variable of the model in order for the most convenient ones to be 

selected. 

The second novel multiple time grid continuous-time formulation (see section 5) handles 

changeover times implicitly so that only the processing tasks are considered. As a consequence, 

cleaning states are not required and the binary variables that identify the execution of the task 

involve only one order index Ni,m,t. The RTN representation of the process featuring those tasks is a 

simplified version of the one shown in Figure 1 and is exactly the same as the one used for handling 

the same type of problem without sequence dependent changeovers. Such superstructure can be 

found in Castro and Grossmann22. 

3.2. Handling of time 

The several formulations considered in this paper treat time differently. The two new multiple 

time grid continuous-time formulations, as well as the RTN-based discrete-time formulation, divide 

the time horizon into a fixed number, |T|-1, of time intervals. The number of tasks that can fit into 

the time horizon is greatly dependent on the number of time points in time-grid based continuous-

time formulations (also sometimes called event points), and less so in discrete-time formulations. 

Fewer time points are also used by the former type of approach (a dozen is a practical upper bound), 

while the latter usually rely on tens or even hundreds of them. Another major difference is that while 

the discrete-time formulation features equal length (δ) intervals, meaning that the time 

corresponding to each time point is known a priori, continuous-time formulations treat those times 

as model variables. 

The new multiple time grid continuous-time formulations use, as the name suggests, several time 

grids to locate the tasks. More specifically, |M| unit specific time grids are employed. It is assumed 

that all time grids feature the same number of event points although it is straightforward to adapt 

them to a different number per grid. The rationale behind this option is that the use of a unit 

dependent value for |T| increases the number of a priori decisions to make that can affect the quality 

of the final solution, and also because that option has been found to be an efficient one in single 
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stage21 and multistage22 multiproduct scheduling problems similar to those considered here. 

Nevertheless, in some problems, it may pay off to develop a set of rules leading to the specification 

of a different number of time points for the several time grids but this is beyond the scope of this 

paper. 

The selection of the cardinality of set T involves the following trade-off: too few points makes it 

impossible to find the global optimum, and too many makes the problem intractable. Although only 

the final iteration will be reported for each example problem, a few MILPs usually need to be solved 

in sequence, by using single increments in |T|, until no further improvements in the objective 

function are observed. Due to the property of every order lasting exactly one time interval, a useful 

lower bound on the optimal value of |T| is the following: ⎡ ⎤ 1)||/||(max +
∈ kKk

MI . The continuous-time 

grid associated to each equipment unit is given in Figure 3, where the minimum release date is the 

lower bound on the absolute time of the first time point and the maximum due date as the upper 

bound on the absolute time of the last time point. 

1 T
2 3 T-2 T-1

,[min i
Ii

r
∈

]max, iIi
d

∈

Interval 1 Interval 2 Interval T-2 Interval T-1

 

Figure 3. Continuous-time grid employed (one for each equipment unit). 

In the discrete-time formulation all the events report to a single time grid and the intervals are 

often called global time intervals1. The length of each interval, δ, is often chosen as the greatest 

common factor between times pi,m and  pi,m+cli,i’,m since, as explained in section 3.1, there will be 

events occurring at these relative (to the start of the task) times. Whenever the greatest common 

factor leads to too many time intervals, meaning problem intractability, a higher value of δ is used 

and all the data is rounded up to its next integer multiple. The partial and total duration of the 

combined tasks are converted from actual time units to a time interval basis by using: 

, ⎡ ⎤δτ /,, mimi p= ⎡ δτ /)( ,',,,', miimimii clp += ⎤ . As for the release and due dates, they remain on the real 

time scale: ⎡ ⎤ δδ ⋅= /ii rr  and ⎡ ⎤ δδ ⋅= /ii dd . Note that rounding the problem data implies the 

consideration of an approximated version of the problem that may or may not lead to the true 
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optimal solution. Furthermore, to ensure feasibility, it would have been more appropriate to use 

⎣ ⎦ δδ ⋅= /ii dd . The uniform discrete-time grid is given in Figure 4. 

1 T
2 4 T-2 T-1

Interval 1

3δ

iIi
r

∈
min iIi

d
∈

max

Interval 2 Interval 3 Interval T-2 Interval T-1

 

Figure 4. Uniform discrete-time grid. 

The other featured continuous-time formulation does not rely on explicit time grids. Instead of 

allocating tasks to different time intervals, a totally different concept is exploited that relies on 

sequencing variables to ensure that every machine only handles one order at a time. As will be seen 

in section 6.1, the model variables and constraints feature no time index, giving it an important 

advantage when compared to the other continuous-time and discrete-time formulations: no decisions 

that may eventually compromise its solution need to be taken before solving the problem. That is, 

the model needs only to be solved once and the resulting solution will always† be an exact and 

global optimal solution (if solved to a zero optimality gap). The same can be said for the CP 

formulation, although this is more accurately classified as a discrete-time model since all the 

activities (i.e. tasks) must have integer durations. 

4. New general multiple-time-grid continuous formulation, featuring four-index variables 

(CT4I) 

While the two new multiple-time grid continuous-time formulations are novel in the sense that 

they can handle sequence dependent changeovers, they share many characteristics with their single 

stage21 and multistage22 predecessors. Thus, instead of entering a detailed explanation of every 

aspect of the formulations and drawing comparisons with other multiple time grid formulations9-

10,12,25, which are given in those recent papers, we will focus mostly on the aspects relating to the 

novel feature. 

                                                 

† An exception may occur as discussed in section 7.1.2. 
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The formulation uses the already mentioned 4-index binary variables tmiiN ,,',  to assign the 

execution of the combined processing and changeover task, to a particular machine and also to a 

certain time point. The other set of binary‡ variables used are the excess resource variables Rm,t that 

identify equipment availability (=1) at a given event point. The remaining variables, all nonnegative, 

are the timing variables Tt,m and TDi,k, which represent the absolute time of time points t and m and 

the transfer time of order i in stage k, respectively, and also the new variables Ci,m,t and . While 

C

0
,miC

i,m,t are also excess resource variables that, when equal to 1, indicate that equipment m is ready to 

handle order i at time point t, the latter arise from the need to define an initial state. 

Figure 5 gives an overview of how the formulation works. For simplicity, it considers only one 

equipment unit per stage, three orders and three stages. One important property of the mathematical 

formulation is that each combined task only lasts for a single time interval, meaning that the 

required number of time points on each machine is equal to the number of orders assigned to that 

machine plus 1, which for this illustrative example implies 4 time points. Although each task lasts 

one time interval, it does not necessarily mean that when starting at t, it ends exactly at time point 

t+1. For instance, the execution of order I1 followed by cleaning to order I2, i.e. combined task 

(I1,I2), which starts at the first event point, ends well before the time of the second event point both 

in M1 (first stage) and M2 (second stage). Note again, as already emphasized when describing 

Figure 1, that the beginning of (I2,I3) in stage 2 occurs exactly after the end, in stage 1, of the 

processing part of the combined task (at T2,2=T2,1+p2,1) but before its full completion 

(T2,2≤T2,1+p2,1+cl2,3,1). The changeover part of the task only affects events occurring on the same 

machine, meaning that the appropriate cleaning time must be considered between the processing of 

different orders. In the first stage, the time corresponding to the start point of the task must be 

greater than the release date of the order, ri. Accordingly, in the last stage, orders must be concluded 

before their due dates, di. The transfer time of materials from stage k to stage k+1 must be greater 

than the ending time of the order’s processing part of the task at stage k and must be lower than the 

                                                 

‡ They can also be defined as continuous variables since the model constraints ensure that 
Rm,t={0,1}. However, based on experience, it is better to define them as binary variables. 
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order starting time at stage k+1. In Figure 5, the transfer time of order I1 in stage 1 (TD1,1) can be 

any value ∈[T1,1+p1,1,T1,2] (this time span is represented as a gray-filled rectangle), whereas that of 

order 2 in stage 1 (TD2,1) is equal to both its lower and upper bounds: T2,1+p2,1=T2,2. As it was 

mentioned in section 3, it is not required for the last task to be processed to feature equal order 

indices although this will be true if such task is executed in the last time interval (in Figure 5 all 

equipment units end with (I3,I3)). The other features that are worth mentioning are that the time of 

the first and last time points, respectively in the first and last stage, do not need to match neither the 

origin (minimum release date) nor the time horizon (maximum due date), and that order sequencing 

can vary from one stage to the other, as seen for unit M2, which has I1-I2-I3, and unit M3, which 

has an I2-I1-I3 sequence. 

M1

M2

M3

iIi
r

∈
min HdiIi

=
∈

max

(I1,I2) (I2,I3)

11,1 rT ≥ 21,2 rT ≥

1d≤

1,1p 1,2p

2,1p 2,2p

3,2p

33,4 dT ≤

(I3,I3)

1,3p

1,4T31,3 rT ≥

2,1T 2,4T

2,3TD

1,2,1cl 1,3,2cl

1,2TD1,1TD 1,3TD
(I1,I2) (I2,I3) (I3,I3)

2,2,1cl

2,1TD

2,3,2cl

2,2T

2,2TD
2,3T

2,3p

(I2,I1) (I1,I3) (I3,I3)

3,1T
3,1,2cl

2d≤
3,2T

3,3,1cl

3,3T
3,3p3,1p

 

Figure 5. Possible solution from multiple-time grid, continuous-time formulation F1 (|I|=3, |M|=3, 
|K|=3, and |T|=4). 

There are other characteristics of CT4I that are not apparent from Figure 5. More specifically, the 

number of time intervals can exceed the optimal number of tasks executed on a given machine or, in 

other words, there can be time points where no tasks are started. As a consequence, those time 

intervals can have a duration ranging from zero to the full (if no orders are assigned to the machine 

at hand) time span, and can be located anywhere, e.g. at the first, second or last time intervals. We 

took full advantage of this property when developing the objective function for total earliness 

minimization20, which basically forces all dummy time intervals to have zero duration and be the 

last ones of the corresponding time grid. For other objective functions, the assignment of orders to 
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time points from first to last, which is illustrated in Figure 6, is enforced by an appropriate set of 

constraints (see eq 9). 

M1

M2

M3

1,2T1,1T 1,3T

2,1T 2,2T 2,3T

HTTT === 3,33,23,1
 

Figure 6. Possible solution from multiple-time grid, continuous-time formulation F1 (|I|=3, |M|=3, 
|K|=1 and |T|=3). Orders are assigned from the first to last time points. 

The constraints that compose the multiple-time grid formulation are given next, but first we will 

define some additional sets and parameters that allow to reduce the number of variables and hence 

make the formulation more efficient. We start by determining the lowest time, lbi,m, at which order i 

can start to be processed in unit m. If the machine belongs to the first stage, then the lower bound is 

the release date of the order, otherwise we have to add up to this value the minimum processing time 

in previous stages (eq 1).  
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An upper bound (eq 2) can also be defined for order i but now this will depend on the order that is 

processed next. 
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Thus, the new parameter, ubi,i’,m, features three time indices and its value can be set by either order 

i or i’. More specifically, if order i is the limiting one, the highest time at which the task can start is 

determined after subtracting from its due date, the minimum processing time on all subsequent 

stages plus the order processing time in unit m. If, instead, order i’ is the limiting one, a similar 

approach is followed in terms of i’. Nevertheless, additional terms are required to include pi,m and 

also cli,i’,m. Note also that pi’,m is only considered whenever i≠i’. 

Eq 3 defines set Ii’,m, which contains all orders that can precede order i’ in machine m.  
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Eq 4 defines the earliest time at which unit m can become active, lbmm,t and is determined for all 

time points. 

||,, )1()(minmin min
,,,, TtTtMmtclplblbm mimiIimiIitm

mm

≠∈∈∀−⋅++=
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 (4) 

For t=1, it is equal to the minimum possible starting time of all orders, while for t>1 we need to 

take into account the duration of the shortest combined task (note that ) as many 

times as the number of existing time intervals up to time point t. We could even be more thorough 

and replace the second term of eq 4 by the sum of the two smallest  terms for t=3, the 

three smallest terms for t=4 and so on. 

miiiimi clcl ,','

min
, min

≠
=

min
,, mimi clp +

Finally, all this information can be combined into the definition of set Ii’,m,t (see eq 5), generating 

the domain of the binary variables tmiiN ,,', . Note that in the last time interval (tasks starting at t=|T|-

1) only tasks with the same order index can be executed since there are not enough time intervals to 

process any more tasks. 

||,,,' )}'1||(:{ ',,',,',,' TtTtMmIiiiTtlbmubIiI itmmiimitmi ≠∈∈∈∀=∨−≠∧≥∈=  (5) 

4.1. Excess resource balance constraints 

The excess resource balances are typical multiperiod material balance expressions, in which the 

excess amount at point t is equal to the excess amount at point t-1 adjusted by the amounts 

produced/consumed by all tasks starting or ending at t. For the equipment resources it can be said 

that the unit is not being used at time point t, i.e. is available in excess (Rm,t=1), if no order starts to 

be processed in it at t, otherwise there is no excess resource (Rm,t=0). The constraints are as follows. 

TtMmNR
m tmiIi Ii

tmiitm ∈∈∀−= ∑ ∑
∈ ∈

, 1
'

,,',,
,',

 (6) 

The constraints related to the cleaning states are slightly more complex simply because the 

execution of a given task usually involves production and consumption of different states. 

Furthermore, the initial resource availability for all equipment units is no longer 1, and are in fact 
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actual model variables, which only appear in constraints belonging to the first time point (first term 

on the right hand side of eq 7). 
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Eq 8 ensures that there is but one initial equipment state for each machine. 
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To reduce solution degeneracy and to improve the performance of the model, we enforce tasks to 

be allocated to time points with as low an index as possible. This is the same as saying that 

equipment availability increases from start to finish. 

1,, 1,, ≠∈∈∀≥ − tTtMmRR tmtm  (9) 

4.2. Timing constraints 

The difference between the absolute times of any two time points must be greater than the 

duration of the combined task. 
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Eq 11 ensures that the absolute time of time point t in unit m is greater than its predetermined 

lower bound (see eq 1). Note that for machines belonging to the first stage we get release date 

constraints. The global lower bound, as already shown in Figure 3, is the minimum release date (eq 

12).  
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The next constraint is the equivalent upper bound constraint, where ubi,i’,m is calculated through eq 

2. This is a big-M constraint, meaning that is only active when there is a task starting at t, in unit m, 

otherwise it is relaxed to its global upper bound, eq 14. 

||,, )1(
'

,,',
'

,',,,',,
,',,',

TtTtMmNHubNT
m tmim tmi Ii Ii

tmii
Ii Ii

miitmiimt ≠∈∈∀−+≤ ∑ ∑∑ ∑
∈ ∈∈ ∈

 (13) 

15 



TtMmdHT iIimt
m

∈∈∀=≤
∈

, max,  (14) 

For multistage problems, we need to relate the absolute times of consecutive stages by means of 

the transfer time variables TDi,k. While eq 15a ensures that the order transfer time in stage k-1 is 

earlier than its starting time in stage k, eq 16a states that its transfer time in stage k must be greater 

than the order completion time (just the processing part of the task) in that stage (processed in 

machine m∈Mk). Both are big-M constraints that only become active if the task starts at event point t 

belonging to time grid m. Eqs 15a-16a can be replaced by constraints 15-16, which usually lead to a 

better performance. These include more binary variables inside the big-M term, which is possible 

since order i can only be processed once on each machine (see eq 21). Thus, eq 15 includes all tasks 

(from order i) that start at or before t making them tighter when solving the relaxed model, and 

hopefully getting partition of the tasks over fewer time intervals, which facilitates branching. 
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Whenever the objective is makespan minimization, a new variable is required (MS) that must be 

greater than the ending time of all tasks. Eq 17 is a constraint that ensures this goal by relating the 

variable to the starting time of all time points. It can be described as follows. When applied to stage 

k, unit m, and time point t, the second term on the right-hand side is only active when k≠|K| and 

represents the processing time of the order starting at time point t in unit m plus its minimum 

processing time in the following stages. It is equivalent to the term used for multistage plants 

without sequence dependent changeovers22. On the other hand, the third term on the RHS is only 

active when dealing with the last stage, and represents the duration of all combined tasks starting in 

unit m at or after time point t. Its origin results from performance tests performed while solving 
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single stage plants and it is a new term since the objective of makespan minimization was not 

considered in Castro and Grossmann21. 
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The makespan variable can also be related to the transfer time variables by a similar constraint. 

Although not strictly necessary, eq 18 improves the performance of the formulation. 
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The final sets of timing constraints are also both efficient and optional. They act as lower and 

upper bounds on the transfer times and are conceptually equivalent to eqs 11 and 13, although now, 

since the constraints are per order and not per unit, the processing times are multiplied by the 

appropriate binary variables instead of considering the minimum possible values (which are implicit 

in parameters lbi,m and ubi,i’,m, see eqs 1-2). Note also that no big-M terms are required for the upper 

bound constraints. 
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4.3. Operational constraints 

The single set of operational constraints states that all orders must be processed exactly once in 

every stage. 
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4.4. Objective functions 

The mathematical formulation can handle the three alternative objective functions considered in 

this paper. These are total cost minimization, eq 22, total earliness minimization, eq 23, and 

makespan minimization, eq 24. 
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MS min  (24) 

In summary, the formulation features constraints 6-16 and 19-21 as its building block. The 

objective of total cost minimization also requires eq 22, that of total earliness minimization, eq 23, 

while makespan minimization also uses eqs 17, 18 and 24. 

5. New multiple-time-grid continuous formulation, featuring three-index variables (CT3I) 

The second new continuous-time formulation uses binary variables with just three indices, Ni,m,t, 

and as a consequence gives rise to much smaller mathematical formulations than CT4I. The most 

significant conceptual difference comes from the fact that it does not need to consider explicit 

cleaning states for the equipment units since some of the timing constraints make sure that the 

appropriate cleaning time is taken into consideration. Because of this, it is closer to the multiple time 

grid formulation of Castro and Grossmann22 for multistage plants without sequence dependent 

changeovers. However, as will be described next, the strategy used for implicitly handling 

changeovers is completely opposite to the one used for minimizing total earliness meaning that the 

previously developed form of this objective function (as given in eq 23) is incompatible with the 

new formulation. 

Figure 7 illustrates how CT3I works with a simple single stage example since the differences from 

CT4I occur within the equipment units (the transfer of material between stages is similar). Before 

going into the details, two new sets of parameters need to be defined. First, the maximum 

changeover time from order i in unit m is calculated through eq 25. Then, eq 26, determines the 

difference between the maximum and actual changeover times from order i to i’ in unit m. With a 
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view to account for the actual process and changeover time an indirect procedure is used. Assigning 

order i to unit m at time point t makes the length of interval t  (if not the last) to equal at least 

pi,m+ , which corresponds to consider the worst case scenario in terms of changeovers. To get 

the true changeover time to order i’ we must subtract , if task i’ is to be performed at t+1, as 

can be seen between orders I1 and I4 in M1 and also I5 and I2 in M2. It is worth noting that the 

difference between the absolute times of two consecutive time points may even be greater if, for 

example, the release date of the following product is located further ahead in time (see I2 in 

max
,micl

Δ
miicl ,',

Figure 

7). This technique makes it more advantageous for two consecutive orders to be executed in 

consecutive time intervals. Furthermore, all possible feasible solutions are covered since the 

maximum changeover term is not considered for tasks starting at the last time interval since in such 

case only the processing time is used. This can be seen for orders I4, I2 and I3. As a consequence, 

orders will typically be assigned from the last but one, to the first time points, in an opposite manner 

to F1. 
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11,1 rT ≥ 41,2 rT ≥ 41,3 dT ≤1d≤
I5 I2

52,1 rT ≥ 2d≤ 2,3T

I3

3,3T

1,1p 1,4p

2,5p 2,2p

3,3p

max
1,1cl

Δ
1,4,1cl

max
2,5cl
Δ

2,2,5cl

5d≤ 22,2 rT =2,2T≤

3,1T 33,2 rT ≥ 3d≤

 

Figure 7. Possible solution from multiple-time grid, continuous-time formulation F2 (|I|=5, |M|=3, 
|K|=1 and |T|=3). Orders are assigned from the last but one to the  first time points. 
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The constraints of the three-index binary variables, continuous time formulation are given next. 

When compared to Castro and Grossmann,22 only those that were modified, to account for sequence 

dependent changeovers, are explained, together with new sets of constraints. 
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Equation 28 is analogous to eq 9 and leads to improved performance. The idea is once again to 

reduce the number of degenerate solutions, now by forcing all orders to be assigned from the last to 

the first time interval. As a consequence, unit availability will decrease from start to finish with the 

exception of the last time point, which corresponds to the end of the time horizon, where all 

equipment units become available. 
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Equation 29 is the root of CT3I and has already been described while explaining Figure 7. The 

handling of sequence dependent changeovers makes order aggregation no longer possible so the 

domain of eq 29 now features three indices: i, m and t. The first term on the RHS can be replaced by 

Ni,m,t·pi,m, which has the advantage of making the constraint easier to understand but has the 

disadvantage of making it less tight and hence less efficient. 
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Parameter hbi,m represents the highest time at which order i can start to be processed on unit m and 

is used in eq 32 to define upper bounds for the absolute time of the several time points. Note that eq 

32 translates into the due date constraint, whenever m∈M|K|. 
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Equation 36 is equivalent to eq 17, but while we can use the actual changeover time in the last 

term on the RHS of the latter, for the former, since changeovers are modelled implicitly, we are 

limited to use the minimum cleaning time, as calculated by eq 35. 
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The mathematical formulation can handle as the objective function, the minimization of either the 

total cost or the makespan, eqs 41 and 24, respectively. Its core consists of constraints 12, 14, 27-30, 

32-34 and 38-40, plus eq 41 for total cost, and eqs 24, 36 and 37, for makespan. 

6. Other approaches 

The two new continuous-time formulations will be compared to other four conceptually different 

approaches. These include a continuous-time formulation based on global precedence variables (SV) 

instead of relying on an explicit time grid; a uniform time grid, discrete-time formulation (DT), a 

constraint programming (CP) model and, for total cost minimization of single stage plants, a hybrid 
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MILP/CP approach. In this section, we highlight their main features and present the changes 

required to efficiently tackle the problems under consideration. 

6.1. Continuous-time formulation with global precedence sequencing variables (SV) 

The other featured continuous-time formulation also gives rise to an MILP and  is essentially the 

one of Harjunkoski and Grossmann5, without the operational design variables. Binary variables yi,m 

are employed to assign order i to unit m and binary sequencing variables xi,i’,k are used to identify the 

global precedence of order i over i’ in stage k. Based on these, the ending times of any two 

orders can be related through the big-M constraints given in eqs 42-43. These now feature an extra 

term (the third on the RHS) to account for the sequence dependent changeover times, which the 

model by Harjunkoski and Grossmann

f
kiT ,

5 did not consider. Other improvements concerning the 

efficient handling of other objective functions that are relevant to this work can be found in Castro 

and Grossmann22. 
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6.2. RTN-based discrete-time formulation (DT) 

The discrete-time formulation used is based on the original work of Pantelides18 despite the fact 

that the different types of resources are not aggregated. It relies on the Resource Task Network 

process representation like CT4I and CT3I and thus it has a few similar features with its continuous-

time counterparts. More so with CT4I since it also considers combined tasks and the same type of 

binary variables tmiiN ,,', . The discrete-time grid, however, relies on a single and uniform time grid, 

making it easier to consider alternative material states (through variables Si,k,t) and also avoiding the 

use of timing variables. 

Due to the fact that the time corresponding to each time point is known a priori, we can determine 

the lowest and highest points at which each task can start. Despite referring to time points instead of 

actual time values, eqs 44 and 45 are similar in concept to eqs 1 and 2. In eqs 44 note that δ/min '' iIi
r

∈
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represents the time of the first time point in terms of number of time intervals (see also Figure 4). 

Since the third term on the RHS calculates the minimum possible duration in previous stages (also in 

number of time intervals), the first and third term in eq 44 in fact determine the number of time 

intervals between the lowest possible starting point of the task and the first time point. If there are no 

intervals in between, then the task can start at the first time point, and this is the reason why we add 

a 1 (second term in the RHS). The domain of the model binary variables is then calculated through 

eq 46. 
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The discrete-time formulation can be written in a very compact form. It uses 5 sets of variables 

and constraints (eq 47-50 and eq 8) plus the objective function: eq 51 for total cost minimization and 

eq 52 for total earliness minimization. The model constraints are given below and with the exception 

of the excess resource balances for the cleaning states (variables Ci,m,t), which are new, are similar to 

those of Castro and Grossmann22. The reader is directed to this reference for a detailed explanation 

of the model constraints and also for the technique used for makespan minimization, which involves 

solving the problem several times, for different cardinalities of T, while minimizing total earliness. 
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6.3. Constraint programming formulation (CP) 

The constraint programming (CP) formulation used is basically the one presented by Harjunkoski 

and Grossmann5, which is based in ILOG’s OPL Studio modelling language23. However, the issue of 

sequence and machine dependent changeovers is difficult to implement in OPL Studio code and 

could only be handled after advice from ILOG support staff. For this reason we find it relevant to 

include the full model. The reader is also directed to Maravelias and Grossmann4 for a brief 

description of OPL Studio global constraints and special constructs specifically developed for 

scheduling applications. 

The two main components of scheduling models in OPL Studio are activities and resources. The 

activities correspond to the processing tasks and are referred to a given order i (belonging to the 

enumerated type Orders) and to a given stage k (belonging to Stages, ranging from 1 to Nstages). 

Since an appropriate changeover time must pass between consecutive activities, we define a 

transition type that will access the transition matrix given the appropriate element, in this case i, see 

eq 53. The transition matrix is given by parameter chgover[Units,Orders,Orders] (equivalent to 

cli,i’,m) and is associated to the appropriate equipment unit m belonging to the range type Units. The 

units are defined as unary resources since they can only be used by one activity at a time (eq 54) and 

are also the elements of the group of Machines, the alternative resources (eq 55). Note that in eq 54, 

the transition matrix is referenced with only one (m) of its three indices. Also, declaring that the 

several units are alternative from an activity standpoint, is absolutely vital to ensure an efficient CP 

model. Further relevant declarations involve the binary assignment variable y[i,m] and the 

boundaries of the time horizon, which are related to the minimum release and the maximum due 

dates (eqs 57-58). 

Activity DO[i in Orders, k in Stages] transitionType i; (53) 

UnaryResource unit[m in Units] (chgover[m]); (54) 

AlternativeResources Machines(unit); (55) 

var int y[Orders,Units] in 0..1; (56) 
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scheduleOrigin=min(i in Orders) r[i]; (57) 

scheduleHorizon = max(i in Orders) d[i]; (58) 

The model constraints are given next. Eq 59 states that order i can only start to be processed on the 

first stage after its release date. The execution of order i in the last stage must also end before its due 

date, eq 60. Each activity needs to be performed in one equipment belonging to the group of 

alternative resources, eq 61. The duration of activities belonging to stage k is then, in effect, 

bounded by the minimum and maximum processing times of the order in that stage (eq 62). Eq 63, 

states that if unit m is selected to process order i in stage k, then the duration of the activity must 

equal the matching processing time. Also, the corresponding assignment variable must equal 1. If 

unit m does not belong to stage k, or cannot process order i, then it cannot be selected to perform the 

activity, eq 64. Finally, eq 65 states that order i can only be processed in stage k after going through 

the previous stage. 

DO[i,1].start≥r[i] ∀i∈I (59) 

DO[i,Nstages].end≤d[i] ∀i∈I (60) 

DO[i,k] requires Machines ∀i∈I, ∀k∈K (61) 
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DO[i,k] precedes DO[i,k+1] ∀i∈I, ∀k∈K,k≠|K| (65) 

Three alternative objective functions, eqs 66-68, for total cost, total earliness and makespan 

minimization, are respectively given by: 
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6.4. Hybrid formulation (MILP/CP)  

The hybrid model of Jain and Grossmann6 together with the knapsack constraints of Maravelias 

and Grossmann7 to improve the integer cuts, is also an efficient option for single stage problems 

where the objective is total cost minimization. It uses a simplified version of model SV, one where 

only the assignment variables are considered, to determine optimal assignments of orders to 

machines. Since no sequencing variables are used, some assignments may be infeasible, something 

that is checked through the solution of a CP feasibility problem for each equipment unit. For each 

infeasible unit, integer cuts are added to avoid getting the same assignments on the next solution of 

the MILP. Several iterations are usually required until all machines are proved feasible meaning that 

the optimal solution has been found. Although the same decomposition strategy can be used with 

other objective functions for single stage problems, the method is likely to worsen as the CP is 

required to solve an optimization rather than a feasibility problem. For multistage problems and for 

total cost minimization, Harjunkoski and Grossmann5 also tried a hybrid MILP/CP method and 

found that, unlike in single stage problems, valid cuts are rather weak and that a large number of 

iterations can be expected before the optimal solution is found. Although the authors devised 

stronger heuristic cuts, they sometimes cut off the true optimal solution. In view of the above, the 

use of the hybrid MILP/CP approach was not considered in cases other than total cost minimization 

for single stage problems. 

7. Computational Results 

In this section, the performance of the six different approaches is illustrated through the solution 

of 39 example problems. These are identified by a number and two additional characters, where the 

last identifies the objective function being considered, e.g., C for total cost, E for total earliness, and 

M for makespan minimization. Most of the data has been taken from the example problems given in 

Castro and Grossmann21-22, although the changeover times where generated randomly (up to a 

maximum of 60% of the units average processing time). Since these changeover times take up a lot 

of space in tables, we have opted not include the data in the paper and give it instead as supporting 

information (most challenging examples only: P5-P6, P11-P13). 
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For solving the MILPs resulting from the continuous and discrete-time models (CT4I, CT3I, SV, 

DT) we have used commercial solver GAMS/CPLEX 9.1, with a relative tolerance of 1E-6, and all 

problems were solved to optimality, unless otherwise stated. The constraint programming (CP) and 

hybrid (MILP/CP) models where implemented and solved in ILOG’s OPL Studio 3.7.1. Concerning 

hardware, a computer consisting of a Pentium-4 3.4 GHz processor with 1 GB of RAM and running 

Windows XP Professional was used. 

The results have been grouped by type of problem under consideration, single or multistage, and 

then by objective function. An overview of the computational effort is given in Tables 1,3-5,7-8, 

while more detailed computational statistics for some of the problems are left for Tables 2 and 6. 

The discussion of the results is given in sections 7.1 and 7.2, by type of problem. 

7.1. Single Stage Problems 

The single stage problems under consideration range from 12 orders in 3 equipment units to 20 

orders in 5 units. Although a greater number of problems could be considered, the large amount of 

computational resources used suggests  this set corresponds to a representative set. 

7.1.1. Total cost minimization 

As can be seen from Table 1, the two new multiple time grid continuous formulations are the best 

performers for total cost minimization by a significant margin in relation to all but the hybrid 

MILP/CP model. We were surprised by the fact that CT4I was more efficient than CT3I, particularly 

in P5C. In Table 2, one can see that CT4I exceeds the number of binary variables employed in CT3I 

by a factor of 10, has a slightly lower but similar integrality gap and is solved faster by almost two 

orders of magnitude. Model SV required even fewer binary variables and although it can always find 

the global optimal solution, it failed to prove optimality in three cases (P3C, P5C and P6C), either 

because the maximum resource limit was achieved, or because the solver ran out of memory. The 

CP model exhibited a better performance than SV but failed to find the optimal solution for P5C. At 

the bottom of the list comes the discrete-time formulation (DT), which, due to the large number of 

time points that are required to handle the exact problem data, could only solve approximate 

versions of the problems. For instance, P2C needs 191 time points for δ=2, which results in a good 
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approximation of the problem data. For δ=5 the combined processing times are somewhat 

overestimated but despite this, the optimal solution can still be found in some cases (P3C, P5C). 

7.1.2. Total earliness minimization 

For total earliness minimization, CT4I continues to be the best performer even though it fails to 

find the optimal solution for P6E, see Table 3. For this problem we have to rely on DT, which is also 

a very good performer. In particular, all example problems except P5E (δ=5) could be solved with 

the exact problem data, which led to a maximum of 471 time points in P1E and a very large problem 

size with 381 time points and a total of 343143 binary variables, 383279 single variables and 40031 

constraints, for P6E. The other two formulations that can handle this objective function, have a 

significant decrease in performance when compared to total cost minimization. SV generates search 

trees that explode in size rather rapidly and hence lead to the solver running out of memory (P3E-

P6E). CP performs slightly better since, while also failing to find the optimal solutions for P3E, P5E 

and P6E, finds better solutions for the former examples. Furthermore, it solves P1E-P2E 

significantly faster. Problem P3E is the most interesting problem of the lot, since the CP formulation 

terminated with an optimal solution (561) that is in fact suboptimal. This fact allowed us to identify 

the most significant limitation of the CP formulation, which is also a limitation of model SV. 

Before going into the detailed explanation let us provide some relevant problem data. The optimal 

solution of P3E features an optimal sequence I3-I14-I11-I10 in M1. The processing times are given 

by p3,1=113, p14,1=23, p11,1=83, p10,1=73, the corresponding changeover times by cl3,14,1=2, cl14,11,1=8, 

cl11,10,1=2, the release dates by r3=40, r10=10, r11=50, r14=60 and the due dates by d3=310, d14=200, 

d11=300, d10=370. Also required is the data element cl3,11,1=39, and the orders optimal delivery 

dates: 175, 200, 295 and 370, respectively. The optimal schedule for unit M1 is given in Figure 8 

together with the best solution that can be obtained by models CP and SV. The difference between 

the two schedules is minimal, in the optimal solution (shown above) the starting time of order I3 is 

delayed up to an absolute time of 62, allowing it to end 2 time units later, where 2 is the exact 

difference between the optimal total earliness values (559 vs. 561). So why cannot order I3 start 

earlier in the solution of models F3 and F5? The reason lies in other model constraints that relate it 
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to its global successors and prevent this from happening. Based on SV (for CP the explanation is the 

same although such constraint is implicit), eq 42, when applied to the orders and equipment unit in 

question, explicitly states that , meaning that the difference between the ending 

times of orders I11 and I3 must be greater than 122 (the processing time of order I11 plus the 

changeover time from I3 to I11). Thus, we cannot take full advantage of the fact that there is one 

order, I14, that can fit between I3 and I11. Although it is unlikely that such combination of 

processing data occurs in a real industrial environment, this example clearly highlights one of the 

strengths of time grid-based models when compared to approaches based on explicit or implicit 

sequencing of tasks. 

1221,31,11 ≥− ff TT

M1

I3

62

I14 I11 I10

177 208 212 297 370
I3

60

I14 I11 I10

177
208 212 297 370175173

391,11,3 =cl
 

Figure 8. Part of the optimal schedule for example P3E. Optimal solution (above) and suboptimal 
solution (below) from continuous-time MILP with global precedence sequencing variables and CP 
models. 

7.1.3. Makespan Minimization 

The objective of makespan minimization is the most difficult for the multiple time grid continuous 

formulations. However, CT4I and CT3I can always find good solutions to the problem, see Table 4. 

Due to its significantly larger size, the MILPs resulting from CT4I tend to originate faster growing 

branch and bound search trees meaning that the solver runs out of memory faster for the two most 

difficult problems (P5M-P6M). Nevertheless, and despite the larger size, CT4I seems again to be 

slightly better despite CT3I being almost three orders of magnitude faster for P4M. The other 

continuous-time formulation, SV, has a similar performance when compared to the multiple time 

grid formulations and also suffers from the same problem of generating fast-growing trees. 

The CP model is the best overall performer for makespan minimization since it is the fastest for 

P1M-P3M and can also find the best solution for P5M, for which the optimal solution is still 
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unknown. Note, however, that its performance for P6M is rather weak, since the best solution found 

after more than 15 h of computational time, 237, is still far from the best known solution of 164. It is 

also clear from Table 4, that, as the number of orders and equipment units increases, so does the 

computational effort. 

The DT model has the merit of finding the best solution for P6M and doing so while solving an 

approximated version of the problem (δ=2). It is fair to say, based on the values of δ that can be 

used, that the performance of DT for makespan minimization lies between that observed for total 

earliness and total cost minimization. The fact that it is better than for total cost minimization is 

somewhat surprising since makespan minimization usually involves several iterations22,26 before the 

optimal solution is found. In this respect it is worthwhile mentioning that the observed DT peak 

performance for P4M is simply because the predicted minimum number of time intervals ensures 

feasibility and hence only one iteration is required in the search for the optimal solution. This 

unusual behavior (for example P1M requires a total of 53 iterations) is simply because the 

bottleneck for P4M lies with the release date of a particular order. In other words, the optimal 

makespan is equal to the earliest possible ending time of that order. 

7.2. Multistage Problems 

The seven multistage problems under consideration range from 8 orders in 6 units and 2 stages (16 

batches) to 15 orders in 4 units and 2 stages (30 batches) and to 8 orders in 8 units and 4 stages (32 

batches). 

7.2.1. Total Cost Minimization 

The results given in Table 5 show that the CP and SV models are the best performers for total cost 

minimization. While CP was always able to prove optimality, SV failed to do so for P9C (the solver 

ran out of memory after more than 12000 CPUs) but managed to solve all other problems in less 

than 7 CPUs. The continuous-time formulations were able to find the global optimal solutions for all 

problems except P12C. For that problem, both CT4I and CT3I could not find even a feasible 

solution up to the maximum resource limit of 48000 and 60000 CPUs, respectively. This behavior 

was not totally unexpected since the multiple time grid model from which they originate exhibited 
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the same difficulties22 when solving a problem also involving 4 stages. Finally, the discrete-time 

formulation is by far the worst performer and the gap is more significant than for single stage 

problems. Only relatively coarse (δ=5) time grids could be considered and even that value generated 

very difficult mathematical problems for P9C (no feasible solution) and P13C (unable to prove 

optimality after 100,000 CPUs). It is worth noting that we know for sure that P9C is feasible for 

(δ=5) since we were able to find a feasible solution for P9E for the same δ value (see Table 7).  

7.2.2. Total Earliness Minimization 

Like for single stage problems, the new CT4I formulation is the best performer for total earliness 

minimization (see Table 7). All problems can be solved to optimality in less than one hour and it 

was able to find the best solution for P13E. However, since optimality was proved for 9 time points 

only, we do not know for sure if this is in fact the global optimal solution. The other approaches 

were unable to confirm this finding: both SV and CP can only get to inferior solutions and DT can 

only solve an approximated version of the problem. We can assume that the best solution found for 

P11E is the global optimal solution since CT4I obtained the same result both for 6 (values reported 

in Table 7) and 7 (optimality proved in 5900 CPUs) time points. Concerning the discrete-time 

formulation, this objective enables us to use finer time grids (δ=2 for P7E and P8E) than for the two 

others but it is the worst formulation of the group. 

7.2.3. Makespan Minimization 

The results of Table 8 show that the CP model emerges as the best approach for makespan 

minimization since all problems can be solved to optimality in approximately one hour. With the 

exception of P13M, the SV model is also successful at finding the optimal solutions but fails to 

prove optimality for P8M, P11M and P13M. Concerning the novel multiple time grid formulations, 

CT3I is at least as competitive as SV and better than CT4I, which returned slightly worse solutions 

for P11M and P13M.  
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8. Overview of Main Features of Alternative Formulations 

In order to mark the end of an extensive comparison between several conceptually different 

approaches, of which this paper is the third part, we find it convenient to summarize their main 

characteristics and suggest a ranking. Table 9 provides the most relevant conclusions. 

8.1. Time Grid-based Continuous-Time Formulations 

The research21,22 has shown us that the use of a single time grid to solve single/multistage 

problems, not involving shared resources such as utilities or manpower, is clearly a bad option. The 

results were based on the RTN formulation of Castro et al14, which involves the need to specify both 

the number of time points and the number of time intervals that any task can span. Although recent 

developments16 have brought a formulation that does not need the latter specification to achieve a 

good performance in multipurpose problems, we believe that the main drawback of such single time 

grid formulations lies with the large value of |T| that is required to find global optimal solutions to 

the problem. This problem can become more severe when sequence dependent changeover tasks are 

involved, since the end of the processing task and its subsequent cleaning task will generally occur 

at different time points. Naturally, the use of a single time grid is more advantageous to model the 

transfer of material between consecutive stages, so it can still be useful in small problems involving 

shared resources and not featuring sequence dependent changeovers. 

In view of the above, the development of multiple time grid formulations was the next logical 

step. Their ability to fit any task, be it just processing or combined processing and changeover, into a 

single time interval, was a significant achievement, since it allowed to consider the minimum 

possible number of time points per grid, i.e. one time interval per order allocated to the equipment 

unit in question. Using a smaller number of time points in any given time grid seems to be the key 

issue since the developed multiple time grid formulation actually requires more time points in total 

(|T|×|M|), than those used by single time grid formulations. The use of multiple time grids also 

allowed for a very efficient way of dealing with the objective of total earliness minimization, mainly 

because it is the only continuous-time mathematical programming approach, to the best of our 

knowledge, for which the solution of the relaxed problem (LP) can differ from zero, corresponding 
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to the lowest integrality gaps. Despite the fact that it requires substantial changes to deal with 

sequence dependent changeovers, it was found to be the best performer in single stage problems. In 

multistage problems, it becomes more difficult to model the transfer of material between 

consecutive stages and this becomes evident by its increasingly poor performance as the number of 

stages increases. Other important characteristics are its overall consistency irrespective of the 

objective function under consideration and solution dependency on the selected number of time 

points, which inevitably leads to an iterative procedure in the search for the optimal solution. 

8.2. Continuous-Time Formulation based on Global Precedence Sequencing Variables 

Not having to rely on explicit time grid(s) has the obvious advantage of needing to solve every 

problem only once in the search for the global optimal solution. The use of global precedence 

sequencing variables also leads to mathematical problems involving fewer binary variables. 

Furthermore, the model is basically the same irrespective of sequence dependent changeovers being 

involved or not. Its main advantage is the ability to find very good solutions, very fast, which when 

allied to sufficient computational effort, translates into the formulation being able to often find the 

global solutions for these test problems, even though it is sometimes impossible, due to rapidly 

growing tree sizes, to prove optimality. As a result, it has to be considered the best approach for 

multistage problems, even though, as it was shown, it has an important limitation since in 

exceptional cases involving sequence dependent changeovers, it may cut-off the optimal solution 

from the feasible space. 

8.3. Discrete-time formulation 

The discrete-time formulation is not a clear-cut case. For problems without sequence dependent 

changeovers it should always be considered as an option. The fact that it relies on a single time grid, 

which facilitates the modelling of shared resources, together with its characteristically low 

integrality gap, when compared to the continuous-time formulation, makes it very efficient even for 

very large problem sizes, particularly for total earliness minimization in single stage problems. 

Naturally, there is always the issue of discretizing the time horizon, which is often viewed as a 

disadvantage since it usually means considering approximate versions of the problem by rounding 

33 



its data. However, it can also be regarded as an advantage, since it gives an obvious way of relaxing 

the problem (by increasing the interval length and hence decreasing the number of time intervals) 

and still come up with very good solutions if feasibility is not compromised by the rounding errors. 

For this reason, the computational performance is less dependent than its continuous-time 

counterparts on issues like number of orders, units and stages. The addition of sequence dependent 

changeovers leads to a significant increase in the number of binary variables to be considered and 

consequently in the model size, causing a significantly decrease in performance, more so in 

multistage problems. Another disadvantage of the discrete-time formulation is that it needs an 

iterative procedure for makespan minimization that may involve several iterations and a large 

amount of computational resources before the optimal solution is found. 

8.4. Formulations relying on Constraint Programming 

Constraint programming formulations are a good option since OPL Studio global constraints and 

special constructs make the model quite competitive. When compared to the alternative approaches 

it is significantly better when sequence dependent changeovers are involved. Concerning the 

different objective functions, it is clear that the performance of the CP model improves as the 

number of variables involved in the objective function decreases, excelling for makespan 

minimization, which is in agreement with observations by Hooker3. Similarly to the single time grid 

approaches, handling of shared resources should not be a problem. Its main disadvantage lies in the 

fact that the first feasible solutions are usually not as good as those of the mathematical 

programming approaches, and that the optimal solution is usually found much later in the search, 

which implies that considerable computational time may be required to find a good suboptimal 

solution (note that search strategies other than the default for the MILP and CP solvers may 

eventually lead to different conclusions). Also, it only handles integer data, a limitation that 

although easily overcome by a change of basis to consider real numbers, leads to a significant 

decrease in performance, in what is a very similar effect to that observed in the discrete-time 

formulation when the number of time intervals is increased. 

Finally, the hybrid MILP/CP model is a very good alternative particularly for single stage 

problems where the objective function depends solely on the assignment variables and not on the 
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sequencing variables, e.g. total cost minimization. The problem is divided into two parts, the first 

(master problem) finds the optimal assignments of orders to equipment units, which may or not be 

feasible in one or more units. Feasibility is then checked by solving CP feasibility problems for 

every equipment unit. Several iterations are usually required before the first feasible assignments, 

which are also optimal, are found. This is a clear disadvantage since for large problems, the 

simplified MILP can still be very difficult to solve, which means going through just a small number 

of iterations in considerable computational time and yet the possibility of ending up with no feasible 

solution at all. For other problem types, hybrid MILP/CP models have not proved as powerful. 

Overall, the development of successful hybrid methods is directly linked to the finding of a tight 

MILP master problem, the relaxed scheduling problem, which necessarily includes valid and 

efficient integer cuts resulting from the solution of the CP subproblem (either a feasibility or an 

optimization problem) in previous iterations (see Hooker27 and Maravelias and Grossmann4). 

9. Conclusions 

This paper has presented two new continuous-time formulations for the short-term scheduling of 

single/multistage, multiproduct batch plants, where equipment units are subject to sequence 

dependent changeovers and product orders to both release and due dates. The formulations rely on 

the use of multiple time grids, one per equipment resource and are extensions of previous work21,22. 

Their main difference lies on the consideration of changeover tasks. While one formulation uses 

binary variables linked to such tasks, giving rise to 4-index binary variables, the other maintains the 

3-index binary variables of the previous model22 and changes one set of constraints to make it 

possible to handle sequence dependent changeovers. The form of such constraints forces tasks to be 

assigned to time points in a decreasing order, which is contrary to the technique developed21 for total 

earliness minimization since it relies on tasks being assigned to time points in an increasing order, 

i.e. in the opposite way. Both formulations were shown to be very efficient in single stage problems 

with the most surprising result coming from the fact that the 4-index binaries formulation was found 

to be slightly better than its 3-index binaries counterpart, despite featuring a number of binary 

variables that can be up to one order of magnitude larger. This behaviour results from the use of 

tighter timing constraints (measured by a lower integrality gap) by the former, where all tasks that 
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can be executed in a given unit and time interval are aggregated into the same set of constraints, 

whereas the 3-index binaries formulation has the corresponding constraint disaggregated due to the 

need to consider one task defining order index in the constraint domain. As the number of stages 

increases, the performance of the developed multiple time grid formulations decrease steadily and 

feasibility may even be compromised. 

The other goal of the paper has been to provide a critical review of other approaches that are 

suitable for this specific type of scheduling problem. These included an RTN-based discrete-time 

formulation18, a continuous-time model with global precedence sequencing variables5, a constraint 

programming model5 and a hybrid MILP/CP model6 (this last one just for single stage and total cost 

minimization problems). A total of 39 examples were solved and the results, together with those of 

the two previous works21-22, allowed us to identify the main features, strengths and weaknesses of 

each approach, which were thereafter summarized in a comprehensive table. 

Finally, it is reasonable to present our views on what we believe to be the best model, the 

continuous-time formulation with global precedence sequencing variables. Even though other 

approaches may perform significantly better in some problems, in particularly the multiple time grid 

formulation when minimizing total earliness and the constraint programming model when 

minimizing makespan, there are a few arguments that give an edge to that formulation, the most 

important being its ability to always find very good solutions with modest computational effort. This 

will be a critical point when considering real-world applications consisting of hundreds of batches, 

dozens of pieces of equipment and long scheduling periods, where to guarantee optimality is no 

longer the major issue. Preliminary work has shown that decomposition techniques based on that 

same model can be applied for the efficient solution of industrial based problems and this will be the 

subject of our future work on this subject. 

Nomenclature 

Sets/Indices 
I/i, i’= process orders 
Ii’,m=orders that can precede order i’ in unit m 
Ii’,m,t, tmiI ,,' =orders that can be followed by order i’ in unit m starting at time point t 

Im= orders to be processed in unit m 
K/k=process stages 
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Km=stage where unit m belongs 
M/m= process equipment units 
Mi=machines that can process order i 
Mk=machines belonging to stage k 
T/t, t’,t’’=Points of the time grid 

Parameters 
ci,m=processing cost of order i in machine m 

min
,micl =minimum changeover time from order i in unit m 
max
,micl =maximum changeover time from order i in unit m 
Δ

miicl ,', =difference between maximum and actual changeover from order i to i’ in unit m 

cli,i’,m=duration of changeover task from order i to i’ in unit m 
di=due date of order i 

id =normalised due date of order i 

H=time horizon 
hbi,m= highest time at which order i can start to be processed in unit m 
lbi,m=lowest time at which order i can start to be processed in unit m 

mibl , = lowest possible starting point of order i in unit m 

lbmm,t=lowest time at which unit m at time point t can become active 
pi,m=processing time of order i in machine m 
ri=release date of order i 

ir =normalised release date of order i 

ubi,i’,m=highest time at which order i (followed by order i’) can start to be processed in unit m 

miibu ,', =highest starting point of order i (followed by order i’) in unit m 

δ=duration of each time interval in the discrete-time grid 
τi,m=processing time of order i on machine m as an integer multiple of δ 

mii ,',τ = duration of combined processing and cleaning task of order i to i’ in unit m as an integer 

multiple of δ 

Variables 
Ci,m,t=excess amount of equipment state associated to order i of unit m at time point t 

0
,miC =initial amount of equipment state associated to order i of unit m 

MS=makespan 
Ni,m,t=binary variable that assigns the start of order i in unit m to time point t 

tmiiN ,,', =binary variable that assigns the start of order i (followed by i’) in unit m at time point t  

Rm,t=excess amount of machine m at time point t 
Si,k,t=excess amount of material resulting for order i produced at stage k at time point t 

f
kiT , =ending time of order i in stage k 

Tt,m=absolute time of event point t in unit m 
TDi,k=transfer time of order i in stage k 
xi,i’,k=binary global precedence sequencing variable of order i over i’ in stage k 
yi,m=binary assignment variable of order i to unit m 
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List of Tables 

Table 1. Single stage problems: Overview of computational performance (CPU s) for total cost 
minimization. 

problem/model optimum CT4I CT3I SV DT CP MILP/CP 
P1C (|I|=12, |M|=3) 101 10.0 11.5 118 713d 0.75 13.4 
P2C (|I|=12, |M|=3) 87 5.42 2.73 33.1 1250e 0.19 1.11 
P3C (|I|=15, |M|=5) 121 23.2 28.8 20000a 1395e 133 37.4 
P4C (|I|=15, |M|=5) 106 3.80 1.88 510 2602f 15.1 6.81 
P5C (|I|=20, |M|=5) 163 66.9 4996 12217b 551g 57000i 6935 
P6C (|I|=20, |M|=5) 146 27.9 39.9 15844c 2084h 7620 83.3 

AS=approximate solution of the problem, δ value within brackets where 1 corresponds to 
considering the exact problem data. FTP=fewer time points were used than those required to find the 
optimal solution, |T| value within brackets. BPS=best possible solution at the time of termination. 
MRL=maximum resource limit exceeded. NS=no solution found. OM=solver ran out of memory. 
SO= suboptimal solution returned. 

aMRL, BPS=119.09.bOM, BPS=155.42. cOM, BPS=143.14. dAS (δ=5), SO=105. eAS(δ=2). 
fAS(δ=2), SO=107. gAS(δ=5). hAS(δ=5), SO=147.iMRL, SO=166. 

 

Table 2. Computational statistics for problem P5C 

model CT4I CT3I SV DT CP MILP/CP 
|T| 6 6 - 87 - - 

discrete variables 6924 530 290 45360 - - 
single variables 7655 561 311 54596 120 - 

constraints 731 621 1946 9161 180 - 
RMIP 157.59 155.78 152.45 160.36 - - 
Obj 163 163 163 163b 166 163 
CPU 66.9 4996 12217a 551 57000c 6935 

nodes/choice points/major 
iterations 

2141 1.69E6 2.34E6 178 1.84E8 211 

aOM, BPS=155.42. bAS(δ=5). cMRL. 
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Table 3. Single stage problems: Overview of computational performance (CPU s) for total earliness 
minimization. 

problem/model optimum CT4I SV DT CP 
P1E (|I|=12, |M|=3) 690 4.28 427 451 2.36 
P2E (|I|=12, |M|=3) 146 4.11 653 190 92.1 
P3E (|I|=15, |M|=5) 559 17.9 6842b 4506 11146g

P4E (|I|=15, |M|=5) 54 4612 9059c 169 3058 
P5E (|I|=20, |M|=5) 1187 208 9821d 3614f 83000h

P6E (|I|=20, |M|=5) 150 62.3a 6259e 522 142000i

aSO=164, FTP(|T|=5), OM for |T|=6 with worse solution. bOM, SO=667, BPS=0. cOM, BPS=0. 
dOM, SO=1458, BPS=0. eOM, SO=190, BPS=0. fAS(δ=5), SO=1230. gSO=561, although solver 
solved to optimality (special case). hMRL, SO=1214. iMRL, SO=767. 

 

Table 4. Single stage problems: Overview of computational performance (CPU s) for makespan 
minimization. 

problem/model optimum CT4I CT3I SV DT CP 
P1M (|I|=12, |M|=3) 409 15.5 193 17.5 8073g 0.98 
P2M (|I|=12, |M|=3) 171 3.55 11.7 14.9 29509 0.84 
P3M (|I|=15, |M|=5) 291 201 8373 17255 980h 122 
P4M (|I|=15, |M|=5) 147 1435 1.76 2.42 61.5 702 
P5M (|I|=20, |M|=5) 337? 8782a 36692c 8011e 8311i 54000k

P6M (|I|=20, |M|=5) 164? 6290b 20000d 16062f 13891j 55000l

aOM, SO=338, BPS=330. bOM, SO=168, BPS=158. cOM, SO=347, BPS=319. dMRL, SO=166, 
BPS=150. eOM, SO=347, BPS=290. fOM, SO=167, BPS=147. gAS(δ=2), SO=410. hAS(δ=5), 
SO=295. iAS(δ=5), SO=340. jAS(δ=2). kMRL, best solution=337. lMRL, SO=237. 

 

Table 5. Multistage problems: Overview of computational performance (CPU s) for total cost 
minimization. 

problem/model optimum CT4I CT3I SV DT CP 
P7C (|I|=8, |M|=6, |K|=2) 18 3.76 0.64 0.5 440d 17.2 
P8C (|I|=8, |M|=6, |K|=2) 1087 0.91 1.95 2.3 262d 159 
P9C (|I|=8, |M|=6, |K|=3) 82 1481 1773 12014c 55500e 49.7 
P10C (|I|=8, |M|=6, |K|=3) 647 3.97 1.62 0.38 13754f 70.2 
P11C (|I|=12, |M|=6, |K|=2) 71 112 5.88 6.20 1181d 11623 
P12C (|I|=8, |M|=8, |K|=4) 125 48000a 60000b 4.81 304g 1075 
P13C(|I|=15, |M|=4, |K|=2) 96 481 85.6 2.88 100000h 924 

aMRL, NS, BPS=121.4. bMRL, NS, BPS=118.3. cOM, BPS=79.2. dAS(δ=5). eMRL, NS(δ=5). 
fAS(δ=5), SO=649. gAS(δ=5), SO=132. hMRL, AS(δ=5), SO=101, BPS=95.53. 
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Table 6. Computational statistics for problem P12C 

problem/model CT4I CT3I SV DT CP 
|T| 6 6 - 56 - 

discrete variables 1796 368 176 5648 - 
single variables 2317 441 209 11537 160 

constraints 1153 1041 545 5865 360 
RMIP 111.14 111 111 123.86 - 
Obj - - 125 132c 125 
CPU 48000a 60000b 4.81 304 1075 

nodes/choice points 389500 6.34E6 8866 362 4351343 
aMRL, NS, BPS=121.4. bMRL, NS, BPS=118.3. cAS(δ=5), SO=132. 

 

Table 7. Multistage problems: Overview of computational performance (CPU s) for total earliness 
minimization. 

problem/model optimum CT4I SV DT CP 
P7E (|I|=8, |M|=6, |K|=2) 88 1.56 2.76 16672c 5.58 
P8E (|I|=8, |M|=6, |K|=2) 90 1.38 48.2 1339c 8.41 
P9E (|I|=8, |M|=6, |K|=3) 217 19.7 15.3 1258d 127 
P10E (|I|=8, |M|=6, |K|=3) 99 3.09 278 187e 8.66 
P11E (|I|=12, |M|=6, |K|=2) 209 216 60000a 520f 60000i

P12E (|I|=8, |M|=8, |K|=4) 150 143 315 163g 2963 
P13E (|I|=15, |M|=4, |K|=2) 571? 3448 2500b 60000h 55000j

aMRL, BPS=196. bOM, SO=600, BPS=157. cAS(δ=2). dAS(δ=5), SO=230. eAS(δ=5), SO=105. 
fAS(δ=5). gAS(δ=5, obj=148). hMRL, AS(δ=5), SO=950, BPS=597.6. iMRL, SO=243. jMRL, 
SO=848. 

 

Table 8. Multistage problems: Overview of computational performance (CPU s) for makespan 
minimization. 

problem/model optimum CT4I CT3I SV DT CP 
P7M (|I|=8, |M|=6, |K|=2) 542 60.2 33.9 21.8 156h 2.06 
P8M (|I|=8, |M|=6, |K|=2) 584 40.9 8.89 55000e 228i 0.27 
P9M (|I|=8, |M|=6, |K|=3) 915 778 8.83 71.5 150000j 60.1 
P10M (|I|=8, |M|=6, |K|=3) 914 87.3 18.0 1439 66118k 2.00 
P11M (|I|=12, |M|=6, |K|=2) 233 60000a 14082 23408f 15430l 1013 
P12M (|I|=8, |M|=8, |K|=4) 265 36541 54440 496 11315m 732 
P13M (|I|=15, |M|=4, |K|=2) 273 60000c 60000d 8714g 60000n 3721 

aMRL, SO=234, BPS=231. cMRL, SO=313, BPS=270.7. dMRL, SO=299, BPS=263. cOM, 
BPS=79.2. eMRL, BPS=571. fOM, BPS=220.1. gOM, SO=294, BPS=247.7. hAS(δ=5), SO=550. 
iAS(δ=2), SO=586. jMRL, NS(δ=10). kAS(δ=10), SO=930. lAS(δ=5), SO=240. mAS(δ=5), SO=280. 
nMRL, NS(δ=5). 
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Table 9. Overview of the main characteristics of the tested approaches for the short-term scheduling of single/multistage multiproduct batch plants 

Type of model Continuous-time Discrete-time CP Hybrid MILP/CP 
Feature/Based on Single time grid Multiple time grids Global precedence 

sequencing variables 
Single, uniform time grid Global constraints and 

special constructs 
Sequence of 

assignment and 
feasibility problems 

Sequencing of tasks Implicit through assignment of tasks to ordered 
time points 

Explicit through model 
variables 

Implicit through 
assignment of tasks to 

ordered time points 

Implicit through activities starting and ending 
times 

Modeling of material 
transfer between stages 

Explicit through excess 
resource variables 

------------Implicit in model constraints------------ Explicit through excess 
resource variables 

Implicit through global 
constraint precedes 

N.A. 

Modeling of 
changeovers 

Explicit through 
processing and cleaning 

extent variables 

Either explicit through 
binary variables or 
implicitly in model 

constraints 

Implicitly in model 
constraints 

Explicit through combined 
processing and cleaning 

extent variables 

Implicitly through transition matrices associated to 
activities 

Objective functions 
handled 

----------------------------------------------Minimization of total cost, total earliness and makespan------------------------------------------------ Total cost minimization 

A priori decisions that 
can affect final solution 

Number of time points; 
number of intervals any 

task can span 

Number of time points 
of each time grid 

None Duration of uniform time 
intervals 

None None 

Single stage 
performance 

Very poor Very good Good Good Good Very good 

Multistage performance Poor Good Very good Fair Good N.A. 
Strengths Handling of shared 

resources 
Minimization of total 

earliness; overall 
consistency for other 

objectives 

Ability to find very 
good solutions very 

fast; generates 
relatively small 
problem sizes 

Ability to solve 
approximated versions of a 
problem; minimization of 
total earliness; handling of 

shared resources 

Minimization of 
makespan; handling of 

shared resources 

Minimization of total 
cost in single stage 

problems 

Limitations Solution is highly 
dependent on a priori 
decisions; only useful 

for very simple 
problems 

Solution dependency 
on number of time 

points; inadequacy to 
handle shared 

resources; can fail to 
find feasible solutions 
in problems involving 

several stages 

Minor chance of 
leading to suboptimal 

solutions when dealing 
with sequence 

dependent changeovers; 
global optimality can 

be hard to prove; 
shared resources can be 

difficult to handle 

Solution dependence on the 
chosen interval length; can 
lead to prohibitively large 

problem sizes when 
sequence dependent 

changeovers are involved; 
requires iterative procedure 
for makespan minimization 
where optimal solution is 

the first feasible one  

Minor chance of 
leading to suboptimal 

solutions when dealing 
with sequence 

dependent changeovers; 
can stuck in poor 
solutions since 

optimization goes from 
bad to good solutions; 
handles integer data 

only 

Only efficient for total 
cost minimization in 

single stage problems; 
can fail to find feasible 

solutions whenever 
simplified assignment 
problem is difficult to 

solve; first feasible 
solution is optimal; 
handles integer data 

only 
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List of captions for figures 

Figure 1. RTN process representation for order I1, featuring a total of |M| machines and |K| stages 
(changes on the units cleaning states omitted for simplification). 

Figure 2. RTN process representation for unit M1, showing all possible cleaning states (changes on 
the orders material states omitted for simplification). 

Figure 3. Continuous-time grid employed (one for each equipment unit). 

Figure 4. Uniform discrete-time grid. 

Figure 5. Possible solution from multiple-time grid, continuous-time formulation F1 (|I|=3, |M|=3, 
|K|=3, and |T|=4). 

Figure 6. Possible solution from multiple-time grid, continuous-time formulation F1 (|I|=3, |M|=3, 
|K|=1 and |T|=3). Orders are assigned from the first to last time points. 

Figure 7. Possible solution from multiple-time grid, continuous-time formulation F2 (|I|=5, |M|=3, 
|K|=1 and |T|=3). Orders are assigned from the last but one to the  first time points. 

Figure 8. Part of the optimal schedule for example P3E. Optimal solution (above) and suboptimal 
solution (below) from continuous-time MILP with global precedence sequencing variables and CP 
models. 
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