Algorithms for hybrid MILP/CP models for a
class of optimization problems

Vipul Jain*
and
Ignacio E. Grossmann|
Department of Chemical Engineering
Carnegie Mellon Uniwversity

Pittsburgh, PA 15213
October 5, 1999/Revised July 24, 2000 and February 6, 2001

Abstract

The goal of this paper is to develop models and methods that
use complementary strengths of Mixed Integer Linear Programming
(MILP) and Constraint Programming (CP) techniques to solve prob-
lems that are otherwise intractable if solved using either of the two
methods. The class of problems considered in this paper have the
characteristic that only a subset of the binary variables have non-zero
objective function coefficients if modeled as an MILP. This class of
problems is formulated as a hybrid MILP/CP model that involves
some of the MILP constraints, a reduced set of the CP constraints,
and equivalence relations between the MILP and the CP variables. An
MILP/CP based decomposition method and an LP/CP based branch
and bound algorithm are proposed to solve these hybrid models. Both
these algorithms rely on the same relaxed MILP and feasibility CP
problems. An application example is considered in which the least
cost schedule has to be derived for processing a set of orders with
release and due dates using a set of dissimilar parallel machines. It

*Email: vipul.jain@cmu.edu
t Author to whom correspondence should be addressed. Email: grossmann@cmu.edu

is shown that this problem can be modeled as an MILP, a CP, a
combined MILP-CP OPL model (Hentenryck (1999)), and a hybrid
MILP/CP model. The computational performance of these models
for several sets shows that the hybrid MILP/CP model can achieve
two to three orders of magnitude reduction in CPU time.

1 Introduction

Recently, there has been a significant interest to develop models and meth-
ods that combine Mixed Integer Linear Programming (MILP) (Nemhauser
and Wolsey (1988)) and Constraint Programming (CP) (Marriot and Stuckey
(1998)) to solve combinatorial optimization problems. The primary reason
for this interest is that even though these methodologies can solve similar
problems, they have proved to be successful in solving complementary classes
of problems. MILP methods have been successfully applied to solve diverse
problems, such as network synthesis, crew scheduling, planning, and capital
budgeting, that can be modeled as optimization problems. CP methods have
proved to be successful in solving highly constrained discrete optimization
and feasibility problems for scheduling, configuration, and resource alloca-
tion. The main objective of developing integrated models and methods is to
use the complementary strengths of MILP and CP for solving problems that
are otherwise intractable with either of these two methods. In this paper we
propose algorithms that use complementary MILP and CP models to achieve
this goal for a certain class of optimization problems.

This paper is structured as follows. In the next section, we present a
brief background on MILP and CP for solving optimization problems. It is
followed by a literature review on integration of these techniques. We then
describe a class of problems in which only a subset of the binary variables
appears in the objective function of the MILP formulation. We formulate this
class of problems as hybrid MILP/CP models that involve some of the MILP
constraints, a reduced set of the CP constraints, and the equivalence relations
between the MILP and the CP variables. We then propose decomposition
and branch and bound algorithms to solve these hybrid models. Both these
algorithms rely on relaxed MILP and feasibility CP problems. The aim of
these methods is to combine the strength of MILP for proving optimality by
using the LP relaxations, and the power of CP for finding feasible solutions

by using the specialized propagation algorithms. As an example, we consider
a scheduling problem that involves finding a least cost schedule to process
a set of orders using dissimilar parallel machines subject to release and due
dates constraints. It is shown that this problem can be modeled as an MILP,
CP, or a combined MILP-CP OPL model (Van Hentenryck (1999)). We then
investigate the computational performance of these alternative models for a
number of data sets and highlight the advantages and disadvantages of these
approaches. This problem is then modeled as a hybrid MILP/CP model
and is solved using the proposed decomposition algorithm. Computational
results are presented and finally some conclusions are drawn.

2 Background

MILP based methods were developed over the last four decades by the Op-
erations Research community (Nemhauser and Wolsey (1988)). CP based
methods, on the other hand, are the result of research by the Artificial In-
telligence community in the area of Logic Programming and Constraint Sat-
isfaction (Colmerauer (1985), Van Hentenryck (1989), Tsang (1993)). Both
these frameworks rely on branching to explore the search space. The pri-
mary difference lies in the way inference is performed at each node. Linear
Programming (LP) based branch and bound methods for MILP involve solv-
ing LP subproblems that are generated by dropping some of the constraints
(integrality constraints) to obtain bounds on the objective function values
and to prove that a set of constraints is inconsistent. A node is fathomed
either when the objective function value of the LP relaxation is worse than
the best integer solution obtained so far, or the LP subproblem is infeasi-
ble. Branching is performed whenever the solution obtained by solving the
LP relaxation does not satisfy all the constraints in the original problem. If
the relaxed solution satisfies all the constraints in the original problem and
is better than the best feasible solution found so far, then the best feasible
solution is updated. The search terminates when it is proved that no better
solution exists than the best feasible solution found.

The effectiveness of MILP methods depends on the size of the linear
programming subproblems, and more importantly, on the gap between the
objective for the best feasible solution (optimum) and the objective function
value obtained from the initial LP subproblem. There are a number of more

sophisticated algorithms that focus on these aspects and use different ways
of generating LP subproblems, like Branch and Cut (Padberg and Rinaldi
(1991), Balas et al. (1996)), and Branch and Price (Barnhart et al. (1998)),
and make use of valid inequalities to improve the performance of the solution
algorithms.

CP on the other hand uses constraint propagation as the inference engine.
At each node, constraint propagation is used to reduce the domains of all the
variables. The domain of a variable can be continuous, discrete, boolean etc.
Constraint propagation can result in empty domains in which case a node is
fathomed. Branching, is performed whenever the domain of a variable con-
sists of more than one element (discrete and boolean domains) or the bounds
are not within a certain tolerance (continuous domains). CP was originally
developed to solve feasibility problems. It has now been extended to solve
optimization problems. This is achieved by solving a feasibility problem in
which the objective function of the problem is rewritten as a constraint that
enforces it to be equal to a new variable. The domain of this new variable
gives upper and lower bounds of the objective function values. Whenever
a feasible solution is obtained during the search, additional constraints that
restrict the objective function values are imposed throughout the search tree.
The search terminates when all the nodes have been fathomed. The effec-
tiveness of the CP methods primarily depends on the constraint propagation
algorithms that are used to reduce the domain of a variable.

MILP has the advantage that the effect of all the constraints is evalu-
ated simultaneously and it has a “Global Perspective” on all the constraints
(Rodosek et al. (1999)). CP on the other hand evaluates the effect of con-
straints sequentially by communicating through domains of the variables.
When problems are loosely constrained, finding the optimal solution with
CP may prove to be very difficult. However, since MILP requires solving
an LP subproblem at each node of the search tree, all the constraints must
be linear equalities or inequalities. This imposes a severe restriction on the
expressiveness of MILP as a modeling language because for some problems,
for example the progressive party problem (Smith et al. (1997)), model-
ing may require very large number of variables and constraints. Since CP
uses constraint propagation instead, it imposes no such restriction. Com-
mercial CP software packages like ILOG Solver (1999), CHIP (Dincbas et
al. (1988)), ECLiPSe (Wallace et al. (1997)), Prolog IV allow a number
of different constructs over and above algebraic constructs (4, —, *, =, <, >)

4

that can be used to write constraints in a compact manner. However, cau-
tion and sound judgment should be used when exploiting the advantage of
having more constructs to model the problem. This is because the success
of the CP solution approach is highly dependent on the propagation mech-
anism behind constraints written using these constructs (Heipcke (1999)).
Even though more constructs are available, not all of them have efficient
constraint propagation engines. For some applications like sequencing and
scheduling, such constraints have proved to be very efficient because strong
propagation algorithms are available. It is interesting to point out that for
constraints that use only algebraic constructs and use variables with con-
tinuous and finite domains, linear programming is sometimes used as the
constraint propagation engine in CP.

3 Literature Review

Recently, a number of papers have compared the performance of CP and
MILP based approaches for solving a number of different problems, for ex-
ample the modified generalized assignment problem (Darby-Dowman et al.
(1997)), the template design problem (Proll and Smith (1998)), the progres-
sive party problem (Smith et al. (1997)), and the change problem (Heipcke
(1999)). Properties of a number of different problems were considered by
Darby-Dowman and Little (1998), and their effect on the performance of
CP and MILP approaches were presented. As discussed earlier, these pa-
pers showed that MILP is very efficient when the relaxation is tight and the
models have a structure that can be effectively exploited. CP works better
for highly constrained discrete optimization problems where expressiveness
of MILP is a major limitation.

Most of the recent attempts (Rodosek et al. (1999), Heipcke (1999)) to
integrate CP and MILP use constraint propagation along with linear pro-
gramming in a single search tree to obtain bounds on the objective and to
reduce the domains of the variables. In these approaches a complete CP
model and at the least a corresponding partial MILP model are required.
This is because CP is a richer modeling tool and not all CP constraints may
be easily reformulated as MILP constraints. These approaches in some sense
perform redundant computations because a constraint propagation problem
and a simplex problem are solved at every node. For some problems this may

be justified because they are intractable for either of the two methods. Ro-
dosek et al. (1999) presented a systematic approach for transforming a CP
model into a corresponding MILP model. However, automatic translation
from a CP model to an MILP model may result in a poor model involving
numerous big-M constraints (poor LP relaxations). In this case, the advan-
tage of performing “Global Reasoning” using the LP relaxation is essentially
lost. If automatic translation is not used, then the user has to model the
problems for both approaches.

Recently, Hooker et al. (1999) have argued that a new modeling paradigm
may be required to perform efficient integration of MILP and CP based ap-
proaches. The modeling framework is motivated by the Mixed Logic/Linear
modeling framework that was proposed by Hooker and Osorio (1997). Ot-
tosson et al. (1999) have presented algorithms for solving such models. For
a production planning problem, they showed that the computational perfor-
mance of the proposed method wvis-a-vis pure MILP and CP approaches was
significantly better. Bockmayr and Kasper (1998) have done an interesting
analysis of CP and MILP approaches, and presented a unifying framework,
Branch and Infer, that can be used to develop various integration strategies.
They divide constraints for both MILP and CP into two different categories,
primitive and non-primitive. Primitive constraints are those for which there
exists a polynomial time solution algorithm and non-primitive constraints
are those for which this is not true. The interesting aspect about this clas-
sification is that some of the primitive constraints in CP are non-primitive
in MILP and wice-versa. They have also discussed how non-primitive con-
straints can be used to infer primitive constraints and the use of symbolic
constraints for MILPs. Raman and Grossmann (1993,1994) had earlier mod-
eled discrete/continuous optimization problems with disjunctions and sym-
bolic constraints in the form of logic propositions. This model, which they
denoted as a Generalized Disjunctive Program (GDP), can be converted all
or in part into an MILP. They presented the idea of w-MIP representability
that is similar to the idea of primitive constraints. They showed that it is
computationally efficient to transform w-MIP representable disjunctions into
linear constraints, and proposed a hybrid branch and bound algorithm that
handles the non w-MIP representable disjunctions directly.

From the work that has been performed, it is not clear whether a general
integration strategy will always perform better than either a CP or an MILP
approach by itself. This is especially true for the cases where one of these

methods is a very good tool to solve the problem at hand. However, it is
usually possible to enhance the performance of one approach by borrowing
some ideas from the other. For example, Raman and Grossmann (1993) used
logic cuts that were written as logic propositions to improve the performance
of MILP models. Ideas on edge-finding (Carlier and Pinson (1989), Apple-
gate and Cook (1991)) that were used for guiding the search in MILPs to
solve jobshop problems, were exploited by Caseau and Laburthe (1994,1996)
and Le Pape (1994) to develop efficient inference engines for scheduling al-
gorithms in CP. Furthermore, there are a number of similarities in some of
the underlying ideas of both approaches. For example, probing and integer
preprocessing in MILP is in some ways similar to constraint propagation. A
book by Chandru and Hooker (1999) gives an interesting operations research
perspective on consistency methods and logical inference. Also, a recently
published book by Hooker (2000) deals with the subject of MILP and CP
integration in detail.

4 Theory

The algorithms proposed in this section have been motivated by the work of
Bockmayr and Kasper (1998). These algorithms are based on the premise
that combinatorial problems may sometimes have some characteristics that
are better suited for MILP and others that are better handled by CP. For
these problems, pure MILP and pure CP based approaches may not perform
well. As discussed earlier, most of the prior work on integrating the two
approaches use at least one of the models in complete form (usually CP).
In the algorithms that we present the problem is solved using relaxed MILP
and CP feasibility models.

Consider a problem, which when modeled as an MILP has the following
structure,

(M1): min ' (

st. Arxz+By+Cv<a (

Az +B'y+Cv <d (

re{0,1}",y € {0,1}", v € RP (

This is an optimization problem that has both continuous (v) and binary

7

(x and y) set of variables, and only some of the binary variables (z) have
non-zero objective function coefficients. The constraint set can be divided
into two subsets. The first set of constraints (2) models some aspects of
the problem that can be represented efficiently in the MILP framework (e.g.
assignment constraints) and has a significant impact on the LP relaxation.
The second set of constraints (3), on the other hand, is assumed not to sig-
nificantly affect the LP relaxation and is sometimes large in number because
of the limited expressive power of MILP methods.

The same problem can also be modeled as a CP. Note that more con-
structs are available in the CP framework to model the problem (e.g. logi-
cal constraints, disjunctions, all-different operator etc; Marriot and Stuckey
(1998)). For this reason, the MILP and CP models of the same problem may
have different variable definitions and constraint structures. However, an
equivalence can be established between the constraints and a complete label-
ing of variables can be derived in one framework from the values of variables
in the other one. Let us assume that the equivalent CP model is,

(M2):min f(2) (5)
st. G(z,9,0) <0 (6)
veD (7)

where T, §, 0 are the CP variables. The domain of these variables (D) can
be continuous, discrete, or boolean. Generally, these variables do not have
a one-to-one correspondence with the MILP variables (x,y,v), although a
mapping between the sets of variables x and z can be established. This is
because these variables are needed to calculate the objective function. It may
or may not be the case for the variables (y,v) and (7,0). Usually, equivalence
can also be established between the sets of constraints. Let us consider a class
of problems with the above mentioned MILP and CP model structures. Let
us assume that it is difficult to solve this problem as an MILP because there
are a large number of constraints in the constraint set (3) and finding feasible
solutions for them is hard. Let us assume that the broader expressive power
of CP results in the smaller constraint set (6). Even though the constraint
set, in CP is much smaller, it may still not be efficient to solve the problem
using CP because finding an optimal solution and proving optimality can be
difficult for CP (lack of linear programming relaxations). Ideally, we would
like to combine the strength of MILP to handle the optimization aspect of the
problem by using LP relaxation and the power of CP to find feasible solutions

by using better constraint formulations. To achieve this goal we present
a hybrid model for this class of problems that can be solved using either
a decomposition algorithm or a branch and bound algorithm. The main
advantage of the proposed methods is that smaller LP and CP subproblems
are solved.

The hybrid model involves MILP constraints, CP constraints, and equiv-
alence relations. The objective function in the hybrid model (M3) is the
same as in the MILP model (M1). The constraints for this problem include
MILP constraints (2), equivalence relations that relate MILP variables z to
CP variables z, and a reduced set of CP constraints that are derived from
the CP constraint set (6) by assuming that the set of CP variables Z is fixed.

(M3):min ¢’ (8)
st. Arz+By+Cv<a 9)

T T (10)

G(z,y,v) <0 (11)
re{0,1}",y € {0,1}", v € R? (12)

Z,y,1 €D (13)

It should be noted that the hybrid model (M3) requires at least some variables
(x) of the MILP model (M1) and all the variables (z, 7, v) of the CP model
(M2). The values of the CP variables obtained using the model (M3) will
always satisfy all the constraints of the CP model (M2). Furthermore, the
optimal solution for the problem at hand is given by the values of the CP
variables (7,7, 0) obtained by solving the hybrid model (M3) to optimality.
It should be noted that the values of the MILP variables (y,v) obtained from
the model (M3) may not be valid for the Model (M1) because the model
(M3) does not include the MILP constraint set (3).

An integrated approach is proposed in this work to solve the hybrid
MILP/CP model (M3). The basis for this integrated approach are a re-
laxed MILP problem and a CP feasibility problem!, both of which can be
solved efficiently. The relaxed MILP model is used to obtain a solution that
satisfies the constraint sets (9) and (12) and optimizes the objective function
(8). The solution obtained for the relaxed MILP is used to derive a partial

!The feasibility problem can in principle be also solved with alternative methods

9

CP solution by using the equivalence relation (10). A CP feasibility model
then verifies whether this solution can be extended to a full space solution
that satisfies the constraints (11) and (13) of the model. If the partial solu-
tion from the MILP can be extended, then the full space solution obtained
will also have the same value of the objective function. In this paper we
present two methods to search the solution space and obtain the optimal
solution. Both these ideas are essentially the same and use the same relaxed
MILP and CP feasibility models. However, the difference lies in the order in
which the CP subproblems are solved.

4.1 MILP/CP based Decomposition Method

This algorithm has some similarities to Generalized Benders Decomposition
(Geoffrion (1972)). The algorithm is summarized in Figure (1). In this
method a relazed MILP model of the problem, with (8) as the objective
and (9, 12) as constraints, is solved to optimality. Note that integrality
constraints on the variable y can be dropped if that makes the relaxed MILP
problem easier to solve. If there is no solution, then the original problem
is infeasible. Otherwise, values of x are used to determine values of the
equivalent CP variables z. A CP feasibility problem then tries to extend this
partial solution to a complete solution (z, 7, v) that satisfies the constraints
(11) and (13). If there exists a feasible solution, then this solution is the
optimal solution of the problem and the search is terminated. Otherwise the
causes for infeasibility are inferred as cuts and added to the relaxed MILP
model of the problem. These cuts could be general “no good” cuts (Hooker
et al. (1999)). In the context of the model (M3) these cuts have the following
form for iteration £k,

> ai— Y w<B -1 (14)

i€Tk icFk
T = {Z|xic = 1}7Fk = {Z|xiC = 0}7Bk = |Tk|
Here, 2% = [2%, 2%, ...] represents the optimal values of z in iteration k. These

general “no good” cuts may be rather weak. For this reason, whenever possi-
ble stronger cuts (Q¥z < ¢*) that exploit the special structure of the problem
should be used. The problem specific cuts should not only cut off the current
partial solution, but also eliminate partial solutions with similar character-
istics. Cuts are a means of communication between the relaxed MILP and

10

CP feasibility models and play a very important role in the success of these
methods. The entire procedure is repeated until the solution obtained using
the relaxed MILP model can be extended to a full feasible solution, or the
relaxed MILP problem becomes infeasible.

Assuming that the general “no good” cuts (14) are used we can estab-
lish the following convergence proof for the MILP/CP based decomposition
method.

Theorem: If the MILP/CP decomposition method is applied to solve
problem (M3) with the cuts in (14), the method converges to the optimal
solution or proves infeasibility in a finite number of iterations.

Proof: The problem (M3) is not unbounded because the domain of the
variable x is bounded. So the problem can either be fesible or infeasible. Let
us consider each of the cases individually.

Case 1: Problem (M3) is feasible

The relaxed MILP master problem with cuts in (14) after iteration K is
given by,

(RMX) min z=c"x
s.t. Az +By+Cv<a
 wi—> x<B -1 Vke{l,2,.,K-1}
€Tk icFk
T" = {ila} = 1}, F* = {il2{ = 0}, B* = |T"|
Vi e {1,2,..,. K — 1}
re€{0,1}",y € {0,1}"",v € R”

Let 2% be the optimal solution for this relaxed MILP master problem.
The corresponding CP feasibility subproblem is given by,

(CP¥) Find 7,0
st. GE",y,0)<0
y,0 €D

where (2% & 7). Note that for all iterations k& < K, the relaxed MILP
master problems RMF are feasible and the CP* subproblems are infeasible.
If either of the two conditions are not satisfied the algorithm terminates

11

before reaching iteration K. Since the master problem for the first iteration
is a relaxation of the original problem, the MILP problem RMZX is also a
relaxation of the problem (M3). This because the “no good” cuts that have
been added till iteration K do not exclude any feasible solution from the
original problem (M3). Furthermore, the domain of successive relaxation
is strictly smaller than the previous one. Since the domain of x is finite
(in the worst case has 2" elements) and is non empty for problem (M3),
it implies that the algorithm will reach a step where the CP* subproblem
is feasible. Assume at iteration K, the subproblem CP¥ yields a feasible
solution (ZX, g,). This solution is optimal for problem (M3) as it belongs to
the domain of (M3) and the objective function value for this solution equals
the optimum objective function value (¢’z™) obtained for a relaxation of
problem (M3). Hence, if there is a feasible solution to problem (M3), the
algorithm will converge to an optimal solution in finite number of iterations.

Case2: Problem (M3) is infeasible If the problem is infeasible the
subproblem CP* will never result in a feasible solution. Furthermore, the
domain of z is finite and with each successive iteration it shrinks by one
integer point. Hence, after a finite number of steps the master problem
becomes infeasible proving infeasibility in a finite number of steps. [

There are two ways in which this method can be implemented. The
easier, but less efficient approach that was used in this paper, is to solve the
relaxed MILP model from scratch whenever the cuts are updated. A more
efficient approach will be to store the branch and bound tree for the relaxed
MILP problem, and update it whenever cuts are added (e.g. see Quesada
and Grossmann (1992)).

4.2 LP/CP based Branch and Bound Method

This algorithm extends the basic Branch and Bound (B&B) algorithm for
mixed integer problems to solve problems that are represented using the
hybrid MILP/CP model (M3). The idea is in principle straightforward, al-
though it may be difficult to implement. In the branch and bound algorithm,
the current best integer solution is updated whenever an integer solution with
an even better objective function value is found. In the proposed algorithm
an additional CP feasibility problem is solved to ensure that the integer so-
lution obtained for the relaxed MILP problem can be extended in the full

12

T

min cr

Solve iteration K relaxed MILP
problem (RMZ%) to optimality

s.t. Az +By+Cv<a
Qfr <¢" Vke{l,2,.. K -1}
re{0,1}",y € {0,1}", v € RP

No Solution

Infeasible

Feasible

Partial optimal
solution (z™)

Determine equivalent %
and then try extending this partial
solution using CP feasibility
problem for fixed z=z%

Infer causes for infeasibility
and generate cuts.

QFz < ¢"

Set K = K + 1.

Infeasible

Find y,v
st. GIE¥,5,0)<0
y, v €D
Feasible

Optimal Solution Found

Figure 1: MILP/CP Decomposition method.

13

space. It is only in this case that the current best integer solution for the
relaxed MILP problem is updated. If it cannot be extended, then the best
current integer solution is not updated and cuts are added to the current and
all other open nodes.

The proposed branch and bound method involves solving a series of LP
subproblems obtained by branching on the integer variables. An LP sub-
problem p for the proposed algorithm has the form,

min L

s.t. Az +By+Cv<a

Qr <q Cuts
LB UB
z, <z < z,

y <y <yl®

reR", ye R"veRr

v,)Pyt oy, P e 0,1}
The difference in various LP subproblems is only in the upper and lower
bounds for all the integer variables. Also, the set of cuts is updated as the
search progresses. The objective function value for any feasible solution of
the problem in the full space provides an upper bound (U B) of the objective
function. Let P denote the set of LP subproblems to be solved. The LP/CP
Branch and Bound Method can be summarized as follows:

1. Initialization. UB = oo, P = {p°}. LP subproblem p° is generated
by using the same lower and upper bounds on the integer variables as
the original problem and it does not include any cuts.

2. Check if there are any more problems to be solved. If P = ()
then go to step 5, else go to 3.

3. Fathom a Node. Select and remove an LP subproblem p from the set
P. The criterion for selecting an LP is also called as node selection rule.
There are many different rules for selecting an LP, and they play a key
role in the efficiency of the B&B algorithm (Nemhauser and Wolsey
(1988)).

Solve LP subproblem p.

14

e If the LP is infeasible or the optimal value of the objective function
(lower bound) is greater than UB then go to step 2.

e If any one of the integer variables does not have integral values
then go to step 4.

e [f the solution has integral values for all the integer variables then
determine the CP variables x using the values of LP variables z.
For fixed 7 solve the following CP feasibility problem that tries to
extend this partial solution.

Find 9,3
st. G(z,7,7) <0
7,0 €D

If the CP problem is feasible then update U B; otherwise, add the
cuts in (14) or infer the causes for infeasibility to generate tighter
cuts and add them to all the LP subproblems belonging to set P
by updating the set (@, ¢). Go to step 2.

4. Branch on a Variable. Of all the variables that have been assigned
non-integral values, select one according to some prespecified branching
variable selection rule (Nemhauser and Wolsey (1988)). Let us denote
this integer variable by z,. Generate two LP subproblems p' and p?
and add them to set P. The subproblem p' is generated by specifying
the floor of optimal value of z, as the upper bound for z,, and the
subproblem p? is generated by specifying the ceiling of the optimal
value of z, as the lower bound of z,. Go to step 2.

5. Termination. If UB = oo, then the problem does not have a feasible
solution or it is unbounded. Otherwise, the optimal solution corre-
sponds to the current value UB.

For the proposed decomposition and branch and bound methods to be
successful, it is of course very important to choose suitable relaxed MILP and
CP feasibility models. Furthermore, rather than using the cuts in (14) infer-
ring strong cuts, Qz < ¢, as causes for infeasibility of CP feasibility models
can significantly reduce the number of problems to be solved. These cuts,
however, are non-trivial and should be derived whenever possible for each
class of problems at hand. It is also worth emphasizing that the proposed

15

algorithms do not impose any restriction on the structure of the equivalence
relation in (10). It can even be procedural. It should be noted that hybrid
models similar to the ones presented in this section can also be solved using
OPL (Van Hentenryck (1999)). In OPL, the solution algorithm for the hy-
brid model solves an LP subproblem involving all the linear constraints, as
well as a constraint propagation subproblem involving all the constraints at
every node of the search tree. Usually, all the original CP constraints (6) are
needed in the hybrid MILP-CP OPL model. Furthermore, the equivalence
relations (10) must be written in closed form as equations, inequalities, or
symbolic relations.

Even though, the algorithms presented in this section are limited to the
MILP models that have only a subset of binary variables with non zero
coefficients in the objective function, they can in principle be generalized
for the MILP models that have both binary and continuous variables in the
objective function. The partial solution will then involve both binary and
continuous variables and the CP problem will extend this partial solution
in the full space. However, in such a case the biggest challenge is to derive
effective cuts that exclude the partial solutions that are feasible for master
problem but can not be extended in the full space.

5 Scheduling Problem

We consider a specific scheduling problem that falls into the class of problems
considered in this paper and that is similar to the one considered by Hooker
et al. (1999). This scheduling problem involves finding a least cost schedule
to process a set of orders I using a set of dissimilar parallel machines M.
Processing of an order ¢ € I can only begin after the release date r; and must
be completed at the latest by the due date d;. Order 7 can be processed on
any of the machines. The processing cost and the processing time of order
i € I on machine m € M are Cj, and p;,, respectively. In this section,
we consider three alternative strategies to model and solve this particular
problem.

16

5.1 MILP model

The scheduling problem described above can be modeled as an MILP prob-
lem. The main decisions involved in this scheduling problem are assignment
of orders on machines, sequence of orders on each machine, and start time
for all the orders. The binary variable z;, is an assignment variable and
it is one when order i is assigned to machine m. Binary variable y;; is the
sequencing variable and it is one when both 7 and ¢’ are assigned to the same
machine and order i’ is processed after order 7. The continuous variable ts;
denotes the start time of order i. Using these variables the MILP model for
this problem can be written as,

min Z Z CimTim (15)

1€l meM

st. ts;>r; Viel (16)
ts; < d; — Z PimTim Vi €I (17)

meM
> wim=1 Viel (18)
meM
Zmimpim < max;{d;} — min;{r;} Vme M (19)
icl
Yiir + Yiri > Tim + Ty — 1 Vi, i € i > i,m € M (20)
tsy > ts; + Z PimTim — U(L = yiw) Vi, i € 1,0 #i (21)
meM

Vir +yin <1 Vi € I,i' > 1 (22)
Yiir + Yiri + T + T < 2V4, 8" € I, > i,m,m’ € M, m # m(23)
ts; > 0 (24)
Tim € {0,1} Vie I meM (25)
yir €{0,1} Vi,i' € I,i' #1 (26)

Objective (15) of this problem is to minimize the processing cost of all the
orders. Constraints (16) and (17) ensure that processing of an order i starts
after the release date and is completed before the due date. An order needs
exactly one machine for processing and this is enforced using assignment
constraint (18). Inequality (19) is a valid cut and it tightens the LP relaxation
of the problem. It is based on the fact that the total processing time of

17

all the orders that are assigned on the same machine should be less than
the difference of latest due date and earliest release date. Constraint (20)
is a logical relationship between assignment and sequencing variables. The
underlying logic behind this constraint is that if order ¢ and i’ are assigned to
machine m then they must be processed one after the other. Constraint (21)
is the sequencing constraint in which U = ., max,,ep{pim}. It ensures
that if the sequencing variable y;; is one then order ¢’ is processed after order
i. Constraints (22) and (23) are logical cuts. The former is based on the
logic that either i is processed before i’ or vice versa. The latter ensures that
sequencing variables are zero if 7 and ¢’ are assigned to different machines.
Adding both these constraints reduces the computational time needed to
solve the MILP very significantly. Other logic cuts were also tried but they
were not as effective as in (22) and (23).

5.2 CP Model

The same scheduling problem can also be modeled using CP. The CP model,
in contrast to an MILP model, is highly dependent on the CP package used
to model the problem because of the differences in constructs available in
various modeling languages. In this paper we use ILOG’s OPL modeling
language (Van Hentenryck (1999)). OPL has a set of constructs especially
designed for scheduling problems that can be used to develop a compact CP
model for the scheduling problem at hand. We will not go into the details
of the modeling language, but will describe the constructs that have been
used to model our scheduling problem. The basic OPL modeling framework
involves a set of orders that need to be completed using a certain set of
resources. A number of different resource types are available to capture the
nature of the problem. For our scheduling problem the parallel machines
are the resources, and they can be modeled as unary resources in OPL. The
defining attribute of a unary resource is that it can process only one order at
any instance. Each order is associated with a start date and duration. Using
this basic framework a CP model using OPL constructs can be written as
follows,

18

min Z Ciz (27)
icl
s.t. t.start >r; Viel
vstart < d; —p,, Viel
t.duration =p,, Vi€l
i requires I Vi e [
activityHasSelectedResource (i, T, t,,) < 2, = m
VielLme M
zEe€M Yiel
tstart €2 Viel
t.duration € Z Vi el

Here z; is a variable subscript and represents the machine selected to
process order ¢. Variable subscript is a powerful modeling construct and is
available in most of the CP software packages. The variable subscript z; has
been used in the objective function (27) to calculate the cost of order i (Cj,,)
directly. Constraints (28) and (29) ensure that processing of order i begins
after release date r; and is completed before due date d;. The start time of
order is given by “i.start”. The duration of an order depends on the machine
used to process it. This is enforced in constraint (30) that uses the variable
subscript z; to calculate processing time of order i. Constraint (31) uses
a special OPL construct “requires”. It enforces that order ¢ needs a unary
resource from the set of unary resources T'. Note that this constraint enforces
the assignment of an order to a specific machine as well as the sequencing of
orders that have been assigned to the same machine. Constraint (32) uses
another OPL specific boolean function “activityHasSelectedResource()” that
returns a value of true or false. In the context of our scheduling problem this
function returns a value of “true” if order ¢ is processed using the unary
resource corresponding to the machine m (¢, € T), and false otherwise.
Constraint (32) ensures that if order 7 is processed using the unary resource
tm, then the subscript variable z; is equal to m. It links the decisions made
by the inference engine behind the construct “requires” and other constraints
in the model.

It can be clearly seen that variable and constraint definitions in the CP

19

model for the scheduling problem at hand are very different from the MILP
model. This is primarily because specialized CP constructs were used to
model the problem at hand. However, there exists a close resemblance in the
two modeling frameworks. The subscript variable z; in the CP model is equiv-
alent to the binary variable xz;,, in the MILP model. The start time of order
¢ has the same definition in the two models. The sequencing variable y;; in
the MILP model has no equivalent variable in CP model. However, the value
of this variable can be obtained from the solution of the CP model. Equiv-
alence can also be drawn between the constraints in the two frameworks.
Constraints (28) and (29) are equivalent to (16) and (17), respectively. The
set of constraints (30) to (32) play the same role as the set of constraints
(18), (20), and (21). One major difference between the two models is that
the MILP model is a continuous time scheduling model. The CP model on
the other hand is a discrete time scheduling model (start time is an integer
variable in the OPL framework).

5.3 Combined MILP-CP OPL Model

Instead of developing pure MILP and CP models, it is also possible to write a
combined model. OPL allows modeling of a problem using a combined MILP-
CP model in which constraints are expressed in both forms. Even though
the size of the integrated model is larger, it may still perform better in some
cases because fewer nodes may have to be explored. The solution algorithm
for the integrated model primarily uses the CP solver. However, at each CP
node an extra LP relaxation, consisting of all the linear constraints in the
combined model, is solved to obtain bounds for the objective function (Van
Hentenryck (1999)). The combined MILP-CP OPL model for the scheduling
problem at hand can be written as,

20

min Z Z Oz'mib'im

i€l meM
S.t.

tSi Z T Vi el)
ts; < d; — Zpimfvim Viel

meM

 tim=1 Viel

meM

inmpim < max;{d;} —min;{r;} YmeM

> MILP

il)
i.start >r; Viel

istart <d; —p,, Viel

i.duration =p, Viel

i requires T Vi e [

activityHasSelectedResource(i, T, t,,) < z; = m

VicI,meM

Tir, =1 Viel
i.start =ts; Viel

» CP

)

C, = Z CimTim Vi€ 1 Linking Constraints

_ meM

Ci=0C;,, YViel

ts; > 0

Tim € {0,1} Vie I meM
€M Yiel

start € Z Viel
t.duration € Z Viel

(38)

N
(@)

A~ Y~ A/~~~
IS
N =

e N N N N

=~
-~ W

This model is a combination of the pure MILP and pure CP models
that were presented earlier. The objective function (36) of the problem is
the same as in the MILP model. Constraint set (37) includes all the MILP
constraints except for constraints (20) to (23). There is no theoretical re-
striction for excluding constraints (20) to (23) per se. The only reason that
these constraints were dropped is that they are large in number and do not

21

significantly tighten the LP relaxation of the problem. Constraint set (38)
includes all the constraints from the CP model. Finally, constraint set (39)
links MILP variables and CP variables. The first constraint in (39) links the
assignment variables, the second constraint links the start times, and the rest
are extra constraints that make the propagation stronger.

5.4 Computational Results

The scheduling problem at hand can be solved using any one of the three
different optimization models that were presented in the previous section. All
the three models can be implemented in ILOG OPL Studio 2.1 (1999). It
uses CPLEX 6.5 (1999) to solve an MILP, ILOG solver 4.4 (1999) and ILOG
scheduler 4.4 (1999) to solve a CP, and all of them to solve a combined
MILP-CP OPL model. To study the behavior and characteristics of the
three models, we consider several numerical example problems.

In this section, we consider instances of varying complexity from the
class of scheduling problems presented in the previous section. The size
of the optimization models for these problems depends on the number of
orders and the number of parallel machines. We consider problems of five
different sizes in terms of number of orders and number of parallel machines
as shown in Table 1. The parameters for these problems are processing costs

Problem Number of Orders Number of Machines

1 3 2
2 7 3
3 12 3
4 15 5
5 20 5

Table 1: Number of Orders and Machines in each Problem.

(Cim), release dates (r;), due dates (d;), and processing times (p;,). For each
problem size, we consider two sets of data. The objective is to demonstrate
that the difficulty of solving such a scheduling problem can vary significantly
with data. Therefore, we have a total of ten instances of the scheduling
problem. Details of these ten problems, five different sizes with two data

22

sets each, are presented in Appendix A (The appendix is available in the
electronic format at the Informs Journal of Computing website).

The only distinguishing characteristic of the two data sets for each prob-
lem is that the processing times in the first data set are longer. For this rea-
son, the problems corresponding to this data set have fewer feasible schedules
and the total cost of processing all the tasks is higher. The computational
results for solving these problems using the MILP model and the CP model
are presented in Tables 2 and 3, respectively. It can be clearly seen that for

Problem Set Constraints Variables Nodes Time®* Objective

1 1 32 18 0 0.01 26
1 2 32 18 0 0.03 18
2 1 276 e 38 0.47 60
2 2 276 e 54 0.49 44
3 1 831 192 29446 220.01 101
3 2 831 192 180 1.77 83
4 1 2990 315 8891 180.41 115
4 2 2990 315 3855 61.82 102
5 1 5385 520 80000 20000° 171¢
5 2 5385 520 2114 106.28 140

®Using CPLEX 6.5 single processor version on a dual processor SUN Ultra 60 workstation
bSearch terminated because the tree size exceeded 300 MB

“Suboptimal solution; Lower bound at termination=156.011019

Table 2: Computational results for the MILP model.

this class of problems the CP models are smaller in size than the MILP mod-
els. Furthermore, the size of the MILP model increases much more rapidly
in comparison to the CP model. For all the problem sizes, the first data set
is more difficult to solve for both the MILP and the CP methods. Also, it
took less time to solve the problems using the CP model in comparison to the
MILP model. However, the computational effort increases rapidly in both
cases. The problem corresponding to the first data set of the biggest example
(Problem 5) could not be solved to optimality using any of the two methods
in reasonable computational time. It should be noted that computational
times for MILP model may be possibly reduced further by using more so-
phisticated schemes like Branch and Cut. Similarly, computational times for
CP model may be possibly reduced by developing special branching schemes
for this example. These strategies are outside the scope of this paper.

The advantage of the MILP model is that the values of the assignment

23

Problem Set Constraints Variables Failures Choice Points Time®* Objective

1 1 15 33 3 3 0.00 26
1 2 15 33 15 19 0.02 18
2 1 42 e 12 12 0.04 60
2 2 42 77 172 185 0.14 44
3 1 72 132 4743 4748 3.84 101
3 2 72 132 583 606 0.38 83
4 1 120 165 469918 469938 553.54 115
4 2 120 165 5435 5467 9.28 102
5 1 160 220 55529196 55529254 68853.49° 165°¢
5 2 160 220 1307486 1307532 2673.87 140

®Using ILOG Scheduler 4.4 and ILOG Solver 4.4 single processor versions on a dual
processor SUN Ultra 60 workstation
bComputational time for finding the suboptimal solution

“Suboptimal Solution

Table 3: Computational results for the CP model.

variables obtained from the LP relaxations direct the branch and bound
search to obtain the least cost assignments. However, scheduling the orders
on each machine is a more daunting task. This is because the sequencing
constraint (21) has a big-M form and results in a poor relaxation. Further-
more, the sequencing variables do not directly contribute to the objective
function value and the LP relaxation may or may not direct these variables
towards feasibility. On the other hand, the CP methods use effective con-
straint propagation algorithms for scheduling that are based on the ideas of
edge finding and task intervals (Caseau and Laburthe (1994,1996)). How-
ever, an assignment is chosen using a pre-defined enumeration strategy by
excluding the infeasible schedules.

Clearly, there are complementary strengths of the MILP and the CP
methods that may possibly be combined to tackle more difficult problems.
One of the possible ways is to use the combined MILP-CP OPL model that
was presented in the previous section. The computational results for solving
the set of 10 example problems using the MILP-CP OPL model are pre-
sented in Table 4. Clearly, the MILP-CP OPL model for all the problems
is larger than the corresponding CP model. However, it is still smaller than
the corresponding MILP model because the sequencing variables and con-
straints were not included in the combined MILP-CP OPL model. It can be
clearly seen that all the problems could be solved faster using the combined
model. Furthermore, the first data set of the fifth example problem that was

24

intractable for MILP and CP methods could now be solved to optimality
using the combined method.

Problem Set Constraints Variables Failures Choice Points Time®* Objective
1 1 38 49 3 3 0.04 26
1 2 38 49 15 19 0.05 18
2 1 94 120 13 13 0.10 60
2 2 94 120 175 188 0.27 44
3 1 159 205 1939 1944 4.21 101
3 2 159 205 693 716 1.12 83
4 1 230 286 43882 43902 91.59 115
4 2 230 286 3057 3090 5.58 102
5 1 305 381 4929656 4929686 13736.06 158
5 2 305 381 80290 80337 170.95 140

®Using CPLEX 6.5, ILOG Scheduler 4.4, and ILOG Solver 4.4 single processor versions

on a dual processor SUN Ultra 60 workstation

Table 4: Computational results for the combined MILP-CP OPL model.

25

6 MILP/CP Hybrid Model

The scheduling problem at hand can be posed in the proposed hybrid MILP /CP
modeling framework as follows,

min Z Z CimTim (45)

(@)
co

istart € Z Viel
t.duration € Z Vie [l

(@)
Ne)

i€l meM
s.t. ts;>r; Viel (46)
ts; < d; — Z PimTim Vi €T (47)
meM
> wim=1 Viel (48)
meM
inmpim < maz;{d;} — min;{r;} VYme M (49)
il
if (xj, = 1) then (z; =m) Vie Ime M (50)
i.start >r; Viel (51)
istart < d; —p,, Viel (52)
i.duration = p,, Viel (53)
i requires t,, Viel (54)
ts; >0 (55)
Tim € {0,1} VYieI,me M (56)
z€e€M Yiel (57)
(58)
(59)

The objective function (45) for the hybrid model is the same as the objective
function (15). Constraints (46) to (49) are the MILP constraints (16) to
(19). These constraints are equivalent to constraint set (9) of model (M3).
Constraint (50) establishes the equivalence between the MILP variable z;,,
and the CP variable z;, and it is represented by (10) in model (M3). It
should be noted that there is no need to write the equivalence relation in
a closed form as equations or inequalities. This is in sharp contrast to the
set of equivalence relations (39) used in the MILP-CP OPL model. Finally,
constraints (51) to (54) are the reduced set of CP constraints derived from
the original CP constraints (28) to (32) by assuming that the assignment

26

of orders to machines has already been made. Note that the CP constraint
(32) is no longer needed, and in constraint (54) order i requires the unary
resource corresponding to the machine to which it has been assigned. These
constraints are equivalent to constraint set (11) of model (M3).

Any one of the two proposed algorithms can be used to solve this hybrid
MILP/CP model for the scheduling problem at hand. In this section, we
use the decomposition algorithm that was presented in Figure 1 for solving
the hybrid MILP/CP model. The reason for choosing this method is that it
is easy to implement and is sufficient to test the potential usefulness of the
proposed methodology. Details of the decomposition algorithm in the context
of the proposed hybrid MILP/CP scheduling model are presented in Figure
2. In this algorithm, the relaxed MILP problem assigns a machine to every
order. The CP feasibility problem then attempts to find a feasible schedule
for this assignment. If a feasible schedule can be obtained, then it is the
optimal solution. Otherwise, causes of infeasibilities are inferred as integer
cuts to exclude assignments with similar characteristics. The relaxed MILP
problem is resolved to obtain another assignment. If no other assignment is
possible, then the scheduling problem is infeasible.

Integer cuts used in the decomposition algorithm are very critical to its
efficiency. Instead of using the integer cuts in (14), the cuts used for the
scheduling problem at hand are based on the idea that if a set of orders
cannot be scheduled on a particular machine, then it will not be possible
to find a feasible schedule for any assignment in which all those orders are
assigned to that machine. Note that a cut is generated for each machine that
could not be scheduled successfully. The integer cuts for iteration k, which
are stronger than equation (14), have the following general form,

Y Tim <Bi,—1 VmeM (60)
ielk,

I, = {ilat, = 1}, By, = |1

Here 2% is the optimal value of z;, in iteration k. As an example consider
a case where orders 1, 2, and 3 were assigned to machine A but could not be
scheduled. The corresponding integer cut is,

Tia + Toa + 34 < 2

27

Solve relaxed MILP problem (K)

min Z Z CimTim
1€l meM
S.t. (46) to (49), (55) to (56)

Iy, = {ila}, = 1}, B}, = | 1]
Vme M, k={1,2,..,K — 1}

No Solution | ible

Feasible

Partial optimal
solution (z,,)

Determine z; using (50) and
extend this partial solution
using a CP feasibility problem
for fixed z;

Find

s.t.

t.start, ¢.duration
(51) to (54),(58) to (59)

|dentify machines for which a
feasible schedule could not be
obtained. Add an integer cut
for each of these machines to
exclude this assignment from
the feasible set (K = K + 1)

Infeasible

Feasible

Optimal Solution Found

Figure 2: MILP/CP Decomposition method for the scheduling problem.

28

This cut in essence states that any assignment in which orders 1, 2, and 3
are all assigned to Machine A, is not allowed. It is worth emphasizing once
again that these constraints cut off more that one possible overall assignment.
Furthermore, it should be noted that in this scheduling problem parallel
machines do not interact. Therefore, once the assignment has been specified,
a schedule for order processing can be derived for each machine individually.
This means that a CP feasibility problem for |M| parallel machines can be
decomposed into | M| CP feasibility problems for a single machine each. The
advantage of decomposing the problem in such a manner is that it becomes
very easy to identify machines for which a feasible schedule could not be
obtained.

The proposed decomposition algorithm was implemented using the script-
ing language in OPL Studio 2.1 (1999). In our implementation, the relaxed
MILP is solved from scratch anytime cuts are added to it. One major itera-
tion of the decomposition algorithm involves solving a relaxed MILP problem
and |M| CP feasibility problems. The size of the relaxed MILP problem in-
creases as the search progresses. The size of CP feasibility problem for each
machine depends on the number of orders assigned to that machine and it
varies from one major iteration to another. All the ten instances of the
scheduling problem at hand that were presented in the earlier section can
be solved using the decomposition algorithm. The computational results for
them are summarized in Table 5.

Problem Set MILP Size Major Cuts MILP CP Objective
Constraints Variables Iterations Time®* Timeb
1 1 11 9 2 1 0.02 0.00 26
1 2 11 9 1 0 0.01 0.00 18
2 1 24 28 13 16 0.47 0.05 60
2 2 24 28 1 0 0.01 0.01 44
3 1 39 48 31 43 4.01 0.17 101
3 2 39 48 1 0 0.02 0.00 83
4 1 50 90 18 26 2.01 0.24 115
4 2 50 90 1 0 0.02 0.02 102
5 1 65 120 31 60 13.69 0.44 158
5 2 65 120 6 6 0.29 0.12 140

®Using CPLEX 6.5 single processor version on a dual processor SUN Ultra 60 workstation
bUsing ILOG Scheduler 4.4 and ILOG Solver 4.4 single processor versions on a dual
processor SUN Ultra 60 workstation

Table 5: Computational results for hybrid MILP-CP model.

29

In this table, the size of the CP subproblems has not been reported as it
varies from one iteration to another and only the initial size of the relaxed
MILP problems has been reported. However, the final number of constraints
in the relaxed problem can be obtained by adding the number of cuts to
the initial number of constraints. The computational time for solving all the
relaxed MILP problems is reported in the seventh column. Note that the
computational time reported for solving the CP feasibility problems is only
for the ones that were feasible. This is because in the current implementa-
tion of OPL scripting language it is not possible to obtain the computational
time if the CP feasibility problem is infeasible. In our experience the com-
putational time for solving an infeasible CP subproblem was of the same
order of magnitude as solving a feasible CP subproblem. The number of CP
feasibility subproblems solved for a problem is equal to the product of the
number of machines and the number of major iterations required. Recall
that a cut is added for every infeasible CP subproblem. Hence, the number
of CP subproblems for whom the computational time was not included is
equal to the total number of cuts.

It can be clearly seen that all the instances of the scheduling problem at
hand can be solved very efficiently using the proposed decomposition algo-
rithm. For the larger instances of this scheduling problem the computational
times were significantly lower compared to any of the three methods that
were presented in the previous section. Recall that the first data set of all
the five problems were more difficult to solve. This is because fewer assign-
ments lead to a feasible schedule. Therefore, a larger number of iterations
are needed and more integer cuts had to be added. Based on these computa-
tional results we can conclude that the proposed MILP and CP integration
strategy can tackle this scheduling problem much better than either MILP
or CP, and even the MILP-CP OPL solution approach. Further numerical
results for this problem with different data are reported in Harjunkoski et al.
(2000).

7 Conclusions

The objective of this paper has been to develop models and methods that
use complementary strengths of MILP and CP to solve problems that are
otherwise intractable if solved using either of the two methods. The class of

30

problems considered in this paper have the characteristic that only a subset of
the binary variables have a non zero objective function coefficients if modeled
as an MILP. This class of problems can be formulated as a hybrid MILP/CP
model that involves some of the MILP constraints, a reduced set of CP
constraints, and the equivalence relations between the MILP and the CP
variables. To solve this hybrid model, an MILP/CP based decomposition
method and an LP/CP based branch and bound algorithm were proposed.
Both these algorithms rely on the same relaxed MILP and feasibility CP
problems. The aim of these methods is to combine the strength of MILP
for proving optimality by using the LP relaxations, and the power of CP for
finding feasible solutions for hard discrete optimization problems by using the
specialized propagation algorithms. It should be noted that the algorithms
presented are fairly general and if needed alternative methods for solving
fesibility problems may also be used.

As an application example, a scheduling problem was considered. The aim
of this problem was to find a least cost schedule to process a set of orders using
dissimilar parallel machines subject to release and due dates constraints. It
was shown that this problem can be modeled as an MILP, CP, or a combined
MILP-CP OPL model (Van Hentenryck (1999)). The computational results
indicate that the CP model requires fewer constraints as compared to the
MILP model. However, the computational effort required to solve the prob-
lems using any of the two models increases rapidly with problem size. The
MILP-CP OPL model was larger in size then the CP model but was smaller
compared to the MILP model. The combined OPL model could solve most
of the problems faster relative to the MILP and CP models. The scheduling
problem was then modeled as a hybrid MILP/CP model and solved using the
proposed decomposition algorithm. Computational results indicate that for
the larger instances of the example scheduling problem, the computational
times were significantly smaller compared to MILP, CP, or combined MILP-
CP OPL methods. The example problem demonstrates that the proposed
methods can be computationally efficient for solving certain problems. It is
acknowledged that even if a problem falls into the class of problems consid-
ered in this paper, the computational efficiency of the proposed algorithms
depends strongly on the nature of the relaxed MILP problem, the feasibility
CP problem, and the cuts that are used in the algorithm.

31

8 Acknowledgments

The authors would like to thank Greger Ottosson and Erlendur S. Thorsteins-
son for interesting discussions about Constraint Programming, and liro Har-
junkoski for his help in revising the paper. Financial support from the Na-
tional Science Foundation under grant CTS-9810182 is gratefully acknowl-
edged.

32

References

[1] ILOG OPL Studio 2.1. User’s Manual. ILOG Inc., July 1999.

(2] ILOG Scheduler 4.4. User’s Manual. ILOG Inc., July 1999.

3]
[4]

[5]

[10]

[11]

[12]

ILOG Solver 4.4. User’s Manual. ILOG Inc., July 1999.

D. Applegate and B. Cook. A computational study of the job shop
scheduling problem. Operations Research Society of America, 3(2), 1991.

E. Balas, S. Ceria, and G. Cornuejols. Mixed 0-1 programming by
Lift-and-Project in a Branch-and-cut framework. Management Science,
42(9):1229-1246, 1996.

C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsberg,
and P. H. Vance. Branch and price: Column generation for huge integer
programs. Operations Research, 46(3):316-329, 1998.

A. Bockmayr and T. Kasper. Branch-and-infer: A unifying framework
for integer and finite domain constraint programming. INFORMS J.
Computing, 10(3):287-300, 1998.

J. Carlier and E. Pinson. An algorithm for solving the Job-Shop problem.
Management Science, 35(2):164-176, 1989.

Y. Caseau and F. Laburthe. Improving CLP scheduling with with task
intervals. In P. Van Hentenryck, editor, Logic Programming: Proceedings
of the 11th international conference, pages 369-383, Cambridge, MA,
1994. MIT press.

Y. Caseau and F. Laburthe. Cumulative scheduling with task inter-
vals. In M. Maher, editor, Logic Programming: Proceedings of the 1996
Joint international conference and symposium, pages 363-377, Cam-
bridge, MA, 1996. MIT press.

V. Chandru and J. Hooker. Optimization Methods for Logical Inference.
John Wiley & Sons, Inc., New York, 1999.

A. Colmerauer. Prolog in 10 figures. Communications of the ACM,
28:1296-1310, 1985.

33

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

K. Darby-Dowman and J. Little. Properties of some combinatorial op-
timization problems and their effect on the performance of integer pro-
gramming and constraint logic programming. INFORMS J. Computing,
10(3):276-286, 1998.

K. Darby-Dowman, J. Little, G. Mitra, and M. Zaffalon. Constraint
logic programming and integer programming approaches and their col-

laboration in solving an assignment scheduling problem. Constraints,
An International Journal, 1(3):245-264, 1997.

M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and
F. Berthier. The constraint logic programming language CHIP. In
FGCS-88: Proceedings of International Conference on Fifth Generation
Computer Systems, pages 693-702, Tokyo, 1988.

A. M. Geoffrion. Generalized Benders decomposition. Journal of Opti-
mization Theory and Applications, 10(4):237-260, 1972.

[. Harjunkoski, V. Jain, and I. E. Grossmann. Hybrid mixed-
integer/constraint logic programming strategies for solving schedul-

ing and combinatorial optimization problems. Comp. Chem. Engng.,
24:337-343, 2000.

S. Heipcke. Comparing constraint programming and mathematical pro-
gramming approaches to discrete optimisation-the change problem-. J.
of Operational Research Society, 50(6):581-595, 1999.

S. Heipcke. An example of integrating constraint programming and
mathematical programming. FElectronic Notes in Discrete Mathematics,
1(1), 1999.

J. N. Hooker. Logic-Based Methods for Optimization: Combining Op-
timization and Constraint Satisfaction. John Wiley & Sons, Inc., New
York, 2000.

J. N. Hooker and M. A. Osorio. Mixed logic/linear programming. Dis-
crete Applied Mathematics, page To appear, 1997.

J. N. Hooker, G. Ottosson, E. S. Thorsteinsson, and H. J. Kim. On in-
tegrating constraint propagation and linear programming for combina-
torial optimization. In Proceedings of the Sixteenth National Conference

34

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

on Artificial Intelligence (AAAI-99), pages 136-141. AAAI, The AAAI
Press/The MIT Press, July 1999.

ILOG CPLEX 6.5. User’s Manual. ILOG, Inc., Incline Village, NV,
89451, 1999.

C. Le Pape. Implementation of resource constraints in ILOG schedule:
A library for the development of constraint-based scheduling systems.
Intelligent Systems Engineering, 3(3):55-66, 1994.

S. Novello M. Wallace and J. Schimpf. ECLiPSe: a platform for con-
straint logic programming. ICL Systems Journal, 12(1), 1997.

K. Marriott and P. J. Stuckey. Programming with Constraints. MIT
press, Cambridge, MA, 1998.

G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Opti-
mization. John Wiley and Sons, Inc., New York, 1988.

G. Ottosson, E. S. Thorsteinsson, and J. N. Hooker. Mixed global
constraints and inference in hybrid CLP-IP solvers. In Proceedings of
the Fifth International Conference on Principles and Practice of Con-
straint Programming (CP-99)’s Post-Conference Workshop on Large
Scale Combinatorial Optimisation and Constraints, October 1999.

M. W. Padberg and G. Rinaldi. A branch-and-cut algorithm for a sym-
metric travelling salesman polytope. SIAM Review, 33:60-100, 1991.

L. Proll and B. Smith. Integer linear programming and constraint logic
programming approaches to a template design problem. INFORMS J.
Computing, 10(3):265-275, 1998.

[. Quesada and I. E. Grossmann. An LP/NLP based branch-and-bound
algorithm for convex MINLP optimization problems. Computers Chem.
Engng., 19:937-947, 1992.

R. Raman and I. E. Grossmann. Symbolic integration of logic in MILP
branch and bound techniques for the synthesis of process networks. An-
nals of Operations Research, 42:169-191, 1993.

35

33]

[34]

[35]

[36]

[37]

[38]

R. Raman and I. E. Grossmann. Modelling and computational tech-
niques for logic based integer programming. Computers Chem. Engng.,
18(7):563-578, 1994.

R. Rodosek, M. G. Wallace, and M. T. Hajian. A new approach to inte-
grating mixed integer programming and constraint logic programming.
Annals of Operational Research, 86:63-87, 1999.

B.M. Smith, S. C. Brailsford, P. M. Hubbard, and H. P. Williams.
The progressive party problem: Integer linear programming and con-

straint programming compared. Constraints, An International Journal,
1(1/2):119-138, 1997.

E. P. K. Tsang. Foundations of Constraint Satisfaction. Academic press,
1993.

P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT
press, Cambridge, MA, 1989.

P. Van Hentenryck. The OPL optimization programming language. MIT
press, Cambridge, MA, 1999.

36

