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Abstract 

This work addresses the scheduling of continuous plants subject to energy constraints related to 

time-dependent electricity pricing and availability. Discrete and continuous-time formulations are 

presented that can address these issues together with multiple intermediate due dates. Both 

formulations rely on the resource-task network process representation. Their computationally 

performance is compared for the objective of total electricity minimization with the results favoring 

the discrete-time model due to the more natural way of handling such a wide variety of discrete 

events. In particular, it can successfully handle problems of industrial size. Nevertheless, the new 

continuous-time model is a major breakthrough since it is the first model of its type that is able to 

effectively incorporate time-variable utility profiles. When compared to a simple manual scheduling 

procedure, the proposed scheduling approaches can lead to potential electricity savings around 20% 

by switching production from periods of high to low electricity cost.  
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1. Motivation 

Enterprises are currently under pressure to produce at the lowest possible cost within continuously 

changing economic constraints1. To achieve this goal, they must actively look at the best operating 

practices and optimize these both globally and locally. Within this overall goal, scheduling plays an 

important part. 

This work is motivated by a real industrial problem that we cannot disclose for confidentiality 

reasons. It involves the final stage of a multiproduct plant with electricity intensive parallel 

equipment units, where scheduling involves deciding when each unit has to produce a certain 

product. Most of the times, this is made manually by the operator according to heuristic rules. The 

products are then sent to storage units, where they are stored until dispatching takes place. Meeting 

customer demands on time is vital, and for this reason, in some plants, no other factors are taken into 

account besides trying to keep the storage units full in order to be able to fulfill the orders. Plant 

scheduling is difficult due to the following factors: large combinatorial size arising from the number 

of equipment units, products and storage units; various operating and contractual constraints; 

liberalized electricity market with nontransparent billing practices. Due to the inherent complexity, 

the operator scheduling choices may be far from the optimal ones. 

The most challenging aspect of plant scheduling is undoubtedly the incorporation of energy 

constraints related to electricity pricing and availability. We consider in this paper the case where in 

the planning stage, contracts are agreed between the electricity supplier and the plant, which often 

specifies maximum levels of power usage. If electricity consumption exceeds this threshold, the 

plant incurs in stiff penalties, whereas underproduction costs the same as planned production. Even 

for normal production, electricity cost varies significantly throughout the day, and this must be taken 

into consideration within the modeling framework. Another important aspect, concerns meeting the 

sales forecasts, which represent the minimum amount of products that has to be available in the 

storage units, during the time horizon. These are typically considered to occur at the end of each day. 

Accounting for events that occur at predetermined points of time, for instance at a specific hour of 

a given day, being either a change in electricity cost level or the occurrence of a demand point, may 
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be relatively easy or extremely complex, depending on the type of time representation employed. 

This is straightforward with a discrete-time approach, whenever a sufficiently fine time grid can be 

used. In such cases, the preselected time of some of the grid time points, will match exactly those of 

the points of change, and so the constraints are easier to enforce. In contrast, with continuous-time, 

the absolute time of all event points is determined by the solver and thus it is much harder to relate 

the events with the points of change. 

This paper presents a new continuous-time formulation that effectively handles time dependent 

cost parameters and discrete demand points. Incorporation of the former aspect within a continuous-

time formulation has not been reported before to the best of our knowledge, whereas the constraints 

used to model the latter aspect are conceptually similar to those used by Maravelias and Grossmann2. 

The proposed approach builds on the general multipurpose formulation of Castro et al.3, which can 

address problems involving batch and continuous tasks, efficiently. Indeed, for batch plants, a study4 

has found it to be the best single time grid formulation. Nevertheless, the constraints that are given 

are only suitable for continuous plants, merely because batch tasks, unlike continuous tasks, cannot 

be divided in as many times as required. In other words, while the output material from a batch task 

is produced entirely at its end, after a specified period of time, the one from a continuous task is 

continuously being produced. Thus, the execution of a single instance of a continuous task is 

equivalent to the execution (at the same processing rate) of multiple instances producing the same 

total amount of material, in sequence, during the same time period. The new formulation is also 

more detailed with respect to the resource balances. In order to rigorously account for inventory 

constraints, balances need to be considered both at the start and end of time slots, so that the effect of 

resource consumption and generation occurring due to continuous tasks is considered in full, as 

explained in Schilling & Pantelides5. 

The new formulation is built on a unified framework for process representation, the Resource-Task 

Network (RTN) of Pantelides6. This means that the model variables and constraints are written is 

terms of abstract entities like resources, tasks and event points, so it has a much wider scope that the 

single stage industrial case study used for illustrative purposes. 
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2. Problem Definition 

During the final stage of the process, an intermediate material is transformed into one of different 

final products, characterized by chemical composition and particle size distribution, through the use 

of electricity. These are then sent to storage units, where they wait until customer dispatch takes 

place. This process is illustrated in Figure 1. It emphasizes that a particular storage unit may be 

suitable for just a subset of the products. In fact, the product allocated to a storage unit normally 

never changes. Since it is straightforward to incorporate such constraints in the upcoming models, it 

is preferable to consider full connectivity between units to increase their flexibility. In other words, 

we will be assuming that every storage unit can handle all products (shared storage), but only one at 

a time. 

Final processing stage

Machine 1

Machine 2

Machine M Product P

Product 2

Product 1 Storage 1

Storage 2

Storage S

Customer 1

Customer 2

Customer 3

Intermediate

 

Figure 1. Final processing stage of industrial case study 

Typical plant schedules are established over one week, so this will be the time horizon (H=168 h) 

assumed for the remainder of the paper. Naturally, it is straightforward to consider other values. Let 

M represent the set of machines, P the set of products and S the storage units. Machines are 

characterized by: (i) power requirements for each product pwp,m [MW]; (ii) processing rates, ρp,m 

[ton/h]. Let DY and HR be sets whose elements are the days of the week and the hours of the day, 

respectively. Each product may have multiple demands over the week, and can occur at any hour of 

the day, dp,dy,hr [ton]. Finally, storage units have known maximum capacities, caps [ton]. 
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The energy contract signed by the plant and electricity provider establishes a certain pricing 

policy. Electricity cost is typically lower during the night and higher during the day. Similarly to the 

product demands, it is generally assumed that the cost can change every hour of every day19. The 

maximum level of total power consumption is in turn specified through the parameter pwxhr,dy 

[MW]. For illustration purposes, the energy policy given in Duarte et al.7, is used. It consists of three 

energy levels, E, with prices ce of 0.0481, 0.0945 and 0.2162 [€/kWh]. The weekly distribution is 

given in Figure 2. 
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Figure 2. Electricity cost policy within a working week. 

The objective will be to minimize the total energy cost subject to constraints on resource 

availability that includes processing and storage units, and utilities (electricity).  

3. Resource-Task Network Representation of the Process 

The models proposed in sections 5 and 6 are built on the Resource-Task Network to make them as 

general as possible. The next step is thus to identify the set of process resources and tasks, which 

will be identified as a member of one or more subtypes, in order to better understand the structural 

parameters generation process and the different terms in the model constraints. For that purpose, we 

use the guidelines given in Castro et al.8, to define new subtypes such that the specifics of the 

industrial problem at hand can be incorporated. The final result is the RTN given in Figure 3. Note 

that it is helpful to generate the complete drawing even though it is not absolutely necessary. 
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Figure 3. Resource-Task Network representation of final processing stage. 

3.1. Resources Identification 

In an RTN, resources are represented as circles. Going from left to right in Figure 3, we have the 

material input to the scheduling problem that will be called raw-material, and named RM (the sole 

member of set RRM), despite the fact that it is in reality an intermediate process material. It is 

continuously consumed while a product is being produced. While already in the state of final 

product, it still has to go through storage and wait until dispatching. It is thus required to identify 

product location, which can be in three different places: (i) immediately after the machines, RLM; (ii) 

contained in storage, RLS; or (iii) inside the final transportation vessel, RFP. In the first situation there 

is no need to differentiate the machine where the product is produced, so a total of |P| resources are 
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generated, from P1_M to PP_M, where the M stands for after the machines. In contrast, in the second 

possible place, we have to distinguish in which storage unit (or group of units working together) the 

product is located, since they can have different capacities. The result is the generation of additional 

|P| × |S| resources. Resources continuously produced and/or consumed, are the elements of set 

RCT=RRM∪RLM∪RLS. These are colored in dark grey to facilitate identification. The final location 

gives rise to the final product resources, P1 to PP, which are filled in black. And this ends the 

material resources. 

Moving on to the equipment resources, set REQ, we have processing equipment, storage equipment 

and eventually transportation equipment. They are however handled differently, so subset RTC is 

needed. This includes solely the former type, which are generally the most important resources in a 

scheduling problem. They will have a strong impact on the final form of the continuous-time grid 

due to their participation in the timing constraints. In this specific case, the machines are the 

members of RTC and are filled in shadowed white, unlike storage ubits, which have a light grey 

background. 

Finally there are the utilities, RUT, the subject of this paper. Continuous-time formulations9-12 have 

so far considered a maximum utility availability that remains constant throughout the time horizon. 

For steam and cooling water we are dealing with flowrate values, typically given in [ton/h], while for 

electricity we deal with power [MW]. However, as discussed earlier (section 2), we will generally 

assume a utility availability profile, where in the limit, the specified maximum availability can 

change every hour of the day during the entire week. 

3.2. Tasks Identification 

Tasks are represented as rectangles in an RTN, and must be characterized fully in terms of its 

resources, unlike in a State-Task Network (STN) representation9,10,13. More specifically, the STN 

representation of this process would show just |P| processing tasks since there is no need to explicitly 

say in which unit the product is going to be executed. In contrast, in the RTN of Figure 3, the 

processing tasks must also be disaggregated into all the possible machines. 
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In Figure 3, there are three types of tasks. The processing tasks, filled in white, are performed 

continuously at a known rate, set Ic. The execution of a processing task involves four resources, the 

ones linked by arrows to the tasks. In order to differentiate between continuous and discrete 

interaction, solid and dashed lines are respectively used. Some lines will have arrows on both 

directions, denoting consumption of the resource at the start of the task and production at its end. As 

an example, Process_P1_M1 continuously consumes RM while producing P1_M. It also consumes 

power from electricity EL and machine M1 at its start, only to regenerate M1 at its end. 

Storage tasks come next (Is, in light grey). They are more complex than those described in Castro 

et al.8, since now the storage units are shared rather than dedicated to a single material resource. 

These storage tasks are hybrid, consisting of two parts: (a) Send_to_storage, continuous; (b) 

Hold_in_storage, batch. Any part will trigger the consumption of the corresponding destination 

storage unit (e.g. S1) such that it is made unavailable for other products during that time. Both can be 

active simultaneously, in order for a product to enter a partially filled storage unit with the same 

quality. The continuous part consumes a product-after-machines resource (e.g. P1M) while it is being 

produced by Process_P1_M1,…, Process_P1_MM, and produces a product-at-storage resource (e.g. 

P1_S1). The batch part can be viewed as temporarily hiding the material resource (e.g. P1_S1) for one 

time interval. 

The last subset of tasks, transfer the products from storage to customers, It (dark grey). They are 

assumed instantaneous, meaning that they last much shorter when compared to the processing tasks. 

They could have also been easily defined as batch or continuous. We are also assuming that no 

equipment resource is involved, which is again not in any way limiting. 

3.2.1. Further Requirements for Continuous-time Model 

Ideally, the RTN representation of the process should be independent on the model that is 

employed to solve the scheduling problem. However, this is not always the case. In the problem at 

hand, the electricity cost parameter is time dependent and we need to make sure that the correct 

parameter is considered. While in discrete-time this is not particularly difficult since the energy level 

can be directly linked to a subset of the time intervals, in continuous-time the link is at the task level. 
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In other words, we need to distinguish whether the task is executed at e1, e2, or eE, with subset c
eI  

indicating the processing tasks processed at energy level e. Further disaggregation of the processing 

tasks is thus required (Figure 4), leading to a total |P|×|M|×|E| of such tasks. Nevertheless, the exact 

same resources are involved so Figure 3 is still very much useful. 

Process_P1 _M1

RateP1,M1
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RateP1,M1

Process_P1 _M1 _EE
RateP1,M1

.

.
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Figure 4. Due to time dependent electricity costs, processing tasks need to be further disaggregated 
for the continuous-time model. 

4. RTN-based Model Entities 

This section focus on the model entities that are used regardless of the time representation 

employed by the Resource-Task Network based model. In the case of the parameters, this does not 

necessarily mean that they have the same domain or take the same values. Additional variables for 

the continuous-time model are explained following the description of the underlying time grid, in 

section 5.1. 

4.1. Variables 

Tasks are generally characterized by extent variables, one binary, Ni,t, and one continuous set, ξi,t. 

The former identify the start of task i at time point t, while the latter normally give the amount 

handled by the task. We are implicitly assuming that the tasks are either instantaneous (start and end 

at t) or continuous, which can be made to last a single time interval without loss of generality3. In 

practice, this means that a few consecutive instances of the task will have to be performed to meet 

large demands. Batch tasks that last one time interval independently of its duration are also included. 

In fact, the storage tasks described in section 3.2 are hybrid, consisting of a continuous and a batch 

part that can occur simultaneously, so another set of continuous extent variables, *
,tiξ , is required for 
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their full characterization. It is also important to highlight that no equipment resource is involved in 

the transfer tasks. Thus, binary variables are not necessary. 

The breakthrough of the RTN6 comes from the unified treatment of resources. The mathematical 

formulations keep track of resource availability over time through the excess resource variables Rr,t. 

The word excess is crucial, with non-zero values indicating that there is still some amount of 

resource r available at event point t beside the amount that is allocated to batch tasks that will start, 

or instantaneous tasks that will be executed at t. Equipment resources are mostly treated as 

individuals, so having Rr,t=0 indicates that there is one task starting at t that uses unit r. If one wants 

to force such equipment to be idle during t then it must be available in excess and the constraint to 

use is Rr,t=1. 

In the presence of continuous tasks, another set of excess resource variables5, end
trR , , is sometimes 

required. These give the excess amount of resource r immediately before the end of interval t. In this 

particular problem there were two reasons for their use: (i) the need to occupy a storage unit right 

from the start of a processing task, in order to ensure that there is one available; (ii) the need to know 

the amount in storage, to guarantee that the maximum capacity is not exceeded. Events triggered by 

the start or end of tasks will affect the two types of excess resource variables differently (see section 

5.3). 

Resource availability at the beginning of the time horizon, 0
rR , is often known for all resources 

and so it is normally defined as a parameter. The value for equipment units is given in Eq. (1). 

Nevertheless, the scope of the mathematical formulation is wider if such an entity is a variable. This 

is particularly useful if one wants to solve the simultaneous design and scheduling problem8, where 

one of the goals is to select the most appropriate units for the plant. In this particular case, and even 

though the raw-material requirements can easily be determined from the product demands that are 

fixed, the initial availability of the raw-material resource r∈RRM, will be a variable in the model. It 

will be the only input of raw-material to the system (it is straightforward to consider otherwise) and 

so it will be equal to the total amount required over the full time horizon. For all other resources it 

will be set to zero (Eq. 2). 
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EQ
r RrR ∈∀=10  (1) 

RMEQ
r RRrR ∪∉∀= 00  (2) 

4.2. Structural Parameters 

The RTN representation of the process is brought into the model by the structural parameters. 

These can be slightly different depending on whether we are using a discrete or continuous-time 

formulation14. However, in problems with tasks lasting at most a single time interval, the discrete-

time formulation can use the exact same parameters as for the continuous-time17 model. Structural 

parameters give either the total resource consumption/production, or the proportion relative to the 

amount handled by the task.  

There are five sets of structural parameters, corresponding to different types of interaction with the 

extent variables. Discrete interactions occur either at the start or end of the task, while a continuous 

interaction takes place throughout the execution of the task. Parameters µr,i, and ir ,μ are the discrete 

interactions associated with variables Ni,t, respectively for the start and end of the task. They are used 

whenever the amount of resource consumed/produced is independent on the amount handled by the 

task, as for equipment units. For material resources one normally relies on the discrete interactions 

associated with the continuous extent variables ξi,t, i.e. parameters νr,i and ir ,ν . Finally, parameters 

λr,i hold the continuous interactions associated with the continuous extent variables, either ξi,t or *
,tiξ . 

While there can be many parameters in total, the large majority will be equal to zero and those that 

are not will mostly have a value of either 1 or -1. After some practice, deriving them from the RTN 

becomes a relatively easy task. As an example, for the case study at hand we have: 

µM1,i=-1; 1, =iM1μ ; µEL,i=-pwP1,M1; λRM,i=-1; λP1_M,i=1 -∀i=Process_P1_M1 (3) 

 µS1,i=-1; 1, =iS1μ ; νP1_S1,i=-1; 1,_ =iS1P1ν ; λP1_M,i=-1; λP1_S1,i=1 ∀i=Store_P1_S1 (4) 

νP1_S1,i=-1; 1, =iP1ν  ∀ i=Remove_P1_S1 (5) 
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4.3. Other Parameters 

While structural parameters link tasks with resources, there are also parameters that are either 

related to tasks or to resources. These have already been given for the process entities such as 

machines and products, so now we just need to make the correspondence to the abstract entities of 

the RTN before assigning the appropriate values. An algorithm was devised for this purpose that 

simply generates the tasks and resources from the set of products, storage units, machines and 

electricity levels, while defining functions (fx) to keep track of the correspondence. These may also 

depend on whether the problem is to be solved with a continuous or discrete-time formulation (c or d 

superscript, respectively). 

Ic=∅; Iec=∅
i=1; p=1

m=1

e=1

Ic=Ic∪{ii}; Iec=Iec∪{ii}
ρimax=ρp,m

i=i+1
e=e+1

YES

NO

m=|M|?

e=|E|?

p=|P|?

m=m+1
NO

YES

p=p+1

END

NO

YES

 

Figure 5. Part of the algorithm responsible for generation of sets Ic and c
eI . 

Figure 5 illustrates the part of the algorithm responsible for generating the continuous tasks (Ic) 

and the elements of set c
eI . As an example for |P|=2, |M|=1 and |E|=3, we get Ic={i1, …, i6} and 
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c
eI

1
={i1, i4}, c

eI
2
={i2, i5} and c

eI
1
={i3, i6}. Along the way, the tasks maximum processing rates max

iρ  

are made equal to the processing rates of the corresponding product-machine pair, ρp,m. This can be 

generically represented by eq 6. 

c
mpi Iif ∈∀= )( ,1

max ρρ  (6) 

The algorithm also generates the different demand points td∈TD and the time periods tp∈TPe for 

electricity levels e, together with their fixed, tfxtd, and starting and ending times, lbe,tp and ube,tp [h]. 

Both the profile of cost and maximum power availability, influence the number of time periods. 

Taking as an example the profile of Figure 2 and assuming constant maximum power availability, 

there are a total of 8, 17 and 10 periods, for the cheap, medium and expensive cost levels, 

respectively. 

For the discrete-time formulation, the electricity cost levels, ce, can be easily associated to specific 

time intervals. It was assumed that the cost can change every hour so there is no problem if 1 is an 

integer multiple of the duration of every time interval, δ. For the other cases, a weighted mean can 

be used, even though the total cost will not be exact whenever there are partially executed tasks (see 

later on section 6.1). Equation (7) emphasizes that the cost for interval t, cet, is a function of δ. 

||,),(2 TtTtcfce e
d

t ≠∈∀= δ  (7) 

Excess resource variables may be subject to given upper ( max
rR , maxend

rR ) and lower bounds ( min
rR , 

minend
rR ). The latter are set to zero while one should also do the same for the former, whenever 

possible. In this way, solution degeneracy will be reduced by ensuring that tasks are executed 

sequentially without waiting periods in between. For instance, doing this for products located 

immediately after the machines will force sending to storage the exact same amount that is 

processed. On the other hand, products should be allowed to exist in storage vessels (RLS), up to an 

amount equal to the maximum capacity, Eq. (8). Nevertheless, an excess of such resources is only 

temporary either because they will be transferred to the client, or because they need to be hidden 

temporarily so that other products do not occupy the same storage vessel. This is accomplished 

through Eq. (9). We ensure that the system receives the minimum amount of raw-material if there is 

none available at the last event point (Eq. 10). 



14 

 

||,,\)(0 3
max

, TtTtRRrcapfR RMCT
Rrs

end
tr LS ≠∈∈∀+=

∈
 (8) 

TtRRRrR RMFPCT
tr ∈∪∈∀= ,\0max

,  (9) 

RM
Tr RrR ∈∀= 0max

||,  (10) 

The system can exchange material with its surroundings at any time. We know exactly when a 

certain quantity of a resource becomes available to, or is removed from, the system. In a discrete-

time model there is a direct link between real time and the time points of the grid, so parameters 

in
tr ,Π  and out

tr ,Π  can easily be derived, see Eqs. (11-12). In this case, they will be used to provide the 

machines with the maximum level of power consumption, and to meet the product demands. When 

using continuous-time formulations, however, the correspondence between the discrete 

inputs/outputs and the event points of the time grid will be accomplished through the use of two 

additional sets of binary variables. Thus, the time index of the input parameters needs to be changed 

to time period tp of energy level e, while that of the output parameters is changed to demand point td 

(Eqs. 13-14).   

||,,)( ,4, TtTtRrpwxf UT
dyhr

din
tr ≠∈∈∀=Π  (11) 

1,,)( ,,5, ≠∈∈∀=Π tTtRrdf FP
hrdyp

dout
tr  (12) 

EeTPtpRrpwxf UT
dyhr

cin
etpr ∈∈∈∀=Π ,,)( ,4,,  (13) 

TDtdRrdf FP
hrdyp

cout
tdr ∈∈∀=Π ,)( ,,5,  (14) 

5. New Continuous-Time Formulation (CT) 

The new continuous-time formulation for short-term scheduling of continuous multiproduct plants 

under variable utility availability costs/profiles and multiple intermediate due dates is given below. 

The main focus will be on issues related to time modeling and the resource balances over time. The 

model entities are summarized in the Nomenclature section with all continuous variables being 

nonnegative. 
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5.1. Time Representation 

The proposed continuous-time formulation uses a single time grid to keep track of events taking 

place, see Figure 6. It uses |T| event points, also named global time points15, that can be placed 

anywhere between the origin and end (H) of the time horizon. Traditionally3,8-11, tasks starting at 

event point t have been assumed to start at the absolute time determined for that event point, Tt. For 

batch tasks with duration shorter than Tt+1-Tt, it is assumed that the output resources stay in the 

corresponding equipment unit for the remaining time. With continuous tasks, it is assumed that they 

last exactly the duration of the time interval while being processed at a rate lower than their 

predefined maximum rate. In reality, however, the tasks have total freedom to start anywhere 

provided that they end before Tt+1. Giménez et al.16 highlight that the number of event points needed 

to represent a solution can be reduced if tasks are not required to start (end) exactly at a time point, 

while presenting a new continuous-time formulation for the short-term scheduling of multipurpose 

batch plants. The current case study is a perfect example for the advantages of such an approach as 

will be explained next. 

1 T
2 3 T-2 T-1

Slot 1 Slot 2 Slot T-2 Slot T-1

0 H  

Figure 6. Continuous-time representation. 

Consider a simple example involving the execution of a single processing task at slot/interval t, 

see Figure 7. The interval boundaries Tt and Tt+1 can result from two consecutive demand points, in 

cases where the duration of the task is lower than the duration of the lowest cost period located 

inside the interval (shown in green). Variable Tst will give the starting time of the task executed 

during interval t (or the earliest starting time amongst all tasks executed). Note that no further event 

points are required. 

Tt Tt+1

Medium costLow costHigh cost

Tst

Processing task

ube1,tp

lbe2,tp

ube3,tp

lbe1,tp

ube2,tp-1

lbe3,tp  

Figure 7. Continuous tasks executed at interval t do not necessarily start at event point t. 
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In the more general case, the amount to produce will require an extension larger than the duration 

of the cheapest time period. In such case, the processing task will be divided by the solver into as 

many times as the number of different energy cost levels, which may include consecutive time 

periods of the same energy level. Each such division will require an additional event point, as can be 

seen in Figure 8. 

Tt Tt+3

Medium costLow costHigh cost

Tst

Processing task

ube1,tp

lbe2,tp

ube3,tp

lbe1,tp

ube2,tp-1

lbe3,tp

Processing task

Tt+2

Tst+2

P. Task

Medium

Tt+1

Tst+1  

Figure 8. Multiple task instances might be required to meet the demands, one for every active 
energy cost level. 

5.2. Timing Constraints 

The fundamental timing constraint for a single time grid formulation3 states that the difference in 

time between two consecutive event points must be greater than the duration of the task taking place. 

Equation (15) is written for all equipment resources involved in the timing constraints. The 

summation is used to reduce the integrality gap3 and implicitly assumes that there can only be one 

task executed in such equipment unit at a certain time. This is ensured by the initial resource 

availability and the excess resource balances (see Eqs. (1) and (27)). 
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A similar constraint can be used to guarantee that the tasks are fully executed within time interval 

t. Equation (16) together with Eq. (17) also satisfy Eq. (15). However, computational studies have 

shown that it is better to keep Eq. (15). 
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We now define a new binary variable, Yt,tp,e, which takes the value of one if, during interval t, tasks 

are processed within time period tp of energy level e. Similarly, we define binary variable out
tdtY , , to 

identify whether or not event point t corresponds to demand point td. It can be assumed without loss 
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of generality that there is: (i) one active time period of an energy level during t; (ii) one event point 

associated to due date td, eqs 18-19. 
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It time interval t is located within time period tp of energy level e, then the starting time of tasks 

must be greater than the time period lower bound, Eq. (20). Likewise, they must end before its upper 

boundary (see Figure 8). Equation (21) is a big-M constraint that is only active if there is a 

continuous task being executed that belongs to energy level e. This constraint is the one 

differentiating between energy levels for equivalent tasks (refer to Figure 4) so that the proper 

electricity cost is accounted for in the objective function, see Eq. (33). 
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If event point t corresponds to demand point td, then the time values must match, as expressed in 

Eqs. (22)-(23). 
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Finally, there are general bounds on the timing variables. According to Figure 6, Tt∈[0,H], so Eqs. 

(24-25) apply. Equation (25) enforces that no task starts at the last event point. Since the model 

assumes that tasks can start after Tt, the time of the first event point can be set to zero without loss of 

generality (Eq. 26). 

TtHTt ∈∀≤  (24) 

||, TtTtHTst ≠∈∀≤  (25) 

01 =T  (26) 
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5.3. Excess Resource Balances 

Resource availability over the time grid is managed by the excess resource balances. These are 

multiperiod material balance expressions, in which the excess amount at event point t is equal to that 

at the previous event point (t-1) adjusted by the amounts discretely or continuously 

produced/consumed by all tasks starting or ending at t. Figure 9 illustrates the contributions to the 

values of the variables and supports the explanation of Eqs. (27-28). 

In Eq. (27), the initial resource availability (first term on the RHS) is only to be considered at the 

first event point, t=1. From Eqs. (1-2), we know that it will be different from zero only for a subset 

of the resources, 1 for REQ, and a value to be determined by the solver, 0
rR , for r∈RRM. For the 

remaining points, the value from the previous event point is used instead. For continuous resources 

RCT, the ones involved in Eq. (28), Rr,t receives the contribution of end
trR 1, − , which gives the excess 

amount immediately before the end of interval t-1 (event point t). For the other resources but the 

utilities, one should use the value at the beginning of the previous interval, Rr,t-1. This third term on 

the RHS is not used for RUT, since we want to prevent resource availability to propagate from one 

event point to the next. This is because there will be inputs from the exterior at every event point 

(sixth term on the RHS). 

Rr,t-1 Rr,tRr,t-1
end

REQ i∈ Ic∪Is REQ-1 +1

RUT

i∈ Ic
-pwr+Πin

RCT

i∈ Ic
+1
-1 input

output

i∈ Is
+1
-1 input

output-1
RCT

+1
output

input material

RCT

RFP

i∈ It
+1
-1

-Πout

input

. . .

Rr,1

REQ

+1

+Rr
0

RRM

 

Figure 9. Events affecting the value of the excess resource variables. 



19 

 

TtRrYY

vNvN

RRRR

tRrTDtd

out
tdt

out
tdr

TtRrEe TPtp
etpt

in
etpr

Ii
tiir

Ii
tiirtiirTttiir

RRrtrRr
end

trtrtr

FPUTe

t

UTCTCT

∈∈∀Π−Π

++++

+++=

≠∧∈∈≠∧∈∈ ∈

∈∈
−≠

∪∉−∈−=

∑∑ ∑

∑∑

,)()(

)(

1
,,

||

,,,,

,,1,,,,||,,

)(1,1,1
0

,

ξμξμ  (27) 

||,,)( *
,,,,,,,, TtTtRrvRR CT
tiir

Ii
tiir

Ii
tiirtr

end
tr

sc

≠∈∈∀+++= ∑∑
∈∈

ξλξξλ  (28) 

In Eq. (27), the fourth and fifth terms deal with most of the discrete interactions of tasks with 

resources. The excess amount at event point t, decreases by tasks starting at t, and increases by tasks 

starting at t-1 (ending at t) or t (if they are instantaneous, i∈It). The discrete interaction at the end of 

storage tasks (i∈Is) affects excess variable end
trR ,  rather than Rr,t+1, see last term on the RHS of Eq. 

(28). The purpose is to get the amount in storage for every u so that the maximum capacity 

constraint can be enforced. Variable end
trR ,  also deals with the continuous interactions of continuous 

(Ic) and storage tasks. Finally, the last term in Eq. (27) removes product resources from the system 

whenever the time of event point t is equal to a demand point td. 

The excess resource variables should lie within given upper and lower bounds. The general 

constraints are given in Eqs. (29-30), while the values for this case study are discussed in section 4.3 

and given in Eqs. (8-10). 
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5.4. Other Constraints 

The remaining set of constraints ensures that the values of the continuous extent variables are set 

to zero whenever the task is not executed, i.e. when the binary extent variable is equal to zero. The 

upper bound in Eq. (31), U, can be given by the product of the time horizon times the sum of the 

maximum processing rate on every machine, see Eq. (32).   
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5.5. Objective Function 

The mathematical formulation is completed with the objective function. Equation (33) maximizes 

the total electricity cost [k€]. This is given by the sum over all electricity levels e, time intervals t 

and tasks i, of the product of electricity cost ce [€/kWh],  power consumption [MW], and duration of 

the task [h]. 
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6. Discrete-Time formulation (DT) 

External interactions with the system at specific points in time, such as different electricity costs 

and due dates, are handled much more easily by a discrete-time formulation. This, of course, 

provided that the location of some of the grid’s time points is within acceptable accuracy of the 

external events timing. After recalling a few important aspects related to the representation of time, 

the model constraints are given. These are analogous to the non-timing constraints of the continuous-

time formulation, which is not surprising given the fact that the discrete-time formulation is in fact a 

sub-model of the more general continuous time formulation18. 

6.1. Time Representation 

The single time grid employed by the discrete-time formulation has equal length time intervals of 

duration δ, see Figure 10. As a consequence, the absolute time of all event points is known a priori. 

Fixed length time intervals have important consequences for both batch and continuous tasks. For 

the former, the duration must often be rounded to a multiple of the interval length, leading to the 

consideration of an approximated version of the real problem. For continuous tasks, the extent can 

be made to vary within [0, δ× max
iρ ] to ensure that all possible demands can be met. However, there 

may be intervals where the task is being performed below its maximum processing rate, which in 

very constrained problems may compromise optimality or even feasibility since no other task can 

take advantage of the remaining capacity of the unit. This can be illustrated with a simple example. 
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Figure 10. Discrete-time representation. 
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Figure 11. Limitation of discrete-time formulation when handling continuous tasks. 

In Figure 11 it can be seen that for δ=1 h, we need to occupy the processing unit for the first eight 

hours of the time horizon to meet the blue and red products demands. The problem is that the last 

one is a medium-cost interval. Even though the objective function accounts only for the half an hour 

that the unit is active, optimality is compromised since the demands of both products can be met 

entirely in the low-cost period (first seven hours). Nevertheless, such solution cannot be obtained 

since the excess resource balances allow production of at most one product on each time interval. 

However, it can be achieved with δ=0.5 h (or with a continuous-time formulation), for which the 

intervals length will match exactly the time required to produce 5 t of product. Thus, the red product 

can start to be produced immediately after the blue ends, in order to finish before the medium-cost 

time period starts. More importantly, it would still be possible to product another 10 ton before the 

due date, in case of higher demands. 

6.2. Model Constraints 

The excess resource balances are given by Eqs. (28) and (34). The latter differs from Eq. (27) in 

the terms involving parameters Πin and Πout. Now their domain is exactly equal to that of the 

equation (recall the last paragraph of section 4.3) so there is no need to employ additional binary 

variables. 
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Since there are no timing constraints, the capacity constraints need to ensure that the maximum 

amount of material handled by continuous tasks does not exceed the maximum processing rate times 

the duration of the time interval. For storage tasks, Eq. (35) is identical to Eq. (31).  
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6.3. Objective Function 

The differences in comparison to the objective function of the continuous-time formulation, given 

in Eq. (33), result from the electricity cost parameters, which have a different domain. Because of 

this, Eq. (36) has one less summation. 
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7. Computational Studies 

The performance of the models is illustrated through the solution of 10 test cases with data 

generated randomly from a real industrial problem. In all of them, the product demands lead to plant 

operation below their maximum capacity. Due to the differences in electricity cost among the energy 

levels, assigning production to the lower levels will have the biggest impact on the total cost. As we 

approach full plant capacity, all the energy levels become active, and the solver switches focus to 

finding the best combination of product-machine assignment according to the processing rates and 

power needs, which are product dependent. With the exception of EX5, the machines are occupied 

41 to 56 % of the time. Directly related to the complexity of the problem is the number of products, 

machines and storage units, so the problems will be mainly characterized by (|P|, |M|, |S|). 

The mathematical formulations give rise to mixed-integer linear programming (MILP) problems. 

They were implemented in GAMS 22.8 together with the algorithm that converts the problem data 

into the RTN format. All problems were solved by CPLEX 11.1 with default options, up to a relative 
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optimality tolerance=10-6, unless otherwise stated. The hardware consisted on a laptop with an Intel 

Core2 Duo T9300 processor running at 2.5 GHz, 4 GB of RAM and running Windows Vista 

Enterprise.  

7.1. Illustrative Example 

To illustrate the capabilities of the new continuous-time formulation we start with a very simple 

example involving two products, one machine and one storage unit (2,1,1). The machine power 

requirements is, in this case, product independent and equal to pwM1= 5 [MW] and there are no 

constraints on maximum power consumption. The processing rates are ρP1,M1= 80, ρP2,M1=70 [ton/h], 

storage capacity is capS1=1200 [ton] and the product demands can be found in Table 1. 

Table 1. Product Demands at the End of the Day for Examples EX1-EX3 [ton] 

 MO (24 h) TU (48 h) WE (72 h) TH (96 h) FR (120 h) SA (144 h) SU (168 h) 
P1 1000 - 500 - - 1000 1200 
P2 - 400 - - 1200 - - 

 

The optimal solution for EX1 corresponds to a total electricity cost of €18,625. The resulting 

schedule and storage profiles are shown in Figure 12, where the numbers inside the boxes indicate 

the task length [h]. It requires a total of |T|=11 event points, which is the minimum number that 

ensures feasibility. No improvement in cost is observed for |T|=12. Such behavior is not common in 

continuous-time formulations3,4,11, where typically the objective function increases with |T| at least a 

couple of times. Therefore, it is an indication that the problem is highly constrained, which is a direct 

consequence of: (i) large variability of the electricity cost, leading to a total of 35 time periods with 

constant price; (ii) the tasks not being allowed to cross time periods. Thus, some demands can only 

be met by executing multiple instances of a particular task. More specifically, the Monday (MO) and 

Saturday (SA) demands of P1 need two tasks, while the Friday (FR) demand of P2 requires three. 

In Figure 12, 8 out of 10 instances are executed in low-cost periods (green region) with the 

remaining being in medium-cost levels (yellow region). Ideally, all should be executed in the green 

region but that would only be possible for operation well below the maximum capacity of the plant. 

Power shortages may force tasks to switch to a higher cost level. In order to show that the model can 
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cope with constraints of this type, EX2 was solved. It is uses the same data of EX1 but now the 

maximum power consumption during the first seven hours of Tuesday and Thursday (pwx0-6,TU; 

pwx0-6,TH) is set to zero. 

The optimal solution for EX2 is shown in Figure 13 and corresponds to a total cost of €21,575. 

When compared to EX1 it translates into a 15.8% increase in cost, which is very significant 

considering such small changes in data. Such a schedule is obviously a feasible solution to EX1, 

which is in many aspects similar to the previous one. Hence, it also serves to illustrate the impact 

that advanced scheduling tools, like the models proposed in this paper, can have on plant 

profitability. We will return to this discussion in section 7.3. 
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Figure 12. Optimal solution for EX1. 
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Figure 13. Optimal solution for EX2. 
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Figure 14. Optimal solution for EX3. 

The amount of available storage is often limiting. The previous examples featured a shared storage 

unit that could only handle one product at a time. This made it impossible to meet demands of 

different products in the same day, which explains the format of such data. More importantly, 

production of p could only start after the total amount produced of p’ had been dispatched. In order 

to allow for more flexibility, EX3 considers two identical storage units and no maximum power 

constraints. 

With the additional storage unit, the total cost can be reduced to €18,153 (2.5%). The optimal 

solution is given in Figure 14. It basically moves all the production of P2 (in red) to low-cost periods 

while more P1 (blue) gets directed to medium-cost periods. While one might be tempted to explain 

this behavior based on the different processing rates, there exists a degenerate solution that features 

P2 in both low- and medium-cost periods. On Monday, the production of P1 has increased from 

1000 to 1089 ton, so silo S2 will remain partially filled until the end of Wednesday. S2 also holds P2 

on Friday even though it could all be allocated to S1. 
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7.2. Computational Performance 

The computational results of the 10 examples are given in Table 2. The example problems can be 

divided into two levels of complexity. EX1-5 can be addressed by the continuous-time model (CT), 

while for the others one has to rely on the discrete-time formulation (DT). This is the first major 

result: the continuous-time formulation is limited to small problems. Even for EX5, which features 

three products, two machines and two storage units, we had to specify low product demands (leading 

to a 33% capacity) to ensure that most tasks could fit into a single period of constant electricity cost. 

In this way, a good solution could still be found with a relatively small number of event points. 

However, it took already more than 1 hour to prove optimality for |T|=11 (€26,911), see Table 2, a 

value that is still 0.5% above the one from DT. For larger problems, CT is intractable due to the 

following facts: (i) the computational effort is strongly dependent on |T|, with experience telling us 

that we get typically a one order of magnitude increase for a single increase in |T|; (ii) it is not 

straightforward to find a number that ensures feasibility; (iii) it may be even difficult for the solver 

to find out that the value of |T| is insufficient, i.e. finding that the problem is infeasible. 

The last examples have more or less the complexity one expects to find in a real situation. The 

encouraging result is that the discrete-time formulation with 1-hour intervals, can find very good 

solutions to the problem in short computational time. In fact, from the results in Table 2, one can see 

that within up to 5 minutes, the optimal/best solutions returned are within a relative optimality gap of 

0.78 %. Thus, DT provides an efficient decision-making tool for this problem. The gaps could be 

reduced most of the times by up to one hour of computational time, essentially due to the finding of 

better solutions since the value of the relaxed problem remained virtually unchanged. This is an 

indication of a high degree of degeneracy (more on this in section 7.4). 

The results from Table 2 also show that the discrete-time formulation is significantly tighter than 

the continuous-time one. In EX1-4 and EX7 the integrality gap is even zero, and with the exception 

of EX8 it did not exceed 0.2%. The substantially large integrality gap for the latter (3.3%) is 

probably due to the use of harsher constraints on maximum power availability that prevented the 
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machines to operate simultaneously in a significant part of the week. Nevertheless, CT still exhibited 

a reasonable integrality gap (maximum=23% for EX2, minimum=4.8% for EX5, average=11.6%). 

Finally, it was surprising to find out that the number of binary variables of DT was of the same 

order of magnitude as that of CT in spite of the large difference between the |T| numbers used in the 

two time grids. Recall that t∈T is one of the indices of the binary extent variables Ni,t. There are two 

reasons for this: (a) there are three times as many tasks of the continuous type (i∈Ic) for CT due to 

the energy levels disaggregation, see section 3.2.1; but more importantly (b) CT employs two 

additional sets of binary variables, out
tdtY ,  and Yt,tp,e, with the latter featuring three indices and being the 

major contributor whenever there is a large variability on electricity cost. Taking EX4 (|T|=12) as an 

example, such variables are responsible for 69% of the total number. 

Table 2. Computational Results 

 (|P|, 
|M|, |S|) 

Model |T| binary 
variables 

single 
variables 

constraints RMIP 
(€) 

MIP 
(€) 

CPU 
s 

nodes 

EX1 (2,1,1) DT 169 672 4552 3203 18625 18625 0.32 0 
  CT 11 490 797 347 16620 18625 8.53 4252 
  CT 12 539 875 380 16620 18625 9.8 5442 

EX2 (2,1,1) DT 169 672 4552 3203 21575 21575 0.29 0 
  CT 11 490 797 347 16620 21575 26 20971 
  CT 12 539 875 380 16620 21575 21.6 15474 

EX3 (2,1,2) DT 169 1008 6743 4382 18153 18153 0.40 0 
  CT 11 510 934 420 16620 18153 237 69046 
  CT 12 561 1025 460 16620 18153 1372 467962 

EX4 (2,1,2) DT 169 1008 6743 4382 21175 21175 0.52 10 
  CT 11 510 934 420 18896 21349 178 46512 
  CT 12 561 1025 460 18896 21175 1470 237314 

EX5 (3,2,2) DT 169 2016 10784 6739 26738 26780 3600a 133242 
  CT 9 528 1089 562 25625 27222 7.18 3989 
  CT 10 594 1221 629 25625 27008 369 138426 
  CT 11 660 1353 696 25625 26911 4131 1295540

EX6 (3,2,3) DT 169 2520 13986 8423 43250 43259 3600b 85900 
EX7 (3,3,4) DT 169 3528 18365 10780 68282 68282 18.4 671 
EX8 (3,3,5) DT 169 4032 21567 12464 101139 104622 3600c 41252 
EX9 (4,3,4) DT 169 4704 23923 13810 87817 87868 3600d 24400 
EX10 (5,3,4) DT 169 5880 29481 16840 86505 86581 3600e 7500 

aIntegrality gap at 300s (IG300) [%]=0.06; Integrality gap at time of termination (IGT) [%]=0.04; 

bIG300=IGT=0.02; cIG300=0.61, IGT=0.18; dIG300=IGT=0.06; eIG300=0.78, IGT=0.09. 
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7.3. Potential Cost Savings 

One important question is what are the potential savings that one may get by using such a 

comprehensive optimization scheduling tool? In other words, how important is it to account for the 

real electricity cost profile when deriving the schedule? Given: (i) the many constraints in terms of 

storage availability, demand satisfaction and maximum power availability; (ii) the need to provide a 

schedule fast not only for normal operation but, more importantly, as a response to unpredicted 

events, such as machine breakdown, or urgent orders that need to be satisfied; It is fair to assume 

that a feasible solution to the problem provides a valid basis for comparison. 

A so called “blind” schedule can easily be derived by the discrete-time formulation under the 

assumption of constant electricity price throughout the time horizon. Under such scenario, and 

according to Eq. (36), the model will simply try to produce the products in the faster machines. If in 

terms of processing rate we get the same product rank on every machine, then the schedule will tend 

to a series production rather than a parallel one, which as we can see in Figure 15, is the preferred 

choice under a variable cost profile. Nevertheless, the intermediate product demands partially avoid 

this. Also, the effect becomes less important for higher plant capacities. Keeping this in mind, we 

stick to the plan. After obtaining the blind schedule, the real cost parameters are used to compute the 

true total cost. 

Table 3. Potential Cost Savings as a Function of the Plant Capacity. 

 EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 EX9 EX10 
Capacity (%) 41 41 41 47 33 46 40 55 51 56 
Savings (%) 27 23 39 29 40 33 39 20 32 33 

 

Table 3 lists the results obtained. Even after considering that an experienced scheduler by means 

of the heuristics in use at the plant could do a significantly better job than the “blind” schedule for 

the reasons mentioned above, these are very significant cost savings. The trend is that as the plant 

approaches full capacity, the potential savings diminish, which is not surprising given that there are 

fewer degrees of freedom. It is relevant to highlight the result for EX3 when compared to that for 

EX2. As discussed in section 7.1, they have the same data but EX3 has one more storage unit, which 

considerably increases the plant flexibility. This makes it much easier to generate a feasible 
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schedule, but if one is not careful, one may make wrong decisions concerning the impact on cost 

(increase in potential savings from 23 to 39%). 
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Figure 15. Best solution found by continuous-time formulation for EX5. 

7.4. Final Remarks 

To end the analysis, we discuss the issue of solution degeneracy and its impact on the form of the 

schedule. For a schedule to be implemented in practice it should have as few events as possible since 

there are always factors that are not considered in the model. In this case study, the issue of sequence 

dependent changeovers is not relevant. However, that does not mean that we are allowed to change 

products on a given machine every hour! Therefore, we wish to first complete the production of a 

product and only then switch to another one. The reality is thus much closer to the concept of events 

used by time grid based continuous-time formulations, or of precedence used by sequencing based 

models15. The iterative procedure used by CT of increasing the number of event points one by one, 

implicitly ensures simplicity. In contrast, in DT, a much larger number of events are allowed, so 

there will typically be many more task instances being executed to achieve a particular amount of 

product. Thus, there will be a large number of solutions that correspond to the same value of the 

objective function, with the large majority of them being undesirable due to many changeovers, see 
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Figure 16. To overcome such solutions a post-processing procedure is required that removes the 

superfluous but this is beyond the scope of this paper. 
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Figure 16. High solution degeneracy may lead to an unacceptable number of changeovers in 
solutions from the discrete-time formulation. 

8. Conclusions 

This paper has focused on the modeling of discrete events that occur at predetermined points in 

time with a continuous-time scheduling formulation. These included multiple intermediate due dates, 

utility availability and variable electricity costs. A conceptually new general model has been 

proposed that relies on the Resource-Task Network for process representation. It is nevertheless 

limited to continuous tasks. The validity of the approach has been demonstrated on a few test cases 

adapted from a real industrial problem. In such process, storage units are used for final products and 

may act as shared storage units. To efficiently model this issue, a novel hybrid batch/continuous task 

has been proposed. 

Despite the major modeling breakthrough, the results have shown that only problems of small size 

can be handled effectively. This turned our attention to discrete-time models, where discrete events 

can be handled in a more natural and straightforward way. The only doubt was to whether a 

sufficiently fine time grid could be used to represent the problem data accurately. The goal was to 

ensure a weekly schedule that accounted for hourly changes in electricity cost, and this has been 

successfully accomplished. Problems of industrial significance were tackled down to optimality gaps 

below 1% with practical computational times of 5 minutes. This is mostly due to the 

characteristically low integrality gap of RTN discrete-time formulations, which were found to be 

significantly lower than their continuous-time counterparts. 

The last part of the paper has highlighted the importance of taking variable electricity costs into 

consideration when deriving the schedule. State-of-the-art scheduling formulations have the 

potential to achieve major savings when compared to procedures that are mostly focused on 



31 

 

feasibility. While accurate values are obviously dependent on problem data, particularly on the 

different cost levels agreed with the electricity provider, and on the scheduling practice at the plant, 

results have shown potential cost savings around 20%. Clearly, values of this order of magnitude 

provide enough motivation for the incorporation of the discrete-time mathematical formulation 

presented in this paper as a central element of the decision making tool used by industry. 
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Nomenclature 

Sets/Indices 

DY/dy=days of the week 
E/e=Electricity cost levels 
HR/hr=hours of the day 
I/i=tasks 
Ic=continuous tasks 

c
eI =continuous tasks executed during energy level e 

Is=storage tasks 
It=instantaneous transfer tasks 
M/m=machines 
P/p=products 
R/r=resources 
RCT=resources continuously produced/consumed 
REQ=equipment resources 
RFP=final product resources 
RLM=products at a location after the machines 
RLS=products at a location inside the storage units 
RRM=raw-material resources 
RTC=equipment resources involved in timing constraints 
RUT=utility resources 
S/s=storage units 
T/t=event points 
TD/td=demand points 
TPe/tp=time periods of electricity level e 

Parameters 

ce=electricity cost at level e [€/kWh] 
caps=capacity of storage unit s [ton] 
cet=electricity cost during time interval t [€/kWh] 
dp,dy,hr=demand of product p at the end of hour hr of day dy [ton] 
H= time horizon [h] 
lbe,tp=starting time of time period tp of electricity level e [h] 
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pwp,m=power requirement for product p in machine m [MW] 
pwxhr,dy=maximum power consumption during hour hr of day dy [MW] 

max
rR =upper bound on availability of resource r at event points 

maxend
rR = upper bound on availability of resource r during intervals 
min
rR  = lower bound on availability of resource r at event points 

minend
rR = lower bound on availability of resource r during intervals 

tfxtd=absolute time of demand point td [h] 
ube,tp=ending time of time period tp of electricity level e [h] 
δ=duration of every interval on discrete-time grid [h] 
λr,i=continuous interaction of resource r during execution of task i 
µr,i=discrete interaction of resource r with task i at its start, acting on binary extent variables 

ir ,μ =discrete interaction of resource r with task i at its end, acting on binary extent variables 
νr,i= discrete interaction of resource r with task i at its start, acting on continuous extent variables 

ir ,ν = discrete interaction of resource r with task i at its end, acting on continuous extent variables 
in

tr ,Π =amount received into the system of resource r at event point t 
out

tr ,Π =amount removed from the system of resource r at event point t 
max
iρ =maximum processing rate of task i [ton/h] 

ρp,m=processing rate of product p in machine m [ton/h] 

Variables 

Ni,t=execution of task i during interval t (binary extent variables) 
Rr,t=excess amount of resource r at event point t 

0
rR = initial availability of resource r (can be a parameter for some resources)  
end

trR , =excess amount of resource r immediately before the end of interval t 
Tt=absolute time of event point t [h] 
Tst=starting time of tasks executed during interval t [h] 
Yt,tp,e=binary variable identifying if during interval t tasks are executed within period tp of level e 

out
tdtY , =binary variable identifying if event point t corresponds to demand point td 

ξi,t=amount handled by task i at event point/during interval t (continuous extent variables) [ton] 
*
,tiξ =amount continuously sent to storage by task i during interval t [ton] 
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