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Abstract

The profitability of a chemical plant is directly related to its reliability, which has always been
a major concern in the chemical industry. In this paper, we address problem at the conceptual
design phase of an air separation plant to minimize the negative income, which consists of the
penalty incurred from pipeline supply interruption and the cost of increasing reliability, including
having redundant units and storage tanks. An MILP model (denoted as RST) based on Markov
Chain assumption is proposed, and applied to the motivating example of an air separation plant.
Furthermore, in order to tackle larger superstructures, we propose a game theoretic algorithm that
decomposes and restructures the problem as a team game of the individual processing stages and
arrives at a Nash Equilibrium among them. It is also shown that a good initialization point close to
the global optimum can be easily obtained, which guarantees the quality of the Nash Equilibrium
solution. A number of examples are then shown to illustrate the proposed algorithm’s ability to
solve to the global optimality of the original MILP model (RST) and to reach the solution in much
shorter time than the original MILP model (RST).
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1. Introduction

The reliability of a chemical plant is very important as it directly impacts customer service level
and its economic performance. A plant with all the state-of-art technologies may not be able to
generate the expected profits because of poor decision making regarding its reliability. In industrial
practice, significant emphasis is placed on carrying out improved maintenance operations. There
has also been academic research on quantifying and optimizing the maintenance efforts after the
commissioning of a plant (e.g. see Tan and Kramer (1997), Pistikopoulos et al. (2001), Cheung
et al. (2004), Amaran et al. (2016), and Achkar et al. (2019)).

However, prior to operations, the decisions regarding system reliability are equally worth of
consideration in the conceptual design phase. Thomaidis and Pistikopoulos (1994, 1995) integrate
flexibility and reliability in process design by deciding the reliability index of each piece of equip-
ment. Gong and You (2018) incorporate several strategies in both design and operations toward
more resilient chemical processes, including major failure proof strategy for process plants, which
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is to have redundancies for critical equipment. There is a clear trade-off when higher expected
availability of the process requires greater capital investment. Kuo and Wan (2007) provide a
literature survey on optimal reliability design methods classified in terms of problem formulations
and optimization techniques. Aguilar et al. (2008) address reliability in utility plant design and
operation by considering a few pre-specified alternatives for redundancy selection, and for which
they formulate an MILP model considering certain failure scenarios. Ye et al. (2018) propose a
general mixed-integer programming framework for the optimal selection of redundant units.

Another widely used strategy to improve product availability is providing buffer storage for
intermediate or final products, which again incurs costs of building the tanks and maintaining the
stock that increases with the size of the storage tanks. In our earlier effort (Ye et al., 2019) to
optimize redundancy selection together with maintenance policies, Markov Chain is used to model
the stochastic process of failures and repairs. This paper inherits the Markov Chain framework and
takes a step back from unifying design and operations decisions to focus on expanding the scope
of design decisions with the inclusion of storage tanks. For the ASU processes that motivated
this work, it is especially important and common to have storage tanks of liquid products as the
last line of defense because the penalty of interrupting pipeline supplies can be very large. In a
most similar previous work, Terrazas-Moreno et al. (2010) optimize the reliable design of chemical
sites networks with Markov Chain framework, and estimate the stochastic process of buffer storage
consumption with the linear upper bound of its variance. As an improvement, this paper models
the stochastic process exactly, which allows it to be associated with outage penalty and be reflected
in the objective function.

The exact modeling of outage penalties provides a much closer representation of the trade-offs
that decision makers face in reality, but it also results in nonlinear and non-convex constraints.
Therefore, general decomposition methods like Lagrangean decomposition and Benders decomposi-
tion cannot be readily applied to the problem when we want to generalize the model and deal with
larger superstructures. On the other hand, game theory provides an interesting view of decision
making processes. Lou et al. (2004) does an emergy analysis of industrial ecosystem that treats
as players. Castillo and Dorao (2012) propose a consensual decision-making model based on game
theory for LNG processes. Zamarripa et al. (2013) address both the cooperative and competitive
properties of supply chain planning problems with a game theory approach. Inspired by these
works, in this paper, we use the concept of team game to reach a local optimum from a good
initialization point. It provides a novel perspective for the simultaneous optimal design of system
redundancy and storage in respect to product availability, on top of the proposed general mixed
integer formulation, where the stochastic process inferences of equipment failures and repairs are
modeled in exact.

Section 2 introduces the motivating example of an ASU process and states the problem. In
section 3, we develop the MILP model (RST) and reveal the fact that its computational complexity
increases drastically with problem size. Section 4 presents the results of solving the motivating
example with (RST) as well as the computational difficulty of applying the model to a slightly
enlarged example. In section 5, we introduce an iterative algorithm towards the team game Nash
equilibrium, which is a necessary condition for the global optimum, and show that a good initial
solution can be easily obtained for our problem, which guarantees the quality of the Nash equilib-
rium solution. Section 6 gives a step-by-step illustration of the algorithm by revisiting the enlarged
problem first introduced in section 4. Section 7 show a series of examples for which all the global
optima are obtained by the game theoretic approach in much shorter time than the original MILP
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model (RST).

2. Motivating example

Figure 1 shows a typical air separation facility that has two liquid product storage tanks for
LO2 and LN2, respectively. When the ASU is down due to equipment failures, the liquid products
can be vaporized to maintain pipeline supply. However, if the downtime is too long that the tank
runs out before the ASU is back online, an interruption of pipeline supply is unavoidable. Typically,
the gas supplier and the customers agree that interruption of pipeline supply leads to significant
penalty on the supplier.

Figure 1: ASU with storage

Figure 2 shows the system superstructure. The purpose of the model is to determine the
selection of parallel units among a finite number of possibly distinct candidates, and the sizes
of the two liquid product storage tanks, in order to achieve the minimum cost balancing capital
investment and the interruption penalty from the pipeline customers.
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Figure 2: ASU with storage

3. Mathematical Model

The site is considered to have two parts, the air separation system with several stages in
series, and the storage tanks. In section 3.1, the failure-repair process of the air separation system
is modeled as a continuous-time Markov Chain depending on the system design, or redundancy
selection. Next, in section 3.2, the impact of storage tank sizes on system availability is incorporated
based on the relationships established in 3.1.

3.1. Modeling the processing system as a continuous-time Markov Chain

The processing stages, e.g. main air compressor, pre-purifier, are indexed with k ∈ K, whereas
the individual potential redundancy designs in each stage are indexed with h ∈ Hk. Figure 3(a)
shows a stage k with potentially 2 units to choose, while Figures 3(b), 3(c) and 3(d) show the three
potential redundancy designs (selections) indexed by h, based on the superstructure.

(a) Potential superstruc-
ture of the stage k

(b) h = 1 (c) h = 2 (d) h = 3

Figure 3: The design options of individual stages

Binary variable zk,h indicates which design h is selected for stage k. Equation (1) requires that
only one potential design is selected for each stage k. The investment cost of the design h in stage
k is ĈUk,h. Equation (2) calculates the investment cost of processing units depending on the design
selection.∑

h∈Hk

zk,h = 1, ∀k ∈ K (1)
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CU =
∑
k∈K

∑
h∈Hk

zk,hĈ
U
k,h (2)

Based on the assumption that the time to failure and time to repair of single units follow exponential
distributions, we model the failure-repair process of the processing stage k with design h as a
continuous-time Markov Chain, and establish the corresponding transition matrix Wk,h, from
which two key quantities can be obtained: πk,h is the probability distribution vector over the state
space Sk,h calculated from the corresponding transition matrix Wk,h with equation (3); σk,h is the
diagonal of Wk,h as stated in equation (4). By the definition of continuous-time Markov Chain, the
residence time of any state follows an exponential distribution. The physical meaning of σk,h(s) is
the rate parameter of that exponential distribution of state s ∈ Sk,h. For a thorough explanation of
Markov Chain please refer to Sericola (2013). For the application of Markov Chain to redundancy
systems please refer to our previous paper Ye et al. (2019).

πTk,h · [Wk,h,1] = [0T , 1] (3)

σk,h = diag(Wk,h) (4)

With the stage level dynamics understood, we introduce the concept of system design, which is
the combination of the individual stage designs. The set of all unique potential system designs is
H̄, and the elements are indexed by h̄. Figure 4 shows the 9 possible system designs of a system
with two stages just like the one stage shown in Figure 3(a).

Figure 4: Potential system designs

Again, we model the failure-repair process of the system with design h̄ as a continuous-time
Markov Chain with transition matrix W̄h̄. πh̄ is the probability distribution vector over the state
space S̄h̄ of the system design h̄ calculated by equation (5). σh̄ is the diagonal of W̄h̄, and σh̄(s̄)
is the rate parameter of the exponential distribution dictating the residence time of state s̄ ∈ S̄h̄.

π̄Th̄ · [W̄h̄,1] = [0T , 1] (5)

σ̄h̄ = diag(W̄h̄) (6)

In Appendix A we show that π̄h̄ and σ̄h̄ of system design h̄ can be calculated based on πk,h and
σk,h as shown in (7) - (9), where design h(k, h̄) in stage k is part of system design h̄ (the

∏
⊗
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represents Kronecker product. Please see Appendix A for illustration.).

π̄h̄ = π|K|,h(|K|,h̄) ⊗ ...⊗ π2,h(2,h̄) ⊗ π1,h(1,h̄) (7)

σ̄h̄ =
∑
k∈K

1(gk) ⊗ σk,h(k,h̄) ⊗ 1(lk) (8)

gk is the product of the state space dimensions of all the stages after stage k in the stage sequence,
while lk is the product of the state space dimensions of all the stages before k.

gk =
∏

(l,h):l>k,(l,h,h̄)∈HC

‖πl,h‖0, lk =
∏

(l,h):l<k,(l,h,h̄)∈HC

‖πl,h‖0 (9)

As mentioned above, rth̄(s̄), the residence time of state s̄ ∈ S̄h̄, follows the exponential distribution
with rate parameter σ̄h̄(s̄).

P (rth̄(s̄) = t) = σ̄h̄(s̄)e−σ̄h̄(s̄)t, ∀s̄ ∈ S̄h̄ (10)

Finally we introduce fh̄(s̄), the frequency of encountering each state s̄. It is equal to the long term
probability πh̄(s̄) divided by the mean residence time rth̄, which is equal to the reciprocal of the
rate parameter σ̄h̄(s̄).

fh̄(s̄) =
πh̄(s̄)

rth̄(s̄)
= πh̄(s̄)σ̄h̄(s̄), ∀s̄ ∈ S̄h̄ (11)

3.2. System availability

In this section, we discuss how to incorporate the size of the storage tank for evaluating the
network availability. The main idea is to calculate the frequency of the incidents where the plant is
down due to unplanned equipment failure, and the downtime is so long that the liquid storage runs
out. Furthermore, we account for the proportional penalization in the objective function, because
the actual penalty being paid to the customers is directly proportional to the frequency of supply
interruption.

In section 3.1, it is established that the air separation system follows a continuous-time Markov
Chain with transition matrix W̄h̄ for potential system design h̄, which produces the stationary
probability distribution π̄h̄(s̄) over the state space(S̄h̄), the residence time rate parameter σ̄h̄(s̄),
and the frequency of encountering each state fh̄(s̄).

We first focus on the random variable of the volume of liquid products decreasing during failure
state s̄ ∈ S̄f

h̄
. It is proportional to the consumption rates δLO2 or δLN2, and the random variable

of the residence time rth̄(s̄). Based on the exponential distribution followed by rth̄(s̄) as shown in

(10), they follow the exponential distribution with rate parameters
σ̄h̄(s̄)
δLO2 or

σ̄h̄(s̄)
δLN2 .

P (V LO2dec
h̄ (s̄) = V ) =

σ̄h̄(s̄)

δLO2
e
−
σ̄h̄(s̄)

δLO2 V , s̄ ∈ S̄f
h̄

(12)

P (V LN2dec
h̄ (s̄) = V ) =

σ̄h̄(s̄)

δLN2
e
−
σ̄h̄(s̄)

δLN2 V , s̄ ∈ S̄f
h̄

(13)

We consider that there are a finite number of size options (k gallon) for both products, which
we denote as V LO2

n and V LN2
n , with NLO2 and NLN2 as the index set of size options. xLO2

n and
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xLN2
n are binary variables that indicate the selection of tank sizes for LO2 (V LO2

n ) and LN2 (V LN2
n ),

respectively. Equations (14) and (15) require that one and only one size is selected for each product.∑
n∈NLO2

xLO2
n = 1 (14)

∑
n∈NLN2

xLN2
n = 1 (15)

CT is the investment cost of storage tanks depending on their size selections.

CT =
∑

n∈NLO2

xLO2
n cLO2

n +
∑

n∈NLN2

xLN2
n cLN2

n (16)

Based on (11), (12) and (13). the outage frequencies of LO2 and LN2 for system design h̄ and tank

size n for the respective products, f̂ r
LO2

n,h̄ and f̂ r
LN2

n,h̄ , can be calculated with (17) and (18).

f̂ r
LO2

n,h̄ =
∑
s̄∈S̄f

h̄

fh̄(s̄) · P (V LO2dec
h̄ (s̄) ≥ V LO2

n ) =
∑
s̄∈S̄f

h̄

π̄h̄(s̄) · σ̄h̄(s̄) · e−
V LO2
n
δLO2 σ̄h̄(s̄)

(17)

f̂ r
LN2

n,h̄ =
∑
s̄∈S̄f

h̄

fh̄(s̄) · P (V LN2dec
h̄ (s̄) ≥ V LN2

n ) =
∑
s̄∈S̄f

h̄

π̄h̄(s̄) · σ̄h̄(s̄) · e−
V LN2
n
δLN2 σ̄h̄(s̄)

(18)

The following constraints and disjuctions represent the relationship between the redundancy and
storage selection and the expected outage penalties PN . In equation (19), T is the entire time
horizon being considered. penaltyLO2 and penaltyLN2 are the amount of penalty per outage.

Disjunctions (20)-(21) enforce that frLO2 and frLN2 are equal to the parameters f̂ r
LO2

n,h̄ and f̂ r
LN2

n,h̄

where the corresponding stage designs and storage tank sizes are selected.

PN = T (penaltyLO2 · frLO2 + penaltyLN2 · frLN2) (19)

∨
n∈NLO2,h̄∈H̄

[
XLO2
n ∧ (

∧
k∈K Zk,h(k,h̄))

frLO2 = f̂ r
LO2

n,h̄

]
(20)

∨
n∈NLN2,h̄∈H̄

[
XLN2
n ∧ (

∧
k∈K Zk,h(k,h̄))

frLN2 = f̂ r
LN2

n,h̄

]
(21)

We define the continuous variables frLO2
n,h̄

and frLN2
n,h̄

for the hull reformulation (Trespalacios and

Grossmann, 2014) into equations (22) - (28).

PN = T (penaltyLO2 ·
∑

n∈NLO2

∑
h̄∈H̄

frLO2
n,h̄ + penaltyLN2 ·

∑
n∈NLN2

∑
h̄∈H̄

frLN2
n,h̄ ) (22)
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frLO2
n,h̄ ≤ x

LO2
n f̂ r

LO2

n,h̄ , ∀k ∈ K,n ∈ NLO2 (23)

frLO2
n,h̄ ≤ zk,h(k,h̄)f̂ r

LO2

n,h̄ , ∀n ∈ NLO2, h̄ ∈ H̄ (24)

frLO2
n,h̄ ≥ (

∑
k∈K

zk,h(k,h̄) − |K|+ xLO2
n )f̂ r

LO2

n,h̄ , ∀n ∈ NLO2, h̄ ∈ H̄ (25)

frLN2
n,h̄ ≤ x

LN2
n f̂ r

LN2

n,h̄ , ∀k ∈ K,n ∈ NLN2 (26)

frLN2
n,h̄ ≤ zk,h(k,h̄)f̂ r

LN2

n,h̄ , ∀n ∈ NLN2, h̄ ∈ H̄ (27)

frLN2
n,h̄ ≥ (

∑
k∈K

zk,h(k,h̄) − |K|+ xLN2
n )f̂ r

LN2

n,h̄ , ∀n ∈ NLN2, h̄ ∈ H̄ (28)

The objective function is (29).

min
zk,h,xLO2

n ,xLN2
n

CU + CT + PN (29)

To summarize, the model (ST) is an MILP minimizing the total cost (29) under the constraints
(1), (2), (14)-(16), and (22)-(28). A hidden bottleneck of the model(ST) is the computation of

the exponential number of parameters f̂ r
LO2

n,h̄ and f̂ r
LO2

n,h̄ (based on equations (3), (4), (7), (8),
(17), and (18)) with respect to the size of the design superstructure. To illustrate, we consider a
small example for the potential designs in Figure 4 with 3 possible sizes for LO2 and LN2 storage

tanks. In order to determine the 18 parameters for each of the two groups f̂ r
LO2

n,h̄ and f̂ r
LO2

n,h̄ ,
we have to solve for the probability vectors of 9 different state spaces of dimensions 4-25, before
carrying out the calculation in (17) and (18) for the different tank sizes. Table 1 shows how the
computation workload increases drastically as the superstructures grow in size. Specifically, to

calculate a single parameter f̂ r
LO2

n,h , we need to find out the corresponding state space of potential

design h̄, and calculate π̄T
h̄

and σ̄T
h̄

, the complexity of which depends on the dimension of the state
space. Therefore, not only the number of parameters increases with the size of the superstructure,
but also the effort needed to determine each single parameter.

Table 1: Required computations for different superstructures

SMALL MEDIUM LARGE

System statistics
Number of stages 2 3 4

Number of potential units per stage 2 3 4
Number of potential tank sizes 3 4 5

Computational tasks
Number of state space 9 343 50625

Max dimension of state space 24 21870 141,087,744
Number of parameters 36 2744 506250

4. Solution of the motivating problem and restrictions of the model (ST)

In this section, we present more details about the example shown in section 2, including the
assigned parameters and corresponding solutions.

Table 2 shows the failure modes considered for each processing stage. The mean time between
failures (MTBF) and the mean time to repair (MTTR) are known for each failure mode. The
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failure rates and repair rates can be obtained by taking their respective reciprocals. The transition
matrices are obtained as discussed in our previous work (Ye et al., 2019). The mean time between
failures (MTBF) ranges from 5 to 25 years. Mean time to repair (MTTR) ranges from 8 to 1080
hours.

Table 2: Failure modes of each processing stage

Stage Failure mode Stage Failure mode Stage Failure mode Stage Failure mode

FMC1

Pre-purifier FMPF1

FMC1

LO2 Pump FMP1

Main FMC2 Booster FMC2
air FMC3 air FMC3

compressor FMC4 compressor FMC4
FMC5 FMC5
FMC6 FMC6

The capital cost of each unit ranges from $140k to $1250k. Table 3 shows the penalty rates
and pipeline flow rates used in the model.

Table 3: Profitability parameters

penaltyLO2 penaltyLN2 δLO2 δLN2

(k$ per outage) (k$ per outage) (k gallon per day) (k gallon per day)

2000 2000 48 60

Table 4 shows the tank size options and corresponding costs for LO2 and LN2 storage. LO2
tanks are generally more expensive.

Table 4: Tank size options and costs

Size options (k gallon) 100 400 700 1000 1500

Price for LO2 (k$) 55 237 427 621 951
Price for LN2 (k$) 50 215 388 565 864

The MILP model (ST) has 8828 equations and 2800 variables, with 269 of them being binary
variables. The parameters are calculated in Python and the model is solved with CPLEX 12.8.0.0
in Pyomo. The total time to calculate the parameters and solving the model is 8.0s, where 5.3s
is used for parameter calculation, and 2.7s for solving the MILP. The optimal design is shown in
Figure 5. The expected frequency of LO2 outage is 0.005732 in the 10 year horizon, which incurs
$11,464 penalty. The expected frequency of LN2 outage is 0.006 in the 10 year horizon, which
incurs $12,291 penalty.
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Figure 5: ASU with storage

As mentioned in section 3.2, it becomes more challenging to enumerate all possible combinations

of (n, h̄) and calculate f̂ r
LO2

n,ĥ and f̂ r
LN2

n,h̄ as the number of stages and potential units increase. In
fact, for a larger problem where there are one more potential units for each of first three stages, the
computational time of (ST) is 2053.5s, out of which 1697.2s are used for the parameter calculation.
Moreover, for the example presented above, the total number of complicating parameters is 2520,
and the maximum scenario number to consider for each parameter is 4536, while for the larger
problem, those numbers become 37730 and 14,117,880, respectively.

5. Iterative game-theoretic algorithm

In order to overcome the bottleneck of the exponential parameter computational time, we
propose an algorithm that starts with approximate and incomplete parameters, and iteratively
adjusts the parameter pool as appropriate while the models are being solved, which allows us to
achieve a Nash equilibrium, or a ”person-by-person” optimum, among the stages.

The analogy of the problem being addressed to a team game is as follows. Each stage has its own
contribution to the system costs by adding capital costs as well as the penalties from unplanned
downtimes. The condition of each stage (selection of parallel units) impacts its contribution to
the penalties, just like each player is largely responsible for his/her contribution to the team
performance. However, they play as a team in the sense that the individual contributions to the
penalties (if a failure is due to a specific stage, the resulting downtime is considered its contribution)
can be slightly affected by the conditions of the other stages. To be more specific, a failure of one
stage means the failure of the entire system. Therefore, the extents of reliability and investment
levels have to be balanced among the stages. For example, it might not be favorable to have one
stage being much more reliable than the others, even if it is the best solution for itself standing
alone. It is because the other stages are more likely to fail before it does and cover its failures, and
therefore, the marginal decrease in its contribution to the system failure from increasing reliability
investment is less than the case where this stage forms a one-stage-system.

The problem can be viewed as a team game (Young and Zamir, 2014) where the players are
the |K| stages. Inequality (30) shows the definition of Nash equilibrium in a team game: Given
the strategy of all other players ρ′ ∈ P(the design selection of all other stages l ∈ K, l 6= k), there
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is no other strategy ξ′ρ ∈ Ξρ (potential design h) for any single player ρ ∈ P (single stage k) that
could give better utility C (lower objective function values):

C(ξ∗1 , ..., ξ
∗
ρ, ξ
∗
|P|) ≤ C(ξ∗1 , ..., ξ

′
ρ, ξ
∗
|P|), ∀ρ ∈ P, ξ′ρ ∈ Ξρ (30)

Before going into the details of the proposed algorithm, we will graphically illustrate its signif-
icance of reducing parameter calculation efforts by considering a small system as shown in Figure
6. The three rectangles grouping three dots of different sizes represent three stages each with three
design options. The original formulation (RST) requires calculating the parameters for each valid
combination (27 triangles that have one vertex in each rectangle).

Figure 6: Original way has to calculate everything in advance

However, in Figures 7, 8, and 9, which represent the steps in the proposed algorithm, the
connecting segments can be much sparser, since much fewer parameters need to be calculated
following the proposed algorithm pursuing a Nash equilibrium.

First we optimize the stage-wise design selection with approximated impact from other stages.
The approximation effort is presented in detail in section 5.1. The triangle in Figure 7 stands for
the selected designs for individual stages.

Figure 7: Initial approximated optimum

An equilibrium test is then performed to this group of design to determine whether any single
stage has a superior deviation (deviation that generates lower total cost) given that the rest of the
stages stick to the current plan. As shown in Figure 8, the solid triangle represents the group of
design undergoing the equilibrium test following from Figure 7. In each rectangle group of dots,
the 2 dots supporting dashed vertices represent the deviations being examined, which oppose the
solid sides, as the deviations are taken with the rest of the stages unchanged and unaffected.
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Figure 8: Equilibrium checking

If there is no superior deviation to the current plan, then the current design is a Nash equilibrium
point. If otherwise, for example, in Figure 9(a), the dot supporting the vertex with thinner sides
is a superior deviation for the stage it belongs to, we go to the next step shown in Figure 9(b). In
this step, we add all the design selections (the 6 triangles with 2 thin dashed sides) that can be
obtained by mutating the current selection, to the pool of potential system designs, while removing
the current selection itself (the triangle with all thick dashed sides).

It is worth noting the difference between the 6 vertices supported by dashed sides in Figure 8
and the 6 dashed triangles in Figure 9(b): The dashed vertices are fictional deviations that affect
the performance of the stage itself but not the outputs of the other stages(players), while a dashed
triangle means that all the stages(players) take on a new set of designs(strategies) together, and
the impacts on the outputs of each others are accounted for.

The optimal design in the current pool will again go back through the equilibrium check stage
like in Figure 8, until a Nash equilibrium point is found.

(a) Superior deviation found (b) Mutate and optimize

Figure 9

We can see that the new algorithm reduces a large part of the parameter calculations compared
to the original model, especially when the number of stages and potential designs increases. It is
worth mentioning that an overall optimum implies a Nash equilibrium, but the reverse is not true.
Therefore, the Nash equilibrium that we pursue in this method can be considered a sub-optimal
solution or a local optimum.

In section 5.1, we first show how the complicating parameters, f̂ r
LO2

n,h̄ and f̂ r
LN2

n,h̄ in (17) and
(18), can be closely approximated with much simpler expressions. Next we present a terms re-
arrangement that breaks down the summations over system failure states according to the exact
stage where the failure is happening, which reveals a linear impact of the other stages on the
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contribution to liquid-over-consumption of each individual stages. In section 5.2, we present a
step-by-step description of the algorithm.

5.1. Approximation and rearrangement of key parameter expression

In this section, we propose an approximate expression and a rearranged expression of the key

parameters, the outage frequencies of the liquid products (LO2 and LN2) output, f̂ r
LO2

n,h̄ and

f̂ r
LN2

n,h̄ , which is in preparation for the iterative solution scheme explained in the next section.
In the following context, we only focus on LO2 and omit the similar term rearrangements and
approximations that are also done for LN2 to avoid unnecessary repetition.

First, we rearrange the expression in (31) with the following notations:
For each stage k, we let h̃ index the potential designs of the complementary subsystem ob-

tained by subtracting stage k from the entire system. For example, as shown in Figure 10, in the
perspective of stage 1, the complementary subsystem refers to the system consists of stages 2 and
3. Similarly to h(k, h̄), we define h̃(k, h̄) as the index of the potential complementary design of
stage k that is part of system design h̄.

Figure 10: From the perspective of stage 1

In the original expression shown in (17), the system failure scenarios are directly enumerated,
whereas in (31), the summation over the system failure scenarios breaks down by the stage k that
causes the failure (see Appendix B for detailed derivation).

f̂ r
LO2

n,h̄ =
∑
k∈K

∑
s∈Sf

k,h(k,h̄)

[πk,h(k,h̄)(s) · e
−V

LO2
n
δLO2 σk,h(k,h̄)(s) · σk,h(k,h̄)(s)· (31)

∑
s̃∈S̃k,h̃(k,h̄)

π̃k,h̃(k,h̄)(s̃) · e
−V

LO2
n
δLO2 σ̃k,h̃(k,h̄)(s̃) · (1 +

σ̃k,h̃(k,h̄)(s̃)

σk,h(k,h̄)(s)
)]
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We denote the stage-wise component of f̂ r
LO2

n,h̄ as F̂R
LO2
n,k,h(k,h̄):

f̂ r
LO2

n,h̄ =
∑
k∈K

F̂R
LO2
n,k,h(k,h̄) (32)

After rearrangement, F̂R
LO2
n,h̄ has the exact expression as shown in (33).

F̂R
LO2
n,k,h(k,h̄) =ΘLO2

n,k,h(k,h̄) · Φ
LO2
n,k,h̃(k,h̄)

+ ΦLO2
n,k,h(k,h̄) ·Θ

LO2
n,k,h̃(k,h̄)

, (33)

where

ΘLO2
n,k,h =

∑
s∈Sfk,h

πk,h(s) · e−
V LO2
n
δLO2 σk,h(s) · σk,h(s) (34)

ΦLO2
n,k,h̃

=
∑
s̃∈S̃k,h̃

π̃k,h̃(s̃) · e−
V LO2
n
δLO2 σ̃k,h̃(s̃)

(35)

ΦLO2
n,k,h =

∑
s∈Sfk,h

πk,h(s) · e−
V LO2
n
δLO2 σk,h(s)

(36)

ΘLO2
n,k,h̃

=
∑
s̃∈S̃k,h̃

π̃k,h̃(s̃) · e−
V LO2
n
δLO2 σk,h̃(s̃) · σ̃k,h̃(s̃) (37)

Therefore, instead of enumerating by system designs h̄, we focus on one stage k at a time and
enumerate by its potential designs h ∈ Hk and the potential complementary designs h̃ ∈ H̃k, and

define F̂R
LO2
n,k,h,h̃:

F̂R
LO2
n,k,h,h̃ = (ΘLO2

n,k,h · ΦLO2
n,k,h̃

+ ΦLO2
n,k,h ·ΘLO2

n,k,h̃
) (38)

It is also shown in Appendix B that following from (31), (39) and (40) are based on the assumption
that the failure rates are of the order of magnitude 10−4, and the repair rates are of 10−2.

f̂ r
LO2

n,h̄ =
∑
k∈K

∑
s∈Sf

k,h(k,h̄)

πk,h(k,h̄)(s) · e
−V

LO2
n
δLO2 σk,h(k,h̄)(s) · σk,h(k,h̄)(s) · (1±O(10−2)) (39)

F̂R
LO2
n,k,h(k,h̄) = ΘLO2

n,k,h(k,h̄) · (1±O(10−2)) (40)

Therefore, as shown in (40), we can use the sum of the outage frequencies of each stage alone∑
k∈K ΘLO2

n,k,h(k,h̄)
to approximate the system outage frequency f̂ r

LO2

n,h̄ .

As mentioned at the beginning of this section, similar term rearrangements and approximations
are done for LN2, which are omitted to avoid unnecessary repetition. To summarize, it is proposed

to rewrite the original expression shown in (17) as (41) and approximate f̂ r
LO2

n,h̄ with (42)..

f̂ r
LO2

n,h̄ =
∑
k∈K

F̂R
LO2
n,k,h(k,h̄),h̃(k,h̄) (41)

f̂ r
LO2

n,h̄ ≈
∑
k∈K

ΘLO2
n,k,h(k,h̄) (42)
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5.2. Algorithm description
In this section, we provide a step-by-step description of the algorithm with reference to the

above mathematical details and qualitative explanations. Briefly speaking, the algorithm takes
advantage of the fact that the individual contribution from each stage is under limited impact of
the other stages, and obtains a good initial solution ignoring these interrelations. It then iterates
between two tasks, checking the equilibrium condition of a current design, and until confirming
an equilibrium point, expanding the solution pool with all the mutations of unsuccessful previous
designs to find a better design.

Step 1. Calculate ΘLO2
n,k,h and ΦLO2

n,k,h (first defined in (34) and (36)). Solve the MILP independent

design selection problem (IDS) defined below, featuring the approximated parameters ΘLO2
n,k,h and

ΘLN2
n,k,h. Based on the relationship shown in (42), the MILP (IDS) is an approximation of (RST).

(IDS) : min
zk,h,xLO2

n ,xLN2
n

CU + CT + PN (43)

s.t.
∑
h∈Hk

zk,h ≥ 1, ∀k ∈ K

CU =
∑
k∈K

∑
h∈Hk

zk,hĈ
U
k,h∑

n∈NLO2

xLO2
n ≥ 1

∑
n∈NLN2

xLN2
n ≥ 1

CT =
∑

n∈NLO2

xLO2
n cLO2

n +
∑

n∈NLN2

xLN2
n cLN2

n

frLO2
n,k,h ≤ zk,hΘLO2

n,k,h, ∀n ∈ NLO2, k ∈ K,h ∈ Hk

frLO2
n,k,h ≤ xLO2

n ΘLO2
n,k,h, ∀n ∈ NLO2, k ∈ K,h ∈ Hk

frLO2
n,k,h ≥ (zk,h + xLO2

n − 1)ΘLO2
n,k,h, ∀n ∈ NLO2, k ∈ K,h ∈ Hk

frLN2
n,k,h ≤ zk,hΘLN2

n,k,h, ∀n ∈ NLN2, k ∈ K,h ∈ Hk

frLN2
n,k,h ≤ xLN2

n ΘLN2
n,k,h, ∀n ∈ NLN2, k ∈ K,h ∈ Hk

frLN2
n,k,h ≥ (zk,h + xLN2

n − 1)ΘLN2
n,k,h, ∀n ∈ NLN2, k ∈ K,h ∈ Hk

PN = T (penaltyLO2 ·
∑

n∈NLO2

∑
k∈K

∑
h∈Kh

frLO2
n,k,h

+ penaltyLN2 ·
∑

n∈NLN2

∑
k∈K

∑
h∈Kh

frLN2
n,k,h)

cU , cT , PN ≥ 0

zk,h ∈ {0, 1},∀k ∈ K,h ∈ Hk

xLO2
n ∈ {0, 1},∀n ∈ NLO2 (44)

xLN2
n ∈ {0, 1}, ∀n ∈ NLN2 (45)

(46)

The optimal solution of (IDS) indicates the potential design to select for each stage k: {h∗(0)(k), k ∈
K} (refer to the dots supporting the triangle in Figure 7). Appendix C shows an estimated bound of
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the gap between the global optimum and the objective function resulting from k: {h∗(0)(k), k ∈ K}
and the best storage selections that go with it.

Step 2. For each stage k ∈ K, solve the MILP equilibrium checking problems (ECP)(m,k). m
starts counting at m = 1. The model formulation is shown in (48). In order to do that ,we have

to first calculate the parameters F̂R
LO2
n,k,h,m based on {h∗(m−1)(k), k ∈ K} as shown in (47) (refer to

the dashed vertices in Figure 8).

F̂R
LO2
n,k,h,m = ΘLO2

n,k,h · ΦLO2
n,k,h̃∗

(m−1)
(k)

+ ΦLO2
n,k,h ·ΘLO2

n,k,h̃∗
(m−1)

(k)
(47)
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(ECP )(m,k) : min
zk,h,xLO2

n ,xLN2
n

CU + CT + PN (48)

s.t.
∑
h∈Hk

zk,h ≥ 1, ∀k ∈ K

CU =
∑
h∈Hk

zk,hĈ
U
k,h +

∑
l∈K\{k}

∑
h∈Hl

ĈUl,h∗
(m−1)

(l)∑
n∈NLO2

xLO2
n ≥ 1

∑
n∈NLN2

xLN2
n ≥ 1

CT =
∑

n∈NLO2

xLO2
n cLO2

n +
∑

n∈NLN2

xLN2
n cLN2

n

frLO2
n,k,h,m ≤ zk,hF̂R

LO2
n,k,h,m, ∀n ∈ NLO2, h ∈ Hk

frLO2
n,k,h,m ≤ xLO2

n F̂R
LO2
n,k,h,m, ∀n ∈ NLO2, h ∈ Hk

frLO2
n,k,h,m ≥ (zk,h + xLO2

n − 1)F̂R
LO2
n,k,h,m, ∀n ∈ NLO2, h ∈ Hk

frLO2
n,l,h,m = 0, ∀n ∈ NLO2, l ∈ K \ {k}, h ∈ Hl \ {h∗(m−1)(k)}

frLO2
n,l,h,m = xLO2

n F̂R
LO2
n,l,h,m,

∀n ∈ NLO2, l ∈ K \ {k}, h ∈ Hl \ {h∗(m−1)(k)}

frLN2
n,k,h,m ≤ zk,hF̂R

LN2
n,k,h,m, ∀n ∈ NLN2, h ∈ Hk

frLN2
n,k,h,m ≤ xLN2

n F̂R
LN2
n,k,h,m, ∀n ∈ NLN2, h ∈ Hk

frLN2
n,k,h,m ≥ (zk,h + xLN2

n − 1)F̂R
LN2
n,k,h,m, ∀n ∈ NLN2, h ∈ Hk

frLN2
n,l,h,m = 0, ∀n ∈ NLN2, l ∈ K \ {k}, h ∈ Hl \ {h∗(m−1)(k)}

frLN2
n,l,h,m = xLNs2n F̂R

LN2
n,l,h,m,

∀n ∈ NLN2, l ∈ K \ {k}, h ∈ Hl \ {h∗(m−1)(k)}

PN = T (penaltyLO2 ·
∑

n∈NLO2

∑
k∈K

∑
h∈Kh

frLO2
n,k,h,m

+ penaltyLN2 ·
∑

n∈NLN2

∑
k∈K

∑
h∈Kh

frLN2
n,k,h,m)

cU , cT , PN ≥ 0

zk,h ∈ {0, 1}, ∀k ∈ K,h ∈ Hk

xLO2
n ∈ {0, 1},∀n ∈ NLO2

xLN2
n ∈ {0, 1}, ∀n ∈ NLN2

The optimal solutions of the models (ECP)(m,k), k ∈ K indicate a group of design selection for
each stage {ho

(m)(k), k ∈ K}. If for every stage k, the complementary design indexed by (k,m)

that was brought into (ECP)(m) consists of the selected designs of the other stages, we say that a
Nash equilibrium is found among the stages, and the iteration stops. Otherwise, go to step 3. The
latter case is illustrated by Figure 9(a).
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Step 3. Solve the MILP partial design selection model (PDS)(m) shown in (52), which corre-
sponds to the mutate and optimize step shown in Figure 9(b). The model is called partial because
only an incomplete pool of possible designs are being evaluated. The associated parameters ĈU

h̄
,

f̂ r
LO2

n,h̄ and f̂ r
LN2

n,h̄ are calculated in equations (49), (50) and (51). The index set H̄(m) include the
indices representing those system designs that for at least one stage, the complementary design is
part of {h∗(m−1)(k), k ∈ K}. In other words, the system designs to be included in the partial design

selection model (PDS)(m) are obtained by mutating the designs that are combinations of the stage
designs in {h∗(m−1)(k), k ∈ K}, which are represented by the dashed triangles in Figure 9(b). Some
parameters from the last step can be reused here.

ĈUh̄ =
∑
k∈K

ĈUk,h(k,h̄), ∀h̄ ∈ H̄(m) (49)

f̂ r
LO2

n,h̄ =
∑
k∈K

F̂R
LO2
n,k,h(k,h̄),h̃(k,h̄)

=
∑
k∈K

(ΘLO2
n,k,h(k,h̄) · Φ

LO2
n,k,h̃(k,h̄)

+ ΦLO2
n,k,h(k,h̄) ·Θ

LO2
n,k,h̃(k,h̄)

), n ∈ NLO2, h̄ ∈ H̄ (50)

f̂ r
LN2

n,h̄ =
∑
k∈K

F̂R
LN2
n,k,h(k,h̄),h̃(k,h̄)

=
∑
k∈K

(ΘLN2
n,k,h(k,h̄) · Φ

LN2
n,k,h̃(k,h̄)

+ ΦLN2
n,k,h(k,h̄) ·Θ

LN2
n,k,h̃(k,h̄)

), n ∈ NLN2, h̄ ∈ H̄ (51)
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(PDS)(m) : min
zh̄,x

LO2
n ,xLN2

n

CU + CT + PN (52)

s.t.
∑

h̄∈H̄(m)

zh̄ ≥ 1, ∀k ∈ K

CU =
∑

h̄∈H̄(m)

zh̄Ĉ
U
h̄∑

n∈NLO2

xLO2
n ≥ 1

∑
n∈NLN2

xLN2
n ≥ 1

CT =
∑

n∈NLO2

xLO2
n cLO2

n +
∑

n∈NLN2

xLN2
n cLN2

n

frLO2
n,h̄ ≤ zh̄f̂ r

LO2

n,h̄ , ∀n ∈ NLO2, h̄ ∈
⋃

m′≤m
H̄(m′)\{h̄∗(m′),m

′ ≤ m− 1}

frLN2
n,h̄ ≤ zh̄f̂ r

LN2

n,h̄ , ∀n ∈ NLN2, h̄ ∈
⋃

m′≤m
H̄(m′)\{h̄∗(m′),m

′ ≤ m− 1}

PN = T (penaltyLO2 ·
∑

n∈NLO2

∑
h̄∈H̄(m)

frLO2
n,h̄

+ penaltyLN2 ·
∑

n∈NLN2

∑
h̄∈H̄(m)

frLN2
n,h̄ )

cU , cT , PN ≥ 0

zh̄ ∈ {0, 1}, ∀h̄ ∈ H̄k

xLO2
n ∈ {0, 1},∀n ∈ NLO2

xLN2
n ∈ {0, 1}, ∀n ∈ NLN2

The optimal solution of (PDS)(m) indicates the potential design to select for each stage k: {h∗(m)(k), k ∈
K}. After solving the model, let m = m+ 1 and go back to step 2.

To reiterate, as shown in Figure 11, the algorithm iterates between two tasks, checking the
equilibrium condition of {h∗(m)(k), k ∈ K}, and finding a new design based on the unsuccessful
previous solution and its superior deviation.
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Figure 11: The flowchart of the iterative problem solving scheme

6. Illustration of the Algorithm

In order to better illustrate the algorithm, we solve again the enlarged problem discussed in
section 2 and present the step-wise information. As shown in Figure 12, there is one more redundant
unit to be chosen from for each of the first three stages. Reliability and cost data of each unit
remain in the same range. The algorithm is able to find the optimum in 3 iterations.

Figure 12: The enlarged superstructure
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The initial design solution obtained from solving the MILP (IDS) (which has 363 variables with
32 binary variables, and 967 constraints) in step 1 is as shown in Figure 13, which is proven not
to be a Nash equilibrium point among the stages in Step 2 by solving (ECP)(1) (which has 363
variables with 32 binary variables, and 967 constraints). The estimate for LO2 penalty is $10,327.9,
and for LN2 penalty it is $11,063.0, with the approximated parameters.

Figure 13: Initial design solution

Because a Nash equilibrium point is not found, we follow Step 3 to expand the solution pool
by taking into consideration all possible redundancy selections that only differ from the initial
design in one stage, at the same time, the initial design is permanently excluded. By solving The
MILP model (PDS)(1) (which has 330 variables with 29 binary variables, and 902 constraints), the
best solution is as shown in Figure 14. The algorithm returns to Step 2 in iteration 2, and solves
(ECP)(2) (which has 363 variables with 32 binary variables, and 967 constraints) to find out that
this is still not a Nash equilibrium point. The expected penalty from LO2 is $11,477.2, while the
expected penalty from LN2 is $12,299.8.

Figure 14: Best design after the first solution pool expansion

Therefore, we proceed to Step 3 in iteration 2 and expand the solution pool again by mutating
only one stage at a time, and exclude the solution shown in Figure 14. The best solution solved by
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MILP model (PDS)(2) (which has 561 variables with 50 binary variables, and 1553 constraints) is
shown in Figure 15, which is checked out to be a Nash Equilibrium point. The expected penalty
from LO2 is lowered by a small margin to $11,468.5, similarly for LN2, the number becomes
$12,290.6. The original MILP formulation (RST) has 41546 variables, of which 3805 are binary,
and 132063 constraints. It obtains the same result.

Figure 15: Best design after the second solution pool expansion

The total computational time is 7.9s, as opposed to 2053.5s if solved with the original for-
mulation (RST) (that requires 1697.2 s for parameter calculation and 356.3 s for solution of the
MILP).

7. More Examples

As was discussed in section 5.2, the globally optimal solution of the original formulation (RST)
is a Nash-equilibrium solution but the reverse is not always true. However, we show in appendix C
that, given that the failure rates and repair rates of the units are of certain orders of magnitudes,
the gap between an easily obtained initial design and the global optimum is small and can be
estimated, which makes it highly likely for the algorithm to arrive at the global optimum. In this
section, we consider a example with the superstructure as shown in 16. It shares Table 2, Table 3
and Table 4 with the first example shown in section 4. Mean time between failure, Mean time to
repair and capital costs are given in Table 5, which are not real world values and are only meant for
illustrative purposes. A series of reliability parameters sensitivity tests are performed, for which
the game-theoretic approach gives the global optima according to the solution of the original MILP
(RST) (model stats), but in much shorter time.
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Figure 16: Design superstructure

Figure 17: Optimal design for the parameters shown in the table

Figure 17 shows the optimal design. For both the main air compressor and the booster air
compressor, units 2 and 3 are selected. The pre-purifier and the LO2 pump exclude the last
potential units. The tanks for both LN2 and LO2 are of size 100k gallon. The capital cost on the
processing equipment is $6225k, while the capital cost on the storage tanks is $105k. The expected
frequency of LO2 outage is 0.0105 in the 10 year horizon, which incurs $21,089 penalty. The
expected frequency of LN2 outage is 0.0121 in the 10 year horizon, which incurs $24,194 penalty.
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Table 5: Reliability and installation cost parameters

Stage Unit Failure mode MTBF
(day)

MTTR
(day)

Capital
cost(k$)

Main air compressor

1

FMC1 5000 10

1250

FMC2 3650 5
FMC3 7000 7
FMC4 1500 0.3
FMC5 5000 2
FMC6 7000 50

2

FMC1 5000 10

1240

FMC2 3650 5
FMC3 5000 7
FMC4 1500 0.3
FMC5 6000 2
FMC6 6000 50

3

FMC1 4000 10

1200

FMC2 4000 5
FMC3 4000 7
FMC4 1500 0.3
FMC5 5000 2
FMC6 6000 50

Pre-purifier

1

FMPF1

3650 4 520
2 3650 4 520
3 3650 4 520
4 3650 4 520

Booster air compressor

1

FMC1 5000 10

1000

FMC2 3650 5
FMC3 7000 7
FMC4 1500 0.3
FMC5 5000 2
FMC6 7000 50

2

FMC1 5000 10

980

FMC2 3650 5
FMC3 5000 7
FMC4 1500 0.3
FMC5 6000 2
FMC6 6000 50

3

FMC1 4000 10

950

FMC2 4000 5
FMC3 4000 7
FMC4 1500 0.3
FMC5 5000 2
FMC6 6000 50

LO2 Pump
1

FMP1
3650 4 150

2 3650 4 150
3 3650 4 150
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Figure 18: Optimal design when failure rates are doubled and repair rates are cut in half

First we perturb the parameters to make the units less reliable and harder to repair. For when
the failure rates are doubled and the repair rates are cut in half, the optimal design is shown in
Figure 18, where the only change comparing to the original design (Figure 17) is that the main
air compressor switched one of the redundancies for a more expensive and more reliable one. And
because of the changes in the reliability parameters, the expected LO2 penalty becomes $181,769
, and the expected LN2 penalty becomes $200,556 .

If the failure rates are multiplied by 5 and repair rates are divided by 5 (Figure 19), the best
decision is to have the largest storage tanks (1500k gallon) for both products, and to have all the
potential units in the compressor stages. The capital cost on the processing equipment is now
$8475k, while the capital cost on the storage tanks is $1815k. The expected frequency of LO2
outage is 0.254 in the 10 year horizon, which incurs $508,643 penalty. The expected frequency of
LN2 outage is 0.391 in the 10 year horizon, which incurs $781,340 penalty.

Figure 19: Optimal design when failure rates are multiplied by 5 and repair rates are divided by 5

Now we switch to the other direction where the failure rates are cut in half and the repair rates
are doubled (Figure 20), and there is a huge improvement in the capital investment needed for the
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redundancies comparing to the nominal case ($3415k comparing to $6225k), but there has to be
a raise on the storage side as a trade-off (1000k gallon for both LO2 and LN2 leading to $1186k
capital cost). The expected frequency of LO2 outage is 0.237 in the 10 year horizon, which incurs
$473,939 penalty. The expected frequency of LN2 outage is 0.295 in the 10 year horizon, which
incurs $589,553 penalty.

Figure 20: Optimal design when failure rates are cut in half and repair rates are doubled

Finally, when the units are assumed to be significantly more reliable than the nominal case,
the optimal design is to use the fewest number of redundancies and the smallest storage tanks.
The investment on processing equipment is deemed to be $3365k. 400k gallon tanks are chosen for
both products, which lead to a $452k cost. The expected frequency of LO2 outage is 0.0960 in the
10 year horizon, which incurs $192,029 penalty. The expected frequency of LN2 outage is 0.125 in
the 10 year horizon, which incurs $249,535 penalty.

It can be seen from the last two cases that the optimizer chooses to pay more penalties rather
than higher investment cost, as the opportunistic decrease of outage penalties are not enough to
overcome capital commitment of installing more redundancies.

Figure 21: Optimal design when failure rates are divided by 5 and repair rates are multiplied by 5
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Table 6 shows the numerical results and the computational statistics from both methods. It can
be seen that the proposed game theoretic algorithm can solve the problem in much shorter time
than the original MILP. Also, as the units become more reliable, the overall costs and penalties
become lower.

Table 6: Numerical results and computational statistics of the sensitivity test cases

Least reliable Less reliable More reliable Most reliable

Objective value (K$) 11579.9 6722.4 5855.6 4258.5
Investment cost (K$) 8475 6235 3415 3365

LN2 penalty (K$) 508.6 181.8 666.8 192.1
LO2 penalty (K$) 781.3 200.6 587.8 249.4

The proposed algorithm
CPUs 9.2 2.6 2.3 2.3
No. Iters 3 1 1 1

The original MILP (RST)
CPUs for
parameters

2702.2 2828.6 2712.3 2721.1

CPUs for
models

1191.2 2198.2 604.6 189.1

8. Conclusion

In this paper, we addressed the optimization problem of reliable design for chemical processes,
where design decisions are made regarding redundant equipment selection and storage tanks sizing.
The aim is to minimize the total cost, which consists of the penalty from product unavailability
and the cost of taking the reliability increasing measures, including having redundant units and
storage tanks. An MILP model (RST) based on Markov Chain assumption is proposed and applied
to the motivating example of an air separation unit, where the pipeline availability is essential for
ensuring the continuation of downstream customer productions.

While the Markov Chain framework closely represents the stochastic process of equipment
failures and repairs, and the filling and consumption of liquid storage, the state space representation
leads to curse of dimensionality. To be able to tackle larger superstructures, we propose a game
theoretic algorithm that decomposes and restructures the problem as a team game of the various
processing stages, and arrives at a Nash Equilibrium among them. It is also shown that a good
initial design that is close enough to the global optimum can be easily obtained for our problem,
which guarantees the quality of the Nash Equilibrium solution. A number of examples have been
shown to illustrate the proposed algorithm’s ability to solve to global optimality in orders of
magnitude shorter time than the original MILP model (RST).

Nomenclature

Indices

k The index of the processing stages

h The index of single stage designs

h̄ The index of the system designs

h̃ The index of the minus-one-stage system designs

s The state index of single stages
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s̄ The state index of the system

s̃ The state index of the minus-one-stage systems

n The index of storage tank size options

Parameters

c unitk,h The investment cost of design h in stage k

Wk,h(s, s),Wk,h The transition rate (,matrix) of design h in stage k

πk,h(s),πk,h The stationary probability distribution (,vector) of design h in stage k

σk,h(s),σk,h The departing rate (,vector) of design h in stage k

W̄h̄(s̄, s̄),W̄h̄ The transition rate (,matrix) of system design h̄

π̄h̄(s̄),π̄h̄ The stationary probability distribution (,vector) of system design h̄

σh̄(s̄),σ̄h̄ The departing rate (,vector) of system design h̄

fh̄(s̄) The frequency of encountering state s of system design h̄

T Planned service time of the ASU

V LO2
n The reserve volume option n of liquid oxygen (tons)

V LN2
n The reserve volume option n of liquid nitrogen (tons)

c tankLO2
n The investment cost of liquid oxygen tank of reserve volume V LO2

n

c tankLN2
n The investment cost of liquid nitrogen tank of reserve volume V LN2

n

δLO2 Consumption rate of liquid oxygen (tons per day)

δLN2 Consumption rate of liquid nitrogen (tons per day)

penaltyLO2 Penalty of liquid oxygen supply interruption (K$ per occurrence)

penaltyLN2 Penalty of liquid nitrogen supply interruption (K$ per occurrence)

f̂ r
LO2

n,h̄ Over consumption frequency of liquid oxygen given that size n is selected for LO2
tank and h̄ is selected for system design

f̂ r
LN2

n,h̄ Over consumption frequency of liquid nitrogen given that size n is selected for LN2
tank and h̄ is selected for system design

F̂R
LO2
n,k,h(k,h̄) The over consumption frequency of liquid oxygen that is due to the failure in stage k

under system design h̄, which corresponds to stage design h in stage k

F̂R
LN2
n,k,h(k,h̄) The over consumption frequency of liquid nitrogen that is due to the failure in stage

k under system design h̄, which corresponds to stage design h in stage k

F̂R
LO2
n,k,h,h̃ The over consumption frequency of liquid oxygen that is due to the failure in stage k

with design h and complementary design h̃

F̂R
LN2
n,k,h(k,h̄) The over consumption frequency of liquid nitrogen that is due to the failure in stage

k with design h and complementary design h̃

Sets

K The index set of the processing stages

Hk The index set of the designs of stage k

H̄ The index set of system designs

H̃k The index set of the complementary designs of stage k

NLO2 The index set of LO2 storage tank size options
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NLN2 The index set of LN2 storage tank size options

Sk,h The state space (set of all possible states) of design h in stage k

Sfk,h The set of all failure states of design h in stage k

S̄h̄ The state space of the system design h̄

S̄f
h̄

The set of all failure states of system design h̄

S̃k,h̃ The state space of the complementary design h̃ of stage k

Variables

zk,h Binary variable that indicates the selection of design h for stage k

xLO2
n Binary variable that indicates the selection of tank size option n for liquid oxygen

xLN2
n Binary variable that indicates the selection of tank size option n for liquid nitrogen

rth̄(s̄) Random variable of the residence time of state s̄ of system design h̄

V LO2dec
h̄

(s̄) Random variable of the volume of liquid oxygen decreasing during failure state s̄

V LN2dec
h̄

(s̄) Random variable of the volume of liquid nitrogen decreasing during failure state s̄

frLO2
n,h̄

Over consumption frequency of liquid oxygen given that size n is selected for LO2

tank and h̄ is selected for system design

frLN2
n,h̄

Over consumption frequency of liquid nitrogen given that size n is selected for LN2

tank and h̄ is selected for system design

CU Investment cost on processing units

CT Investment cost on storage tanks

PN Expected penalty from supply interruptions

Appendix A Relationship between the system level quantities and the stage level
quantities

In this appendix, we show how to obtain the system level quantities, π̄, and σ̄, through the
Kronecker products of the stage level quantities (where of each stage n they are denoted as πn,
and σn).

SupposeQ1
m×m is the transition matrix based on certain design of stage 1,Q2

n×n is the transition
matrix based on certain design of stage 2, and Qmn×mn is the transition matrix based on the
corresponding system design. By definition, we have,

Qmn×mn = In×n ⊗Q1
m×m +Q2

n×n ⊗ Im×m (A.53)

Let πm, πn, and π̄mn be the corresponding stationary probability vectors, then they satisfy (A.54),
(A.55) and (A.56) respectively:

πTmQ
1
m×m = 0Tm (A.54)

πTnQ
2
n×n = 0Tn (A.55)

π̄TmnQmn×mn = 0Tmn×mn (A.56)

Let σm, σn, and σ̄mn be the corresponding diagonal vectors as defined in (A.57), (A.58), and
(A.59).

σm = diag(Q1
m×m) (A.57)
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σn = diag(Q2
n×n) (A.58)

σ̄mn = diag(Qmn×mn) (A.59)

It then follows that,

σ̄mn = 1n ⊗ σm + σn ⊗ 1m (A.60)

Next we show that

π̄mn = πn ⊗ πm (A.61)

From (A.54) and (A.55) we have

(πn ⊗ πm)T (In×n ⊗Q1
m×m) (A.62)

=(πn(1)πTm, πn(2)πTm, ..., πn(n)πTm)


Q1
m×m

Q1
m×m

. . .

Q1
m×m

 = 0Tmn×mn (A.63)

(πn ⊗ πm)T (Q2
n×n ⊗ Im×m) (A.64)

=(πn(1)πTm, πn(2)πTm, ..., πn(n)πTm)

Q
2
n×n(1, 1)Im×m Q2

n×n(1, 2)Im×m · · · Q2
n×n(1, n)Im×m

...
...

. . .
...

Q2
n×n(n, 1)Im×m Q2

n×n(n, 2)Im×m · · · Q2
n×n(n, n)Im×m


(A.65)

=0Tmn×mn (A.66)

Therefore,

π̄TmnQmn×mn (A.67)

=(πn ⊗ πm)TQmn×mn (A.68)

=(πn ⊗ πm)T (In×n ⊗Q1
m×m +Q2

n×n ⊗ Im×m) (A.69)

=0Tmn×mn (A.70)

Appendix B Approximation of the outage frequency parameters

In this appendix, we show how the complicating parameters, f̂ r
LO2

n,h̄ and f̂ r
LN2

n,h̄ , can be approx-
imated by stage-wise decomposition, and under the assumptions that the single unit failure rates
are of O(10−4), and the single unit repair rates are of O(10−2).

The expression of f̂ r
LO2

n,h̄ is as shown in equation B.1.

f̂ r
LO2

n,h̄ =
∑
s̄∈S̄f

h̄

π̄h̄(s̄) · σ̄h̄(s̄) · e−
V LO2
n
δLO2 σ̄h̄(s̄)

(B.1)
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Without loss of generality, we drop the indices of all the V and δ and look into the following
expression (B.2):

A(h̄) =
∑
s̄∈S̄f

h̄

π̄h̄(s̄) · σ̄h̄(s̄) · e−
V
δ
σ̄h̄(s̄) (B.2)

According to equations (7) and (8), (B.2) can be expanded as shown in (B.3).

A(h̄) =
∑
s̄∈S̄f

h̄

[
∑
k∈K

σk,h(k,h̄)(s(k, s̄))][
∏
k∈K

πk,h(k,h̄)(s(k, s̄)) · e
−V
δ
σk,h(k,h̄)(s(k,s̄))] (B.3)

From (B.3) to (B.4), S̄f
h̄

, the set of system failure states, breaks down into |K| disjoint subsets,

S̄f
k,h(k,h̄)

, based on which stage the failure actually happens.

A(h̄) =
∑
k∈K

∑
s̄∈S̄f

k,h(k,h̄)

[
∑
k∈K

σk,h(k,h̄)(s(k, s̄))][
∏
k∈K

πk,h(k,h̄)(s(k, s̄)) · e
−V
δ
σk,h(k,h̄)(s(k,s̄))]

=
∑
k∈K

∑
s̄∈S̄f

k,h(k,h̄)

{[σk,h(k,h̄)(s(k, s̄)) +
∑

l∈K,l 6=k
σl,h(l,h̄)(s(l, s̄))]·

[πk,h(k,h̄)(s(k, s̄)) · e
−V
δ
σk,h(k,h̄)(s(k,s̄)) ·

∏
l∈K,l 6=k

πl,h(l,h̄)(s(l, s̄)) · e
−V
δ
σl,h(l,h̄)(s(l,s̄))]} (B.4)

For each stage k, we let h̃ index the potential designs of the complementary subsystem obtained
by subtracting stage k from the entire system. For example, when dealing with stage 1, the
complementary subsystem refers to the system consists of stages 2, 3, and 4. h̃(k, h̄) is the index of
the potential complementary design of stage k that is part of system design h̄. Following the idea
of (7) and (8), the summations and products over l ∈ K, l 6= k can be folded into the corresponding
quantities of the complementary designs as shown in (B.5).

A(h̄) =
∑
k∈K

∑
s̄∈S̄f

k,h(k,h̄)

{[σk,h(k,h̄)(s(k, s̄)) + σ̃k,h̃(k,h̄)(s̃(l, s̄))]

· [πk,h(k,h̄)(s(k, s̄)) · e
−V
δ
σk,h(k,h̄)(s(k,s̄)) · π̃k,h̃(k,h̄)(s̃(l, s̄)) · e

−V
δ
σ̃k,h̃(k,h̄)(s̃(l,s̄))]} (B.5)

Moreover, since the set of system states with failure in stage k, S̄f
k,h(k,h̄)

, is the Cartesian product

of the set of failure stage states of stage k, Sf
k,h(k,h̄)

, and the set of non-failure (working) states of

its complementary sub-system, S̃w
k,h̃(k,h̄)

, therefore, A(h̄) can be further rewritten as in (B.6) and
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then (B.7).

A(h̄) =
∑
k∈K

∑
s∈Sf

k,h(k,h̄)

∑
s̃∈S̃w

k,h̃(k,h̄)

{[σk,h(k,h̄)(s) + σ̃k,h̃(k,h̄)(s̃)]

· [πk,h(k,h̄)(s) · e
−V
δ
σk,h(k,h̄)(s) · π̃k,h̃(k,h̄)(s̃) · e

−V
δ
σ̃k,h̃(k,h̄)(s̃)]} (B.6)

=
∑
k∈K

∑
s∈Sf

k,h(k,h̄)

[πk,h(k,h̄)(s) · e
−V
δ
σk,h(k,h̄)(s) · σk,h(k,h̄)(s)

·
∑

s̃∈S̃w
k,h̃(k,h̄)

π̃k,h̃(k,h̄)(s̃) · e
−V
δ
σ̃k,h̃(k,h̄)(s̃) · (1 +

σ̃k,h̃(k,h̄)(s̃)

σk,h(k,h̄)(s)
)] (B.7)

We let ∑
s̃∈S̃w

k,h̃(k,h̄)

π̃k,h̃(k,h̄)(s̃) · e
−V
δ
σ̃k,h̃(k,h̄)(s̃) · (1 +

σ̃k,h̃(k,h̄)(s̃)

σk,h(k,h̄)(s)
) = Bk,h̃(k,h̄)(s) + Ek,h̃(k,h̄)(s), (B.8)

where

Bk,h̃(k,h̄)(s) = π̃k,h̃(k,h̄)(1) · e−
V
δ
σk,h̃(k,h̄)(1) · (1 +

σ̃k,h̃(k,h̄)(1)

σk,h(k,h̄)(s)
), (B.9)

and

Ek,h̃(k,h̄)(s) =
∑

s̃∈S̃w
k,h̃(k,h̄)

\{1}

π̃k,h̃(k,h̄)(s̃) · e
−V
δ
σ̃k,h̃(k,h̄)(s̃) · (1 +

σ̃k,h̃(k,h̄)(s̃)

σk,h(k,h̄)(s)
), (B.10)

where state (s̃ = 1) refers to the all-good state of the sub-system k, h̃. With (B.7) and (B.8), we
have,

A(h̄) =
∑
k∈K

∑
s∈Sf

k,h(k,h̄)

πk,h(k,h̄)(s) ·e
−V
δ
σk,h(k,h̄)(s) ·σk,h(k,h̄)(s) · (Bk,h̃(k,h̄)(s)+Ek,h̃(k,h̄)(s)). (B.11)

σk,h̃(k,h̄)(1) is the sum of the failure rates of all the failure modes of the first unit selected for stage

k, therefore, σk,h̃(k,h̄)(1) ∼ O(10−4). Since state s here only include the failure states of each stage,

there is at least one repair rate contributing to σk,h(k,h̄)(s), so σk,h(k,h̄)(s) ∼ O(10−2). V
δ ranges

from O(10) to O(102). Based on the value and order estimations stated above, we can estimate
the value of Bk,h̃(k,h̄)(s) in (B.12).

Bk,h̃(k,h̄)(s) = π̃k,h̃(k,h̄)(1) · (1− V

δ
σ̃k,h̃(k,h̄)(1)) · (1 +O(10−2))

= π̃k,h̃(k,h̄)(1) · (1−O(10−2)) · (1 +O(10−2)) = π̃k,h̃(k,h̄)(1) · (1±O(10−2)).

(B.12)
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For the second term, Ek,h̃(k,h̄)(s), Let it be written as shown in (B.13).

Ek,h̃(k,h̄)(s) =
∑

s̃∈S̃w
k,h̃(k,h̄)

\{1}

π̃k,h̃(k,h̄)(s̃) ·Gk,h̃(k,h̄)(s, s̃) (B.13)

We examine the derivative of Gk,h̃(k,h̄)(s, s̃) with regard to σ̃k,h̃(k,h̄)(s̃).

dGk,h̃(k,h̄)(s, s̃)

dσ̃k,h̃(k,h̄)(s̃)
=

d

dσ̃k,h̃(k,h̄)(s̃)
(e
−V
δ
σ̃k,h̃(k,h̄)(s̃) · (1 +

σ̃k,h̃(k,h̄)(s̃)

σk,h(k,h̄)(s)
)) (B.14)

= e
−V
δ
σ̃k,h̃(k,h̄)(s̃)(− V

δ · σk,h(k,h̄)(s)
σ̃k,h̃(k,h̄)(s̃)+

V

δ
− 1

σk,h(k,h̄)(s)
) :

{
> 0, if σ̃k,h̃(k,h̄)(s̃) ≤

δ
V − σk,h(k,h̄)(s)

≤ 0, if σ̃k,h̃(k,h̄)(s̃) >
δ
V − σk,h(k,h̄)(s)

(B.15)

By definition, σ̃k,h̃(k,h̄)(s̃) is always positive, therefore, we are only concerned about the value on
the positive side.

max
σ̃k,h̃(k,h̄)(s̃)>0

Gk,h̃(k,h̄)(s, s̃) =

{
1 , δV ≤ σk,h(k,h̄)(s)

δ
V ·σk,h(k,h̄)(s)

· e
V
δ
σk,h(k,h̄)(s)−1, δV > σk,h(k,h̄)(s)

(B.16)

With certain δ and σk,h(k,h̄)(s) (∼ O(10−2)), δ
V ·σk,h(k,h̄)(s)

· e
V
δ
σk,h(k,h̄)(s)−1 achieves its maximum at

the smallest possible tank size V , where δ
V ∼ O(10−1), and δ

V ·σk,h(k,h̄)(s)
· e

V
δ
σk,h(k,h̄)(s)−1 ∼ O(1).

Based on the above order of magnitude estimations, we have,

Ek,h̃(k,h̄)(s) ≤ (1− π̃k,h̃(k,h̄)(1)) ·O(1) (B.17)

State (s̃ = 1) refers to the all-good state of the sub-system k, h̃, therefore, π̃k,h̃(k,h̄)(1) = 1−O(10−2).
Therefore,

Bk,h̃(k,h̄)(s) + Ek,h̃(k,h̄)(s) = (1−O(10−2))(1±O(10−2)) +O(10−2) = 1±O(10−2) (B.18)

A(h̄) =
∑
k∈K

∑
s∈Sf

k,h(k,h̄)

πk,h(k,h̄)(s) · e
−V
δ
σk,h(k,h̄)(s) · σk,h(k,h̄)(s) · (1±O(10−2)) (B.19)

f̂ r
LO2

n,h̄ =
∑
k∈K

∑
s∈Sf

k,h(k,h̄)

πk,h(k,h̄)(s) · e
−V

LO2
n
δLO2 σk,h(k,h̄)(s) · σk,h(k,h̄)(s) · (1±O(10−2)) (B.20)

Appendix C The objective function sensitivity of (IDS) to parameters F̂R
LO2

n,k,h and

F̂R
LN2

n,k,h

In this appendix we derive the upper bounds of the objective function sensitivity of the inde-

pendent design selection problem (IDS) to the complicating parameters F̂R
LO2
n,k,h and F̂R

LN2
n,k,h, in
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order to show that the initial design obtained from approximated parameters are close enough to
the global optimum.

First we write down the general form of the MILP as follows, where x are the binary vari-

ables, and y are the continuous variables. F̂R
LO2
n,k,h and F̂R

LN2
n,k,h are part of A and c, which are

approximated with ΘLO2
n,k,h and ΘLO2

n,k,h at the initialization phase of the proposed game-theoretic
algorithm.

min gx+ hy (C.1)

s.t. Ax+By ≤ c (C.2)

Dx ≤ e (C.3)

x ∈ {0, 1}n (C.4)

y ∈ Rm+ (C.5)

Let (xo, yo) be the solution to the problem where the parameters of concern are equal to our initial
approximation in the paper:

(xo, yo) = arg min{gx+ hy|Aox+By ≤ co, Dx ≤ e, x ∈ {0, 1}n, y ∈ Rm+} (C.6)

Let (x∗, y∗) be the solution to the problem where the parameters of concern are equal to those
calculated from the global optimal solution. In other words, the problem can be viewed as an
equilibrium checking problem for the global optimal strategy, which is also a Nash equilibrium
strategy.

(x∗, y∗) = arg min{gx+ hy|A∗x+By ≤ c∗, Dx ≤ e, x ∈ {0, 1}n, y ∈ Rm+} (C.7)

By definition of optimality, As shown in (C.8), by the definition of optimality, if we specify the
binary variable values in the initial problem (C.6) withx∗, the optimization result is greater than
the overall optimum of that problem.

gxo + hyo ≤ gx∗ + min{hy|By ≤ co −Aox∗, y ∈ Rm+} (C.8)

Our major concern is the difference between the optimal objective value, (gx∗ + hy∗) and the
objective value of the approximated solution, (gxo+min{hy|By ≤ c′−A′xo, y ∈ Rm+}), where in A′

and c′, the parameters of concern are calculated from the approximated strategy xo. With (C.8),
we can bound the difference with (C.9), where the problem becomes the objective value sensitivity
to RHS of the LP from fixing the binary variables (x = xo).

Err =(gxo + min{hy|By ≤ c′ −A′xo, y ∈ Rm+})− (gx∗ + hy∗)

≤(min{hy|By ≤ co −Aox∗, y ∈ Rm+} − hy∗) + (min{hy|By ≤ c′ −A′xo, y ∈ Rm+} − hyo)
(C.9)

=(min{hy|By ≤ co −Aox∗, y ∈ Rm+} −min{hy|By ≤ c∗ −A∗x∗, y ∈ Rm+})
+ (min{hy|By ≤ c′ −A′xo, y ∈ Rm+} −min{hy|By ≤ co −Aoxo, y ∈ Rm+}) (C.10)
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For model (IDS), the LP from fixing the discrete variables (x = x∗) reduces to the following,

min T (penaltyLO2 ·
∑

n∈NLO2

∑
k∈K

∑
h∈Hk

frLO2
n,k,h + penaltyLN2 ·

∑
n∈NLO2

∑
k∈K

∑
h∈Hk

frLN2
n,k,h)

(C.11)

s.t. frLO2
n,k,h ≤ F̂R

LO2
n,k,h, ∀(xLO2

n )∗ = 1, k ∈ K,h ∈ Hk (C.12)

frLO2
n,k,h ≤ F̂R

LO2
n,k,h, ∀(zk,h)∗ = 1, n ∈ NLO2 (C.13)

− frLO2
n,k,h ≤ −F̂R

LO2
n,k,h, ∀(zk,h)∗ = 1, (xLO2

n )∗ = 1 (C.14)

frLO2
n,k,h ≤ 0, ∀(xLO2

n )∗ = 0, k ∈ K,h ∈ Hk (C.15)

frLO2
n,k,h ≤ 0, ∀(zk,h)∗ = 0, n ∈ NLO2 (C.16)

− frLO2
n,k,h ≤ F̂R

LO2
n,k,h, ∀(zk,h)∗ = 0, (xLO2

n )∗ = 0 (C.17)

− frLO2
n,k,h ≤ 0, ∀(zk,h)∗ = 0, (xLO2

n )∗ = 1 OR (zk,h)∗ = 1, (xLO2
n )∗ = 0 (C.18)

frLN2
n,k,h ≤ F̂R

LN2
n,k,h, ∀(xLN2

n )∗ = 1, k ∈ K,h ∈ Hk (C.19)

frLN2
n,k,h ≤ F̂R

LN2
n,k,h, ∀(zk,h)∗ = 1, n ∈ NLN2 (C.20)

− frLN2
n,k,h ≤ −F̂R

LN2
n,k,h, ∀(zk,h)∗ = 1, (xLN2

n )∗ = 1 (C.21)

frLN2
n,k,h ≤ 0, ∀(xLN2

n )∗ = 0, k ∈ K,h ∈ Hk (C.22)

frLN2
n,k,h ≤ 0, ∀(zk,h)∗ = 0, n ∈ NLN2 (C.23)

− frLN2
n,k,h ≤ F̂R

LN2
n,k,h, ∀(zk,h)∗ = 0, (xLN2

n )∗ = 0 (C.24)

− frLN2
n,k,h ≤ 0, ∀(zk,h)∗ = 0, (xLN2

n )∗ = 1 OR (zk,h)∗ = 1, (xLN2
n )∗ = 0 (C.25)

At the optimal point,

min{hy|By ≤ co −Aox∗, y ∈ Rm+}

=T (penaltyLO2 ·
∑
k∈K

(F̂R
LO2
n,k,h, s.t. (zk,h)∗=1,(xLO2

n )∗=1)o + penaltyLN2 ·
∑
k∈K

(F̂R
LN2
n,k,h, s.t. (zk,h)∗=1,(xLN2

n )∗=1)o)

(C.26)

We can obtain similar expressions for the other terms in (C.10). Based on (40) and (C.8), there is

Err ≤O(10−2) · T · [penaltyLO2 ·
∑
k∈K

(F̂R
LO2
n,k,h, s.t. (zk,h)∗=1,(xLO2

n )∗=1)∗

+ penaltyLN2 ·
∑
k∈K

(F̂R
LN2
n,k,h, s.t. (zk,h)∗=1,(xLN2

n )∗=1)∗]

+O(10−2) · T · [penaltyLO2 ·
∑
k∈K

(F̂R
LO2
n,k,h, s.t. (zk,h)o=1,(xLO2

n )o=1)o

+ penaltyLN2 ·
∑
k∈K

(F̂R
LN2
n,k,h, s.t. (zk,h)o=1,(xLN2

n )o=1)o] (C.27)

=O(10−2) · (hy∗ + hyo) (C.28)

≤O(10−2) · (hy∗ + gx∗ + hy∗ · (1 +O(10−2))) (C.29)
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