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Abstract 

In this paper, we present the derivation of the multiparametric disaggregation technique by Teles 

et. al (2001) for solving nonconvex bilinear programs.  Both upper and lower bounding 

formulations corresponding to mixed-integer linear programs are derived using disjunctive 

programming and exact linearizations, and incorporated into two global optimization algorithms 

that are used to solve bilinear programming problems.  The relaxation derived using the 

multiparametric disaggregation technique (MDT) is shown to scale much more favorably than the 

relaxation that relies on piecewise McCormick envelopes, yielding smaller mixed-integer problems 

and faster solution times for similar optimality gaps.  The proposed relaxation also compares well 

with general global optimization solvers on large problems.   
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1. Introduction 

Bilinear programs, for the purpose of this paper, can be written as the following nonconvex 

nonlinear programming problem:  

Min	ݖ ൌ ଴݂ ൌ ෍ 	
ሺ௜,௝ሻ∈஻௅బ

ܽ௜௝଴ݔ௜ݔ௝ ൅ ݄଴ሺݔሻ 

Subject to 

				 ௤݂ ൌ ෍ 	
ሺ௜,௝ሻ∈஻௅೜

ܽ௜௝௤ݔ௜ݔ௝ ൅ ݄௤ሺݔሻ ൑ ݍ				0 ∈ ܳ\ሼ0ሽ 

ݔ				 ∈ ܵ ∩ Ω ⊂ Թ௡ 

(P)

where hq(x) is convex and twice differentiable, aijq is a scalar with i ∈ I, j ∈ J, and q ∈ Q represents 

the set of all functions fq, including the objective function f0 and all constraints. BLq is an (i,j)-index 

set which defines the bilinear terms present in the problem.  Although i ≠ j for strictly bilinear 

problems, i = j can be allowed to accommodate quadratic problems.  The set S ⊂ Թn is convex, and 

Ω ⊂ Թn is an n-dimensional hyperrectangle defined in terms of the initial variable bounds xL and xU: 

Ω ൌ ሼݔ ∈ Թ௡: 0 ൑ ௅ݔ ൑ ݔ ൑  ௎ሽݔ

The global optimization of bilinear programs of the form of (P) is important in such areas as 

water networks and petroleum blending operations [1, 2, 3, 4].  Nonconvex, bilinear constraints are 

required to model the mixing of various streams in these systems, and are in some cases the only 

nonlinearities in the models.  The pooling problem, stemming from the original Haverly paper [5], 

contains these bilinear constraints and has received much attention in the literature [6, 1, 7, 8, 2, 9].  

Recently, Misener & Floudas have demonstrated a novel logarithmic relaxation for modeling 

bilinear terms with piecewise McCormick envelopes while addressing various classes of pooling 

problems [1]. 

Water network optimization problems containing bilinear terms have also received much 

attention in the literature  [10, 11, 3, 4, 12].  The same blending constraints present in the pooling 
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problem are present in water network problems, and thus numerous advances in solving bilinear 

programs have been made addressing these problems. 

The global optimization of general nonconvex bilinear programs has received significant attention 

in the literature [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. The convex McCormick 

envelopes [1] coupled with spatial branch and bound search frameworks have been the basis for 

many of these global optimization techniques, with piecewise McCormick envelopes being a more 

recent development.  Variations of this approach have been suggested, generalizing the convex 

envelopes to piecewise over- and under-estimators [1, 17]. Novel ways of representing bilinear 

terms through reformulation have been another approach reported in the literature [16].  Misener 

and Floudas [1], building on the work of Vielma & Nemhauser [28, 29], have shown that a 

relaxation of the bilinear terms can be achieved with a logarithmic number of binary variables.  

Teles & Castro [30] have introduced a novel approximation of polynomial constraints that exhibit a 

similar property. 

In this paper, we introduce the multiparametric disaggregation technique described in [11] and 

derive the corresponding mixed-integer constraints using generalized disjunctive programming and 

exact linearization. We also prove that this approximation technique can be used under some 

conditions to obtain an upper bound.  Furthermore, we introduce a rigorous lower bound derived 

from the upper bounding constraints, and present two algorithms based on these bounds. Finally, we 

conclude with a comparison of this approach and the McCormick convex envelopes, and report 

computational results on small and large problems. 

2. Discretization with Multiparametric Disaggregation 

Given a nonconvex bilinear term wij = xi·xj, the multiparametric disaggregation technique 

described by Teles et al. [11] can be used to obtain an upper bound on problem (P). This 

reformulation can be derived in terms of generalized disjunctive programming (GDP) [31] and 

exact linearization [32].  For simplicity in the notation, we first rewrite the bilinear product wij = 
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xi·xj as a single bilinear term w = u·v. This product can be represented exactly with the following 

constraints and disjunction: 

ݓ ൌ ݑ ⋅ (1) ݒ

ݒ ൌ෍	
ℓ∈Ժ

ℓ (2)ߣ

∨
௞ୀ଴

ଽ
ℓߣൣ ൌ 10ℓ ⋅ ݇൧				∀		ℓ ∈ Ժ (3)

where v is discretized through the disjunction in (3) that selects one digit k for each power ℓ ∈ Ժ.  

Here we assume a basis of 10, although in principle other bases can be selected.  Note that since (3) 

is defined over the domain of all the integer numbers, this implies an infinite number of 

disjunctions.  Furthermore, v can represent any positive real number. 

First, we consider the convex hull reformulation of the disjunction in (3) [33] after which we 

introduce the disaggregated variables, ߣመk,ℓ and the binary variables zk,ℓ, which then leads to the 

following equations where K = {k | k = 0,1,…9}:  

ℓߣ ൌ ෍ 	

ଽ

௞ୀ଴

ℓ		∀				መ௞,ℓߣ ∈ Ժ 
(4)

መ௞,ℓߣ ൌ 10ℓ ⋅ ݇ ⋅ ℓ		∀				௞,ℓݖ ∈ Ժ, ݇ ∈  ܭ
(5)

෍	

ଽ

௞ୀ଴

௞,ℓݖ ൌ 1				∀		ℓ ∈ Ժ 
(6)

௞,ℓݖ ∈ ሼ0,1ሽ			 ∀		ℓ ∈ Ժ, ݇ ∈  ܭ

Substituting equation (5) into equation (4) yields 

ℓߣ ൌ ෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅ ௞,ℓ (7)ݖ

Furthermore, substituting equation (7) into equation (2) leads to the fully discretized (but still exact 

representation of) v: 
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ݒ ൌ෍	
ℓ∈Ժ

෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅ ௞,ℓ (8)ݖ

෍	

ଽ

௞ୀ଴

௞,ℓݖ ൌ 1				∀		ℓ ∈ Ժ (6)

௞,ℓݖ ∈ ሼ0,1ሽ				∀		ℓ ∈ Ժ, ݇ ∈  ܭ

Considering the product w = u·v by substituting equation (8) into equation (1) leads to 
	

ݓ ൌ ݑ ⋅ ൥෍ 	
ℓ∈Ժ

෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅  ௞,ℓ൩ݖ

					ൌ ෍	
ℓ∈Ժ

෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅ ݑ ⋅  ௞,ℓݖ

which involves the nonlinear term u·zk,ℓ. Performing an exact linearization [32], we introduce a new 

continuous variable, ûk,ℓ = u·zk,ℓ so that 

ݓ	 ൌ෍	
ℓ∈Ժ

෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅ ො௞,ℓ (9)ݑ

Since	ݑ ⋅ ௞,ℓݖ ൌ ൜
		0					if	ݖ௞,ℓ ൌ 0
௞,ℓݖ	if				ݑ		 ൌ 1  

and ûk,ℓ is non-negative, we introduce the following lower and upper bound constraints: 

ො௞,ℓݑ ൑ ௎ݑ ⋅ ℓ		∀				௞,ℓݖ ∈ Ժ, ݇ ∈ (10) ܭ

ො௞,ℓݑ ൒ ௅ݑ ⋅ ℓ		∀				௞,ℓݖ ∈ Ժ, ݇ ∈ (11) ܭ

where uU and uL are the non-negative upper and lower bounds on u. Furthermore, to relate u to ûk,ℓ, 

we derive one additional constraint from equation (6): 

෍	

ଽ

௞ୀ଴

௞,ℓݖ ൌ 1				∀		ℓ ∈ Ժ 

෍	

ଽ

௞ୀ଴

ݑ ⋅ ௞,ℓݖ ൌ ℓ		∀				ݑ ∈ Ժ 

෍	

ଽ

௞ୀ଴

ො௞,ℓݑ ൌ ℓ		∀				ݑ ∈ Ժ 

(6)

(12)
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In this way, we arrive at the final set of mixed-integer linear constraints for representing the bilinear 

product w = u·v, namely, 

ݓ ൌ෍	
ℓ∈Ժ

෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅ ො௞,ℓ (9)ݑ

ݒ ൌ෍	
ℓ∈Ժ

෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅ ௞,ℓ (8)ݖ

ො௞,ℓݑ ൑ ௎ݑ ⋅ ℓ		∀				௞,ℓݖ ∈ Ժ, ݇ ∈ (10) ܭ

ො௞,ℓݑ ൒ ௅ݑ ⋅ ℓ		∀				௞,ℓݖ ∈ Ժ, ݇ ∈ (11) ܭ

෍	

ଽ

௞ୀ଴

ො௞,ℓݑ ൌ ℓ		∀				ݑ ∈ Ժ (12)

෍	

ଽ

௞ୀ଴

௞,ℓݖ ൌ 1				∀		ℓ ∈ Ժ (6)

௞,ℓݖ ∈ ሼ0,1ሽ				∀		ℓ ∈ Ժ, ݇ ∈  ܭ

Since in practice it is infeasible to compute the infinite sums over all integers, we represent v to a 

finite level of precision.  The constraints in (9)-(12) and (6) are modified below to allow for a 

maximum power of 10 (P) and a minimum power of 10 (p), and correspond to the equations 

proposed by Teles et. al. [11]: 
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ݓ ൌ෍	

௉

ℓୀ௣

෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅  ො௞,ℓݑ

ݒ ൌ෍	

௉

ℓୀ௣

෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅  ௞,ℓݖ

ො௞,ℓݑ ൑ ௎ݑ ⋅ ℓ		∀				௞,ℓݖ ∈ ,ܮ ݇ ∈  ܭ

ො௞,ℓݑ ൒ ௅ݑ ⋅ ℓ		∀				௞,ℓݖ ∈ Ժ, ݇ ∈  ܭ

෍	

ଽ

௞ୀ଴

ො௞,ℓݑ ൌ ℓ		∀				ݑ ∈  ܮ

෍	

ଽ

௞ୀ଴

௞,ℓݖ ൌ 1				∀		ℓ ∈  ܮ

௞,ℓݖ ∈ ሼ0,1ሽ				∀		ℓ ∈ ,ܮ ݇ ∈  ܭ

(13)

where L = {ℓ ൌ	p,p+1,…P}.  

Because of this finite level of precision, these constraints are no longer an exact representation of 

the product w = u·v.  When we incorporate the constraints (13) into problem (P) by redefining wij = 

xi·xj, and selecting xj as the variable on which discretization is performed, the resulting problem (P') 

shown below will represent a mixed-integer approximation to the original problem:  

Min	ݖᇱ ൌ ଴݂ ൌ ෍ 	
ሺ௜,௝ሻ∈஻௅బ

ܽ௜௝଴ݓ௜௝ ൅ ݄଴ሺݔሻ 

Subject to 

௤݂ሺݔሻ ൌ ෍ 	
ሺ௜,௝ሻ∈஻௅೜

ܽ௜௝௤ݓ௜௝ ൅ ݄௤ሺݔሻ ൑ ݍ				0 ∈ ܳ\ሼ0ሽ 

௜௝ݓ ൌ෍	

௉

ℓୀ௣

෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅ ,ሺ݅		∀				ො௜௝௞ℓݔ ݆ሻ ∈ ,௤ܮܤ ݍ ∈ ܳ 

௝ݔ ൌ෍	

௉

ℓୀ௣

෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅ ݆		∀				௝௞ℓݖ ∈ ሼ݆|ሺ݅, ݆ሻ ∈ ,௤ܮܤ ݍ ∈ ܳሽ 

ො௜௝௞ℓݔ ൑ ௜ݔ
௎ ⋅ ,ሺ݅		∀				௝௞ℓݖ ݆ሻ ∈ ,௤ܮܤ ݍ ∈ ܳ, ݇ ∈ ,ܭ ℓ ∈  ܮ

ො௜௝௞ℓݔ ൒ ௜ݔ
௅ ⋅ 	∀				௝௞ℓݖ ሺ݅, ݆ሻ ∈ ,௤ܮܤ ݍ ∈ ܳ, ݇ ∈ ,ܭ ℓ ∈  ܮ

(P')
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෍	

ଽ

௞ୀ଴

ො௜௝௞ℓݔ ൌ ,ሺ݅		∀				௜ݔ ݆ሻ ∈ ,௤ܮܤ ݍ ∈ ܳ, ݇ ∈ ,ܭ ℓ ∈  ܮ

෍	

ଽ

௞ୀ଴

௝௞ℓݖ ൌ 1				∀		݆ ∈ ሼ݆|ሺ݅, ݆ሻ ∈ ,௤ܮܤ ݍ ∈ ܳሽ, ݇ ∈ ,ܭ ℓ ∈  ܮ

௝௞ℓݖ ∈ ሼ0,1ሽ				∀		݆ ∈ ሼ݆|ሺ݅, ݆ሻ ∈ ,௤ܮܤ ݍ ∈ ܳሽ, ݇ ∈ ,ܭ ℓ ∈  ܮ

ݔ ∈ ܵ ∩ Ω ⊂ Թ௡ 

where xj and wij represents the discrete and continuous approximations to xj and wij, respectively, in 

the constraints (9)-(12) and (6).  Note that if the convex functions hq(x) are linear, problem (P') 

represents a mixed integer linear program (MILP).  Otherwise it corresponds to an MINLP. 

Further, note that problem (P') is a restricted version of problem (P), or equivalently problem (P) is 

a relaxation of problem (P').  Thus, if the solution of problem (P') is feasible then it is also feasible 

for problem (P).  It then follows that the solution of problem (P') either yields an upper bound on 

problem (P) such that z' = zU ≥ z, or else problem (P') is infeasible.  This restricted feasible region 

can be seen in Figures 1 and 2. 

2.1. Infeasibilities in the Discretized Problem 

The mixed-integer approximation problem (P') can be infeasible even if the original problem (P) 

is feasible.  For example, if bounds such as 10p-1 ≤ xj ≤ 2·10p-1 are enforced, (P') will be infeasible, 

while such a constraint is completely valid and will not necessarily result in an infeasible problem 

(P).  Thus, the parameters p and P must be chosen appropriately to avoid such infeasibilities. 

Some general guidelines for ensuring precision-based feasibility can be established.  For example, 

the largest power of 10 (P) must be large enough such that 10P is at least as large as the upper 

bound on xj: ܲ ൒ logଵ଴ڿ ௝ݔ
௎ۀ 

 Additionally, p must be small enough to ensure at least one (and preferably many) discretization 

points lie between the lower and upper bounds for xj. Thus, p ≤ P is the absolute minimum 

requirement, but feasibility is more likely as p is decreased.  Note that these guidelines do not 
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guarantee feasibility of (P') in all cases, but represent the minimum level of precision needed given 

reasonable bounds on xj.  The following proposition can then be established: 

Property 1: If Problem (P') is feasible, its solution yields an upper bound for problem (P). 

Proof: If (P') is feasible, its solution is feasible in (P), as (P) is a relaxation of (P').  Since this 

solution is not necessarily optimal in (P) it will yield an upper bound. □ 

  

Figure 1: Feasible region for a bilinear curve xi·xj = 0.1, p 
= -2, P = -1. The solid curve represents the exact bilinear 
curve, while the dots represent the approximated (and 
incomplete) feasible region resulting from the upper 
bounding formulation. 

Figure 2: Feasible region for a bilinear surface.  The 
surface is the exact bilinear curve, while the solid lines 
represent the reduced feasible region resulting from the 
upper bounding formulation for p = P = -1. 

3. Lower Bounding with Multiparametric Disaggregation 

To obtain a lower bounding problem using multiparametric disaggregation, we first note that in 

the discretized problem, there always exists a gap between discretization points for a finite p.  Thus, 

we can introduce a slack variable Δxj such that xj
R = xj' + Δxj, where xj' is the discretized 

representation of xj from Section 2, and  xj
R is the continuous representation of xj. 

Again switching to the notation w = u·v for the bilinear term, we begin with the discretization of v 

from the truncated set of constraints (13): 

xj 

xi 

xi 

xi·
xj

xj 
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ݒ ൌ෍	

௉

ℓୀ௣

෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅  ௞,ℓݖ

෍	

ଽ

௞ୀ଴

௞,ℓݖ ൌ 1				∀		ℓ ∈  ܮ

௞,ℓݖ ∈ ሼ0,1ሽ				∀		ℓ ∈ ,ܮ ݇ ∈  ܭ

We can add the slack term Δv (bounded between 0 and 10p) to represent a continuous v, denoted 

as vR: 

ோݒ ൌ෍	

௉

ℓୀ௣

෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅ ௞,ℓݖ ൅ Δݒ 

෍	

ଽ

௞ୀ଴

௞,ℓݖ ൌ 1				∀		ℓ ∈  ܮ

௞,ℓݖ ∈ ሼ0,1ሽ				∀		ℓ ∈ ,ܮ ݇ ∈  ܭ

0 ൑ Δݒ ൑ 10௣ 

(14)

We can rewrite Δv using a form similar to the discretization scheme already described. Given the 

following relationship, 

0 ൑ ෍ 	

ଵ

௞ୀ଴

10௣ ⋅ ݇ ⋅ ௞ݖ̃ ൑ 10௣ 

0 ൑ ௞ݖ̃ ൑ 1 

 

we use this expression to represent Δv: 

Δݒ ൌ ෍ 	

ଵ

௞ୀ଴

10௣ ⋅ ݇ ⋅  ௞ݖ̃

0 ൑ ௞ݖ̃ ൑ 1 

 

The constraints (14) can now be rewritten as 

ோݒ ൌ෍	

௉

ℓୀ௣

෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅ ௞,ℓݖ ൅෍ 	

ଵ

௞ୀ଴

10௣ ⋅ ݇ ⋅  ௞ݖ̃

෍	

ଽ

௞ୀ଴

௞,ℓݖ ൌ 1				∀		ℓ ∈  ܮ

(15)
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௞,ℓݖ ∈ ሼ0,1ሽ				∀		ℓ ∈ ,ܮ ݇ ∈  ܭ

0 ൑ ௞ݖ̃ ൑ 1				∀		݇ ∈ ሼ0,1ሽ 

Furthermore, by substituting constraints (15) into the bilinear term w = u·v as done in the prior 

derivation of the discretized reformulation, and introducing a new variable ݑ෤௞ ൌ ݑ ∙  ௞, we obtainݖ̃

ோݓ ൌ ݑ ⋅  ோݒ

		ൌ ݑ ⋅ ቎෍ 	

௉

ℓୀ௣

෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅ ௞,ℓݖ ൅෍ 	

ଵ

௞ୀ଴

10௣ ⋅ ݇ ⋅  ௞቏ݖ̃

		ൌ ෍ 	

௉

ℓୀ௣

෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅ ݑ ⋅ ௞,ℓݖ ൅෍ 	

ଵ

௞ୀ଴

10௣ ⋅ ݇ ⋅ ݑ ⋅  ௞ݖ̃

		ൌ ෍ 	

௉

ℓୀ௣

෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅ ො௞,ℓݑ ൅෍ 	

ଵ

௞ୀ଴

10௣ ⋅ ݇ ⋅  ෤௞ݑ

 

 

Analogous constraints can be derived in the same fashion as before in the discretized formulation, 

yielding the final set of mixed-integer constraints for the bilinearity: 

ோݓ ൌ෍	

௉

ℓୀ௣

෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅ ො௞,ℓݑ ൅෍ 	

ଵ

௞ୀ଴

10௣ ⋅ ݇ ⋅  ෤௞ݑ

ோݒ ൌ෍	

௉

ℓୀ௣

෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅ ௞,ℓݖ ൅෍ 	

ଵ

௞ୀ଴

10௣ ⋅ ݇ ⋅  ௞ݖ̃

ො௞,ℓݑ ൑ ௎ݑ ⋅ ℓ		∀				௞,ℓݖ ∈ ,ܮ ݇ ∈  ܭ
ො௞,ℓݑ ൒ ௅ݑ ⋅ ℓ		∀				௞,ℓݖ ∈ ,ܮ ݇ ∈  ܭ
෤௞ݑ ൑ ௎ݑ ⋅ ݇		∀				௞ݖ̃ ∈ ሼ0,1ሽ 
෤௞ݑ ൒ ௅ݑ ⋅ ݇		∀				௞ݖ̃ ∈ ሼ0,1ሽ 

෍	

ଽ

௞ୀ଴

ො௞,ℓݑ ൌ ℓ		∀				ݑ ∈  ܮ

෍	

ଵ

௞ୀ଴

෤௞ݑ ൌ  ݑ

෍	

ଽ

௞ୀ଴

௞,ℓݖ ൌ 1				∀		ℓ ∈  ܮ

෍	

ଵ

௞ୀ଴

௞ݖ̃ ൌ 1 

௞,ℓݖ ∈ ሼ0,1ሽ				∀		ℓ ∈ ,ܮ ݇ ∈  ܭ
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0 ൑ ௞ݖ̃ ൑ 1				∀		݇ ∈ ሼ0,1ሽ 

Introducing these constraints into Problem (P), and expressing the variables in terms of the 

original variables wij = xi·xj, we obtain the new optimization problem, (PR): 

Min	ݖோ ൌ ଴݂ ൌ ෍ 	
ሺ௜,௝ሻ∈஻௅బ

ܽ௜௝଴ݓ௜௝ ൅ ݄଴ሺݔሻ 

subject to 

				 ௤݂ሺݔሻ ൌ ෍ 	
ሺ௜,௝ሻ∈஻௅೜

ܽ௜௝௤ݓ௜௝ ൅ ݄௤ሺݔሻ ൑ ݍ				0 ∈ ܳ\ሼ0ሽ 

௜௝ݓ				 ൌ෍ 	

௉

ℓୀ௣

෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅ ො௜௝௞ℓݔ ൅෍ 	

ଵ

௞ୀ଴

10௣ ⋅ ݇ ⋅ ,ሺ݅		∀				෤௜௝௞ݔ ݆ሻ ∈ ,௤ܮܤ ݍ ∈ ܳ 

௝ݔ				 ൌ෍	

௉

ℓୀ௣

෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅ ௜௝௞ℓݖ ൅෍ 	

ଵ

௞ୀ଴

10௣ ⋅ ݇ ⋅ ݆∀				௜௝௞ݖ̃ ∈ ሼ݆|ሺ݅, ݆ሻ ∈ ,௤ܮܤ ݍ ∈ ܳሽ 

ො௜௝௞ℓݔ				 ൑ ௜ݔ
௎ ⋅ ,ሺ݅		∀				௜௝௞ℓݖ ݆ሻ ∈ ,௤ܮܤ ݍ ∈ ܳ, ℓ ∈ ,ܮ ݇ ∈  ܭ

ො௜௝௞ℓݔ				 ൒ ௜ݔ
௅ ⋅ ,ሺ݅		∀				௜௝௞ℓݖ ݆ሻ ∈ ,௤ܮܤ ݍ ∈ ܳ, ℓ ∈ ,ܮ ݇ ∈  ܭ

෤௜௝௞ݔ				 ൑ ௜ݔ
௎ ⋅ ,ሺ݅		∀				௜௝௞ݖ̃ ݆ሻ ∈ ,௤ܮܤ ݍ ∈ ܳ, ݇ ∈ ሼ0,1ሽ 

෤௜௝௞ݔ				 ൒ ௜ݔ
௅ ⋅ ,ሺ݅		∀				௜௝௞ݖ̃ ݆ሻ ∈ ,௤ܮܤ ݍ ∈ ܳ, ݇ ∈ ሼ0,1ሽ 

				෍ 	

ଽ

௞ୀ଴

ො௜௝௞ℓݔ ൌ ,ሺ݅		∀				௜ݔ ݆ሻ ∈ ,ொܮܤ ݍ ∈ ܳ, ℓ ∈  ܮ

				෍ 	

ଵ

௞ୀ଴

෤௜௝௞ݔ ൌ ,ሺ݅		∀				௜ݔ ݆ሻ ∈ ,ொܮܤ ݍ ∈ ܳ 

				෍ 	

ଽ

௞ୀ଴

௜௝௞ℓݖ ൌ 1				∀		ሺ݅, ݆ሻ ∈ ,௤ܮܤ ݍ ∈ ܳ, ℓ ∈  ܮ

				෍ 	

ଵ

௞ୀ଴

௜௝௞ݖ̃ ൌ 1						∀ሺ݅, ݆ሻ ∈ ,௤ܮܤ ݍ ∈ ܳ 

௜௝௞ℓݖ				 ∈ ሼ0,1ሽ				∀		ሺ݅, ݆ሻ ∈ ,௤ܮܤ ݍ ∈ ܳ, ℓ ∈ ,ܮ ݇ ∈  ܭ
				0 ൑ ௜௝௞ݖ̃ ൑ 1				∀		ሺ݅, ݆ሻ ∈ ,௤ܮܤ ݍ ∈ ܳ, ݇ ∈ ሼ0,1ሽ 
ݔ				 ∈ ܵ ∩ Ω ⊂ Թ௡ 

(PR)

While (PR) does not exactly represent the product wij = xi·xj and is feasible for values of wij, xi, 

and xj that do not satisfy wij = xi·xj, the bilinear term is feasible in (PR).  Thus, (PR) is a relaxation 

of (P).  The relaxed feasible region resulting from (PR) can be seen in Figures 3 and 4. 

The following property can be readily established: 

Property 2: The solution of problem (PR) yields a lower bound for problem (P), i.e. zR ≤ z. 



13

Proof:  This directly follows from the fact that the constraints in (PR) represent a relaxation of 

problem (P), with which it clearly follows that the optimal solution of (PR), zR, represents a lower 

bound to the solution of the original problem (P).  □ 

Figure 3: Plot of the lower bounding feasible region for w = 
0.1.  The solid line is the true curve, while the dotted lines 
represent the boundaries of the relaxed feasible region of  
(PR).  Note the similarities to piecewise McCormick 
envelopes. 

Figure 4: Feasible region of the relaxed problem (PR). 
The surface is the exact bilinear curve, while the 
envelopes represent the relaxed feasible region 
resulting from the lower bounding formulation for p = 
P = -1. 

 

4. Discussion of Global Optimization Algorithms 

The upper and lower bounding schemes described can be combined into a global optimization 

algorithm.  First, the following property can be established: 

Property 3: As p approaches –∞, z' approaches zR. 

Proof:  As p approaches –∞ in (PR), 10p approaches 0, which implies 

lim
௣→ିஶ

෍ 	

ଵ

௞ୀ଴

10௣ ⋅ ݇ ⋅ ௜௝௞ݖ̃ ൌ 0 

lim
௣→ିஶ

෍ 	

ଵ

௞ୀ଴

10௣ ⋅ ݇ ⋅ ෤௜௝௞ݑ ൌ 0 

xj 

xi 

xi 

xi·
xj

xj 
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Thus, since the variables ̃ݖ௜௝௞ and ݑ෤௜௝௞ are eliminated, this yields problem (P'), and hence z' 

approaches zR.   □ 

From Property 3, we can establish that as precision is increased (i.e. p approaches –∞), both (P') 

and (PR) converge to the same value.  Assuming P is large enough such that 10P ≥ xj
U, we can 

further state that (P') and (PR) converge such that z' = zR = z. 

4.1. Algorithm 1 

The first global optimization algorithm that can be established from the aforementioned upper and 

lower bounding is as follows.  First, we start at some coarse level of discretization such that P ≥ p, 

and solve both (PR) and (P').  If the difference in solutions to the upper and lower bounding 

problems is sufficiently small, then the algorithm terminates; otherwise, precision is increased and 

the problems are resolved.  The algorithm is then as follows: 

Algorithm 1 

Step 0. Choose p = P ≥ ඃ݈݃݋ଵ଴ݔ௝
௎ඇ 

Step 1. Solve (PR) to obtain the lower bound zR. 

Step 2. Solve (P') to obtain the upper bound z'.  If (P') is infeasible, let z' = +∞. 

Step 3. If (z' - zR)/zR ≤ ε, STOP, the solution is globally optimal.  Otherwise, set p = p – 1, and return 

to step 1. 

4.2. Algorithm 2 

While Algorithm 1 follows most naturally from the problems (P') and (PR), it has several 

shortcomings.  Notably, because (P') and (PR) are fairly similar and increase similarly in problem 

size as precision is added, solving (P') and (PR) repeatedly becomes increasingly expensive.  Thus, 

an alternative method for obtaining an upper bound instead solving of (P') is to use a local NLP 

algorithm in place of solving the problem (P'). 
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Algorithm 2 

Step 0. Choose p = P ≥ ඃ݈݃݋ଵ଴ݔ௝
௎ඇ 

Step 1. Solve (PR) to obtain the lower bound zR. 

Step 2. Solve (P) using a local NLP algorithm to obtain some upper bound z using the solution to 

(PR) as a starting point. 

Step 3. If (z - zR)/zR ≤ ε, STOP, the solution is globally optimal.  Otherwise, set p = p – 1 and return 

to step 1. 

Algorithm 2 is generally more computationally efficient than Algorithm 1, as the solution of (P) 

using a local NLP algorithm is more efficient than the increasingly large MILP that (P') becomes as 

P – p grows. 

4.3. Extensions to MINLP 

The algorithms in Sections 4.1 and 4.2 can be readily extended for solving MINLPs with the 

following general form: 

	
Min	ݖ ൌ ଴݂ሺݔ,  ሻݕ

 
subject to  
				 ௤݂ሺݔ, ሻݕ ൑ ݍ				0 ∈ ܳ\ሼ0ሽ 

				 ௤݂ሺݔ, ሻݕ ൌ ෍ 	
ሺ௜,௝ሻ∈஻௅೜

ܽ௜௝௤ݔ௜ݔ௝ ൅ ݄௤ሺݔ, ݍ				ሻݕ ∈ ܳ 

ݔ				 ∈ ܵ ∩ Ω ⊂ Թ௡ 

ݕ				 ∈ ሼ0,1ሽ 

(P-MINLP)

where hq(x,y) is jointly convex in x and y.  For most cases in practice the variables y appear in 

linear form in these terms [34]. 

Analogous problems (P'-MINLP) and (PR-MINLP) can be derived, and Algorithm 1 can be 

used without modification.  However, Algorithm 2 requires some modification, as (P-MINLP) 

cannot be solved using a local NLP algorithm because it is an MINLP.  A heuristic can be used to 

compute the upper bound as in Algorithm 2: 
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Algorithm 3 

Step 0. Choose p = P ≥ ඃ݈݃݋ଵ଴ݔ௝
௎ඇ 

Step 1. Solve (PR-MINLP) to obtain zR. 

Step 2. Fix the binary variables y in (P-MINLP) to the values found by the solution of (PR-

MINLP) in Step 1, reducing it to an NLP.  Solve (P-MINLP) with these fixed binary 

variables using a local NLP algorithm to obtain some z using the solution to (PR-MINLP) 

as a starting point. 

Step 3. If (z - zR)/zR ≤ ε, STOP, the solution is globally optimal.  Otherwise, set p = p – 1 and return 

to step 1. 

A disadvantage of this algorithm is that it could take, in the worst case, an infinite number of 

iterations to converge. By fixing the binary variables to that of the solution to (PR-MINLP), (P-

MINLP) can be rendered infeasible, and the algorithm would continue until (PR-MINLP) has 

enough discretization points to exactly represent (P-MINLP).  If this occurs, heuristics or other 

approaches may be utilized to obtain an upper bound in place of solving (P-MINLP) with fixed 

binary variables. However, in practice, this is unlikely to occur. 

5. Comparison with Piecewise McCormick Envelopes 

A common approach to solving bilinear programs of the form (P) is to reformulate the bilinear 

terms using McCormick convex envelopes [35].  This reformulation results in an LP if the only 

nonlinearities are bilinear, or a convex NLP if there are remaining convex nonlinearities, either of 

which are easily solved to global optimality.  For each bilinearity wij = xi·xj, we introduce instead 

the following constraints: 

௜௝ݓ ൒ ௜ݔ ⋅ ௝ݔ
௅ ൅ ௜ݔ

௅ ⋅ ௝ݔ െ ௜ݔ
௅ ⋅ ௝ݔ

௅

௜௝ݓ ൒ ௜ݔ ⋅ ௝ݔ
௎ ൅ ௜ݔ

௎ ⋅ ௝ݔ െ ௜ݔ
௎ ⋅ ௝ݔ

௎

௜௝ݓ ൑ ௜ݔ ⋅ ௝ݔ
௅ ൅ ௜ݔ

௎ ⋅ ௝ݔ െ ௜ݔ
௎ ⋅ ௝ݔ

௅

௜௝ݓ ൑ ௜ݔ ⋅ ௝ݔ
௎ ൅ ௜ݔ

௅ ⋅ ௝ݔ െ ௜ݔ
௅ ⋅ ௝ݔ

௎

								∀		ሺ݅, ݆ሻ ∈ ,௤ܮܤ ݍ ∈ ܳ (16)
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This relaxation yields a lower bound on problem (P).  However, this lower bound can be weak 

depending on the bounds on xi and xj.  To improve the quality of the lower bound, these convex 

envelopes can be used on discretized portions of the variable range.  Thus, piecewise McCormick 

envelopes can be introduced in (P) to obtain a tighter lower bound at the cost of becoming an MILP 

[10, 17, 36].  The envelopes, defined over a set of N points on the variable xi, can be represented by 

the following disjunctive constraints: 
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Applying the convex hull reformulation [33] for the above disjunctive constraints yields 
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By adding these piecewise McCormick envelope constraints (18) to problem (P), we can define a 

new relaxed MILP, (PR-PCM). Furthermore, we can compare the performance of (PR-PCM) to 

the lower bounding problem derived from multiparametric disaggregation, (PR). 

6. Illustrative example (P1) 

We first consider as an example the bilinear program by Quesada and Grossmann [37] and 

originally reported by Al-Khayyal and Falk [18]: 

Min	݂ ൌ െݔଵ ൅ ଶݔଵݔ െ  ଶݔ
 

subject to 
				െ6ݔଵ ൅ ଶݔ8 ൑ 3 
ଵݔ3				 െ ଶݔ ൑ 3 
				0 ൑ ,ଵݔ ଶݔ ൑ 1.5 
 

(P1)

The global optimum of this bilinear program is f = -1.0833 at (1.167, 0.5).  Two other local 

minima correspond to: f = -1.0 at (1, 1), and f = -1.005 at (0.917, 1.062). 

6.1. Lower bounding problems 

In order to compare the lower bounds predicted by multiparametric disaggregation and piecewise 

McCormick envelopes, we solve the relaxation problems (PR) and (PR-PCM) resulting from 

multiparametric disaggregation and piecewise McCormick, respectively. For the specific example 

Problem (P1), we can derive analogous relaxed problems (P1R) and (P1R-PCM) using the 

multiparametric disaggregation technique and piecewise McCormick envelopes, respectively. Note 

that x1 is the variable being discretized. 

Min	݂ ൌ െݔଵ ൅ wଵଶ െ  ଶݔ
subject to 
				െ6ݔଵ ൅ ଶݔ8 ൑ 3 
ଵݔ3				 െ ଶݔ ൑ 3 
				0 ൑ ,ଵݔ ଶݔ ൑ 1.5 

ଵଶݓ ൌ෍	

௉

ℓୀ௣

෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅ ො௞,ℓݔ ൅෍ 	

ଵ

௞ୀ଴

10௣ ⋅ ݇ ⋅ ଵଶݓ ෤௞ݔ ൑ ෍

ே

௡ୀଵ

ଶݔොଵ௡ݔ
௎ ൅ ଵ௡ݔොଶ௡ݔ

௅ െ ଵ௡ݔ
௅ ଶݔ

௎ݕ௡ 
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ଵݔ				 ൌ෍	

௉

ℓୀ௣

෍ 	

ଽ

௞ୀ଴

10ℓ ⋅ ݇ ⋅ ௞,ℓݖ ൅෍

ଵ

௞ୀ଴

10௣ ⋅ ݇ ⋅ ௞ݖ̃

ො௞,ℓݔ				 ൑ 1.5 ⋅ ℓ		∀				௞,ℓݖ ∈ ,ܮ ݇ ∈  ܭ
෤௞ݔ				 ൑ 1.5 ⋅ ݇		∀				௞ݖ̃ ∈ ሼ0,1ሽ 

				෍ 	

ଽ

௞ୀ଴

ො௞,ℓݔ ൌ ℓ		∀				ଶݔ ∈  ܮ

				෍ 	

ଵ

௞ୀ଴

෤௞ݔ ൌ  ଶݔ

				෍ 	

ଽ

௞ୀ଴

௞,ℓݖ ൌ 1				∀		ℓ ∈  ܮ

				෍ 	

ଵ

௞ୀ଴

௞ݖ̃ ൌ 1 

௞,ℓݖ				 ∈ ሼ0,1ሽ				∀		ℓ ∈ ,ܮ ݇ ∈  ܭ
				0 ൑ ௞ݖ̃ ൑ 1				∀		݇ ∈ ሼ0,1ሽ 
				0 ൑ ො௞,ℓݔ ൑ 1.5				∀		ℓ ∈ ,ܮ ݇ ∈  ܭ
				0 ൑ ෤௞ݔ ൑ 1.5				∀		݇ ∈  ܭ
				0 ൑ ො௞,ℓݔ ൑ 1.5				∀		ℓ ∈ ,ܮ ݇ ∈  ܭ
				0 ൑ ෤௞ݔ ൑ 1.5				∀		݇ ∈  ܭ

ଵଶݓ ൑ ෍

ே

௡ୀଵ

ଶݔොଵ௡ݔ
௅ ൅ ଵ௡ݔොଶ௡ݔ

௎ െ ଵ௡ݔ
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௅ݕ௡ 
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ොଵ௡ݔ ൑ ଵ௡ݔ௡ݕ
௎ 				∀		݊ ൌ 1,2. . ܰ 

ොଵ௡ݔ ൒ ଵ௡ݔ௡ݕ
௅ 				∀		݊ ൌ 1,2. . ܰ 

ොଶ௡ݔ ൑ ଶݔ௡ݕ
௎				∀		݊ ൌ 1,2. . ܰ 

ොଶ௡ݔ ൒ ଶݔ௡ݕ
௅				∀		݊ ൌ 1,2. . ܰ 

෍	

ே

௡ୀଵ

௡ݕ ൌ 1 

ଵ௡ݔ
௅ ൌ ଵݔ

௅ ൅
௡௎ݔ െ ௡௅ݔ

ܰ
⋅ ሺ݊ െ 1ሻ				∀		݊ ൌ 1,2. . ܰ

ଵ௡ݔ
௎ ൌ ଵݔ

௅ ൅
௡௎ݔ െ ௡௅ݔ

ܰ
⋅ ݊				∀		݊ ൌ 1,2. . ܰ 

௡ݕ ∈ ሼ0,1ሽ ∀ ݊ ൌ 1,2. . ܰ 
(P1R) (P1R-PCM) 

 

Problem size and computational results are shown in Table 1 using GAMS 23.8.2 [38] for the 

lower bounds predicted by (P1R) at P = 0 and p = {0, -1,…-6} and (P1R-PCM) at N = {1, 10, 

100, 1000, 10000} being solved by CPLEX 12.4 [39].  Solving (P1R-PCM) at various levels of 

discretization, it becomes clear that problem size increases approximately exponentially with each 

order of magnitude decrease in the optimality gap.  However, solving (P1R), this is not the case.  

As precision is added to (P1R), i.e. p is decreased; a linear relationship holds with each order of 

magnitude added. Note that due to the range of discretization [0, 1.5], the precision of PCM at N = 

10 is between that of MDT at p = 0 and p = -1.  Likewise, PCM at N = 100 is between that of MDT 

at p = -1 and p = -2. Additionally, upper bounds are reported using CONOPT 3 [40], by using as a 

starting point the solution of the lower bounding relaxation problem as in Algorithm 2.  Results for 
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BARON [41] solving the original NLP (P1) are also reported.  Note also that the computational 

time reported for MDT is for each subproblem, and these times would need to be accumulated to 

compare Algorithm 2 directly to BARON, unless the discretization level (p) is chosen a priori. 

As seen in Table 1, the relaxed problems (P1R) and (P1R-PCM) are considerably larger than the 

original NLP (P1) since the addition of both continuous and binary variables increases problem 

size. However, note that the multiparametric disaggregation problem (P1R) requires fewer 

additional continuous variables and fewer constraints than when utilizing piecewise McCormick 

envelopes in (P1R-PCM).  For a single McCormick envelope, a relatively weak lower bound of -

1.5 (38.5% gap) is obtained. Multiparametric disaggregation with P = 0 and p = -4 approaches an 

optimality gap of 0.003%, while piecewise McCormick envelopes, even with 1000 partitions, only 

approach an optimality gap of 0.046%.  Further discretization and refinement of the solution is 

quickly solved using multiparametric disaggregation, as the p = -5 and p = -6 problems are solved 

in less than 1 second and fewer than 200 variables.  In contrast, adding more partitions in (P1R-

PCM) leads to intractable problems with more than 10000 variables and requiring significantly 

more computational time.  Notice also that the results reported in the columns MDT from p = 0 to p 

= -6, are equivalent to the iterations of Algorithm 2 in Section 4.2. 

7. Numerical Experiments 

The performance of the underestimating problems from multiparametric disaggregation (PR) and 

piecewise McCormick (PR-PCM) is evaluated through the solution of four additional small test 

problems from the literature for different accuracy levels. Since in all problems the functions hq(x) 

in (P) are linear, the resulting bounding MILP problems were solved in GAMS 23.7.1 using 

CPLEX 12.3 (1 thread). Default options were used except the relative optimality tolerance, equal to 

10-6 and a maximum computational effort equal to 3600 CPU seconds. Similarly as in problem 

(P1), the original nonlinear programs were solved by CONOPT 3, following initialization with the 

values from the MILP, and by BARON 9.3.1.  We also report results for larger problems in the 
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areas of water networks and multiperiod blending. These problems were also solved by GLoMIQO 

1.0.0. The computational experiments were performed on an Intel i7 950 processor running at 3.07 

GHz, with 8 GB of RAM, running Windows 7. 

7.1. Small Test Problems 

7.1.1. P2 

Problem (P2) is originally from the compilation of test problems by Rijckaert and Martens (1978) 

[42] but has been converted to a bilinear program following simple transformations and addition of 

new variables. Variables x1, x2 and x3 are selected for parameterization/partitioning. 
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7.1.2. P3 

Test problem (P3) corresponds to Problem 106 in Hock and Schittowski (1981) [43]. While the 

objective function and the first three constraints are linear, there are three bilinear inequalities. To 

study how the choice of parameterized/partitioning variables affects computational performance, 

three versions are considered: (a) 3 parameterized/partitioned variables, x1, x2 and x3; (b) 4 

variables, x2, x5, x6 and x8; (c) 5 variables, x4, x5, x6, x7 and x8. 



22 

100,,,,10,10000,1000,10000100

012500002500

012501250

0333.8333333252.833100

01)(01.0

01)(0025.0

01)(0025.0..

min

87654321

58353

547242

4611

85

754

64

321













xxxxxxxx

xxxxx

xxxxxx

xxxx

xx

xxx

xxts

xxx

 

7.1.3. P4 

Test problem (P4) is taken from Shen and Zhang et al. (2004) [44] and after a few 

transformations the following bilinear problem results. Variables x2, x5 and x6 are chosen as the 

parameterized variables. 
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7.2. Computational statistics 

Table 1 to Table 4 give the computational results for problems (P1)-(P4) as a function of the 

discretization level, and correspond to Algorithm 2, where the relaxation problem is either 

generated by multiparametric disaggregation (PR), MDT columns, or by the piecewise McCormick 

envelopes (PR-PCM), PCM columns. We provide the problem size, lower bound from the 

relaxation problem, and upper bound from a local NLP solver (the values of the latter remain the 

same independent of the accuracy level). The optimality gap and total computational effort (CPLEX 

plus CONOPT, the latter being almost negligible) are also reported. Note that the triplets in Table 2 

are related to the number of discrete points for the three variables selected. The n-tuples in Tables 3-
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4 have a similar meaning. We also show the results obtained with BARON. In problems (P2)-(P4), 

the discretization points of PCM match exactly those being used by MDT (e.g. second column of 

PCM should be compared with second column of MDT).  Also, as the overall McCormick envelope 

can be added to the MDT constraints for each bilinearity to tighten their relaxation, problems (P2)-

(P4) were solved in this manner. For example, the LP relaxations of the MILP model from (P2) are 

equal to 9983.61 and 9001.46, with and without the standard McCormick envelopes, respectively. 

The solution from the MILP is however the same in both cases (e.g. 10121.33 for p=(0,0,0)) with 

minor changes in the computational time. Notice that the relaxation from piecewise McCormick 

(PCM) is often tighter than MDT for the same accuracy level. For (P4), the lower bounds of x5 and 

x6 are not integer values and so, while the number of discrete points is roughly the same, their 

location is not, making it possible for the relaxation from MDT to be better than the one from PCM. 

The exception is PCM = (50,100,100) and MDT = (-1,-1,-1). Due to the better performance of the 

new method, there are more columns for MDT than for PCM, meaning that higher accuracy levels, 

i.e. lower optimality gaps, can be achieved by the former for a given computational time. 

While MDT is less tight than PCM, the latter generates considerably larger MILP problems for 

the same accuracy level. More specifically, with PCM we get exactly an order of magnitude 

increase in the number of binary variables for each new significant digit and roughly the same 

behavior with respect to the number of total variables and constraints. In contrast, for MDT we get a 

linear increase, keeping problems tractable for a wider accuracy range. Notice that with MDT all 

problems can be solved with an optimality gap of less then 0.01% in under one hour, while PCM 

closes only to a gap of 6.63% for (P3). 

Since problem size is related to the number of parameterized/partitioned variables, one might be 

tempted to keep this number as low as possible. However, the results for (P3) give opposite results, 

since the worst performance is obtained for 3 parameterized variables (gap = 0.009%), followed by 
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4 (gap = 0.0067% in 2144 CPUs) and then 5 (gap = 0.0071 % in 591 CPUs, which improves to just 

0.0020% for p = (-3,…,-3), calculated using the best possible solution at time of termination). 

7.2.1. Evaluation of Algorithm 1 

Compared to Algorithm 2 in Tables 2, 3, and 4, Algorithm 1  generally leads to larger optimality 

gaps, particularly in the first iterations at coarse discretization levels, and it also requires more CPU 

time since two MILPs are solved at each iteration.  Comparatively, solving (P) with a local solver 

can be done almost instantaneously. The lower bounding problem is the same as in Algorithm 2, 

while the upper bounding problem (P') yields considerably worse bounds than the ones returned 

from the local NLP solver (recall that these were always global optimal solutions). As is illustrated 

in Figure 5 for test problem (P3a), the solutions from both (P') and (PR) typically become closer to 

the optimum with an increase in accuracy.  However, it is clear that using a local NLP solver, as in 

Algorithm 2, is a superior approach.  While it is possible for the solution of (P') to be closer to the 

global optimum than the solution of (P) using a local NLP algorithm, in practice, this generally does 

not occur, especially when using the solution of (PR) as a starting point. 

 

Figure 5: Comparison of Algorithm 1 and 2 for problem (P3a). The upper 
bound from Algorithm 1 for p = 4 is equal to 30000 (off scale). 
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7.3. Results for larger problems 

As seen in Tables 1-4, when compared to the commercial solver BARON, multiparametric 

disaggregation is competitive in (P1), (P2) and (P4) but is orders of magnitude slower in (P3). This 

is to be expected given the very small size of problems and the reduced number of bilinear terms, 

which facilitates the spatial branch-and-bound procedure in BARON. In order to evaluate how both 

methods scale with problem size, we solved the five most difficult (higher optimality gap at 

termination when solved with BARON) water-using network design problems in Teles et al. (2012) 

[11], which also correspond to bilinear programs. In such problems, the discretized variables are 

concentrations featuring P = 3 in Ex17 and P = 2 in the other examples. Given the larger size, it is 

not possible to be as demanding in terms of accuracy, with difficulties arising already for p = 0 

(MDT). However, the results in Table 5 show that the optimality gaps for MDT are at least one 

third those of BARON. In particular, Ex17 and Ex18 can be solved to global optimality in a few 

seconds due to the solution from the relaxed problem (PR) being equal to that of (P). It should be 

highlighted that in the full set of problems [11], MDT performs better than BARON 90% of the 

time. GLoMIQO can also solve two problems to global optimality (Ex14 and Ex15), interestingly 

different problems than what MDT can solve, and is always better than BARON. 

In Table 6, several multiperiod blending problems [45, 46] are solved using BARON, GloMIQO, 

and Algorithm 3 at a single level of discretization. These problems are multiperiod blending 

problems with varying numbers of tanks, time periods, and product qualities.  Each problem is 

identified such that 6T-3P-2Q-029 is a 6 tank, 3 time period, 2 quality problem, with a unique 3-

digit identifier to distinguish it from other problems of the same size.  The results for MDT are 

reported for P = 0 and p = -3 and were solved using Gurobi [47] using 12 threads.   As these 

problems are originally MINLPs, are still larger than those in Table 5, and 12 threads are utilized, 

the computational difference is much more significant.  GloMIQO and BARON both use MILP 

solvers in their algorithms which can utilize multiple threads, but this effect is not significant as the 
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subproblems being solved are generally very small.  Because of the use of multiple threads and 

multiple CPUs in this comparison, wall times are reported for all three methods.  While GloMIQO 

and BARON are unable to converge to an optimality gap of 0.1% within the time limit of 2 hours, 

the multiparametric disaggregation technique is able to close the gap in all but two cases. In these 

two cases an additional level of discretization would close the gap, but these results show that if a 

reasonably fine discretization is chosen a priori, the optimality gaps can be significantly less than 

those of commercial global optimization solvers. For the one problem that BARON and GloMIQO 

were able to close the gap within the time limit, MDT outperformed them by ˜17 and ˜1400 times, 

respectively, although the problem is small enough and is solved fast enough that meaningful 

conclusions should not be drawn from this result alone.  
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Table 1. Comparison between multiparametric disaggregation (MDT) and piecewise McCormick (PCM), problem (P1). For MDT, P = 0 is used. 

Method BARON* MDT MDT MDT MDT MDT MDT MDT PCM PCM PCM PCM PCM 
p or N - 0 -1 -2 -3 -4 -5 -6 1 10 100 1000 10000 

Binary Variables 0 10 20 30 40 50 60 70 1 10 100 1000 10000 
Total Variables 3 28 48 68 88 108 128 148 7 34 304 3004 30004 

Equations 3 21 33 45 57 69 81 93 14 50 410 4010 40010 
Lower Bound (CPLEX) -1.08334 -1.3333 -1.1167 -1.0867 -1.0837 -1.08337 -1.08334 -1.08333 -1.5 -1.13077 -1.08830 -1.08383 -1.08338

Upper Bound (CONOPT) -1.08333 -1.08333 -1.08333 -1.08333 -1.08333 -1.08333 -1.08333 -1.08333 -1.08333 -1.08333 -1.08333 -1.08333 -1.08333
Optimality Gap 0.001% 23.074% 3.080% 0.311% 0.034% 0.003% 0.000% 0.000% 38.462% 4.379% 0.459% 0.046% 0.005% 
CPU Time (s) 0.232 0.084 0.245 0.231 0.239 0.457 0.377 0.465 0.229 0.211 0.488 6.898 673.503

*Applied directly to (P1). 

Table 2. Comparison between multiparametric disaggregation (MDT) and piecewise McCormick (PCM), problem (P2). For MDT, P = (2,1,1) is used. 

Method BARON MDT MDT MDT MDT MDT PCM PCM PCM 
p or N - (0,0,0) (-1,-1,-1) (-2,-2,-2) (-3,-3,-3) (-4,-4,-4) (24,12,18) (240,120,180) (2400,1200,1800)

Binary variables 0 47 77 107 137 167 54 540 5400
Total variables 9 252 392 532 672 812 296 2780 27620 

Equations 10 470 704 938 1172 1406 513 4509 44469 
Lower Bound 

(CPLEX) 
10122.48 10121.33 10121.33 10122.21 10122.46 10122.49 10121.84 10121.84 10122.29 

Upper Bound 
(CONOPT) 

10122.49 10122.49 10122.49 10122.49 10122.49 10122.49 10122.49 10122.49 10122.49 

Optimality gap 0.0001% 0.011% 0.011% 0.003% 0.0003% 0.0000% 0.006% 0.006% 0.002% 
CPU Time (s) 1.73 0.26 0.44 0.54 0.56 0.67 0.35 1.66 284 
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Table 3. Comparison between multiparametric disaggregation (MDT) and piecewise McCormick (PCM), problem (P3). 

  BARON* MDT MDT MDT MDT PCM PCM 
P=(4,4,4) p or N  (2,2,2) (1,1,1) (0,0,0) (-1,-1,-1) (99,90,90) (990,900,900) 

(P3a) Lower Bound (CPLEX) 7049.128 6378.038 6978.526 7042.766 7048.580 6378.038 4750.289 
 Upper Bound (CONOPT) 7049.135 7049.248 7049.248 7049.248 7049.248 7049.248 7049.248 
 Optimality gap 0.0001% 10.5% 1.01% 0.09% 0.009% 10.5% 48.4% 
 CPU Time (s) 1.07 1.20 22.9 234 3190 8.20 3600

P=(4,3,3,3) p or N  (1,1,1,1) (0,0,0,0) (-1,-1,-1,-1) (-2,-2,-2,-2) (900,99,99,99) (9000,990,990,990) 
(P3b) Lower Bound (CPLEX)  6610.973 7002.303 7044.518 7048.775 6610.973 2732.460 

 Upper Bound (CONOPT)  7049.248 7049.248 7049.248 7049.248 7049.248 7049.248 
 Optimality gap  6.63% 0.67% 0.067% 0.0067% 6.63% 158% 
 CPU Time (s)  1.81 31.8 288 2144 310 3600 

P=(3,3,3,3,3) p or N  (1,1,1,1,1) (0,0,0,0,0) (-1,-1,-1,-1,-1) (-2,-2,-2,-2,-2) (99,99,99,99,99) (990,990,990,990,990)
(P3c) Lower Bound (CPLEX)  6591.393 6999.466 7044.224 7048.745 6591.393 2884.311 

 Upper Bound (CONOPT)  7049.248 7049.248 7049.248 7049.248 7049.248 7049.248 
 Optimality gap  6.95% 0.71% 0.07% 0.007% 6.95% 144% 
 CPU Time (s)  1.20 10.3 53.1 591 16.0 3600 

 *Applied directly to (P3). 

Table 4. Comparison between multiparametric disaggregation (MDT) and piecewise McCormick (PCM), problem (P4). For MDT, P = (1,1,1) is used. 

Method BARON* MDT MDT MDT MDT MDT PCM PCM PCM PCM 
p or N  (0,0) (-1,-1) (-2,-2) (-3,-3) (-4,-4) (5,10,10) (50,100,100) (500,1000,1000) (5000,10000,10000)

Binary variables 0 35 65 95 125 155 25 250 2500 25000
Total variables 7 92 152 212 272 332 85 760 7510 75010 

Equations 6 124 190 256 322 388 127 1027 10027 100027 
Lower Bound (CPLEX) 460211.8 458712.10 459917.9 460177.9 460209.7 460211.8 457162.4 459976.0 460171.7 460209.0

Upper Bound (CONOPT) 460212.3 460212.30 460212.3 460212.3 460212.3 460212.3 460212.3 460212.3 460212.3 460212.3 
Optimality gap 0.0001% 0.33% 0.06% 0.007% 0.0006% 0.0001% 0.67% 0.05% 0.009% 0.0007% 
CPU Time (s) 1.10 0.23 0.87 1.09 1.20 1.10 0.23 0.56 3.64 866

*Applied directly to (P4). 
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Table 5. Comparison for water-using networks design problems [11]. For MDT, P = 2 is used, except for Ex17, where P = 3. 

 Original NLP BARON GloMIQO MDT (p = 1) MDT (p = 0) 

Problem Variables Equations 
CPU 
Time 

(s) 
Gap 

CPU 
Time 

(s) 
Gap 

Binary 
Variables

Total 
Variables

Equations 
CPU 
Time 

(s) 
Gap 

Binary 
Variables

Total 
Variables

Equations
CPU 
Time 

(s) 
Gap 

Ex14 123 81 3600 2.00% 2803 0.00% 263 3138 1973 25.2 2.00% 503 5298 2429 3600 0.65%

Ex15 136 87 3600 1.73% 2047 0.00% 334 3952 2482 44.6 1.77% 634 6652 3052 3600 0.59%

Ex17 74 38 3600 3.02% 3600 2.85% 182 1600 857 2.27 0.00% - - - - - 

Ex18 60 37 3600 1.11% 3600 0.74% 124 1020 677 1.10 0.40% 244 1740 869 4.67 0.00%

Ex20 171 84 3600 3.08% 3600 2.57% 263 3724 2085 1191 0.38% 463 5924 2505 3600 0.46%

 

Table 6. Comparison for multiperiod blending problems [45, 46]. For MDT, P = 1 is used. 

 Original MINLP BARON GloMIQO MDT (p = -3) 

Problem 
Binary 

Variables 
Total 

Variables
Equations

Wall 
Time (s)

Gap 
Wall 

Time (s) 
Gap 

Binary 
Variables

Total 
Variables

Equations
Wall 

Time (s)
Gap 

6T-3P-2Q-029 36 103 214 21.12 0.10% 1771 0.10% 420 1819 1990 1.25 0.00%

8T-3P-2Q-146 87 223 624 7200 18.0% 7200 1.96% 855 5743 7441 870.88 0.16%

8T-3P-2Q-718 87 223 607 7200 62.8% 7200 76.2% 855 5569 7151 97.69 0.00%

8T-3P-2Q-721 87 223 628 7200 8.82% 7200 1.04% 855 5743 7444 11.78 0.00%

8T-4P-2Q-480 124 313 885 7200 134% 7200 0.39% 1148 8233 10093 741.28 0.41%

8T-4P-2Q-531 104 273 737 7200 12.1% * * 1128 7933 9577 31.84 0.00%

8T-4P-2Q-852 120 305 861 7200 11.3% 7200 0.26% 1144 8225 10069 22.10 0.00%

*Solver Failure 
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Conclusions 

This paper has presented a derivation of the multiparametric disaggregation technique for solving 

bilinear programming problems. Lower bounding properties have also been established for the 

corresponding relaxation problem.  As has been shown with the smaller test problems, the 

relaxation from the multiparametric disaggregation technique was shown to scale more favorably 

than the relaxation based on piecewise McCormick envelopes (PCM). Although the MDT is 

generally not as tight as the PCM relaxation, the MDT relaxation technique outperforms the PCM 

relaxation in terms of computational time due to the more favorable scaling of problem size as 

discretization is increased. For large problems it was shown that multiparametric disaggregation can 

outperform general global solvers such as BARON and GloMIQO. 
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