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Abstract 

In this paper we propose a multiperiod nonlinear programming (NLP) formulation that incorporates empirical 
process models for the optimal planning of a multi-plant production site.  Using as a basis a real world application 
of a polymer plant that produces 27 products, a model is developed for predicting the detailed production using 
actual plant data.  The empirical process models account for raw material usage, physical product specifications 
(e.g. viscosity), operation limitations, and production rates.  NLP models are proposed for each of the plants, and 
a multiperiod NLP model is then formulated that determines monthly production and inventory levels of all 
products for each plant.  The NLP model for the polymer plant has several thousand variables and constraints, and 
a web interface was developed so many users can access the model over the intranet.  A graphical input template 
is linked to the optimization model in which the user can modify key input variables as well as operating and 
demand parameters.  Several numerical examples are presented to illustrate the scope of this model. 
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Introduction 
Production planning in a multi-plant facility is a large-

scale problem that many industries with complex 
operations face on a continual basis (Shah et al. 1998).  At 
a single facility there may be several plants operating 
under multiple sets of conditions to produce a diverse array 
of intermediate and finished products.  Savings can often 
be realized by introducing more efficient means of 
planning the operation and production of the different 
plants at a site.  Key issues include operating conditions of 
individual processes, intermediate product handling, and 
finished product storage.  The main system driver is to 
meet the forecasted market demands over a specified time 
horizon. 

To produce valid production plans for a multi-plant 
facility, an accurate representation of each plant process 
and an appropriate planning framework is required.  Many 
computational models have been proposed that address the 
production planning of chemical processes.  However, 
most of these models are linear.  Only a few authors have 
incorporated nonlinear process models (e.g. Pinto et al, 
2000). 

The objective of this paper is to develop a multiperiod 
nonlinear programming (NLP) optimization model for the 
planning of production and operation of a real world multi-
plant polymer facility.  Our formulation accurately reflects 
and predicts production behavior of each plant by 
incorporating detailed nonlinear empirical process models.  
A background of the multi-plant site is given as well as the 
specific problem statement.  The procedure for developing 
the process models is shown and the multiperiod planning 
model is described.  Our model is then applied to industrial 
examples under several case scenarios. 
 
Background 

The problem considered involves production at an 
industrial multi-plant facility.  In this paper we propose an 
integrated model, which focuses on the scheduling of 
production campaigns while meeting both customer orders 
and inventory targets, and of plant process optimization, 
which concentrates on operating conditions of the 
individual processes as well as on maintaining the process 



 

quality requirements necessary to meet product 
specifications. 

The multi-plant network producing polymers that 
constitutes the facility is shown in Figure 1.  The site 
contains three Type I plants and two Type II plants.  Type 
I plants produce multiple products; however, only one 
product can be produced at one time.  These plants 
produce several final products and a few intermediate 
products including the key raw materials that are fed to the 
Type II plants.  Type II plants are dedicated plants that 
produce a fixed set of four intermediate products on a 
continuous basis through a series of separation processes.  
The relative amounts of each product produced are based 
on the variable properties of the raw materials.  The four 
intermediates undergo post-processing and blending steps 
to form 24 of the final products. 

 
Figure 1.  Schematic of Polymer Multi-Plant Network 

 
The model representation of the site must account for 

interdependencies between the different plants, including 
intermediate products and shared resources.  The planning 
problem then consists of determining the operating 
conditions, production rates and key physical properties 
over a specified number of time periods, typically between 
three months and up to two years to provide solutions for 
both short-term and long-term planning problems for 
which product demands are specified. 
 
Problem Statement 

Given is a site containing a set of plants p∈PLANTS 
whose operation and production are to be optimized over T 
time periods.  Also given is a set of products k∈FINAL for 
which there is market demand and their current prices.  A 
set of raw materials r∈RM and their costs are given.  
Monthly demand forecasts are specified for each product k 
over the time horizon.  The number of days d each plant 
operates per month is required to account for scheduled 
and unscheduled plant downtimes.  Additional production 
costs and production rate data are given, as well as 
inventory targets, and storage capacities and costs. 

We assume that production rates, raw material 
consumption rates and manipulated physical parameters 
are constant within a given time period.  There are no 
direct costs associated with storage or storage vessels, 
costs are assigned only when product stocks are above or 
below inventory targets.  Also, we assume that we cannot 

sell more of a product than given by the demand forecast 
(i.e. demand forecast acts as an upper bound on the 
product sales). 

The problem then consists of determining the optimal 
monthly production of each product, month-end inventory 
levels of each product, number of days dedicated to each 
product in each plant, and key operating parameters.  The 
objective is either to minimize the deviation from the 
demand (match forecast), or to maximize the profit.  The 
solution with either objective yields both the profit and the 
deviation of sales from the demand forecast. 
 
Process Models 
We consider empirical models for our planning problem.  
These are based on original models provided by The Dow 
Chemical Company.  They were developed from 
experimental results and actual plant operation data to 
locally capture an accurate representation of plant 
behavior.  The original model of the plant was developed 
in an Excel spreadsheet.   

The specific process models for each section of the 
site are presented below.  PLANTS  is the set of all plants p 
at the site.  PI is the subset of Type I plants, and PII is the 
subset of Type II plants so that PLANTS is given by 

PIIPIPLANTS ∪= .  C is the set of all components c in 
the system.  RM is the subset of raw materials r.  INT is the 
subset of intermediate products i.  FINAL is the subset of 
finished products k.  Therefore, the set of all components is 
given by FINALINTRMC ∪∪= .  We define the 
variables c

pF  to denote the mass flow rate of component c 

in or out of plant p.  kFN  are the mass flow rates of the 
finished products k. 

The constraints for the Type I plants are given by the 
following generalized correlations, 
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Equation (1) predicts the production rates as a 

function of plant efficiency i
peff , plant capacity i

pcap  

and product viscosity i
pvisc .  The raw materials rates 

shown in Eq. (2) are a function of viscosity, molecular 

configuration data i
pconf  and product flows.  The values 

for parameters α, β, and γ are obtained by regressing actual 
plant operation data.  Equation (3) ensures that raw 

materials used for a given number of days i
pDAYS  

making all products i does not exceed the available raw 

Type I 

Type II 
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material amounts rRMAV  for the total number of days 

that plant operates pTDAY . 

There is blending and storage of intermediate products 
from Type I plants that are used for processes in Type II 
plants.  Equation (4) is the mass balance for this 
transitional step where certain intermediates from PI are 
combined into flow FTOT before entering plants PII. 
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The separation processes that describe the Type II 
plants are modeled by the following constraints.  The 
production rates from PII plants in Eq. (5) are represented 
by functions of several production factors.  We only show 
general form due to confidentiality reasons.  Equation (6) 
calculates the necessary amount of intermediate products 
to produce the final products based on blending ratios 

kiBLEND ,  to mix product i into product k. 
 
Multiperiod Optimization Model 
The process models described in the previous section for 
each plant are integrated to form the multiperiod 
optimization model of the entire site.  The generalized 
form of the multiperiod model with time periods t is shown 
below, where x are variables and   are parameters. 
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Note that the coupling of the time periods occurs through 

the inventory variables 1−tx .  The entire multiperiod 

model includes the process model equations (Eqs. 1-6) for 
each time period as well as the following constraints. 

Final production of a given product k
tFN  plus the 

existing inventory from the previous time period k
tINV 1−  

is equal to the sales of that product k
tS  plus any additional 

product which becomes the inventory in the current time 

period k
tINV  (Eq. (7)).  Equation (8) represents an 

economic penalty when the inventory levels do not meet 
the storage targets.  This is calculated as a percentage of 
total production costs for inventory levels above or below 

the specified inventory targets kIT .  Since Eq. (8) is 

nondifferentiable, we use an alternative representation for 
as shown in Eqs. (9) and (10). 
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The sales of product k cannot exceed the demand 

forecast k
tDEM  (Eq. (11)).  Equation (12) monitors the 

difference k
t∆  between the forecast demand and the actual 

sales of product k. 
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Two objective functions are considered.  The first one 

in Eq. (13) is for matching the forecast where the objective 

minimizes the sum of the deviations k
t∆  of sales of all 

products k in all time periods t from the demand forecast.  
The second objective is to maximize profit.  Here the 
product orders are disregarded and the sales and costs are 
optimized.  Profit is calculated in Eq. (14) as the revenues 
from all product sales minus the costs associated with raw 
materials purchases, plant operation, additional production 
and storage.  Note that values for both the MATCH and 
PROFIT variables are calculated in either objective mode 
of the optimization. 
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Solution of  Multiperiod NLP 

The resulting multiperiod optimization model 
corresponds to an NLP problem, which is generally 
nonconvex.  In this work we use the reduced gradient 
method implemented in the CONOPT2 code (Drud 1985).  
Although a global optimum cannot be guaranteed because 
of the nonconvexities, in our experience we did not detect 
multiple local solutions.  CONOPT2 proved to be a robust 
solver for our problem as solutions readily converged 
under varied initial conditions. 

In order to facilitate the use of the multiperiod NLP 
model, a web interface was developed so that many users 
could access the model over the intranet.  A key feature of 
the implementation is that the model is easily accessible by 



 

multiple business units including marketing, planning, and 
manufacturing.  The match forecast objective can be used 
for planning and manufacturing decisions, while the 
profitability objective can be used to drive marketing 
decisions. 
 
Numerical Examples 

To illustrate the model performance, we consider 
several cases with varied time periods and objective 
functions.  Recall that the site contains five plants that 
produce, store, and sell 27 finished polymer products.  Our 
first example involves twelve time periods, which 
represents one year of plant operation.  Case 1 uses the 
match forecast case, while Case 2 maximizes the profit 
objective function.  We consider varied horizons of 3, 6 
and 24 time periods to show the effects of scale on the 
model size and computation times for each case. 

The multiperiod NLP model was coded in the GAMS 
modeling environment (Brooke et al. 1997) and solved 
with CONOPT2 Version 2.071G.  Examples were solved 
on a 700 MHz Pentium III PC, with 256 Mbytes of RAM. 

 
Table 1.Computional Results for Varied Time Horizons 

Time 
Periods 

No. of 
Variables 

No. of 
Constraints 

Case 1 
CPUs 

Case 2 
CPUs 

3 1073 1051 2.9 4.4 
6 2171 2155 19.4 24.8 
12 4367 4363 61.5 119 
24 8759 8779 209 554 
 

First, the demand forecast for one year is given.  
Computational results for the NLP are shown in Table 1.  
The optimal solution for Case 1 has a profit of  $117.6 
million.  No deviation from the demand forecast was 
observed ( 0=MATCH ), and all orders were met.  This 
case which minimizes the deviation from forecast is helpful 
in selecting the operating and planning modes to best meet 
the customer sales demands. 
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 Figure 2.  Production Scheme for One Year Horizon 
 

The problem was then run for Case 2 for profit 
maximization.  The optimal solution is profit equal to $136 
million.  The profit is $18.4 million more than in Case 1, 

but the deviation from the demand forecast is now 7%.  
This result occurred because the production and sales of 
two products, namely products G and P, were reduced so 
that the forecast was not matched.  However, the related 
operation and production costs of these products were 
reduced as well, leading to the increase in profit.  The 
profit maximization case can be useful in situations where 
it is necessary to predict the most profitable product mix, 
or the best sales scenarios for the site.  A snapshot of the 
site production can be seen in Figure 2. 

The model is next run for varying time horizons.  
Problem size is proportional to the number of time periods 
considered, while computation times grow at a faster rate 
(Table 1).  The difference in computation times between 
the two objective function cases is simply because the 
match forecast case is essentially a feasibility problem, 
while the profit maximization objective requires not only 
satisfying the constraints, but also to establish the optimal 
trade-offs between all costs and revenues. 

 
Conclusions 

A new multiperiod model has been presented for 
optimal production planning in a multi-plant polymer 
facility.  The model uses nonlinear process models to 
optimize production under either a match forecast or a  
maximize profit objective.  A user-friendly web interface 
connected with the model provides a tool that has linked 
decision making for marketing, planning, and production.  
The large-scale nature of our problem grows in size as 
more time periods are considered.  Therefore, to expand 
the our model for multiple sites we need to develop a 
solution procedure to reduce the resulting long solution 
times.  Specific decomposition schemes are explored in a 
future paper. 
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