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1. Introduction

Supply chains are formed through complex and varied stakeholder participation
where the differences in topology, scale, product, commodities, service, and planning-
horizon introduces different complexities in every supply chain network (Zhang et al.,
2017; Garcia and You, 2015; Barbosa-Povoa and Pinto, 2020; Bok et al., 2000; Mar-
avelias and Sung, 2009; Harjunkoski et al., 2014). Therefore, management of these
systems becomes a very challenging undertaking as it requires an understanding
of financial, material and information flows (Barbosa-Póvoa, 2012; Barbosa-Povoa
and Pinto, 2020). Thus, many organizations rely on a Decision Support System
(DSS) to help optimize their supply chain models for the flow of goods, information
and finances (Barbosa-Povoa and Pinto, 2020; Perez et al., 2021; Garcia and You,
2015). To represent strategic and operational problems associated with the design,
long-term, midterm, or short-term operations of supply chains a variety of Linear
Programming (LP), Mixed Integer Linear Programming (MILP), and Mixed Integer
Non-Linear Programming (MINLP) models have been developed (Grossmann, 2005;
Harjunkoski et al., 2014). Although these models are useful, some challenges may
arise when they are in operation.

In large scale supply chain models, interactions between the different nodes of
the supply chain model lead to a complex structure wherein making any changes
to parameters can impact the output of the entire model often making the model
infeasible (Cafaro and Grossmann, 2014; You and Grossmann, 2008; Garcia and You,
2015). Furthermore, these models can be used by the operators to carry out their day
to day operations, or it can be used by the planners in an enterprise to understand
and interpret their supply chain. Thus, the models are often used by people who are
not experts or well acquainted with the mathematical formulations of optimization,
which can lead to difficulties in rectifying infeasibilities or interpreting the results
that are obtained.

Therefore, understanding and interpreting results of supply chain models is an
increasingly important direction for research. There is a strong motivation to de-
velop specialized algorithms that can provide useful information to assist in the
understanding and usage of the optimization models.

This paper contributes to the analysis of linear programming supply chain opti-
mization results by providing tools to identify causes of infeasibility and minimize
changes that are introduced due to changes in parameter values. This paper is largely
inspired by Harvey Greenberg’s ”The ANALYZE rulebase for supporting LP analy-
sis” which outlines some methodologies to detect infeasibility in linear programming
problems and to interpret static results and dynamic outcomes of the optimization
(Greenberg, 1996).
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The paper is organized as follows. Section 2 outlines a description of the problems
addressed in this paper for a linear programming supply chain optimization problem.
In the section 3, a review of prior infeasibility diagnosis methods is presented, followed
by a novel comprehensive algorithm to detect infeasibility using the flexibility test
and a regression machine learning technique. Section 4 proposes three mathematical
formulations to minimize changes along with a bi-criterion optimization model to
observe the trade-off between minimizing cost and minimizing changes when the
model is subjected to parameter changes. Section 5 draws conclusions for the paper.

2. Problem Statement

Figure 1 represents a typical supply chain network that consists of suppliers,
plants, distribution centers and customers. As the material flows from the suppliers
to the customers, we want to optimize the flow to ensure coordination between
components of the supply chain. On many occasions, disruptions or changes in
the model may be introduced (e.g. changes in raw material availability, production
capacities etc) which could cause models to yield infeasible solutions or counter
intuitive results with many changes. Furthermore, as the size of the model increases,
it becomes more difficult to interpret the details of the results that may have deviated
from the original solution or may have failed to converge.

Figure 1: Supply Chain Layout

Two key problems that we address in this paper are the following:
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1. Infeasibility Diagnosis and Resolution When a large supply chain model
becomes infeasible, it is usually difficult for the user or the modeler to pin-
point the cause. It can be the data, the constraints, or a combination of both
that might be causing the infeasibility. However, restoring feasibility is not
trivial. To tackle the problem, this paper proposes a systematic approach for
quantitatively evaluating the infeasibility of a given linear programming plan-
ning model. Furthermore, a data-driven approach is presented, which helps to
identify the cause of infeasibility given by potentially incorrect specifications.

2. Minimizing Changes in a parameter-varying linear supply chain op-
timization When parameters are changed in a supply chain model such as
supplier capacities and customer demands, the resulting difference in the op-
timization result can be very different as is illustrated through an example in
section 4.2. To address this challenge, this paper proposes optimization formu-
lations to reduce such deviations, determine the trade-off between minimizing
changes vs minimizing costs via a bi-criterion optimization model that includes
the ideal compromise solution.

3. Automated Diagnosis of Infeasibility

Puranik and Sahinidis (2017) reported in their paper that 7% of the models
submitted to BARON via the NEOS server over a period of two years (from the
beginning of January 2012 to the end of December 2013) were infeasible, which
indicates the relevance of this problem in optimization models. Typically, diagnosing
the source of infeasibility may not be straightforward or intuitive as it can be caused
due to a new specification that leads to infeasibility or due to an error in data.

The research efforts in the area of diagnosing infeasibility have seen several signif-
icant contributions and various approaches have been investigated which are outlined
next. In the paper ”How to Analyze the Results of Linear Programs - Part 3: Infea-
sibility Diagnosis”, Harvey Greenberg describes the isolation of the infeasible part
of the model by methods like Price Aggregation, finding the Irreducible Infeasible
Subsystems, and Successive Bounds reduction (Greenberg, 1993, 1996). Puranik
et al. (2018), in their paper ”Infeasibility resolution for multi-purpose batch pro-
cess scheduling”, explore the diagnosis of infeasibility in mixed-integer scheduling
problems. Puranik and Sahinidis (2017), in their paper ”Deletion Presolve for Ac-
celerating Infeasibility Diagnosis in Optimization Models” discuss the up-grade of
the filtering methods for the isolation of IISs (Irreducible Infeasible Sets) using the
deletion presolve method for the efficient resolution of infeasibility.
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León and Liern (2001) propose the use of the Fuzzy Logic method to repair Infea-
sibility in LP models. Data Analytic and Neural Network algorithms have also been
explored to obtain a feasible region of operation for optimization models. Goyal and
Ierapetritou (2002) use simplicial approximations to determine feasible operating en-
velopes for chemical processes. Dias and Ierapetritou (2019) designed a framework
using classification methods like decision trees and support vector machines to define
a feasible region in a scheduling problem. This method along with a review on feasi-
bility analysis using surrogate modeling on black-box models is detailed extensively
in the review paper by Bhosekar and Ierapetritou (2018).

Work has also been reported in the areas of Flexibility Analysis for better under-
standing the response of a model in the face of changes in the parameters. Grossmann
and Floudas (1987) present the mathematical optimization formulations for perform-
ing the Flexibility Test and calculating the Flexibility Index of an uncertain model.
This was a comprehensive extension of the work conducted by Swaney and Gross-
mann (1985) and Halemane and Grossmann (1983) to evaluate flexibility for a set of
uncertain parameters involved in a given fixed design. Bansal et al. (2002) presented
a design and flexibility optimization model based on parametric programming.

Discussion of the existing methods of infeasibility diagnosis motivates the intro-
duction of our framework in a data-driven context. We have proposed an algorithm
that gives a qualitative as well as a quantitative method for the identification and res-
olution of infeasibility for supply chain models that take into account the data-driven
nature of the parameters.

Specifically, we present a novel method that applies the Flexibility Test method
and linear regression techniques to find the constraints and the parameters causing
infeasibility and give quantitative measures to correct it. The methodology is as
follows: determine which constraints in the model are causing infeasibility using the
flexibility test. If a parameter is associated with the flagged constraint, then perform
a check for possible incorrect data that may be a cause of infeasibility. Else, if the
data is correctly entered, adopt corrective actions to regain feasibility.

3.1. Flexibility Test Method

The Flexibility Test represents the backbone of the infeasibility diagnosis algo-
rithm. This method determines the feasibility of operation of an optimization model
in a given region of uncertainty (Pistikopoulos and Grossmann, 1988; Zhang et al.,
2016). A linear supply chain problem can be modeled by the set of constraints given
in Equation 1 :

Ax = b

Cx ≤ d
(1)
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Here, the coefficients in the matrices and right-hand sides A, C, b, and d of the
variable x correspond to the nominal values (Grossmann and Floudas, 1987; Gross-
mann et al., 2014). The infeasibility diagnosis can be formulate as: the following
min-max problem:

ψ = min
x

max
j

gj(x)

s.t. Ax = b
(2)

where gj(x) = Cjx − dj is the jth row of the inequalities. Using Equation 2, we
minimize over the variable x the maximum value of each constraint. ψ is defined as
the feasibility function and its value can be used to determine whether the model
is feasible or not. If ψ ≤ 0, we have a feasible operation, whereas if ψ > 0, the
operation is not feasible. ψ = 0 indicates that we are at the boundary of feasible
operation of the supply chain.

Equation 2 is a non-differentiable optimization problem. To reduce the com-
plexity of the problem, we reformulate it as a standard optimization problem by
introducing a scalar variable (violation term) u that is greater than or equal to each
constraint Cjx− dj for all j ∈ J .

This corresponds to the original Flexibility Test method that uses infinity-Norm
of the violation terms by using, a single scalar u to convert from bi-level to single
level optimization problem (Grossmann and Floudas, 1987). Since the infinity-Norm
determines the largest violation, using this formulation leads to solving multiple
iterations of the LP to restore the model’s feasibility. Therefore, we use the 1-Norm
instead of the infinity-Norm which may provide more useful information in terms of
identifying the constraints that cause infeasibility. The 1-Norm has the advantage
that the model needs to be solved once to quantify the infeasibility in the model
since the violation of all the constraints is determined simultaneously.

ψ = min
x

∑
j

uj

s.t. Ax = b

Cjx− dj ≤ uj ∀j ∈ J

uj ≥ 0 ∀j ∈ J

(3)

Equation 3 represents the minimization of the sum of violations for every inequal-
ity constraint. It is important to note that the constraints for which the violation
term (uj) are non-zero are the ones causing the infeasibility. For restoring feasibility,
we relax the right hand side of these constraints by a magnitude that is equal to the
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violation term.
The Flexibility Test method for infeasibility diagnosis helps in narrowing down

the constraints causing infeasibility. When implemented in a supply chain model
where the constraints have physical significance, it is assumed that all mass balance
constraints at the plant and the distribution center as well as the constraint for the
conversion of raw material to product (Ax = b) are not violated. The idea behind
this assumption is that the linear program we consider is an operations optimization
model where the production capacities of the plants and the storage capacities of the
distribution centers remain unchanged.

3.2. Detecting Error in the Parameters causing Infeasibility using Regression Ma-
chine Learning techniques

In the case when the constraints causing infeasibility are indexed over a large
set, and there is a vector of parameters associated with the constraint singled out by
the Flexibility Test method, it is usually not trivial to identify the set of parameters
causing the infeasibility. To assist the model user in detecting infeasibility caused
due to an error in the parameter, the option of using a Machine Learning algorithm
is explored. The idea is to model the past data of the individual parameters, and
compare any changes in the parameter made by the user (which leads to infeasibility)
with the prediction made by the machine learning model to check the viability of
the new data. The goal is to pinpoint outlining data that may cause infeasibility in
the model, assuming that the model is accurately represented. To use a regression
machine learning model, an essential building block required is the past data of the
parameter.

The methodology for detecting error in the parameter causing infeasibility is as
follows. We first generate a model to characterize the parameter from the available
historical data. In this application, the data is assumed to have linear relationship.
We optimize the weights of the linear regression model using Ordinary Least Squares
method and draw a confidence interval around the regression model outlined in
Appendix B, sections B.1., B.2., and B.3. Using this model, we can predict the
demand of the customer at any time interval in the future. Since we assume our
data has seasonal trends, we used the SARIMA model to predict future demand
to account for the seasonality trend as detailed in Appendix B section B.4. The
theoretical concepts and equations for this method are outlined in the Appendix B
and an example of its implementation is presented in section B.5.
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3.3. Comprehensive Infeasibility Detection Algorithm for Linear Supply Chain Mod-
els

In summary, the comprehensive Infeasibility diagnosis algorithm uses the Flexi-
bility Test method, machine learning regression, and forecasting techniques to find
the constraints causing infeasibility and pinpoint the flawed data. As shown in Figure
2, the multi-step algorithm is as follows:

Figure 2: Proposed infeasibility diagnosis algorithm

Step 1: The supply chain model has to have a feasible base case that serves as
a reference.

Step 2: A change is made in the input parameter. For example, the opera-
tor makes some changes in the model (e.g., changing a parameter such as prod-
uct/customer demand), which renders the model infeasible.

Step 3: Check whether any negative data has been entered for parameters that
were defined as positive. Also check for Bounds Feasibility (that is, no lower bound
can be higher than the upper bound).

Step 3. a: If there is an error found while doing trivial checks, rectify the error
and perform a feasibility test. If the model becomes feasible, exit the algorithm; else,
proceed with the algorithm.
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Step 4: To rectify the infeasibility issue in the model, perform the Flexibility
Test method for infeasibility diagnosis. The Flexibility Test method will indicate the
constraints causing infeasibility.

Step 5: If the constraint indicated by the flexibility test has parameters, deter-
mine whether there is an error in the input data for the parameter.

Step 6: Check if past data is available or unavailable for the parameter under
inspection.

Step 6.a: If there is no data available, the parameters have to be checked man-
ually. If an error is found, correct it and check for model feasibility.

Step 6.b: If the past data is available, apply the regression and forecasting
techniques and check the value of the parameter entered in reference to the predicted
value.

Step 7 If an error is found in step 6 a. and 6 b., rectify it and check for model
feasibility. At the end of this step, if the model becomes feasible, exit the algorithm.

Step 8: Assuming that the model is correctly represented and the constraints
causing infeasibility that are identified in step 5 do not have data, take corrective ac-
tions to make the model feasible. Similarly,if the model remains infeasible or if there
were no errors found, we know that the data that has been entered is correct, and
revisions to the model need to be made to ensure that the model regains feasibility.

In the linear supply chain model, we make an assumption stating that mass
balance and conversion constraints are not violable, whereas parameters such as
customer demand and supplier capacity can be modified. Hence, the constraints
related to these parameters are flexible and in such cases, we can regain model
feasibility by imposing a penalty for delay/shortage in delivery or by increasing the
capacity of the suppliers.

In the next section, this algorithm is applied to an instance of a supply chain
model illustrated in Figure 3.

3.4. Illustrative supply chain model for the infeasibility detection algorithm

3.4.1. Example Problem

Let us consider the supply chain model shown in Figure 3. It is representative
of a small supply chain model having two suppliers (S1, S2), three plants (P1, P2,
and P3), two distribution centers (DC1, DC2), and six customers (C1, C2, C3, C4, C5,
and C6). The sets S, P, DC and C represent suppliers, plants, distribution centers
(warehouses) and customers.

The parameters in this model are ω = Capacity of the supplier, κ = Capacity of
the Plant, ϕ = Capacity of the distribution center, λ = conversion rate of materials
in the plant and D = Demand of customers. The value of all the parameters and
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Figure 3: Supply Chain Example Problem; Note that the change is taking place in customer’s
demand. The numbers under the supplier, plant and distribution center are the capacities of each
node. The numbers under the customer represents the customer demand

data in the model are given in Appendix B. There are four kinds of flows fij; from
Suppliers to Plants (S,P), Plants to Customers (P,C), Plants to Distribution Centers
(P, DC) and Distribution Centers to Customers (DC, C). The objective function
minimizes cost of transportation from various nodes and cost of production at plant
(e) when material flows from suppliers to plants.

The optimization model that minimizes the total cost in Equation (4a) is sub-
jected to the following constraints: Equation (4b) states that for all plants i ∈ P ,
the sum of raw material flows from each supplier (j ∈ S) times plant conversion
factor λi are equal to the product flows sent to the distribution centers (DC) and
customers (C). Equation (4c) states that for all suppliers i ∈ S, the flow of raw
materials from each supplier to all plants (i ∈ P ) is less than the capacity of the
supplier ωi. Equation (4d) states that for all plants i ∈ P , sum of product flows from
each plant sent to the distribution centers (DC) and customers (C) is less than the
production capacity of the plant κi. Equation (4e) states that the flow of products
to all distribution centers i ∈ DC from all plants j ∈ P is less than the capacity of
the distribution centers ϕi.

Equation (4f) ensures that the flow out of a distribution center i ∈ DC to all
customers j ∈ C is not greater than the flow into the distribution center i from all
plants j ∈ P . Equation (4g) is a demand satisfaction constraint that ensures the
sum flow of products from all distribution centers j ∈ DC and all plants j ∈ P
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to a customer i ∈ C is greater than or equal to the demand of the customer Di.
Equation (4h) states that all the feasible flows in the optimization problem should
be non-negative.

min
fij

z = a
∑
i∈S

∑
j∈P

fij + b
∑
i∈P

∑
j∈DC

fij + c
∑
i∈P

∑
j∈C

fij + d
∑
i∈DC

∑
j∈C

fij

+ e(
∑
i∈P

∑
j∈DC

fij +
∑
i∈P

∑
j∈C

fij) (4a)

s.t.
∑
j∈DC

fij +
∑
j∈C

fij = λi
∑
j∈S

fji ∀ i ∈ P (4b)∑
j∈P

fij ≤ ωi ∀ i ∈ S (4c)∑
j∈DC

fij +
∑
j∈C

fi ≤ κi ∀ i ∈ P (4d)∑
j∈P

fji ≤ ϕi ∀ i ∈ DC (4e)∑
j∈C

fij ≤
∑
j∈P

fji ∀ i ∈ DC (4f)

−
∑
j∈P

fji −
∑
j∈DC

fji ≤ −Di ∀ i ∈ C (4g)

fij ≥ 0 ∀ i, j ∈ {(S, P ), (P,DC), (P,C), (DC,C)} (4h)

3.4.2. Application of algorithm to the example supply chain problem

Let us consider the model outlined in Equation 4. We assume that, during the an
update of the data an error is introduced in the model either due to human mistakes
or due to a large magnitude change in the data point (could be within the demands,
production, and storage parameters), which causes the model to become infeasible.

Consider a case where the demand of the first customer D1 increases from 95 to
215 in the nth time interval; all the other demands remain the same. However, the
operator enters the demand of the first customer as 515 instead of 215.

The model is run and an infeasible solution is detected. We then perform trivial
checks with the lower and upper bounds to rectify any errors. However, the model
is still rendered infeasible. Therefore, we apply the Flexibility Test method with
1-Norm violations (uij) to the model (Equation 4). Since constraints (4b), (4d),
(4e), and (4f) are mass-balance and conversion constraints, they are inviolable in our
example model. Therefore, the violation terms can only be applied to constraints
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(4c), (4g) and (4h). These constraints are updated and reflected in Equations (5c),
(5g), and (5h). The rest of the constrains in the model have the same topology as
the constraints in the model represented using Equation 4.

min
fij, u2i, u6i, u7ij

z =
∑
i∈S

u2i +
∑
i∈C

u6i +
∑

i,j∈A×A

u7ij (5a)

s.t.
∑
j∈DC

fij +
∑
j∈C

fij = λi
∑
j∈S

fji ∀ i ∈ P (5b)∑
j∈P

fij ≤ ωi + u2i ∀ i ∈ S (5c)∑
j∈DC

fij +
∑
j∈C

fi ≤ κi ∀ i ∈ P (5d)∑
j∈P

fji ≤ ϕi ∀ i ∈ DC (5e)∑
j∈C

fij ≤
∑
j∈P

fji ∀ i ∈ DC (5f)

−
∑
j∈P

fji −
∑
j∈DC

fji ≤ −Di + u6i ∀ i ∈ C (5g)

− fij ≥ u7ij ∀ i, j ∈ A× A (5h)

u2i ≥ 0 ∀ i ∈ S (5i)

u6i ≥ 0 ∀ i ∈ C (5j)

u7ij ≥ 0 ∀ i, j ∈ A× A (5k)

A× A ∈ {(S, P ), (P,DC), (P,C), (DC,C)}

The objective (Equation (5a)) gives a positive value = 219. It is found that
the constraint corresponding to the customer demand (Equation (5g)) had non-zero
violation terms. This indicates that the infeasibility is being caused due to some
problem within this constraint represented in Equation (5g). The violation terms
are listed in Table 1.

As per our assumption, we know that the model is correctly represented. This
means that there is no problem with the relevance of the model, but there might
be some error in the altered data. The identified constraint includes parameters
involving customer demand and variables involving flow of material to customers
from plants and distribution centers. The only data present within the constraint
are the customer demands. Therefore, our next step is to identify if a data-point(s)
corresponding to the customer demand are incorrect.
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Table 1: Violation terms obtained from constraint (5g). The equation included flow of material
from plant to customer (fP ) and flow from plant to distribution center (fDC), where Di represents
the customer demands.
Violation Term Corresponding Constraint Value of Violation term

u6(1) D1 −
∑3

j=1 f
P
j1 −

∑2
j=1 f

DC
j1 ≤ u6(1) 98

u6(3) D3 −
∑3

j=1 f
P
j3 −

∑2
j=1 f

DC
j3 ≤ u6(3) 46

u6(5) D5 −
∑3

j=1 f
P
j5 −

∑2
j=1 f

DC
j5 ≤ u6(5) 75

Using the historical data from the past ten years (120 data points) with sea-
sonality and trends, we apply the regression/forecasting technique to predict the
customer demand at the nth time interval and check if the data entered by the op-
erator is within the prediction interval given by the model. This is illustrated in
Appendix B section B.4. Say the operator has made the changes in the data of the
130th (Oct 2021) time interval.

As per the SARIMA model plotted as Figure B.12, the predicted value for the
130th time interval is 212.28 with the interval being 200.09 and 224.48. Since 515 is
outside this interval, the data is flagged as an erroneous one. The flagged data is
corrected, and the model is rechecked for feasibility. The model regains feasibility,
and we can exit the algorithm.

Through this algorithm, we are able to present a methodology to detect and
resolve infeasibility using automated tools. In this example, it is assumed that only
one parameter is changed at the nth time step. This assumption is made for simplicity
to illustrate the algorithm. The algorithm remains the same for changes introduced
in multiple parameters. The user would need to develop the forecast of data for every
parameter that needs to be evaluated given that the historical data is available for
every parameter.

As we conclude the section on automated infeasibility diagnosis that helps re-
store the feasibility. In the following section, we cover algorithms used to minimize
changes in a data-driven linear supply chain optimization problem when changes are
introduced in the model.

4. Minimizing Changes in a parameter-varying linear supply chain opti-
mization

In this section we assume that changes that are introduced in the model lead to
feasible solutions of the LP supply chain model; otherwise we apply the algorithm
in section 3. There can be many sources of changes that could be introduced in a
supply chain problem. For instance, equipment failure by a supplier may result in an

13



increase in transportation costs between supplier and plants. This change can induce
a restructuring of network between the nodes, i.e., disrupting the supplier-plant or
plant-customer connections, thereby changing the optimization results.

Consider a linear supply chain model (Equation 6), which is formulated as:

min
x

cTx

s.t. Ax = b

Cx ≤ d

x ≥ 0

(6)

The solution of this model is represented as x = xA. Assume variations occur in
parameters and data collected, due to changes in supplier operations or unplanned
equipment failure. Modifications in the model are made to obtain the new optimal
network flow (Equation 7):

min
x

c
′Tx

s.t. A
′
x = b

′

C
′
x ≤ d

′

x ≥ 0

(7)

This model yields the new solution x = xB. When the optimization problem is
solved a different configuration may be obtained which could lead to a disruptive
sales and operation planning routine. Thus, minimizing the number of changes that
occur and the magnitude of those changes are important problems to solve. In this
section, we outline three frameworks that will be used to supplement the constraints
in the altered supply chain model (Equation 7):

1. A formulation that minimizes the magnitude of changes between the results of
the altered (Equation 7) and the pre-existing optimization model (Equation 6)

2. A formulation that minimizes the number of changes in the values of the vari-
ables between the altered (Equation 7)) and existing model (Equation 6)

3. A formulation that minimizes a weighted sum of the number as well as the
magnitude of changes in the result of the altered (Equation 7) and the existing
(Equation 6) optimization model

To determine the trade-off between minimizing changes and minimizing the cost
of the supply chain, we consider an additional bi-criterion optimization problem.
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Each model will be first explained mathematically, followed by an implementa-
tion of Approach 3 on a example problem. This will be followed by a bi-criterion
optimization analysis on a small test supply chain problem.

4.1. Mathematical Formulation

4.1.1. Approach 1 : Minimizing magnitude of changes

The approach for minimizing the magnitude of changes consists of sequentially
solving two models. First, a supply chain model (Equation 6) is solved to minimize
cost. This is followed by solving the second model (Equation 8) which minimizes the
changes between the initial model (Equation 6) and the current model (Equation 7)
when a change is introduced in the parameters. The mathematical formulation for
this model is as follows:

min
x, u

zA1 = ||u||1 (8a)

s.t. A
′
x = b

′
(8b)

C
′
x ≤ d

′
(8c)

u ≥ |xA − x| (8d)

x, u ≥ 0 (8e)

Equation (8b) are the given set of constraints for the supply chain model account-
ing for flows between nodes. xA are the solutions of the original model (Equation 6)
which are used as parameters in Equation 8. x are the variables of the model with
altered parameter values. The objective of the model is to minimize ||u||1 =

∑
i ui,

where ui is the slack variable that accounts for the offset between the current opti-
mization variables x and the initial solutions xA.

The algorithm uses the 1-norm method as in Equation 3 to minimize the de-
viation in every variable within the supply chain model, i.e., every variable x has
a corresponding ui associated with it. This results in constraints with unique ui
variables that capture the deviation between every xi,A and xi.

Determining the magnitude of the variables makes the model non-differentiable.
Therefore, we reformulate it to make the model linear. For example, let p be a
scalar such that, |p| = max{+p,−p}. We introduce a variable τ which captures the
magnitude of p as follows:

τ ≥ +p

τ ≥ −p
(9)
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Using Equation 9 as reference, the LP model for Approach 1 model is reformulated
as follows:

min
xi, ui

zA1 =
∑
i

ui (10a)

s.t. A
′
x = b

′
(10b)

C
′
x ≤ d

′
(10c)

ui ≥ xA,i − xi ∀ i (10d)

ui ≥ −(xA,i − xi) ∀ i (10e)

x, u ≥ 0 (10f)

4.1.2. Approach 2 : Minimizing number of changes

The model for minimizing the number of changes builds on the formulation of
Approach 1 (Equation 10). The supply chain model (Equation 6) is first solved to
optimize for minimizing cost. This is followed by solving the second model (Equation
11) which minimizes the number of changes between the initial model (Equation 6)
and the current model (Equation 7) when a change is introduced in the parameters.
This requires the introduction of 0-1 variables (yi) to track the changes. The MILP
formulation for minimizing the number of changes is as follows:

min
xi, ui, yi

zA2 =
∑
i

yi (11a)

s.t. A
′
x = b

′
(11b)

C
′
x ≤ d

′
(11c)

ui ≥ xA,i − xi ∀ i (11d)

ui ≥ −(xA,i − xi) ∀ i (11e)

ui ≤M.yi ∀ i (11f)

yi ∈ {0, 1} ∀ i (11g)

x, u ≥ 0 (11h)

Here, the objective of the model is to minimize the
∑

i yi where yi are binary
variables that indicate through the inequalities (Equation (11d) - (11f)) whether a
change in the variables x in model should occur. Extended from the first approach
(Equation 10), the deviations between the solution of the variables from the original
model (Equation 6) and the modified model (Equation 11) are captured by the ui
variables. If a deviation has occurred, the binary yi variable is activated to indicate
the change that is introduced to the objective.
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The objective of the model is to minimize
∑

i yi. Hence the model will try to
reduce the number of changes in the variables, while maintaining feasibility. The
big-M parameter is set to an appropriate value that is sufficently large.

4.1.3. Approach 3 : Minimize number and magnitude of changes

The model for minimizing the number of changes and magnitude of changes is a
further modification to Approach 2. As previously seen, first a supply chain model
(Equation 6) is solved to optimize for minimizing cost followed by solving the second
model (Equation 12), which minimizes the weighted sum of number of changes and
magnitude of changes. The formulation is as follows:

min
xi, ui, yi

zA3 = α
∑
i

ui + β
∑
i

yi (12a)

s.t. A
′
x = b

′
(12b)

P
′
x ≤ q

′
(12c)

ui ≥ xA,i − xi ∀ i (12d)

ui ≥ −(xA,i − xi) ∀ i (12e)

ui ≤M.yi ∀ i (12f)

yi ∈ {0, 1} ∀ i (12g)

x, u ≥ 0 (12h)

In Equation 12, α and β are relative weights for u and y variables. For simplicity
in the illustration presented in section 4.2, we assume that α and β are set to a
value of 1. However, the sensitivity to these parameters should be determined when
extending the formulation to large scale problems.

4.2. Demonstration of Approach 3 Algorithm on a Supply Chain Problem

As an example, let us consider a supply chain optimization within an enter-
prise. The contracts drawn between suppliers and plants may leave little room for
negotiation if unforeseen changes occur to increase the cost associated with the trans-
portation. This could result in cases where a large number of changes must be made
to minimize the overall cost which affects the planning at a plant. Additionally, it
must be ensured that the demand of the customer is met without paying back-order
costs.

In the next section the results and an analysis of Approach 3 is presented using
the supply chain model outlined in section 3.4.1.
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4.2.1. Example Problem

The example problem is presented in section 3.4.1 is the base case model used
for generating results for optimization. The model has a defined set of parameters
associated that is outlined in Appendix C.

Tables 2 and 3 highlight the parameters where the change is made. Specifically,
transportation costs associated between the supplier and the plant (parameter a
from the example supply chain model) are modified from their original costs to the
following new costs.

Table 2: Transportation costs from supplier to plants in base case model (parameter a)

Base Supplier 1 Supplier 2
Plant 1 0.15 0.11
Plant 2 0.2 0.23
Plant 3 0.3 0.4

Table 3: Transportation costs from supplier to plants in modified case model (parameter a′)

Modified Supplier 1 Supplier 2
Plant 1 1.5 0.11
Plant 2 2 0.23
Plant 3 3 0.4

4.2.2. Optimization of three cases

The following three cases are optimized to yield solutions for the supply chain
layout referenced in section 3.4.1.

1. Base Case using Original Model: Base Case model (Equation 6) with costs for
transportation of material between supplier and plant outlined in Table 2 and
other parameters outlined in Appendix C. The objective of this optimization
model is to minimize cost.

2. Modified Case using Original Model: Modified Case model (Equation 7) with
new costs for transportation of material between supplier and plant outlined in
Table 3 and other parameters outlined in Appendix C. The objective of this
model is also to minimize cost.

3. Modified Case using Approach 3 Model: Modified Case model using Approach
3 formulation (Equation 12) with costs for transportation of material between
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supplier and plant outlined in Table 3 and other parameters outlined in Ap-
pendix C. The objective of this optimization model is to minimize number and
magnitude of changes.

Base Case using Original Model
The base case is the supply chain model that is optimized for minimizing cost (Equa-
tion 6). The objective is to find a network that would satisfy the demand of the
customers yielding the lowest cost.

When the optimization is run with the specified parameters, we get the following
cost of 80,245 e. The solution for the optimization is given in Figure 4 on the boxes
in the arrows going from one node to another. Each arrow begins at the source node
and ends at the sink node indicating the direction of the flow of material. Along
with the direction, the arrow also indicates the amount of material that flows from
the source to the sink node. For example, the flow of material from the supplier S1

to plant P2 is 118.8 units.
For each plant P1, P2 and P3, the amount of material flow from the supplier

to the plant is converted to product using a conversion rate. The amount of final
product at each plant is written in white within the colored box. As shown in the
case of plant P2 that receives 118.8 units of material from supplier S1, we observe
the conversion of the raw material to 101 units of products is predicted which are
distributed to customers and distribution centers. For completion, observe that the
products produced at plant P2 are distributed to customer C5 with a demand of 75
units and distribution center DC2. The 26 units of product sent to the distribution
center DC2 is ultimately sent to customer C6 to satisfy its demand of 192 units by
adding to the products sent from plant P3. It is assumed that the products produced
at the plants P1, P2 and P3 are homogeneous and the material distributed from the
suppliers S1 and S2 to the plants are also miscible.

For added information, the capacities of each nodes are written in grey above or
below the representative icons and the parameters associated with cost of transporta-
tion of materials or products from the source node are written besides the icons.

Modified Case using Original Model
The modified case is the supply chain model that is optimized for minimizing cost
(Equation 7) with changed parameters shown in Table 3. The objective is to find a
network that satisfies the demand of the customers yielding the lowest cost with the
changed data.

When this optimization is run we notice the following change represented in Fig-
ure 5. The network configuration has significantly changed to optimize for minimum
cost when compared with Figure 4. We observe at total of 13 changes in the form of
new connections and changes in the magnitude of the flow of variables. For example,
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Figure 4: Base Case Optimization result using Original model (Equation 6)

compare the flows from supplier S1 and S2 to plants P1, P2 and P3. As highlighted
using the red arrows, new connections are added from supplier S2 to plants P2 and
P3. Since the capacity of supplier S2 is reached, the solver has to draw material
from S1 to satisfy the demand. The solver optimizes to reduce the cost of sourcing
material from the suppliers to the plants. Furthermore, in certain cases where the
connection was already present within Figure 4, a change in the magnitude of the
flow is observed as seen in the flow of products from plant P2 to distribution center
DC2 which changed from 26 units (Figure 4) to 192 units (Figure 5). Finally, the cost
has increased to 80,750 e due to the changes observed in the model. The increase
in cost is incurred because of the increase in value of the parameter a.

Modified Case using Approach 3 Model
The optimization is performed with the modified transportation costs between the
supplier and the plants (Table 3) using Approach 3 model (Equation 12), where
a simultaneous minimization in the number and changes in magnitude occurs. The
objective here is to minimize changes, for simplicity assuming α = β = 1 in Equation
12.

The network configuration in Figure 6 resembles the original base case optimiza-
tion (Figure 4), indicating that it is feasible to obtain a solution without making any
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Figure 5: Modified Case Optimization result using Original model (Equation 7)

changes to the orginal configuration (Figure 4). In other words, the original network
flow obtained in Figure 4 is still feasible, even when the changes are made to the
parameters referenced in section 4.2.1.

When the results of the three cases are compared, it is observed that the penalty
associated with keeping the configuration the same using Approach 3 model (Figure
6) is significantly higher than allowing for changes to take place in the system (Figure
5). The cost of the optimization using Approach 3 is 81,800 e, which is greater than
80,245 e that is obtained from the base case optimization. This is consistent with
the analysis as we are paying a penalty for trying to minimize changes in the results.

The next question we address is, since there is a motivation to minimize changes
and minimize cost, are there solutions where there is a trade-off between the two
objectives?
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Figure 6: Modified Case Optimization result using Approach 3 model (Equation 12)

4.3. Bi-Criterion Optimization

In the example illustration, we determined the penalty in cost that we pay when
keeping the same operation layout as the base case i.e. when the number of changes
are minimized. Alternately, we observe that allowing for the changes to take place
when the data is varied lead to a lower cost. In this section, we explore the trade-
off between the two objectives of our problem: minimizing changes and minimizing
cost. Using the ϵ-constraint method we optimize one of the objective functions and
specifying the other objective function a constraint bounded by an ϵ value (Mavrotas,
2009). By parametrically varying the RHS of the ϵ-constrained objective functions,
the trade-off or Pareto optimal solutions of the problem are obtained.

4.4. Application of bi-criterion optimization on linear supply chain problem and
trade-off analysis

In this method, the two objectives: Minimizing Changes (NC) and Minimiz-
ing Cost (C) are introduced as a primary objective and a second objective. The
constraints (NC and C) are added to the Approach 3 (Equation 12) model for illus-
tration.
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min
xi, ui, yi

∑
i

ui +
∑
i

yi (NC)

s.t. c
′Tx ≤ ϵ (C)

A
′
x = b

′

C
′
x ≤ d

′

ui ≥ xA,i − xi ∀ i
ui ≥ −(xA,i − xi) ∀ i (13)

ui ≤M.yi ∀ i
yi ∈ {0, 1} ∀ i
x, u ≥ 0

The primary objective (NC) is entered as the objective function of the optimiza-
tion, whereas the cost function (C) is formulated as an ϵ-constraint. This constraint
is bounded by an ϵ value that restricts the variables to stay within the bounds im-
posed.

4.4.1. Example Linear Supply Chain Problem Analysis

In the example problem, the ϵ value is varied between 81,800 e (Approach 3
cost) to 80,750 e (modified case with original model cost), to obtain a Pareto-curve
plotted in Figure 7. The curve represents the points that show the number of changes
in the model when the cost is allowed to increase to a value ϵ. Hence the values are
enumerated through discrete points plotted on the Pareto curve. Since the supply
chain model that minimizes the changes, is non-convex due to the presence of integer
variables, we can safely apply the epsilon constraint to generate a Pareto curve. The
horizontal axis represents the cost of the supply chain network. The vertical axis
represents the number of changes (

∑
yi). Note that the formulation of Approach

3 is used to generate the plot which simultaneously minimize the magnitude and
number of changes (

∑
yi +

∑
ui) and yields a unique objective value for every ϵ-

value. However, for easier interpretation, we present only the number of changes on
the plot i.e.

∑
yi. Hence, the graph shows multiplicity in the number of changes for

some associated costs (ϵ-value).
Introducing changes to the parameters in the original model results in 13 changes

with the minimum cost of 80,750 e. When approach 3 is utilized to restrict the
number and magnitude of changes, the cost 81,809 e is obtained with no changes
in the model as noted in section 4.2.2. Imposing a constraint on the cost increase
such that it is not greater than 80,800 e and solving for minimizing the changes in
the model using Approach 3 model, yields a set of feasible solutions. For example,
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Figure 7: Pareto Curve depicting minimizing changes and cost. Ideal compromise solution and
Utopia point plotted on the curve.

allowing 4 instead of 13 changes decreases the cost from 81,809 e to 81,044 e which
is in contrast to decreasing the cost to 80,750 e with 13 changes. Hence, the trade-off
for allowing an increase in cost is fewer number of changes.

An additional piece of information can be inferred from the trade-off curve is the
ideal compromise solution. As outlined in the paper by Grossmann et al. (1982),
we use the infinity-norm formulation to obtain the minimum distance on the Pareto
front from the utopia point. The formulation for the ideal compromise is given in
Equation 14.
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min
ρ, xi, ui, yi

ρ (14a)

s.t. ρ ≥ f ′
1 (14b)

ρ ≥ f ′
2 (14c)

A
′
x = b

′
(14d)

C
′
x ≤ d

′
(14e)

ui ≥ xA,i − xi ∀ i (14f)

ui ≥ −(xA,i − xi) ∀ i (14g)

ui ≤M.yi ∀ i (14h)

yi ∈ {0, 1} ∀ i (14i)

x, u ≥ 0 (14j)

Here, our two objectives are to minimize cost and minimize the weighted sum
of changes which are represented in constraints constraints (14b) and (14c).The two
objectives represented in Equation 16, constraints (NC) and (C) are scaled using
Equation 18.

f ′
i =

fi − fL
i

fU
i − fL

i

i = 1, 2 (15)

where fL and fU are the lower and upper bounds of each f i. In the given example,
the ideal compromise solution is 81,044 e with a value of

∑
i ui +

∑
i yi = 701.17

and
∑

i yi = 4, representing 4 changes that take place in the model. The ideal
compromise solution is plotted on Figure 7 with respect to other solutions on the
Pareto front.

4.5. Overview of implementation of the algorithm on a large scale model

The four formulations (Approach 1, Approach 2, Approach 3 and Bi-Criterion
model) were also implemented in the AIMMS software for a large scale supply chain
model from Aurubis AG’s supply Chain model for copper processing. The original
model is a linear supply chain model that is a multi-period, multi-commodity model
with the objective of maximizing revenue. Components of the Linear supply chain
model involves 12 Raw Materials, 8 Suppliers, 4 Plants, 2 Distribution Centers, 16
Products, 120 Customers, and 12 Time periods.The three approaches discussed along
with the bi-criterion optimization were successfully implemented on the large-scale
model involving thousands of variables and constraints. These models were solved
using CPLEX solver on a Dell XPS 15 7th Gen i7 Intel Core Processor with 8 GB
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Figure 8: Ideal Compromise Solution obtained using (Equation 14)

RAM and 4 Cores. The computational times reported in table 4 is an average 5
runs each for running 12 different scenarios by perturbing different parameters in
the model. We attribute the smaller solver times to the pre-solve capabilities of the
solver.

For confidentiality reasons, we can not disclose the details of the model in this
paper. However, the specifications of the models are outlined in the table 4.

Table 4: Model specifications for minimizing changes algorithm run on AIMMS
Model Formulation Constraints Variables Binary Variables Solver time [sec]

Original LP 6,121 15,953 0 <1
Approach 1 36,493 195,089 0 1.1
Approach 2 543,529 374,225 179,136 5.9
Approach 3 543,529 374,225 179,136 14.5
Bi-criterion 543,530 374,225 179,136 159.4
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5. Conclusion and Summary

In this paper, we have addressed two major problems that arise in the implemen-
tation and interpretation of supply chain optimization models. The first problem is
to diagnose and resolve infeasibilities. To resolve infeasibility, we provide a multi-step
infeasibility diagnosis algorithm using the Flexibility Test method and the Regression
Machine Learning techniques that finds the constraints or parameters causing infea-
sibility. It further provides quantitative prompts to resolve the infeasibility, without
any help from the users or modeler.

The second problem considers the case when parameter changes are introduced to
the supply chain network (e.g., raw materials availability). We propose and analyze
three strategies, based on alternated formulations of the original supply chain that
minimize the impact of the changes. We also show the trade-off using a bi-criterion
problem for minimizing changes and minimizing the cost of the supply chain, which
gives the decision-maker a tool to negotiate a plan of operation with their stake-
holders. We conclude the section by providing the ideal compromise solution in the
illustration problem. A future research direction is to classify the types of changes
that occur in a supply chain layout and to differentiate between those changes beyond
the cost as an objective.
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Appendix A. Flexibility Test Method for diagnosing infeasibility in lin-
ear supply chain models

To appreciate the usefulness of the Flexibility Test method in analyzing the fea-
sibility of an optimization model, we apply the algorithm to a linear programming
model as in Equation 6 but involving only inequalities. Here, we have considered a
bi-variate optimization problem .The constraints and the graphical representation of
the model are presented in the Equations A.1 and Figure A.9 respectively.
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min x1 + x2

s.t. x1 + 2x2 ≤ 8

3x1 + 2x2 ≤ 12

x1 + x2 ≥ 7

x1 + 0.3x2 ≥ 8

5x1 + x2 ≤ 1

x1, x2 ≥ 0

(A.1)

This model is an instance of an infeasible optimization model and we apply the
Flexibility Test method to find out which constraints are responsible for the Infeasi-
bility.

min u1 + u2 + u3 + u4 + u5

s.t. x1 + 2x2 ≤ 8 + u1

3x1 + 2x2 ≤ 12 + u2

− x1 − x2 ≤ −7 + u3

− x1 − 0.3x2 ≤ −8 + u4

5x1 + x2 ≤ 1 + u5

x1, x2 ≥ 0

u1, u2, u3, u4, u5 ≥ 0

(A.2)

1. When solved, the violation terms u3, u4 and u5 corresponding to constraints
3, 4 and 5 (c3, c4 and c5) were found to be non-zero (with magnitude 3, 6.8
and 3 respectively). The objective value

∑
i ui = ψ = 12.8 was found to be

positive, which indicates that the model is infeasible.

2. This indicates that the three corresponding constraints are responsible for the
infeasibility and form the optimum combination of constraints for which the
changes should be made to regain feasibility.

3. If we add slacks to the RHS of constraints 3, 4 and 5 (c3, c4 and c5) that are
equal to the magnitude of u3, u4 and u5 we can gain feasibility.

Appendix B. Review of Regression Models

B.1. Linear Regression

Linear regression is a linear approach to model a relationship between the depen-
dent and independent variables (Montgomery et al., 2012). In machine learning, it
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Figure A.9: Constraints graphically represented on x1 and x2 plane - no overlapping regions. As
noted constraints c3, c4 and c5 had non-zero uj (violation terms)

is a supervised learning algorithm that is used to predict the value of a dependent
variable based on the nature of past data of the independent variables. Given a data
set {y, xi1, . . . , xip} of m statistical units, a linear regression model assumes that the
relationship between the dependent variable y and the p-vector of x is linear.

Training Set :

[x1, x2, ...xm]

[y1, y2, ...ym]

Predictive hypothesis :

h(x) = θTx

y = θTx+ ϵ

(B.1)

The aim is to find the optimal weights (θ) based on the values of the dependent (y)
and the independent variables (x) using methods like Ordinary Least Square method
(De Souza and Junqueira, 2005; Pavelescu, 2004), the Gradient Descent Method
(Baldi, 1995), and Regularization (Bickel et al., 2006). In this paper, ordinary least
square method has been used for regression analysis.
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B.2. Ordinary least-squares method

For the linear model defined as follows:

Y = β0 + β1 X (B.2)

β0 and β1 are the parameters (weights), X is the vector of the independent vari-
ables, and Y is the vector of dependent variables. Using ordinary least squares
method, we are to determine the values of 0 and 1 such that they minimize the sum
square of errors.

SSE =
n

Σ
i=1

(yi − ŷi)
2 =

n

Σ
i=1

(yi − β0 − β1 X) (B.3)

In Equation B.3, yi is the actual value of the dependent variable, and ŷi is the
value of the dependent variable as predicted by the machine learning model. We
minimize the SSE while finding its partial derivative with respect to β0 and β1.

B.3. Confidence Interval of the predicted value

We need to quantify the confidence of the predicted value. A confidence interval
is a bound on the estimate of a population variable (Myers, 1990). It is an interval
statistic used to quantify the uncertainty on an estimate. The confidence interval
(CI) was calculated using Equation B.4 :

CI = ŷ ± t∗n−2Sy

√
1

n
+

(x∗ − x)2

(n− 1)S2
x

(B.4)

where, ŷ = predicted value, x∗ = sample of x, t∗n−2 = t value at 95% confidence,
x = mean of Sy = Standard deviation of the residual S2

x = standard deviation of x,
n = number of data points.

B.4.Predicting demand for data having seasonality and trends

Data in real-life are often erratic. They are usually non-linear, with several factors
coming into play like uncertainties, trends, and seasonality. In addition, some data
also have time-dependent variation. There are various techniques to model season-
ality using techniques such as Time Series Decomposition, ARIMA (Autoregressive
Integrated Moving Average), SARIMA (Seasonal Autoregressive Integrated Moving
Average) and Exponential Smoothing. Since the data pertaining supply chain mod-
els have seasonality associated with them, SARIMA model is a suitable model to
predict a parameter like demand (Vagropoulos et al., 2016; Martinez et al., 2011).
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The SARIMA model has three hyperparameters, namely the autoregression order
(p), the difference order (d), and the moving average order (q) for the trend com-
ponent of the data. In addition to these hyperparameters, it has hyperparameters
to specify the autoregression (AR), differencing (I), and moving average (MA) to
account for the seasonal component of the series, as well as an additional parameter
for the period of the seasonality.

The SARIMA model can be explained using a ”cascading” model, where a non-
stationary model forms the first component that is embedded into a larger stationary
model which forms the second component.

Non− stationary :

Yt = (1− L)dXt

Stationary :

(1−
p∑

i=1

ϕiL
i)Yt = (1 +

q∑
i=1

θiL
i)ϵt

(B.5)

Where, Yt = Predicted forecast, p =Trend auto-regression order, Li = Lag oper-
ator for seasonality, d =Trend difference order, θi = Moving average part for season-
ality, q =Trend moving average order, ϕi = Auto-regressive part for seasonality and
ϵt = noise.

SARIMA model is ideal for modeling a seasonal non-stationary time series us-
ing relatively few model parameters. However, because the mathematical definition
does not contain model parameters that explicitly account for different means and
variances in each season, the SARIMA model is not suitably designed for describing
series having stationarity of second-order moments within each season across the
years.

B.5. Implementing the machine learning technique on example linear supply chain
parameter data

An instance is presented, which shows the utility of the regression machine learn-
ing model in predicting the customers’ demands. This algorithm will be used to
detect the problem in the data causing infeasibility.

Let us consider that there are six customers in a supply chain model (layout in
Figure 3) with the past data of their product demand for 12 months. We need to
predict what the demand would look like at a future time interval. We first draw the
relationship between demand of customer over time based on the given data for the
12 month period using ordinary least squares method and determine the parameters
β0 and β1 (see Appendix B). The linear regression model is formed as represented
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in Equation B.6, where we have X as the time period and Y as the demand of the
customer. Solving for the parameters in Equation B.6 for customer 1, the following
parameters and resultant graph with the 95% confidence interval were obtained:

Y = 8.4091 ·X − 0.0757

β0 = −0.0757

β1 = 8.4091

(B.6)

Figure B.10: Randomly generated data for six customers in a supply chain model over a period of
12 months on which regression analysis would be done with the Confidence interval

Data for 12 months was helpful in determining short term-operation parameters.
However, our goal is to optimize over a period of a few years time. To do so, we
model and make a forecast for demand similarly over monthly data for a period of
10 years. We utilized the data having seasonality and trend for the customer 1 over
a period of 10 years to forecast demand using the SARIMA model.

The SARIMA model was implemented on Python without using any predefined
machine learning package following the equations given in section Appendix B.
When the SARIMA model was applied, conclusive interpretations were obtained
concerning the seasonality and trend of the data depicted. It tells us that over a
period of 10 years, the overall trend is that the customer demand is increasing in
an almost linearly, and during each year and that the demand peaks during the
summer months. To obtain the forecast, SARIMA model was solved to obtain a set
of hyperparameters of the demand model that provides predictions for the future.
Figure B.12 shows the forecast of customer demands for the next two years with a
confidence of 95%.
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Figure B.11: Customer Demand Data over a period of 10 years

Figure B.12: SARIMA model used to predict the demand for customer C1. The graph to the right
of the dotted line represents the predicted demand based on the historical data simulated using
linear regression which is plotted to the left of the dotted line
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Appendix C. Parameters and Data for the example supply chain prob-
lem

The parameters are ω = Capacity of the supplier, κ = Capacity of the Plant,
ϕ = Capacity of the distribution center, λ = conversion rate of materials in the
plant and D = Demand of customers. The sets S, P, DC and C represent suppliers,
plants, distribution centers (warehouses) and customers. There are four kinds of
flows fxy that represent flows from Suppliers to Plants (S,P), Plants to Customers
(P,C), Plants to Distribution Centers (P, DC) and Distribution Centers to Customers
(DC, C) represented in the problem layout. Each flow has a transportation cost
associated with it that represent the cost to transport the material from one node to
another. The parameters a, b, c, and d correspond the to transportation costs for the
flow of material from Suppliers to Plants (S,P), Plants to Customers (P,C), Plants
to Distribution Centers (P, DC) and Distribution Centers to Customers (DC, C)
respectively. Parameter e represents the cost of production at the plants.

C.1. Parameters for supply chain example problem

Base case parameter values for the example supply chain problem used in Section
3 and section 4.

C.1.1. Transportation Costs

Table C.5: Transportation costs from supplier to plants in base case model (a)

Base Case Supplier 1 Supplier 2
Plant 1 0.15 0.11
Plant 2 0.2 0.23
Plant 3 0.3 0.4

Table C.6: Transportation costs from plants to distribution centers in base case model (b)

Base Case Plant 1 Plant 2 Plant 3
Distribution Center 1 0.11 0.21 0.31
Distribution Center 2 0.41 0.26 0.21
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Table C.7: Transportation costs from plants to customers in base case model (c)

Base Case Plant 1 Plant 2 Plant 3
Customer 1 0.11 0.10 0.40
Customer 2 0.22 0.25 0.50
Customer 3 0.33 0.35 0.20
Customer 4 0.44 0.45 0.10
Customer 5 0.55 0.24 0.22
Customer 6 0.66 0.45 0.15

Table C.8: Transportation costs from distribution centers to customers in base case model (d)

Base Case Distribution Center 1 Distribution Center 2
Customer 1 0.04 2.88
Customer 2 0.08 1.32
Customer 3 0.36 1.04
Customer 4 0.88 0.52
Customer 5 1.52 0.12
Customer 6 3.36 0.08

C.1.2. Capacity parameters

Table C.9: Capacity of Suppliers (ω)

Base Supplier 1 Supplier 2
Capacity 950 650

Table C.10: Capacity of Plants (κ)

Base Case Plant 1 Plant 2 Plant 3
Capacity 300 300 400

Table C.11: Capacity of Distribution Centers (ϕ)

Base Case Distribution Center 1 Distribution Center 2
Capacity 499 501

C.1.3. Other Parameters
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Table C.12: Cost of converting raw-materials to products at each plant (λ)

Base Case Conversion
Plant 1 100
Plant 2 100
Plant 3 100

Table C.13: Rate of conversion of raw-materials to products at each plant (λ)

Base Case Conversion
Plant 1 0.8
Plant 2 0.85
Plant 3 0.8

Table C.14: Customer Demand D
Base Case Demand
Customer 1 95
Customer 2 157
Customer 3 46
Customer 4 234
Customer 5 75
Customer 6 132
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