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Abstract  

We propose a discrete-time formulation for optimization of scheduling in crude-oil refineries considering 

both the logistics details practiced in industry and the process feed diet and quality calculations. The 

quantity-logic-quality phenomena (QLQP) involving a non-convex mixed-integer nonlinear (MINLP) 

problem is decomposed considering first the logistics model containing quantity and logic variables and 

constraints in a mixed-integer linear (MILP) formulation and, secondly, the quality problem with quantity 

and quality variables and constraints in a nonlinear programming (NLP) model by fixing the logic results 

from the logistics problem. Then, stream yields of crude distillation units (CDU), for the feed tank 

composition found in the quality calculation, are updated iteratively in the following logistics problem 

until their convergence is achieved. Both local and global MILP results of the logistics model are solved 

in the NLP programs of the quality and an ad-hoc criteria selects to continue those among a score of the 

MILP+NLP pairs of solutions. A pre-scheduling reduction to cluster similar quality crude-oils decreases 

the discrete search space in the possible superstructure of the industrial-sized example that demonstrates 

our tailor-made decomposition scheme of around 3% gap between the MILP and NLP solutions. 
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Introduction

An enterprise-wide optimization (EWO) problem involving 

scheduling operations in crude-oil refineries integrates 

quantity, logic and quality variables and constraints, starting 

in the unloading of crude-oil and ending with the delivery 

of fuels as schematically shown in Figure 1. However, as 

this is a highly complex problem to be solved, 

decompositions in space and in terms of solution strategies 

are proposed to handle such complex problem where the 

benefits of doing so can be in the multi-millions of dollars 

(Kelly and Mann, 2003a; 2003b). 

Previous literature in crude-oil scheduling 

optimization considered models covering crude-oil 

unloading to the products of distillation units (Lee et al., 

1996; Jia et al., 2003; Mouret et al., 2008, Castro and 

Grossmann, 2014). They commonly use continuous-time 

formulations, except for Lee et al. (1996) who solved small 

instances of a discrete-time approach in an MILP model 

using a relaxation of the bilinear blending constraints that is 

the major drawback as there is no guarantee of quality 

conservation between different outlet streams from the 

same crude-oil quality tank. 

Advance in MILP solvers have reduced the CPU 

time by two orders of magnitude in comparison with the 

1990’s as a consequence of progress in processing speeds 

and more efficient optimization algorithms. Despite this, the 

modeling and solution aspects of the NP-hard problems 



 

related to the crude-oil scheduling in both continuous- and 

discrete-time formulations have moved away the efforts 

from the latter by its combinatorial complexity, and since 

then, a series of works have covered mostly the more 

compact continuous-time approaches. 

 
Figure 1. Crude-oil refining scheduling: from crude-oils to fuels. 

Today, powerful computer memory and new 

modeling and algorithm structures, as those proposed in this 

work, enable us to address a discrete-time formulation for 

crude-oil blend scheduling that uses a clustering procedure 

to reduce the size of the scheduling problems integrated 

with the so-called phenomenological decomposition 

heuristic (PDH) that partitions MINLP models into two 

simpler submodels namely logistics (quantity and logic) and 

quality (quantity and quality) problems in an iterative 

strategy until convergence of both solutions (Menezes et al., 

2015). 

An example in crude-oil scheduling demonstrated 

that for industrial-sized problems the full space MINLP 

solution becomes intractable, although it is solved using an 

MILP-NLP decomposition for a gap lower than 4% between 

both solutions (Mouret et al., 2009). Castro and Grossmann 

(2014) test several problems from the mentioned literature 

using the Resource-Task Network (RTN) superstructure for 

MINLP models that are solved to near global optimality by 

adopting the two-step MILP-NLP algorithm, where the 

mixed-integer linear relaxation is derived from 

multiparametric disaggregation, greatly reducing the 

optimality gap, although the increase in the number of 

variables by the method limits its application to small-sized 

instances. 

In the crude-oil refining industry, most common 

concerns are about the difficulties to coordinate the 

execution of continuous-time scheduling by the operators 

and how to define a priori which points to select in the 

future for the continuous-time calculation. Therefore, 

discrete-time approaches using small time-steps to solve 

optimization of scheduling operations in industrial-sized 

problems are the desired representation among 635 crude-

oil refining plants in operation around the world (Oil & Gas 

Research Center, 2015). Concern about the possible 

overflow in tanks by the discretization of the time can be 

easily circumvented in the field by the numerous alarms and 

measurements that operators and schedulers have in hand in 

real-time typically found in the Distributed Control Systems 

(DCS’s). 

Problem Algorithm and Pre-Scheduling Reduction 

Scheduling models integrating quantity, logic, and 

quality variables and constraints give rise to non-convex 

MINLP models. Limitations in the solution of large-scale 

problems mainly occurs in the relaxed NLP steps. Hence, 

the proposed model uses the PDH algorithm as seen in Fig. 

2 that resembles Benders decomposition where the logic 

variables from the logistics problem, by neglecting the 

nonlinear blending constraints, are fixed such that a simpler 

program may be solved in the quality problem. Then, CDU 

stream yields for the crude-oil feed diet are found in the 

NLP model and updated in the following MILP solution in 

a new PDH iteration until their convergence within a PDH 

gap tolerance and similar logic results in consecutive 

iterations. 

To decrease the discrete search space, there are 

two layers of clustering to segregate crude-oils with similar 

quality (Kelly et al., 2017). This is especially needed in 

industrial-sized problems. Besides, the crude-oil 

composition in initial inventories for the current selection of 

feed tanks generates initial CDU yields for the logistics 

problem using ±5% tolerance between the main distillates 

as in this stage the yields are the same despite the quality of 

the crude-oils. 
 

 
Figure 2. Proposed Reductions and PDH Algorithm. 

Crude-Oil Blend Scheduling Optimization 

The problem consists of determining the crude-oil 

blend scheduling involving crude-oil supply, storage and 

feed tank operations and the CDU production. Figure 3 

shows a pair of marine vessels or feedstock tanks (CR1 and 

CR2) supplying a crude-oil refinery with different quality 

raw materials to produce the main CDU distillates: fuel gas 

(FG), liquid petroleum gas (LPG), light naphtha (LN), 

heavy naphtha (HN), kerosene (K), light diesel (LD), heavy 

diesel (HD) and atmospheric residuum (AR). 

A swing-cut unit (SW) is modeled to give a certain 

degree of fractionation for LN and HN applying not only a 

quantity variation, but including quality recalculation since 

the lighter and heavier SW splits have different qualities 

with respect to their amounts and blended crude-oil 

distillation curve (Menezes et al., 2013; Kelly et al., 2014). 

Storage tanks (S1 to S4) are connected to the feed tanks (F1 



 

to F3) using a crude-oil blender (COB) as indicated for 

improved performance of CDU operations by minimizing 

crude-oil composition disturbances in further real-time 

optimization and model predictive control. 

 
Figure 3. Crude-Oil Blend Scheduling. 

The network in Figure 3 is constructed using the 

unit-operation-port-state superstructure (UOPSS) 

formulation (Kelly, 2005; Zyngier and Kelly, 2012) 

composed by the following objects: a) unit-operations m for 

perimeters (   ), continuous-processes (⊠) and tanks (   ), 

and b) their connectivity involving arrows (      ), in-ports i 

(   ) and out-ports j (   ). Unit-operations and arrows have 

binary y and continuous x variables, and the ports hold the 

states for the relationships among the objects, adding more 

continuous variables if necessary by the semantic and 

meaningfully configuration of the programs. 

In problem (P), the objective function (1) 

maximizes the gross margin from fuels revenues subtracting 

the performance of the CDU throughputs, giving by the 

deviation from the quantity in the previous time-period 

against the current time-period, minimizing the 1-norm or 

linear deviation of the flow in consecutive time-periods. 

This performance term smooths the CDU throughputs 

considering the lower 𝑥𝑚,𝑡
𝐿𝑂𝐷 and upper 𝑥𝑚,𝑡

𝑈𝑃𝐷 deviation of 

their adjacent amounts (mMCDU). If 𝑥𝑚,𝑡+1 ≤ 𝑥𝑚,𝑡 ⟹
𝑥𝑚,𝑡

𝐿𝑂𝐷 = 𝑥𝑚,𝑡 − 𝑥𝑚,𝑡+1 and 𝑥𝑚,𝑡
𝑈𝑃𝐷 = 0. If 𝑥𝑚,𝑡+1 ≥ 𝑥𝑚,𝑡 ⟹

𝑥𝑚,𝑡
𝑈𝑃𝐷 = 𝑥𝑚,𝑡+1 − 𝑥𝑚,𝑡 and 𝑥𝑚,𝑡

𝐿𝑂𝐷 = 0. These deviation 

variables are set as the same as the bounds of the CDU 

throughputs, i.e., 0 ≤ 𝑥𝑚,𝑡
𝐿𝑂𝐷 ≤ 𝑥̅𝑚,𝑡

𝑈  and 0 ≤ 𝑥𝑚,𝑡
𝑈𝑃𝐷 ≤ 𝑥̅𝑚,𝑡

𝑈 . 

The smoothing relationship for the CDU flow in Eq. (2) is 

satisfied if 𝑥𝑚,𝑡+1 = 𝑥𝑚,𝑡; then 𝑥𝑚,𝑡
𝐿𝑂𝐷 = 𝑥𝑚,𝑡

𝑈𝑃𝐷 = 0. Unit-

operations m for tanks, blenders and fuels belong, 

respectively, to the following sets: MTK, MBL and MFU. The 
UOPSS formulation given by the objects and their 

connectivity as in Figure 3 are specified in Eqs. (3) to (14). 

In the summations involving ports in Eqs. (6) to (9), (12) 

and (13), j’ and i’’ represent upstream and downstream ports 

connected, respectively, to the in-port i and out-port j of 

unit-operations m. The set Um represents the unit-operations 

m within the same physical unit. For 𝑥 ∈ ℝ+ and 𝑦 = {0,1}: 

(𝑃)  𝑀𝑎𝑥 𝑍 = ∑ ( ∑ 𝑝𝑟𝑖𝑐𝑒𝑚,𝑡

𝑚∈𝑀𝐹𝑈

𝑥𝑚,𝑡

𝑡

− ∑ 𝑤𝑒𝑖𝑔ℎ𝑡(𝑥𝑚,𝑡
𝐿𝑂𝐷 + 𝑥𝑚,𝑡

𝑈𝑃𝐷)

𝑚∈𝑀𝐶𝐷𝑈

)           (1) 

s.t. 

𝑥𝑚,𝑡+1 − 𝑥𝑚,𝑡 + 𝑥𝑚,𝑡
𝐿𝑂𝐷 − 𝑥𝑚,𝑡

𝑈𝑃𝐷 = 0  ∀ 𝑚 ∈ 𝑀𝐶𝐷𝑈, 𝑡                    (2) 
 

𝑥̅𝑗,𝑖,𝑡
𝐿  𝑦𝑗,𝑖,𝑡 ≤ 𝑥𝑗,𝑖,𝑡 ≤ 𝑥̅𝑗,𝑖,𝑡

𝑈  𝑦𝑗,𝑖,𝑡  ∀  (𝑗, 𝑖), 𝑡                                        (3) 
 

𝑥̅𝑚,𝑡
𝐿  𝑦𝑚,𝑡 ≤ 𝑥𝑚,𝑡 ≤ 𝑥̅𝑚,𝑡

𝑈  𝑦𝑚,𝑡   ∀  𝑚 ∉ 𝑀𝑇𝐾 , 𝑡                               (4) 
 

𝑥ℎ̅̅ ̅
𝑚,𝑡
𝐿  𝑦𝑚,𝑡 ≤ 𝑥ℎ𝑚,𝑡 ≤ 𝑥ℎ̅̅ ̅

𝑚,𝑡
𝑈  𝑦𝑚,𝑡  ∀  𝑚 ∈ 𝑀𝑇𝐾 , 𝑡                        (5) 

 

1

𝑥̅𝑚,𝑡
𝑈 ∑ 𝑥𝑗′,𝑖,𝑡

𝑗′

≤ 𝑦𝑚,𝑡 ≤
1

𝑥̅𝑚,𝑡
𝐿 ∑ 𝑥𝑗′,𝑖,𝑡

𝑗′

   ∀ (𝑖, 𝑚) ∉ 𝑀𝑇𝐾 , 𝑡        (6) 

 

1

𝑥̅𝑚,𝑡
𝑈 ∑ 𝑥𝑗,𝑖′′,𝑡

𝑖′′

≤ 𝑦𝑚,𝑡 ≤
1

𝑥̅𝑚,𝑡
𝐿 ∑ 𝑥𝑗,𝑖′′,𝑡

𝑖′′

   ∀ (𝑚, 𝑗) ∉ 𝑀𝑇𝐾 , 𝑡      (7) 

 

1

𝑟̅𝑖,𝑡
𝑈 ∑ 𝑥𝑗′,𝑖,𝑡

𝑗′

≤ 𝑥𝑚,𝑡 ≤
1

𝑟̅𝑖,𝑡
𝐿 ∑ 𝑥𝑗′,𝑖,𝑡

𝑗′

   ∀ (𝑖, 𝑚) ∉ 𝑀𝑇𝐾 , 𝑡             (8) 

 

1

𝑟̅𝑗,𝑡
𝑈 ∑ 𝑥𝑗,𝑖′′,𝑡

𝑖′′

≤ 𝑥𝑚,𝑡 ≤
1

𝑟̅𝑗,𝑡
𝐿 ∑ 𝑥𝑗,𝑖′′,𝑡

𝑖′′

   ∀ (𝑚, 𝑗) ∉ 𝑀𝑇𝐾 , 𝑡           (9) 

 

𝑦𝑚′,𝑡 + 𝑦𝑚,𝑡 ≥ 2𝑦𝑗,𝑖,𝑡   ∀ (𝑚′, 𝑗, 𝑖, 𝑚), 𝑡                                         (10) 
 

∑ 𝑦𝑚,𝑡

𝑚∈𝑈𝑚

≤ 1  ∀ 𝑡                                                                           (11) 

 

𝑥ℎ𝑚,𝑡 = 𝑥ℎ𝑚,𝑡−1 + ∑ 𝑥𝑗′,𝑖,𝑡

𝑗′

 − ∑ 𝑥𝑗,𝑖′′,𝑡

𝑖′′

 ∀ (𝑖, 𝑚, 𝑗) 

∈ 𝑀𝑇𝐾 , 𝑡 (12) 
 

∑ 𝑥𝑗′,𝑖,𝑡

𝑗′

= ∑ 𝑥𝑗,𝑖′′,𝑡

𝑖′′

  ∀ (𝑖, 𝑚, 𝑗) ∈ 𝑀𝐶𝐷𝑈 ⋀ 𝑀𝐵𝐿, 𝑡                  (13) 

 

𝑥𝑚,𝑡, 𝑥𝑗,𝑖,𝑡, 𝑥ℎ𝑚,𝑡 𝑥𝑚,𝑡
𝐿𝑂𝐷, 𝑥𝑚,𝑡

𝑈𝑃𝐷 ≥ 0; 𝑦𝑗,𝑖,𝑡 , 𝑦𝑚,𝑡 = {0,1}              (14) 
 

The semi-continuous constraints to control the 

quantity-flows of the arrows xj,i,t , the throughputs of the 

unit-operations xm,t (except tanks) and tank holdups or 

inventory levels xhm,t are given by Eqs. (3) to (5). If the 

binary variable of the arrows yj,i,t is true, the quantity-flow 

of its streams varies between bounds (𝑥̅𝑗,𝑖,𝑡
𝐿  and 𝑥̅𝑗,𝑖,𝑡

𝑈 ) as in 

Eq. (3). It is the same for the unit-operations in Eq. (4) with 

respect to their bounds (𝑥̅𝑚,𝑡
𝐿  and 𝑥̅𝑚,𝑡

𝑈 ) and in Eq. (5) for 

holdups xhm,t of tanks (𝑥ℎ̅̅ ̅
𝑚,𝑡
𝐿  and 𝑥ℎ̅̅ ̅

𝑚,𝑡
𝑈 ). Equations (6) and 

(7) represent, respectively, the sum of the arrows arriving in 

the in-ports i (or mixers) or leaving from the out-ports j (or 

splitters) and their summation must be between the bounds 

of the unit-operation m (mMTK) connected to them.  

Equations (8) and (9) consider bounds on yields, 

both inverse (𝑟̅𝑖,𝑡
𝐿  and 𝑟̅𝑖,𝑡

𝑈 ) and direct (𝑟̅𝑗,𝑡
𝐿  and 𝑟̅𝑗,𝑡

𝑈 ), since the 

unit-operations m (mMTK) can have more than one stream 

arriving in or leaving from their connected ports. Equation 

(10) is the structural transition constraint to facilitate the 

setup of unit-operations of different units interconnected by 

streams within out-ports j and in-ports i. If the binary 

variable of interconnected unit-operations m and m’ are 

true, the binary variable yj,i,t of the arrow stream between 

them are implicitly turned-on. It is a logic valid cut that 

reduces the tree search in branch-and-bound methods, 

forming a group of 4 objects (m’, j, i, m). In Eq. (11), for all 

physical units, at most one unit-operation m (as ym,t for 

procedures, modes or tasks) is permitted in Um at a time.  



 

Equations (12) is the quantity balance to control 

the inventory or holdup for unit-operations of tanks 

(mMTK). The equality constraint calculates the current 

holdup amount xhm,t considering the material left in the past 

time-period (heels) plus and minus the summation of, 

respectively, the upstream and downstream connections to 

the tanks. Equation (13) is a material balance in 

fractionation columns MCDU and blenders MBL to ensure that 

there is no accumulation of material in these types of units. 

It should be mentioned that quantity balances for 

in- and out-port-states is guaranteed because the UOPSS 

formulation does not perform explicit material balances for 

port-states, but only for unit-operations, so the flow of 

connected port-states are bounded by their lower and upper 

bounds. Stream flows involving ports are only for unit-

operation-port-state to unit-operation-port-state (arrow 

streams). For quality balances, only in-port-states have 

explicit material balances since these are uncontrolled 

mixers. For out-port-states, which are uncontrolled splitters, 

the UOPSS does not create explicit splitter equations for the 

qualities because these are redundant with the value of the 

intensive property of upstream-connected unit-operations. 

Logistics Problem: MILP Crude-Oil Blend Scheduling  

The logistics problem includes Eqs. (1) to (14) and 

Eqs. (15) to (29) that involves: a) unit-operations in 

temporal transitions of sequence-dependent cycles, multi-

use of objects and uptime or minimal time of their using, 

and zero downtime of an equipment, and b) tanks in fill-

draw delay and fill-to-full and draw-to-empty operations. 

The operation of the semi-continuous blender 

COB in Figure 3 is controlled by the temporal transition 

constraints (13) to (15) from Kelly and Zyngier (2007). The 

setup or binary variable ym,t manages the dependent start-up, 

switch-over-to-itself and shut-down variables (zsum,t, zswm,t 

and zsdm,t, respectively) that are relaxed in the interval [0,1] 

instead of considering them as logic variables. Equation 

(17) is necessary to guarantee the integrality of the relaxed 

variables. 
 

𝑦𝑚,𝑡 − 𝑦𝑚,𝑡−1 − 𝑧𝑠𝑢𝑚,𝑡 + 𝑧𝑠𝑑𝑚,𝑡 = 0  ∀ 𝑚 ∈ 𝑀𝐵𝐿, 𝑡              (15) 
 

𝑦𝑚,𝑡 + 𝑦𝑚,𝑡−1 − 𝑧𝑠𝑢𝑚,𝑡 − 𝑧𝑠𝑑𝑚,𝑡  − 2𝑧𝑠𝑤𝑚,𝑡 = 0   

∀ 𝑚 ∈ 𝑀𝐵𝐿, 𝑡    (16) 
 

𝑧𝑠𝑢𝑚,𝑡 + 𝑧𝑠𝑑𝑚,𝑡 + 𝑧𝑠𝑤𝑚,𝑡 ≤ 1  ∀ 𝑚 ∈ 𝑀𝐵𝐿, 𝑡                           (17) 
 

In the multi-use procedure in Eq. (18), the lower 

and upper parameters 𝑈𝑆𝐸𝑗,𝑡
𝐿  and 𝑈𝑆𝐸𝑗,𝑡

𝑈  coordinate the use of 

the out-ports (jJUSE) by their connected downstream in-

ports i’’. This occurs in blenders to avoid the split of a 

mixture to different feed tanks at the same time. Eq. (19) 

imposes 𝑈𝑆𝐸𝑖,𝑡
𝐿  and 𝑈𝑆𝐸𝑖,𝑡

𝑈  in the in-ports (iIUSE) by their 

connected upstream out-ports j’. It controls the maximum 

number of transfers within the same time-period to CDU. 

Equations (20) to (22) model the run-length or uptime 

considering UPTU as the upper bound of using and tend as 

the end of the time horizon with ∆t as time-step, where Eq. 

(22) is the unit-operation uptime temporal aggregation cut 

constraint and number of period is np; more details on these 

constraints can be found in Kelly and Zyngier (2007) and 

Zyngier and Kelly (2009). Equation (23) is the zero 

downtime constraint for the CDU to select at least one mode 

of operation m to be continuously operating. 

1

𝑈𝑆𝐸𝑗,𝑡
𝐿 ∑ 𝑦𝑗,𝑖′′,𝑡

𝑖′′

≤ 𝑦𝑚,𝑡 ≤
1

𝑈𝑆𝐸𝑗,𝑡
𝑈 ∑ 𝑦𝑗,𝑖′′,𝑡

𝑖′′

  ∀ 𝑗 ∈ 𝐽𝑈𝑆𝐸 , 𝑡      (18) 

 

1

𝑈𝑆𝐸𝑖,𝑡
𝐿 ∑ 𝑦𝑗′,𝑖,𝑡

𝑗′

≤ 𝑦𝑚,𝑡 ≤
1

𝑈𝑆𝐸𝑖,𝑡
𝑈 ∑ 𝑦𝑗′,𝑖,𝑡

𝑗′

  ∀ 𝑖 ∈ 𝐼𝑈𝑆𝐸 , 𝑡        (19) 

 

𝑧𝑠𝑢𝑚,𝑡 + 𝑧𝑠𝑢𝑚,𝑡−1 ≤ 𝑦𝑚,𝑡+1 ∀ 𝑚 ∈ 𝑀𝐵𝐿, 𝑡 > 1                        (20) 
 

∑ 𝑦𝑚,𝑡

𝑈𝑃𝑇𝑈

∆𝑡

𝑡′′=𝑡

≤
𝑈𝑃𝑇𝑈

∆𝑡
 ∀ 𝑚 ∈ 𝑀𝐵𝐿, 𝑡 < 𝑡𝑒𝑛𝑑 − 𝑈𝑃𝑇𝑈                  (21) 

 

∆𝑡 ∑ 𝑧𝑠𝑢𝑚,𝑡

𝑡

≤ 𝑛𝑝 ∀ 𝑚 ∈ 𝑀𝐵𝐿                                                     (22) 

 

∑ 𝑦𝑚,𝑡

𝑚∈𝑀𝐶𝐷𝑈

≥ 1   ∀ 𝑡                                                                       (23) 

For the operation of tanks in Eqs. (24) to (28), the 

formulation is found in Zyngier and Kelly (2009). The fill-

draw delay constraints (24) and (25) controls, respectively, 

the minimum and maximum time between the last filling 

and the following drawing operations for the upstream j’ 

and downstream i’’ connections of a tank. The minimum 

and maximum fill-draw delays are ∆𝐷𝑚𝑖𝑛 and ∆𝐷𝑚𝑎𝑥, 

respectively, and the in- and out-ports i and j are connected 

to the tank (IJMTK). 
 

𝑦𝑗′,𝑖,𝑡 + 𝑦𝑗,𝑖′′,𝑡+𝑡𝑡 ≤ 1  ∀ (𝑗′, 𝑖, 𝑗, 𝑖′′) such that 𝐼𝐽𝑀𝑇𝐾, 

𝑡𝑡 = 0. . ∆𝐷𝑚𝑖𝑛, 𝑡 = 1. . 𝑡|𝑡 + 𝑡𝑡 < 𝑡𝑒𝑛𝑑       (24) 
 

𝑦𝑗′,𝑖,𝑡−1 − 𝑦𝑗′,𝑖,𝑡 − ∑ 𝑦𝑗,𝑖′′,𝑡−1

∆𝐷𝑚𝑎𝑥

𝑡𝑡=1

≤ 0 ∀ (𝑗′, 𝑖, 𝑗, 𝑖′′)  

such that 𝐼𝐽𝑀𝑇𝐾 , 𝑡 = 1. . 𝑡 − ∆𝐷𝑚𝑎𝑥|𝑡 + 𝑡𝑡 < 𝑡𝑒𝑛𝑑       (25) 
 

The remaining tank operations are the fill-to-full 

and draw-to-empty constraints. They add the logic variable 

ydm,t, representing the filling and drawing operations, which 

are equal to zero if the pool is filling and one if it is drawing, 

avoiding the use of two logic variables. The coefficients 

𝑥ℎ̅̅ ̅
𝑚,𝑡
𝐹𝑈𝐿𝐿  and 𝑥ℎ̅̅ ̅

𝑚,𝑡
𝐸𝑀𝑃𝑇𝑌 are, respectively, the fill-to-full and 

draw-to-empty to force the tank to be filled and drawn to 

their values. 
 

𝑦𝑗′,𝑖,𝑡 + 𝑦𝑑𝑚,𝑡 ≤ 1  ∀ (𝑗′, 𝑖, 𝑚) for 𝑚 ∈ 𝑀𝑇𝐾 , 𝑡                          (26) 
  

𝑦𝑗,𝑖′′,𝑡 ≤ 𝑦𝑑𝑚,𝑡  ∀ (𝑚, 𝑗, 𝑖′′) for 𝑚 ∈ 𝑀𝑇𝐾 , 𝑡                                (27) 
 

𝑥ℎ𝑚,𝑡 − 𝑥ℎ̅̅ ̅
𝑚,𝑡
𝑈 ( 𝑦𝑑𝑚,𝑡 − 𝑦𝑑𝑚,𝑡−1) + (𝑥ℎ̅̅ ̅

𝑚,𝑡
𝑈 − 𝑥ℎ̅̅ ̅

𝑚,𝑡
𝐹𝑈𝐿𝐿) ≥ 0   

∀ 𝑚 ∈ 𝑀𝑇𝐾 , 𝑡    (28) 
 

𝑥ℎ𝑚,𝑡 + 𝑥ℎ̅̅ ̅
𝑚,𝑡
𝑈 ( 𝑦𝑑𝑚,𝑡−1 − 𝑦𝑑𝑚,𝑡) − (𝑥ℎ̅̅ ̅

𝑚,𝑡
𝑈 + 𝑥ℎ̅̅ ̅

𝑚,𝑡
𝐸𝑀𝑃𝑇𝑌) ≤ 0   

∀ 𝑚 ∈ 𝑀𝑇𝐾 , 𝑡    (29) 



 

Quality Problem: NLP Crude-Oil Blend Scheduling 

The quality problem includes Eqs. (1) to (9) (by 

fixing the binary results from the logistics), Eq. (12) for 

quantity balances in tanks, Eq. (13)., the continuous part of 

Eq. (14) and the nonlinear Eqs. (30) to (35). The blending 

or pooling constraints involves volume-based quality 

balances in crude-oil components and specific gravity 

(density) and weight-based for sulfur concentration. They 

apply for: a) flow in unit-operations (except for 

fractionators) and in-ports; and b) holdup in tanks. The other 

nonlinear constraints are the transformations from crude-oil 

components to compounds (distillate amounts and 

properties) in fractionators as in Eqs. (33) to (35). See Kelly 

and Zyngier (2016) for the case of nonlinear equations. 

Considering p as the component-property (crude-

oil component, specific gravity or sulfur concentration) and 

𝑣 and 𝑤, respectively, volume- and weight-based properties, 

Eqs. (30) calculates the volume-based balance in unit-

operations (in the case, only for blenders) and Eq. (31) in 

in-ports. When the in-ports are connected to tanks, their 

quality balances are redundant to Eq. (32) valid only for 

tanks, so that Eq. (31) is only true for in-ports not connected 

to tanks. It should be mentioned that there is no need of a 

quality variable for out-ports of a unit-operation. Instead we 

can use the quality of their unit-operation m’ itself. 
 

𝑣𝑚,𝑝,𝑡 ∑ 𝑥𝑗′,𝑖,𝑡

𝑗′

= ∑ 𝑣𝑚′,𝑝,𝑡𝑥𝑗′,𝑖,𝑡

𝑗′

  ∀ 𝑚, 𝑝, 𝑡                               (30) 

 

𝑣𝑖,𝑝,𝑡 ∑ 𝑥𝑗′,𝑖,𝑡

𝑗′

= ∑ 𝑣𝑚′,𝑝,𝑡𝑥𝑗′,𝑖,𝑡

𝑗′

  ∀ 𝑖, 𝑝, 𝑡                                   (31) 

 

𝑣𝑚,𝑝,𝑡𝑥ℎ𝑚,𝑡 = 𝑣𝑚,𝑝,𝑡−1𝑥ℎ𝑚,𝑡−1 + ∑ 𝑣𝑚′,𝑝,𝑡𝑥𝑗′,𝑖,𝑡

𝑗′

  

−𝑣𝑚,𝑝,𝑡 ∑ 𝑥𝑗,𝑖′′,𝑡

𝑖′′

 ∀ (𝑖, 𝑚, 𝑗) ∈ 𝑀𝑇𝐾 , 𝑡       (32) 

 

The weight-based balances are skipped as they are 

similar to Eqs. (30) to (32) only replacing 𝑣 by the product 

𝑣𝑤. Finally, Eq. (33) converts CDU throughputs in amounts 

or yields of distillates (jJDIS). Equations (34) and (35) 

calculate, respectively, the volume- and weight-based 

properties for JDIS considering the assay or renderings of 

each crude-oil c with respect to their defined cuts. The 

renderings for yields and properties are 𝑟𝑒𝑗,𝑐,𝑐𝑢𝑡
𝑦𝑖𝑒

 and 𝑟𝑒𝑗,𝑐,𝑐𝑢𝑡
𝑝

 

and SG means specific gravity in Eq. (35). Reformulating 

Eqs. (34) and (35), Eq. (33) can be substituted to cancel the 

term ∑ 𝑥𝑗′,𝑖𝐶𝐷𝑈,𝑡𝑗′  and reduces both the nonlinearities and 

the number of non-zeros in these equations. 
 

∑ 𝑥𝑗,𝑖′′,𝑡

𝑖′′

= ∑ 𝑥𝑗′,𝑖𝐶𝐷𝑈,𝑡

𝑗′

∑ ∑ 𝑣𝑖𝐶𝐷𝑈,𝑝=𝑐,𝑡𝑟𝑒𝑗,𝑐,𝑐𝑢𝑡
𝑦𝑖𝑒

𝑐𝑢𝑡𝑐

  

∀ 𝑗 ∈ 𝐽𝐷𝐼𝑆, 𝑡   (33) 
 

𝑣𝑗,𝑝,𝑡 ∑ 𝑥𝑗,𝑖′′,𝑡

𝑖′′

= ∑ 𝑥𝑗′,𝑖𝐶𝐷𝑈,𝑡

𝑗′

∑ ∑ 𝑣𝑖𝐶𝐷𝑈,𝑝=𝑐,𝑡𝑟𝑒𝑗,𝑐,𝑐𝑢𝑡
𝑦𝑖𝑒

𝑟𝑒𝑗,𝑐,𝑐𝑢𝑡
𝑝

𝑐𝑢𝑡𝑐

  

∀ 𝑗 ∈ 𝐽𝐷𝐼𝑆, 𝑡   (34) 
 

𝑣𝑗,𝑝=𝑠𝑔,𝑡𝑤𝑗,𝑝,𝑡 ∑ 𝑥𝑗,𝑖′′,𝑡

𝑖′′

= ∑ 𝑥𝑗′,𝑖𝐶𝐷𝑈,𝑡

𝑗′

∑ ∑ 𝑣𝑖𝐶𝐷𝑈,𝑝=𝑐,𝑡𝑟𝑒𝑗,𝑐,𝑐𝑢𝑡
𝑦𝑖𝑒

𝑐𝑢𝑡

𝑟𝑒𝑗,𝑐,𝑐𝑢𝑡
𝑝=𝑠𝑔

𝑟𝑒𝑗,𝑐,𝑐𝑢𝑡
𝑝

𝑐

 

∀ 𝑗 ∈ 𝐽𝐷𝐼𝑆, 𝑡  (35)   

Illustrative Example 

The examples use the structural-based unit-

operation-port-state superstructure (UOPSS) found in the 

semantic-oriented platform IMPL (Industrial Modeling and 

Programming Language) using Intel Core i7 machine at 2.7 

Hz with 16GB of RAM. Figure 4 shows the unit-operation 

Gantt chart for the entire problem found in Figure 3. The 

past/present time-horizon has a duration of 24-hours and the 

future time-horizon is 336-hours discretized into 2-hour 

time-period durations (168 time-periods). The logistics 

problem has 8,333 continuous and 3,508 binary variables 

and 3,957 equality and 15,810 inequality constraints and it 

is solved in 176.0 seconds using 8 threads in CPLEX 12.6. 

The quality problem has 19,400 continuous variables and 

14,862 equality and 696 inequality constraints and lasts 16.8 

seconds in the IMPL’ SLP engine linked to CPLEX 12.6. 

The MILP-NLP gap between the two solutions is within 

0.09% with only one PDH iteration. 

The crude-oil blend header COB has an up-time or 

run-length of between 6 to 18-hours and this is clearly 

followed by the semi-continuous nature of the blender (i.e., 

see the 20 blends or batches of crude-oil mixes). The storage 

tanks have a lower fill-draw-delay of 6-hours which means 

that if there is a fill into the tank then there must be at least 

a 6-hour delay or hold before the draw out of the tank can 

occur. This is typical of receiving tanks in an oil-refinery 

when they receive crude-oil cargos from marine vessels that 

contain a significant amount of ballast water that needs to 

be decanted before it charges the desalter, preflash, furnace 

and CDU. 
 

 
Figure 4. Illustrative example Gantt chart. 

 

The feed tanks have draw-to-empty (DTE) and fill-

to-full (FTF) quantities of 10.0 to 190.0 Kbbl respectively. 

The DTE logistic requires that there cannot be a fill into the 

tank unless the holdup quantity in the tank is equal to or 

below 10.0 Kbbl. The FTF logistic requires that there 

cannot be a draw out of the tank unless the holdup is equal 



 

to or above 190.0 Kbbl. This is necessary for managing tank 

inventories so that they have a well-defined fill-hold-draw 

profile. These restrictions are also necessary to minimize 

the crude-oil swings or runs to the CDU given that during 

the draw out of a single feed tank to a CDU, there are no 

crude-oil disturbances; i.e., between one to three days 

depending on the CDU charge rate and the inventory 

capacity of the charge tank. 

Figure 5 plots the composition of crude-oils 

entering the feed tank F1 on its in-port. As can be easily 

seen, the compositions change when the blender charge 

crude-oil from the storage tanks. 
 

 
Figure 5. F1 in-port component plots. 

Industrial-Sized Example 

The proposed model is applied in an industrial-

sized refinery including 5 crude-oil distillation units (CDU) 

in 9 modes of operation and around 35 tanks among storage 

and feed tanks. The past/present time-horizon has a duration 

of 48-hours and the future time-horizon is 168-hours 

discretized into 2-hour time-period durations (84 time-

periods). The logistics problem has 30,925 continuous and 

29,490 binary variables and 6,613 equality and 79,079 

inequality constraints (degrees-of-freedom = 53,802) and it 

is solved in 128.8 seconds using 8 threads in CPLEX 12.6. 

The quality problem has 102,539 continuous variables and 

58,019 equality and 768 inequality constraints (degrees-of-

freedom = 44,520) and lasts 10.3 minutes in the IMPL’ SLP 

engine linked to CPLEX 12.6. The MILP-NLP gap between 

the two solutions is within 3.5% after two PDH iterations. 

Conclusion 

In summary, we have highlighted a benchmark 

application of crude-oil blend scheduling optimization 

using a discrete, nonlinear and dynamic optimization with a 

uniform time-grid (see Menezes et. al. 2015 for more 

details). The fine points of the MINLP formulation are 

highlighted where a phenomenological decomposition of 

logistics and quality is applied to solve industrial-sized 

problems to feasibility. An illustrative example is modeled 

and solved to demonstrate the theory in practice. 
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