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Abstract 

In this paper, we introduce a generalized multiperiod scheduling version of the pooling problem 

to represent time varying blending systems. A general nonconvex MINLP formulation of the 

problem is presented.  The primary difficulties in solving this optimization problem are the 

presence of bilinear terms, as well as binary decision variables required to impose 

operationalconstraints . An illustrative example is presented to provide some insight into the 

difficulties faced by applying conventional MINLP approaches to this problem, specifically as it 

pertains to finding feasible solutions.  A radix-based discretization scheme is developed with 

which the problem can be reformulated approximately as an MILP, which is incorporated in a 

heuristic procedure and in two rigorous global optimization methods. and requires much less 

computational time than existing global optimization solvers.  Detailed computational results of 

each approach are presented on a set of examples, including a comparison with other global 

optimization solvers. 

1. Introduction 
 
The efficient blending of liquid fuels to meet both technical and environmental specifications has 

been a growing research area in recent years as stricter regulations and smaller profit margins 
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drive the need for  optimal blending schemes (Misener and Floudas, 2009). Specifically in 

refineries, the blending of different distilled fractions to meet specifications - without waste - is 

of great importance.  

This area of research within mathematical programming became active with the introduction of 

what has become known as the pooling problem, as posed by Haverly in 1978. In short, the 

problemis as follows: multiple liquid streams with various properties (called qualities) enter 

supply tanks, are fed into blending tanks where they are assumed to be perfectly mixed in some 

proportion to meet a set of specifications, and are then fed into demand tanks. The goal is then to 

select the flows that minimize the overall cost of the blending process. 

The traditional pooling problem is assumed to operate at steady state, and thus inventory and 

other dynamics are neglected. In practice, however, supply and demand vary with time, and 

therefore the inventory in each tank varies as well. Further, operational rules for inventory 

management constrain the manner of the movement of materials into and out of the tanks.  This 

gives rise to a multiperiod blend scheduling problem. Therefore, unlike the pooling problem, the 

supply and demand flows in the multiperiod problem are specified as a function of time. The 

multiperiod blend scheduling problem allows for the modeling of a blending system that varies 

over time, as is the case in liquid fuel and crude oil blending in refineries.  It is, in fact, these 

dynamics that differentiate the multiperiod blend scheduling problem from the traditional 

pooling problem. Indeed, despite the presence of mixing constraints that involve bilinear 

constraints as in the pooling problem, the additional dynamics present in the multiperiod blend 

scheduling problem give rise to certain complications that will be discussed and addressed in this 

paper. 
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This paper is organized as follows.  A brief review of previous work in this area is presented, 

divided by research area (general bilinear programs and global optimization, the pooling 

problem,  water network optimization, blend scheduling).  The multiperiod blend scheduling 

problem is then introduced and described in detail, and a motivating example problem is 

presented to illustrate the failure of conventional MINLP approaches for solving this problem.  

A small example isthen solved using a variety of current global optimization solvers to further 

illustrate these issues.  The concept of radix-based discretization is then introduced, and novel 

reformulations of the multiperiod blend scheduling problem (originally anonconvex MIQCP) are 

presented that result in larger but easier to solve MILPs.  These reformulations are 

progressively derived, resulting in heuristic and exact  algorithms that require significantly 

reduced computational time relative to existing solvers.  Finally, these new approaches are 

compared with each other, as well as with the original nonconvex MIQCP formulation to show 

the effectiveness of these new methods.  

1.1. Global Optimization of General Bilinear Programs and Pooling Problems 

The global optimization of bilinear programs is important in such areas as water networks and 

petroleum blending operations (Misener, Thompson, & Floudas, 2011; Misener & Floudas, 

2009; Bagajewicz, 2000; Jeżowski, 2010).  These problems, which can be classified as bilinear 

process networks, are generally difficult to solve to global optimality. Nonconvex, bilinear 

constraints are required to model the mixing of various streams in these systems, and are in some 

cases the only nonlinearities in the models. 

General global optimization of nonconvex bilinear terms has seen many recent advances (Sherali 

& Alameddine, 1992; Liberti, Cafieri, & Tarissan, 2009; Liberti & Pantelides, 2006; Ruiz & 
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Grossmann, 2011; Wicaksono & Karimi, 2008; Al-Khayyal & Falk, 1983; Smith & Pantelides, 

1997; Horst & Tuy, 1996; Floudas & Visweswaran, 1995; Shor, 1990; Xu, 2003; Yu, 1998; Ye, 

1999; Adhya, Tawarmalani, & Sahinidis, 1999). The convex McCormick envelopes 

(McCormick, 1976) coupled with spatial branch and bound schemes have been the basis for 

many of these global optimization techniques, with piecewise McCormick envelopes being a 

recently used approach. Variations of this approach have been suggested, generalizing the 

convex envelopes to piecewise over- and under-estimators (Misener, Thompson, & Floudas, 

2011; Wicaksono & Karimi, 2008). Novel ways of representing bilinear terms through 

reformulation have been a common focus in the literature (Ruiz & Grossmann, 2011). Misener, 

Thompson, & Floudas, (2011), building on the work of Vielma and Nemhauser (Vielma, Ahmed, 

& Nemhauser, 2010; Vielma & Nemhauser, 2010), have shown that a relaxation of the bilinear 

terms can be achieved with a logarithmic number of binary variables. Teles, Castro, & Matos 

(2011) have introduced a novel approximation of polynomial constraints that exhibit a similar 

property. Sherali & Alameddine (1992) proposed a reformulation-linearization technique (RLT), 

which subsumes the McCormick convex envelopes for bilinear terms to tighten bounds on 

bilinear terms in NLP and MINLP formulations. A subset of these RLT constraints were 

incorporated into a branch and bound framework by Quesada & Grossmann (1995). Karuppiah 

& Grossmann (2006) demonstrated the utility of adding redundant mass balance constraints as a 

bound tightening mechanism on the McCormick convex envelopes and applied this technique to 

the water network problem. Novel bounding techniques based on vector properties have been put 

forward by Ruiz & Grossmann (2011), as well as applications of generalized disjunctive 

programming to bounding bilinearities (Ruiz & Grossmann, 2010). Adhya, Tawarmalani, and 

Sahinidis (1999) utilized Lagrangean relaxation to obtain tighter bounds for the pooling problem, 
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and novel piecewise under- and over-estimators for bilinear programs have been proposed by 

Wicaksono & Karimi (2008). Recently, refinement of previous approaches have been reported 

by Floudas et al. (Gounaris, Misener, & Floudas, 2009; Misener & Floudas, 2010; Misener, 

Thompson, & Floudas, 2011), especially using McCormick convex envelopes in piecewise 

approximations of bilinear terms. 

Process networks involving blending, such as the pooling problem and water network design 

problems, are often modeled as bilinear programming problems. Much work has been devoted to 

finding efficient algorithms and formulations for solving this class of problem. 

The pooling problem, stemming from the original Haverly paper (Haverly, 1978) has received 

much attention in the literature (Quesada & Grossmann, 1995; Misener, Thompson, & Floudas, 

2011; Tawarmalani & Sahinidis, 2002; Meyer & Floudas, 2006; Misener & Floudas, 2009; 

Misener & Floudas, 2010; Pham, Laird, & El-Halwagi, 2009). Multiple liquid streams with 

various properties (called qualities) enter supply tanks, are fed into blending tanks where they are 

assumed to be perfectly mixed in some proportion to meet a set of specifications, and are then 

fed into demand tanks (see Figure 1). The goal is then to select the flows that minimize the 

overall cost of the blending process. The main assumption of the pooling problem is that it is 

assumed to operate at steady state; there is no accumulation in the blending system, and 

variations in supply and demand over time are not modeled. Both Audet et al. (2004) and Meyer 

& Floudas (2006) recently generalized the pooling problem to allow for a more general network 

topology, such as connections between blending tanks. Several different formulations have been 

used to solve the pooling problem, with the p-formulation being the original formulation posed 

by Haverly (1978), the q-formulation introduced by Ben-Tal et al. (1994), and the 
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pq-formulation introduced by Tawarmalani & Sahinidis (2002). The p-formulation is perhaps the 

most intuitive modeling approach, representing the blending network with overall flows between 

tanks. Individual qualities in these streams are represented with mass fractions of the overall 

flows. The q-formulation takes a different approach by representing individual qualities with 

split fractions leaving the tanks, resulting in a more compact formulation. The pq-formulation 

combines the two formulations by adding convexification or RLT constraints to the 

q-formulation resulting in still better performance (Quesada & Grossmann, 1995; Sherali and 

Adams, 1998; Sherali et al., 1998). Other formulations, such as the TP and STP formulations, 

have also been introduced (Alfaki and Haugland, 2012). Recently, Misener, Thompson, & 

Floudas (2011) have demonstrated a novel logarithmic relaxation for modeling bilinear terms 

with piecewise McCormick envelopes while addressing various classes of pooling problems. 

Water network optimization problems containing bilinear terms have also received much 

attention in the literature (Karuppiah & Grossmann, 2006; Teles, Castro, and Matos, 2012; 

Bagajewicz, 2000; Jeżowski, 2010; Ahmetović & Grossmann, 2010). Given a set of process 

units that use water, and a set of treatment units for removing the contaminants, the problem 

consists in finding a network configuration involving reuse and recycle to minimize the 

freshwater consumption. Freshwater sources are provided and wastewater disposal (or discharge) 

sites are also given, subject to certain constraints (e.g. an upper limit on certain contaminants) 

(Jeżowski, 2010). The same blending constraints present in the pooling problem are present in 

water network problems, and thus numerous advances in solving bilinear programs have been 

made addressing these problems. The synthesis of water networks has traditionally been done 

using pinch analysis for single contaminants (Wang & Smith, 1994a,b), but recent work has 

focused on using mathematical programming approaches for multiple contaminants (Karuppiah 
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& Grossmann, 2006; Zamora & Grossmann, 1998; Galan & Grossmann, 1998; Huang et al., 

1999). These optimization problems can also be extended to consider mass and heat exchange 

networks (MEN and HEN, respectively), as well as other design problems (Bagajewicz et al., 

2002; Zhou et al., 2009; Lim et al., 2007). Because of these extensions and the broad-reaching 

applications of the water network problem, the water network problem has had applications in 

petrochemical, food processing, pulp and paper, textile, and other industries (Jeżowski, 2010). 

1.2. The Blend Scheduling Problem 

Although this paper introduces a generalized problem statement and mathematical formulation 

for multiperiod blend scheduling, there has been a great deal of study in the literature focused on 

similar problems or problems that could be classified as special cases.  As a scheduling 

extension of the blending and pooling problem, blend scheduling problems naturally arise in the 

petroleum refining and petrochemical industries.  As such, all of the applications described in 

this section could potentially be formulated using the generalized model proposed in this paper. 

The seminal works of Shah (1996) and Lee et al. (1996) discuss similar problems with respect to 

mathematical programming approaches to the scheduling of crude oil unloading and inventory 

management at the front end of a refinery.  Subsequently, there have been many papers looking 

at the same or similar problems (Jia et al., 2003; Kelly and Mann, 2003a; Kelly and Mann, 

2003b; Moro & Pinto, 2004; Reddy et al., 2004a; Reddy et al., 2004b; Li et al., 2007; Karuppiah 

et al., 2008; Mouret et al., 2009; Saharidis & Ierapetritou, 2009; Misener & Floudas, 2012; Liang 

et al., in press). Other efforts have focused on the blending of end-products of a refinery (Moro et 

al., 1998; Jia & Ierapetritou, 2003; Ierapetritou and Jia, 2008).  Finally, some articles have 

looked at general refinery models or to combine models for crude feed blending and end-product 

blending (Pinto et al., 2000; Jia and Ierapetritou, 2004; Shah and Ierapetritou, 2011).   
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In a related application similar to crude oil scheduling for a refinery, Tjoa et al. (1997) look at 

the raw material feed scheduling for an ethylene plant.  In a very complex application, 

Balasubramanian et al. (2010) combine very complex maritime inventory routing with the 

onshore blending of the delivered products in a combined routing and blend scheduling problem.  

Blend scheduling is an important component in multiple industries, and could become an 

important stepping stone to enterprise-wide optimization applications when combined with 

models for other parts of the supply chain. 

Both continuous time and discrete time scheduling models have been proposed for addressing 

this type of problem, however most of the literature focuses on application specific mathematical 

programming formulations.  Furman et al. (2007) posed a generalized event-based continuous 

time model for blend tank scheduling of a very similar nature to the problem discussed in this 

paper.   Due to the complications in synchronizing the continuous time events pointed out by 

Furman et al. (2007) and the tendency for discrete time scheduling models to have tighter 

relaxations than their continuous time counterparts (Maravelias & Papalamprou, 2009), the 

model proposed in this paper incorporates discrete time periods.  However, it should be noted 

that the radix-based discretization techniques discussed in later sections could also potentially be 

applied to continuous time models. 
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2. Problem Statement  

 
Figure 1: Detailed diagram of one period of the multiperiod blend scheduling problem 

The multiperiod blend scheduling problem addressed in this paper can be stated as follows. A 

network is given whose nodes 𝑛 ∈ 𝑇𝐴 consist of subsets of supply, blending, and demand tanks 

𝑇𝐴 = 𝑆 ∪ 𝐵 ∪ 𝐷, 𝑠 ∈ 𝑆, 𝑏 ∈ 𝐵,𝑑 ∈ 𝐷.  These nodes are interconnected by directed arcs 

(𝑛𝑛′) ∈ 𝑁  corresponding to streams between the tanks.  It should be noted that 

interconnections between the supply and demand tanks, as well as between blending tanks, are 

allowed by the model.  The network operates over a time horizon defined by a set of time 

periods 𝑇 = {0, . . 𝑡, . .𝑁𝑇} as shown in Figure 1. At time 𝑡 = 0, an initial inventory is specified 

for each tank, as well as initial values for the qualities. Given the specified network topology, the 

optimal flows between the tanks in each time period must be determined, as well as the 

corresponding inventory levels, which are carried over from one period to another. It is important 

to note that each time period 𝑡 ∈ 𝑇 is not independent of the others due to the coupling created 

by the inventories. For example, flow may be diverted to a tank for temporary storage to be used 

in a later period, or there may be no direct path from a source tank to a demand tank. Thus, the 

optimization must be performed simultaneously over all time periods 𝑡 ∈ 𝑇 . Specifically, 

incoming supply flows 𝐹𝑠𝑡𝐼𝑁 , 𝑠 ∈ 𝑆, enter supply tanks each time period, and demand flows 
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𝐹𝑑𝑡𝑂𝑈𝑇, 𝑑 ∈ 𝐷, are withdrawn from the demand tanks each time period. The supply flows to a 

given tank are assumed for simplicity to have the same quality or composition over all time 

𝐶𝑞𝑠𝐼𝑁, 𝑞 ∈ 𝑄, but can vary in amount (hence the subscript 𝑡 in 𝐹𝑠𝑡𝐼𝑁). Likewise, the concentration 

of flows leaving the demand tanks must be within specified bounds, 𝐶𝑞𝑑𝐿  and 𝐶𝑞𝑑𝑈 , but the flows 

can also vary in amount (hence the subscript 𝑡 in  𝐹𝑑𝑡𝑂𝑈𝑇). Bounds on inventories are also given 

for each tank, 𝐼𝑛𝐿 and 𝐼𝑛𝑈, and for each flow 𝐹𝑛𝑛′𝑡, between each pair of tanks 𝑛,𝑛′ (𝐹𝑛𝑛′𝐿 , 

usually zero, and 𝐹𝑛𝑛′𝑈 ). Lastly, costs for the supply flows, 𝛽𝑠, 𝑠 ∈ 𝑆, prices for demand flows, 

𝛽𝑑, 𝑑 ∈ 𝐷, and fixed and variable costs for flows within the network, 𝛼 and 𝛽, respectively, 

are taken into account with the goal of maximizing the profit (or minimizing the costs) of the 

network schedule to most efficiently mix the fuels to meet demand specifications. Because of the 

operational constraint that flow cannot both enter and exit a blending tank in the same time 

period, as well as to represent the fixed costs, binary decision variables 𝑦𝑛𝑛′𝑡  must be 

introduced into the problem such that 𝑦𝑛𝑛′𝑡 = 1 when any flow exists between tank 𝑛 and tank 

𝑛′ in time period 𝑡, and 𝑦𝑛𝑛′𝑡 = 0 otherwise. 

3. Model Formulation 

As stated earlier, the multiperiod blend scheduling problem naturally involves binary variables 

𝑦𝑛𝑛′𝑡 for all the streams in each time period, and bilinearities for the mass balance constraints 

involving mixing. This leads to the following nonconvex mixed-integer nonlinear programming 

(MINLP) model (MPBP): 

Max�  
𝑡∈𝑇

� �  
𝑛∈S∪𝐵

�  
𝑑∈𝐷

𝛽𝑑𝐹𝑛𝑑𝑡 −�  
𝑠∈𝑆

�  
𝑛∈𝐵∪𝐷

𝛽𝑠𝐹𝑠𝑛𝑡 − �  
𝑛𝑛′∈𝑁

(𝛼𝑛𝑛′𝑦𝑛𝑛′𝑡 + 𝛽𝑛𝑛′𝐹𝑛𝑛′𝑡)� (1) 

Subject to  



11 

 

𝐹𝑛𝑛′𝑡 ≤ 𝐹𝑛𝑛′
𝑈 𝑦𝑛𝑛′𝑡   ∀  𝑛𝑛′ ∈ 𝑁; 𝑡 ∈ 𝑇 (2a) 

𝐹𝑛𝑛′𝑡 ≥ 𝐹𝑛𝑛′
𝐿 𝑦𝑛𝑛′𝑡   ∀  𝑛𝑛′ ∈ 𝑁; 𝑡 ∈ 𝑇 (2b) 

𝐶𝑞𝑏𝑡−1 ≤ 𝐶𝑞𝑑𝑈 + 𝑀(1 − 𝑦𝑏𝑑𝑡)  ∀  𝑞 ∈ 𝑄;𝑑 ∈ 𝐷; 𝑡 ∈ 𝑇 (3a) 
𝐶𝑞𝑏𝑡−1 ≥ 𝐶𝑞𝑑𝐿 − 𝑀(1 − 𝑦𝑏𝑑𝑡)  ∀  𝑞 ∈ 𝑄;𝑑 ∈ 𝐷; 𝑡 ∈ 𝑇 (3b) 
𝐶𝐼𝑁𝑞𝑠 ≤ 𝐶𝑞𝑑𝑈 + 𝑀(1 − 𝑦𝑠𝑑𝑡)  ∀  𝑞 ∈ 𝑄; 𝑠 ∈ 𝑆; 𝑡 ∈ 𝑇 (3c) 
𝐶𝐼𝑁𝑞𝑠 ≥ 𝐶𝑞𝑑𝐿 − 𝑀(1 − 𝑦𝑠𝑑𝑡)  ∀  𝑞 ∈ 𝑄; 𝑠 ∈ 𝑆; 𝑡 ∈ 𝑇 (3d) 

𝐼𝑠𝑡 = 𝐼𝑠𝑡−1 + 𝐹𝐼𝑁𝑠𝑡 − �  
𝑛∈𝐵∪𝐷

𝐹𝑠𝑛𝑡   ∀  𝑠 ∈ 𝑆; 𝑡 ∈ 𝑇 (4a) 

𝐼𝑏𝑡 = 𝐼𝑏𝑡−1 + �  
𝑛∈𝑆∪𝐵

𝐹𝑛𝑏𝑡 − �  
𝑛∈𝐵∪𝐷

𝐹𝑏𝑛𝑡   ∀  𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 (4b) 

𝐼𝑑𝑡 = 𝐼𝑑𝑡−1 + �  
𝑛∈𝑆∪𝐵

𝐹𝑛𝑑𝑡 − 𝐹𝑂𝑈𝑇𝑑𝑡   ∀  𝑑 ∈ 𝐷; 𝑡 ∈ 𝑇 (4c) 

𝐼𝑏𝑡𝐶𝑞𝑏𝑡 = 𝐼𝑏𝑡−1𝐶𝑞𝑏𝑡−1 +�  
𝑠∈𝑆

𝐹𝑠𝑏𝑡𝐶𝐼𝑁𝑞𝑠  + �  
𝑏′∈𝐵

𝐹𝑏′𝑏𝑡𝐶𝑞𝑏′𝑡−1 − �  
𝑛∈𝐵∪𝐷

𝐹𝑏𝑛𝑡𝐶𝑞𝑏𝑡−1   

∀  𝑞 ∈ 𝑄;𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 
(5) 

𝑦𝑛𝑏𝑡 + 𝑦𝑏𝑛′𝑡 ≤ 1   ∀  𝑏 ∈ 𝐵;𝑛 ∈ 𝑆 ∪ 𝐵;𝑛′ ∈ 𝐵 ∪ 𝐷 (6) 
𝐼𝑛𝐿 ≤ 𝐼𝑛𝑡 ≤ 𝐼𝑛𝑈   ∀  𝑛 ∈ 𝑇𝐴; 𝑡 ∈ 𝑇  
𝑦𝑛𝑛′𝑡 ∈ {0,1}  ∀  𝑛𝑛′ ∈ 𝑁; 𝑡 ∈ 𝑇  
𝐹𝑛𝑛′𝑡 ≥ 0;    𝐼𝑛𝑡 ≥ 0;     0 ≤ 𝐶𝑞𝑏𝑡 ≤ 1   ∀  𝑏 ∈ 𝐵;𝑛𝑛′ ∈ 𝑁;𝑛 ∈ 𝑇𝐴;  𝑡 ∈ 𝑇; 𝑞 ∈ 𝑄  

Equation 1 is the objective function that maximizes the profit made from delivering fuel to the 

demand tanks, minus the costs associated with supply flows as well as fixed and variable costs of 

pumping the fuel between tanks. Equations (2a) and (2b) ensure that upper and lower bounds on 

flows between tanks are enforced, and equations (3a-d) ensure that any flow into the demand 

tanks satisfies the quality specificationsgiven by the tank's upper and lower concentration 

bounds. Equations (4a-c) are total mass balances over the supply tanks, blending tanks, and 

demand tanks, respectively. Equation (5) is a quality balance over the blending tanks, and lastly, 

equation (6) ensures that flow can enter a tank, leave a tank, or neither, but never both within the 

same time period of the schedule. It should also be noted that all upper and lower bounds, 𝐶𝑈, 
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𝐶𝐿, 𝐹𝑈, 𝐹𝐿, 𝐼𝑈, 𝐼𝐿, cost coefficients, 𝛼,𝛽, flows into the supply tanks, 𝐹𝐼𝑁𝑠𝑡, and flows out of 

the demand tanks, 𝐹𝑑𝑡𝐼𝑁, are constants. This renders the entire model linear, with the exception of 

equation (5), due to the presence of the nonconvex bilinear terms 𝐹 ⋅ 𝐶 and 𝐼 ⋅ 𝐶, and the 

presence of the binary variable 𝑦𝑛𝑛′𝑡 in equations (1), (2a-b), (3a-d), and (6). 

4. Motivating Examples 

In this section we present first a very small example whose solution can be analyzed analytically 

to provide some insight into the nature of the difficulties faced in solving these problems.  We 

then present a small numerical example to illustrate the difficulties faced by standard solvers in 

the solution of these problems. 

4.1. Small Analytical Example 

In the following example, we present a small instance to illustrate some of the difficulties 

associated with finding feasible solutions to this problem using traditional MINLP techniques. 

Specifically, we present the MINLP formulation and the MILP McCormick relaxation for an 

instance consisting of 2 supply tanks 𝑠1, 𝑠2 ∈ 𝑆, 1 blending tank 𝑏1 ∈ 𝐵, 1 demand tank 𝑑1 ∈

𝐷, 2 time periods 𝑡1, 𝑡2 ∈ 𝑇 and 1 quality 𝑞1 ∈ 𝑄, and with the following data: 𝛽𝑑1 =

10; 𝛽𝑠1 = 1; 𝛽𝑠2 = 13; 𝛼𝑛𝑛′,𝛽𝑛𝑛′ = 0; 𝐹𝑛𝑛′
𝐿 = 0;  𝐹𝑠𝑏1

𝑈 = 1; 𝐹𝑏1𝑑1
𝑈 = 2; 𝐶𝑞1𝑑1

𝑈 = 0.5; 𝐶𝑞1𝑑1
𝐿 =

0.3; 𝐶𝑞1𝑠1
𝐼𝑁 = 0.8; 𝐶𝑞1𝑠2

𝐼𝑁 = 0.2; 𝐹𝑠𝑡1
𝐼𝑁 = 1;𝐹𝑠𝑡2

𝐼𝑁 = 0;  𝐹𝑑1𝑡
𝑂𝑈𝑇 = 0; 𝐼𝑛𝐿 = 0; 𝐼𝑛𝑈 = 2; furthermore, we 

assume that all tanks are empty at time 0.  

Max �  
𝑡=𝑡1,𝑡2

�10𝐹𝑏1𝑑1𝑡 − 𝐹𝑠1𝑏1𝑡 − 13𝐹𝑠2𝑏1𝑡�   

Subject to  
0 ≤ 𝐹𝑠𝑏1𝑡 ≤ 𝑦𝑠𝑏1𝑡                             s = 𝑠1,𝑠2; t = 𝑡1, 𝑡2                              



13 

 

0 ≤ 𝐹𝑏1𝑑1𝑡 ≤ 2𝑦𝑏1𝑑1𝑡                         t = 𝑡1, 𝑡2                                      
0.3 −𝑀�1 − 𝑦𝑏1𝑑1𝑡� ≤ 𝐶𝑞1𝑏1𝑡−1 ≤ 0.5 +𝑀�1 − 𝑦𝑏1𝑑1𝑡�       t = 𝑡1, 𝑡2  
𝐼𝑠𝑡1 = 1 − 𝐹𝑠𝑏1𝑡1                               s = 𝑠1,𝑠2                                                                             

𝐼𝑠𝑡2 = 𝐼𝑠𝑡1 − 𝐹𝑠𝑏1𝑡2                           s = 𝑠1,𝑠2  

𝐼𝑏1𝑡1 = �  
𝑠=𝑠1,𝑠2

𝐹𝑠𝑏1𝑡1 −  𝐹𝑏1𝑑1𝑡1                             

𝐼𝑏1𝑡2 = 𝐼𝑏𝑡1 + �  
𝑠=𝑠1,𝑠2

𝐹𝑠𝑏1𝑡2 −  𝐹𝑏1𝑑1𝑡2                              

 
 
 

𝐼𝑑1𝑡1 = 𝐹𝑏1𝑑1𝑡1    

𝐼𝑑1𝑡2 = 𝐼𝑑1𝑡1 + 𝐹𝑏1𝑑1𝑡2                        
 

𝐼𝑏1𝑡1𝐶𝑞1𝑏1𝑡1 = �  
𝑠=𝑠1,𝑠2

𝐹𝑠𝑏1𝑡1𝐶𝑞1𝑠
𝐼𝑁   

𝐼𝑏1𝑡2𝐶𝑞1𝑏1𝑡2 = 𝐼𝑏1𝑡1𝐶𝑞1𝑏1𝑡1 + �  
𝑠=𝑠1,𝑠2

𝐹𝑠𝑏1𝑡2𝐶𝑞1𝑠
𝐼𝑁 − 𝐹𝑏1𝑑1𝑡2𝐶𝑞1𝑏1𝑡1          

(5') 

𝑦𝑠𝑏1𝑡 + 𝑦𝑏1𝑑1𝑡 ≤ 1   s = 𝑠1,𝑠2; t = 𝑡1, 𝑡2  
0 ≤ 𝐼𝑛𝑡 ≤ 2   n = 𝑠1,𝑠2,𝑏1,𝑑1;  t = 𝑡1, 𝑡2  
0.2 ≤ 𝐶𝑞1𝑏1𝑡 ≤ 0.8   t = 𝑡1, 𝑡2   

𝑦𝑠𝑏1𝑡  ,𝑦𝑏1𝑑1𝑡 ∈ {0,1}  s = 𝑠1,𝑠2; t = 𝑡1, 𝑡2 

  
 

The optimal value to this problem is 6, with a solution of 𝐹𝑏1𝑑1𝑡 = [0,2]; 𝐹𝑠1𝑏1𝑡 = [1,0]; 

𝐹𝑠2𝑏1𝑡 = [1,0]; 𝑦𝑠1𝑏1𝑡 = [1,0]; 𝑦𝑠2𝑏1𝑡 = [1,0];  ; 𝑦𝑏1𝑑1𝑡 = [0,1]; 𝐼𝑠1𝑡, 𝐼𝑠2𝑡 = [0,0]; 𝐼𝑑1𝑡 = [0,2]; 

𝐼𝑏1𝑡 = [2,0]; 𝐶𝑞1𝑏1𝑡 = [0.5,0]. The optimizer is thus transferring 1 unit of flow from each supply 

stream (for a total of 2 units) into the blend tank in time period 1 such that the quality of the 

resulting material is fit to discharge to the demand stream (blended material has quality of 0.5), 

and discharging 2 units of blended material in time period 2.  

If we attempt to solve the above MINLP through traditional global optimization techniques such 

as spatial B&B (for example), we must first replace the bilinear set of constraints (5') by a set of 

bounding convex constraints. Although there are multiple ways of doing so, we propose (in 
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typical fashion) to replace the non-convex constraints with their appropriate set of McCormick 

envelopes. We thus replace (5') with the following set of constraints:  

𝑢𝑞1𝑏1𝑡1 = �  
𝑠=𝑠1,𝑠2

𝐹𝑠𝑏1𝑡1𝐶𝑞1𝑠
𝐼𝑁  

𝑢𝑞1𝑏1𝑡2 = 𝑢𝑞1𝑏1𝑡1 + �  
𝑠=𝑠1,𝑠2

𝐹𝑠𝑏1𝑡2𝐶𝑞1𝑠
𝐼𝑁 − 𝑤𝑞1𝑏1𝑑1𝑡2          

𝑢𝑞1𝑏1𝑡 ≥ 0.2 𝐼𝑏1𝑡    t = 𝑡1, 𝑡2        

(5'b) 
 
(5'c) 

𝑢𝑞1𝑏1𝑡 ≥ 0.8 𝐼𝑏1𝑡 + 2 𝐶𝑞1𝑏1𝑡 − (2)(0.8)     t = 𝑡1, 𝑡2 (5'd) 
𝑢𝑞1𝑏1𝑡 ≤ 0.2 𝐼𝑏1𝑡 + 2 𝐶𝑞1𝑏1𝑡 − (0.2)(2)     t = 𝑡1, 𝑡2 (5'e) 
𝑢𝑞1𝑏1𝑡 ≤ 0.8 𝐼𝑏1𝑡    t = 𝑡1, 𝑡2        (5'f) 
𝑤𝑞1𝑏1𝑑1𝑡2 ≥ 0.2 𝐹𝑏1𝑑1𝑡2     (5'g) 
𝑤𝑞1𝑏1𝑑1𝑡2 ≥ 0.8 𝐹𝑏1𝑑1𝑡2 + 2𝐶𝑞1𝑏1𝑡1 − (2)(0.8)     (5'h) 
𝑤𝑞1𝑏1𝑑1𝑡2 ≤ 0.2 𝐹𝑏1𝑑1𝑡2 + 2𝐶𝑞1𝑏1𝑡1 − (0.2)(2)      (5'i) 
𝑤𝑞1𝑏1𝑑1𝑡2 ≤ 0.8 𝐹𝑏1𝑑1𝑡2 (5'j) 

 
If constraints (5') are replaced by constraints (5'a) – (5'j), and the resulting McCormick MILP 

relaxation is solved, the optimal value to this problem is 9, with a solution of 𝐹𝑏1𝑑1𝑡 =

[0,1];  𝐹𝑠1𝑏1𝑡 = [1,0]; 𝐹𝑠2𝑏1𝑡 = [0,0]; 𝑦𝑠1𝑏1𝑡 = [1,0]; 𝑦𝑠2𝑏1𝑡 = [0,0]; ; 𝑦𝑏1𝑑1𝑡 = [0,1]; 

𝐼𝑠1𝑡, 𝐼𝑠2𝑡 = [0,1]; 𝐼𝑑1𝑡 = [0,1]; 𝐼𝑏1𝑡 = [1,0]; 𝑢𝑞1𝑏1𝑡 = [0.8, 0]; 𝑤𝑞1𝑏1𝑑1𝑡 = [0, 0.8] 𝐶𝑞1𝑏1𝑡 =

[0.5,0]. The optimizer is thus transferring 1 unit of flow from the cheaper supply stream (stream 

1) into the blend tank in time period 1 and discharging that same unit in time period 2 to the 

demand stream. Note however that this solution is MINLP infeasible, since no blending in the 

tank occurs, and the quality of stream 1 is “off-spec” (𝐶𝑞1𝑠1
𝐼𝑁 = 0.8) relative to the demand 

requirements if a discharge is to occur (0.3 ≤ 𝐶𝑞1𝑏1𝑡 ≤ 0.5). In essence, constraint (5') in the 

MINLP is being violated in the MILP relaxation. Furthermore, due to the nature of the objective 

function that incentivizes the optimizer to exploit the “gap” that exists between the bilinear set of 
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constraints (5') and their McCormick relaxation (5'a) – (5'j), it is often the case in practice that 

traditional techniques used for non-convex MINLP problems struggle to find feasible solutions 

after many iterations/nodes. In the following section, we show this for larger instances of the 

multiperiod blend scheduling problem using existing global optimization solvers, which 

motivates the need for developing novel methods to address this issue. In Section 5, we discuss 

such novel methods based on a radix-based discretization scheme that addresses this issue in a 

conceptually different manner than traditional techniques. Indeed, instead of relying on an MILP 

relaxation that is necessarily feasible – assuming an MINLP feasible solution exists – and trying 

to obtain an MINLP feasible solution subsequently, we develop an MILP restriction (by 

discretizing) that is necessarily MINLP feasible –assuming an MILP feasible solution exists. 

This change in perspective seems to be a promising strategy for solving the multiperiod blend 

scheduling problem, as demonstrated in section 7 on a series of randomized examples.  

4.2. Small Numerical Example 

Table 1: Supply tank specifications 

 𝑪𝒔 (% mass) 𝑭𝒔 (𝟏𝟎𝟑 kg) 
in time 

Tank Qual. 
1 

Qual. 
2 1 2 3 𝜷𝒔 

($/kg) 
1 0.4 0.1 1.0 0.1 0.4 0.1 
2 0.1 0.9 0.6 0.2 0.8 0.2 

 

Table 2: Demand tank specifications 

 Bounds on 𝑪   
(% mass) 

𝑭𝒅 (𝟏𝟎𝟑 kg) in 
time  

Tank Qual. 1 Qual. 2 1 2 3 𝜷𝒅 
($/kg) 

7 0.1 - 0.4 0.2 - 1.0 0.02 0.17 0.73 5.1 
8 0.2 - 0.9 0.4 - 0.7 0.04 0.65 0.65 4.0 

 

Table 3: Initial conditions and costs of flows 

    𝑪𝟎 (% mass) Cost Coefficients 𝜶 (𝟏𝟎𝟑 $), 𝜷 ($/ kg) to Tank 
Tank 𝑰𝟎 Qual. 1 Qual. 2 3 4 5 6 7 8 

1 0.3 -- -- 0.30, 0.47 0.23, 0.84 0.19, 0.23 0.17, 0.23 -- 0.44, 0.31 
2 1.7 -- -- -- 0.92, 0.43 0.18, 0.90 0.98, 0.44 -- 0.11, 0.26 
3 1.2 0.5 0.3 -- 0.41, 0.59 0.26, 0.60 0.71, 0.22 0.12, 0.30 0.32, 0.42 
4 1.1 0.9 0.4 0.51, 0.09 -- 0.26, 0.80 0.03, 0.93 0.73, 0.49 0.58, 0.24 
5 0.3 0.1 0.8 0.46, 0.96 0.55, 0.52 -- 0.23, 0.49 0.62, 0.68 0.40, 0.37 
6 1.7 0.4 0.2 0.99, 0.04 0.89, 0.91 0.80, 0.10 -- 0.26, 0.34 0.68, 0.14 
7 1.2 -- -- -- -- -- -- -- -- 
8 0.7 -- -- -- -- -- -- -- -- 
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To provide some insight into the nature of the computational difficulties encountered in the 

multiperiod blend scheduling problem, we consider a small  example.  Assume the blending 

system shown in Figure 2 represents the gasoline blending unit in a small refinery. It contains 8 

tanks, and is to be optimized over 3 time periods (24 hours each), and contains 2 qualities 

(properties) of importance. Two supply tanks are filled over time with incoming fuel from the 

distillation unit, and feed four blending tanks to meet the demand and specifications of two 

products. Given the network topology in Figure 2, and all associated values given in Tables 1, 2, 

and 3, the schedule for blending the fuels is sought that maximizes total profit. 

 
Figure 2: Example Network Topology 

The nonconvex MINLP model was implemented in the modeling language GAMS 23.8.1 

(Brook, Kendrick, and Meeraus, 1988) and solved using a variety of solvers. The global solution 

has an objective function of $13,527, and the flow schedule is shown in Figure 3. Note that only 

the blending tanks have the restriction that flows cannot simultaneously receive and deliver flow, 

because the concentration in these tanks can vary. This is not true of the supply and demand 

tanks. The planned tank transfers quickly fill the demand tanks to their maximum inventory in 

just three time periods. Three commercially available MINLP solvers that guarantee global 
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optima, BARON 10.2.0 (Sahinidis, 1996), LINDOGlobal (LINDO API, 2011), and GloMIQO 

(Misener & Floudas, 2012) were used to solve the 8 tank problem. As seen in Table 4, 

LINDOGlobal was able to converge in 96 minutes, while BARON and GloMIQO were both 

unable to converge to the global optimum within two hours. Two other solvers that do not 

guarantee global optima but solve MINLPs under convexity assumptions, DICOPT (Grossmann, 

Viswanathan, Vecchietti, Raman, & Kalvelagen, 2003) and sBB (Bussieck & Drud, 2001), failed 

to find the global optimum.  Note that due to the nonconvexity of the problem, the outer 

approximation (OA) algorithm used in DICOPT has particular difficulty even finding a feasible 

solution as was discussed in section 4.1. The results for these solvers are shown in Table 4. All 

computations were performed on a dual CPU computer with two Intel Xeon X5650 processors at 

2.66GHz each, 16 GB of RAM, and running Ubuntu Linux 10.04. 

Table 4: Results of solving the 8 tank example problem 

 BARON LINDOGlobal GloMIQO DICOPT sBB 
Wall Time (s) >7200 5788.5 >7200 >7200 17.0 

Objective Function Value ($) 13.104 13.527 13.026 * 13.443 
 * No feasible solution found  

 

  
T = 0 T = 1 
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T = 2 T = 3 

Figure 3: Solution to example 8 tank problem. Flows and inventories are in 103 kg. 

Table 5: Results of BARON solving 7 sample multiperiod blend scheduling problems 

Tanks 6 8 8 8 8 8 8 
Time Periods 3 3 3 3 4 4 4 

Qualities 2 2 2 2 2 2 2 
Wall Time (s) 21.12 >7200 >7200 >7200 >7200 >7200 >7200 
Relative Gap 52.3% 23.7% 205.6% 13.4% 13.4% 409.5% 17.2% 
Constraints 214 625 607 628 861 885 737 
Continuous 
Variables 67 136 136 136 185 189 169 

Binary 
Variables 36 87 87 87 120 124 104 

Non-Zero 
Elements 543 1722 1672 1766 2413 2469 2107 

Nonlinear 
Non-Zeros 64 256 244 256 376 376 358 

This problem contains only 8 tanks, 3 time periods, and 2 qualities, and yet takes over one hour 

to solve to global optimality when the solver is able to converge at all. Similar problems with 

different numbers of tanks, qualities, and time periods yield comparable results when solved with 

BARON (see Table 5). Real-world applications contain a larger number of tanks, qualities, and 

time periods. Additionally, it can be useful for its extension to a two-stage stochastic 

programming model, which would greatly increase its size. In order to solve larger problems, it 

is clear that a new approach is needed. 

5. Radix-Based Discretization 

We introduce in this section our basic approach to the solution of the multiperiod blend 
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scheduling problem, a technique known as radix-based discretization, or multiparametric 

disaggregation as coined in the paper by Teles, Castro, & Matos (2011).  This technique, and 

the algorithms that follow, have been refined and described in a recent paper by Kolodziej et al. 

(2012). As we treat the technique primarily as a discretization technique, we will call it 

radix-based discretization. 

The general principle behind radix-based discretization is an equally-spaced discretization based 

on powers of some radix or numerical base. This results in a linear increase of binary variables 

for an order of magnitude increase in discretization precision. For example, a traditional 

discretization technique over a set of points 𝑎𝑚,𝑚 = 1. .𝑀, would take the following form,  

𝑥 = �  
𝑀

𝑚=1

𝑎𝑚 ⋅ 𝑦𝑚 (7) 

where 𝑦𝑚 ∈ {0,1}, 𝑦𝑚 = 1 if 𝑥 = 𝑎𝑚 and 𝑦𝑚 = 0 otherwise, and 𝑚 = {1, . .𝑀} defining 

the number of discretization points. In contrast, the radix-based discretization technique takes the 

form  

𝑥 = �  
𝑃

ℓ=𝑝

�  
𝑅−1

𝑘=0

𝑅ℓ ⋅ 𝑘 ⋅ 𝑦𝑘ℓ (8) 

where 𝑅 is the chosen numerical base, 𝑝 is the smallest power of 𝑅 to be considered (the 

finest level of discretization), and 𝑃 is the largest power of 𝑅 (which provides an upper bound 

on the discretization). Most commonly, a numerical base of 10 is chosen, which results in the 

following form:  

𝑥 = �  
𝑃

ℓ=𝑝

�  
9

𝑘=0

10ℓ ⋅ 𝑘 (9) 
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This form allows for a very intuitive analogy where the first summation (ℓ = {𝑝, . .𝑃}) represents 

the place value and the second summation represents each digit in the decimal system {1,..9}. 

Some properties of this approach are shown in Figure 4 and Table 6 using 𝑅 = 10, 𝑃 = 0, and 

𝑝 = {0,−1,−2}.   

Figure 4: Discretized axes using radix-based discretization 
for 𝑃 = 0, 𝑝 = {0,-1,-2}.  

Table 6: Characteristics of Radix-Based (Base 10) 
Discretization at P = 0, p = {0,-1,-2}. 
 

𝑝 (Smallest Power) 0 -1 -2 
𝑃 (Largest Power) 0 0 0 

Range 0-9 0-9.9 0-9.99 
Increment 1 0.1 0.01 

Significant Digits 1 2 3 
Binary Variables (RBD) 10 20 30 

Binary Variables (Traditionally) 10 100 1000 

For the least number of binary variables, a numerical base of 2 can be chosen.  This requires a 

minor modification to the discretization formula to convert back to a decimal system: 

𝑥 = 10Π�  
𝑃

ℓ=𝑝

�  
1

𝑘=0

2ℓ ⋅ 𝑘 (10) 

In this expression, Π is the power of 10 such that 10Π ∙ 2P ≥ xj
U, where xj

U is the upper bound on 

xj.  The properties of this binary (base 2) approach are shown below in Table 7 for p = 0 and P 

= {4,7,10}.  Note that for approximately the same precision as the discretization levels used in 

Table 6, fewer binary variables are required. 
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Table 7: Characteristics of Radix-Based (Base 2) 
Discretization at p = 0, P = {4,7,10} 
 

𝑝 (Smallest Power) 0 0 0 
𝑃 (Largest Power) 4 7 10 

Range 0-15 0-12.7 0-10.23 
Increment 1 0.1 0.01 

Significant Digits 1 2 3 
Binary Variables 

(RBD) 8 14 20 

Binary Variables 
(Traditionally) 10 100 1000 

For the purpose of this technique, maximizing bilinear programs can be written in the following 

form (Kolodziej et al., 2012): 

Max 𝑧 = 𝑓0(𝑥,𝑦) 

Subject to  

    𝑓𝑞(𝑥,𝑦) ≤ 0    𝑞 ∈ 𝑄\{0} 

    𝑓𝑞(𝑥,𝑦) = �  
(𝑖,𝑗)∈𝐵𝐿𝑞

𝑎𝑖𝑗𝑞𝑥𝑖𝑥𝑗 + ℎ𝑞(𝑥,𝑦)    𝑞 ∈ 𝑄 

    𝑥 ∈ 𝑆 ∩ Ω ⊂ ℝ𝑛 

    𝑦 ∈ {0,1} 

(P) 

where hq(x,y) is convex and twice differentiable, aijq is a scalar with i ∈ I, j ∈ J, and q ∈ Q 

represents the set of all functions fq, including the objective function f0 and all constraints. BLq is 

an (i,j)-index set which defines the bilinear terms present in the problem. The set S ⊂ ℝn is 

convex, and Ω ⊂ ℝn is an n-dimensional hyperrectangle defined in terms of the initial variable 

bounds xL and xU: 

Ω = {𝑥 ∈ ℝ𝑛: 0 ≤ 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈} 

This problem can be reformulated by discretizing one of the variables involved in each 

bilinearity, xj (Kolodziej et al., 2012).  Using this discretization, which is summarized in 

Appendix A, we can then reformulate the problem (P) into an MILP approximation of the 

original problem (P): 
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Max 𝑧′ = 𝑓0(𝑥,𝑦) = �  
(𝑖,𝑗)∈𝐵𝐿0

𝑎𝑖𝑗0𝑤𝑖𝑗 + ℎ0(𝑥,𝑦) 

Subject to 

𝑓𝑞(𝑥,𝑦) = �  
(𝑖,𝑗)∈𝐵𝐿𝑞

𝑎𝑖𝑗𝑞𝑤𝑖𝑗 + ℎ𝑞(𝑥,𝑦) ≤ 0    𝑞 ∈ 𝑄\{0} 

𝑤𝑖𝑗 = �  
𝑃

ℓ=𝑝

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝑥�𝑖𝑗𝑘ℓ    ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄 

𝑥𝑗 = �  
𝑃

ℓ=𝑝

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝑧𝑗𝑘ℓ    ∀  𝑗 ∈ {𝑗|(𝑖, 𝑗) ∈ 𝐵𝐿𝑞 ,𝑞 ∈ 𝑄} 

𝑥�𝑖𝑗𝑘ℓ ≤ 𝑥𝑖𝑈 ⋅ 𝑧𝑗𝑘ℓ    ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄;𝑘 ∈ 𝐾; ℓ ∈ 𝐿 

𝑥�𝑖𝑗𝑘ℓ ≥ 𝑥𝑖𝐿 ⋅ 𝑧𝑗𝑘ℓ    ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄;𝑘 ∈ 𝐾; ℓ ∈ 𝐿 

�  
9

𝑘=0

𝑥�𝑖𝑗𝑘ℓ = 𝑥𝑖    ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄;𝑘 ∈ 𝐾; ℓ ∈ 𝐿 

�  
9

𝑘=0

𝑧𝑗𝑘ℓ = 1    ∀  𝑗 ∈ {𝑗|(𝑖, 𝑗) ∈ 𝐵𝐿𝑞 ,𝑞 ∈ 𝑄};𝑘 ∈ 𝐾; ℓ ∈ 𝐿 

𝑧𝑗𝑘ℓ ∈ {0,1}    ∀  𝑗 ∈ {𝑗|(𝑖, 𝑗) ∈ 𝐵𝐿𝑞 ,𝑞 ∈ 𝑄};𝑘 ∈ 𝐾; ℓ ∈ 𝐿 

𝑥 ∈ 𝑆 ∩ Ω ⊂ ℝ𝑛 

𝑦 ∈ {0,1} 

(P') 

This formulation discretizes one variable in the bilinear term using the radix-based discretization 

scheme described earlier.  xj is a vector of discretized variables that are involved in a bilinear 

term and wij represents the bilinear products such that 𝑤𝑖𝑗 = 𝑥𝑖 ⋅ 𝑥𝑗.  𝑧𝑗𝑘ℓ is a binary variable 

introduced in the discretization, such that 𝑧𝑗𝑘ℓ = 1 if the digit k in the ℓth power of 10’s place of 

xj is activated, and 𝑧𝑗𝑘ℓ = 0 otherwise. 

By adding a pseudo-slack term to the above discretized problem to fill the gap between 

discretization points, we can derive a relaxation of the original problem (P) that is also an MILP: 

Max 𝑧𝑅 = 𝑓0(𝑥,𝑦) = �  
(𝑖,𝑗)∈𝐵𝐿0

𝑎𝑖𝑗0𝑤𝑖𝑗 + ℎ0(𝑥,𝑦) 

Subject to 

(PR) 
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    𝑓𝑞(𝑥,𝑦) = �  
(𝑖,𝑗)∈𝐵𝐿𝑞

𝑎𝑖𝑗𝑞𝑤𝑖𝑗 + ℎ𝑞(𝑥,𝑦) ≤ 0    𝑞 ∈ 𝑄\{0} 

    𝑤𝑖𝑗 = �  
𝑃

ℓ=𝑝

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝑥�𝑖𝑗𝑘ℓ + �  
1

𝑘=0

10𝑝 ⋅ 𝑘 ⋅ 𝑥�𝑖𝑗𝑘     ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄 

    𝑥𝑗 = �  
𝑃

ℓ=𝑝

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝑧𝑖𝑗𝑘ℓ + �  
1

𝑘=0

10𝑝 ⋅ 𝑘 ⋅ �̃�𝑖𝑗𝑘     ∀𝑗 ∈ {𝑗|(𝑖, 𝑗) ∈ 𝐵𝐿𝑞 , 𝑞 ∈ 𝑄} 

    𝑥�𝑖𝑗𝑘ℓ ≤ 𝑥𝑖𝑈 ⋅ 𝑧𝑖𝑗𝑘ℓ    ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄; ℓ ∈ 𝐿; 𝑘 ∈ 𝐾 
    𝑥�𝑖𝑗𝑘ℓ ≥ 𝑥𝑖𝐿 ⋅ 𝑧𝑖𝑗𝑘ℓ    ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄; ℓ ∈ 𝐿;𝑘 ∈ 𝐾 
    𝑥�𝑖𝑗𝑘 ≤ 𝑥𝑖𝑈 ⋅ �̃�𝑖𝑗𝑘     ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄;𝑘 ∈ {0,1} 
    𝑥�𝑖𝑗𝑘 ≥ 𝑥𝑖𝐿 ⋅ �̃�𝑖𝑗𝑘     ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄;𝑘 ∈ {0,1} 

    �  
9

𝑘=0

𝑥�𝑖𝑗𝑘ℓ = 𝑥𝑖     ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄; ℓ ∈ 𝐿 

    �  
1

𝑘=0

𝑥�𝑖𝑗𝑘 = 𝑥𝑖    ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄 

    �  
9

𝑘=0

𝑧𝑖𝑗𝑘ℓ = 1    ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄; ℓ ∈ 𝐿 

    �  
1

𝑘=0

�̃�𝑖𝑗𝑘 = 1      ∀(𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄 

    𝑧𝑖𝑗𝑘ℓ ∈ {0,1}    ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄; ℓ ∈ 𝐿;𝑘 ∈ 𝐾 
    0 ≤ �̃�𝑖𝑗𝑘 ≤ 1    ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄;𝑘 ∈ {0,1} 
    𝑥 ∈ 𝑆 ∩ Ω ⊂ ℝ𝑛 
    𝑦 ∈ {0,1} 

This problem (PR) is a relaxation of problem (P) because it includes at least (and in most cases 

more than) the entire feasible region of problem (P). The bilinear terms have been relaxed by 

adding continuous terms to the discretized terms, and constraints have been added (similar to the 

constraints from the discretized problem) to incorporate these continuous terms into the 

formulation.  In other words, 𝑥�𝑖𝑗𝑘 and �̃�𝑖𝑗𝑘 are analogous to 𝑥�𝑖𝑗𝑘ℓ and 𝑧𝑖𝑗𝑘ℓ, respectively, 

and require similar constraints. 
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6. Improved Global Optimization of the Multiperiod Blend Scheduling 

Problem 

Because the multiperiod MINLP blending problem has bilinear terms, the MINLP formulations 

(P) and (P') in Section 4 can be applied to this problem and solved in a significantly decreased 

amount of time as will be shown later in the paper. 

6.1. Model Reformulation – Decimal 

In order to utilize the global optimization algorithms, problems (MPBP') and (MPBPR) (the 

discretized and relaxed problems, respectively) must be derived. Two bilinear terms, 𝐹𝑏𝑛𝑡𝐶𝑞𝑏𝑡 

and 𝐼𝑏𝑡𝐶𝑞𝑏𝑡, must be reformulated to mixed-integer linear constraints as was shown in Section 4. 

Additionally, since 𝐶𝑞𝑏𝑡 is present in both bilinear terms, it is a natural choice for discretization. 

We start with individually reformulating the bilinear terms 𝑤𝑞𝑏𝑛𝑡
𝐹𝐶 = 𝐹𝑏𝑛𝑡𝐶𝑞𝑏𝑡  and 𝑤𝑞𝑏𝑡

𝐼𝐶 =

𝐼𝑏𝑡𝐶𝑞𝑏𝑡. For simplicity, we will denote the bilinearities 𝑤𝐹𝐶 = 𝐹 ⋅ 𝐶 and 𝑤𝐼𝐶 = 𝐼 ⋅ 𝐶: 

𝑤𝐹𝐶 = �  
𝑃

ℓ=𝑝

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝐹�𝑘ℓ (11) 

𝐶 = �  
𝑃

ℓ=𝑝

�  
9

𝑗=0

10ℓ ⋅ 𝑘 ⋅ 𝑧𝑘ℓ (12) 

𝐹�𝑘ℓ ≤ 𝐹𝑈 ⋅ 𝑧𝑘ℓ        ∀  ℓ ∈ {𝑝, . . . ,𝑃};𝑘 ∈ {0, . . . ,9} (13) 

�  
9

𝑘=0

𝐹�𝑘ℓ = 𝐹        ∀  ℓ ∈ {𝑝, . . . ,𝑃} (14) 

�  
9

𝑘=0

𝑧𝑘ℓ = 1        ∀  ℓ ∈ {𝑝, . . . ,𝑃} (15) 

𝐹�𝑘ℓ ≥ 0        ∀  ℓ ∈ {𝑝, . . . ,𝑃};𝑘 ∈ {0, . . . ,9}  
𝑧𝑘ℓ ∈ {0,1}  

𝑤𝐼𝐶 = �  
𝑃

ℓ=𝑝

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝐼𝑘ℓ 
(16) 
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𝐶 = �  
𝑃

ℓ=𝑝

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝑧𝑘ℓ (17) 

𝐼𝑘ℓ ≤ 𝐼𝑈 ⋅ 𝑧𝑘ℓ        ∀  ℓ ∈ {𝑝, . . . ,𝑃};𝑘 ∈ {0, . . . ,9} (18) 

�  
9

𝑘=0

𝐼𝑘ℓ = 𝐼        ∀  ℓ ∈ {𝑝, . . . ,𝑃} (19) 

�  
9

𝑘=0

𝑧𝑘ℓ = 1        ∀  ℓ ∈ {𝑝, . . . ,𝑃} (20) 

𝐼𝑘ℓ ≥ 0        ∀  ℓ ∈ {𝑝, . . . ,𝑃},𝑘 ∈ {0, . . . ,9}  
𝑧𝑘ℓ ∈ {0,1}  

Note that equations 12 and 17 are identical, as are equations 15 and 20. Thus, we can remove 

both equations 17 and 20. Integrating constraints (11)-(16), (18)-(19) into problem (MPBP), we 

obtain the final form of (MPBP'): 

Max�  
𝑡∈𝑇

� �  
𝑛∈S∪𝐵

�  
𝑑∈𝐷

𝛽𝑑𝐹𝑛𝑑𝑡 −�  
𝑠∈𝑆

�  
𝑛∈𝐵∪𝐷

𝛽𝑠𝐹𝑠𝑛𝑡 − �  
𝑛𝑛′∈𝑁

(𝛼𝑛𝑛′𝑦𝑛𝑛′𝑡 + 𝛽𝑛𝑛′𝐹𝑛𝑛′𝑡)� 

Subject to 
𝐹𝑛𝑛′𝑡 ≤ 𝐹𝑛𝑛′

𝑈 𝑦𝑛𝑛′𝑡    ∀  𝑛𝑛′ ∈ 𝑁; 𝑡 ∈ 𝑇 
𝐹𝑛𝑛′𝑡 ≥ 𝐹𝑛𝑛′

𝐿 𝑦𝑛𝑛′𝑡    ∀  𝑛𝑛′ ∈ 𝑁; 𝑡 ∈ 𝑇 
𝐶𝑞𝑏𝑡−1 ≤ 𝐶𝑞𝑑𝑈 + 𝑀(1 − 𝑦𝑏𝑑𝑡)    ∀  𝑞 ∈ 𝑄;𝑑 ∈ 𝐷; 𝑡 ∈ 𝑇 
𝐶𝑞𝑏𝑡−1 ≥ 𝐶𝑞𝑑𝐿 − 𝑀(1 − 𝑦𝑏𝑑𝑡)    ∀  𝑞 ∈ 𝑄;𝑑 ∈ 𝐷; 𝑡 ∈ 𝑇 
𝐶𝐼𝑁𝑞𝑠 ≤ 𝐶𝑞𝑑𝑈 + 𝑀(1 − 𝑦𝑠𝑑𝑡)    ∀  𝑞 ∈ 𝑄; 𝑠 ∈ 𝑆; 𝑡 ∈ 𝑇 
𝐶𝐼𝑁𝑞𝑠 ≥ 𝐶𝑞𝑑𝐿 − 𝑀(1 − 𝑦𝑠𝑑𝑡)    ∀  𝑞 ∈ 𝑄; 𝑠 ∈ 𝑆; 𝑡 ∈ 𝑇 

𝐼𝑠𝑡 = 𝐼𝑠𝑡−1 + 𝐹𝐼𝑁𝑠𝑡 − �  
𝑛∈𝐵∪𝐷

𝐹𝑠𝑛𝑡    ∀  𝑠 ∈ 𝑆; 𝑡 ∈ 𝑇 

𝐼𝑏𝑡 = 𝐼𝑏𝑡−1 + �  
𝑛∈𝑆∪𝐵

𝐹𝑛𝑏𝑡 − �  
𝑛∈𝐵∪𝐷

𝐹𝑏𝑛𝑡    ∀  𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 

𝐼𝑑𝑡 = 𝐼𝑑𝑡−1 + �  
𝑛∈𝑆∪𝐵

𝐹𝑛𝑑𝑡 − 𝐹𝑂𝑈𝑇𝑑𝑡    ∀  𝑑 ∈ 𝐷; 𝑡 ∈ 𝑇 

𝑤𝑞𝑏𝑡𝐼𝐶 = 𝑤𝑞𝑏𝑡−1𝐼𝐶 + �  
𝑠∈𝑆

𝐹𝑠𝑏𝑡𝐶𝐼𝑁𝑞𝑠 + �  
𝑏′∈𝐵

𝑤𝑞𝑏′𝑏𝑡𝐹𝐶 − �  
𝑛∈𝐵∪𝐷

𝑤𝑞𝑏𝑛𝑡𝐹𝐶     ∀  𝑞 ∈ 𝑄;𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 

𝑦𝑛𝑏𝑡 + 𝑦𝑏𝑛′𝑡 ≤ 1    ∀  𝑏 ∈ 𝐵;𝑛 ∈ 𝑆 ∪ 𝐵;𝑛′ ∈ 𝐵 ∪ 𝐷 

𝑤𝑞𝑏𝑛𝑡𝐹𝐶 = �  
𝑃

ℓ=𝑝

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝐹�𝑘ℓ𝑞𝑏𝑛𝑡    ∀  𝑞 ∈ 𝑄; 𝑏 ∈ 𝐵;𝑛 ∈ 𝐵 ∪ 𝐷; 𝑡 ∈ 𝑇 

𝐶𝑞𝑏𝑡 = �  
𝑃

ℓ=𝑝

�  
9

𝑗=0

10ℓ ⋅ 𝑘 ⋅ 𝑧𝑘ℓ𝑞𝑏𝑡    ∀  𝑞 ∈ 𝑄;𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 

𝐹�𝑘ℓ𝑞𝑏𝑛𝑡 ≤ 𝐹𝑏𝑛𝑈 ⋅ 𝑧𝑘ℓ𝑞𝑏𝑡    ∀  ℓ ∈ {𝑝, . . . ,𝑃};𝑘 ∈ {0, . . . ,9};𝑞 ∈ 𝑄;𝑏 ∈ 𝐵;𝑛 ∈ 𝐵 ∪ 𝐷; 𝑡 ∈ 𝑇 

(MPBP') 
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�  
9

𝑘=0

𝐹�𝑘ℓ𝑞𝑏𝑛𝑡 = 𝐹𝑏𝑛𝑡    ∀  ℓ ∈ {𝑝, . . . ,𝑃};𝑞 ∈ 𝑄;𝑏 ∈ 𝐵;𝑛 ∈ 𝐵 ∪ 𝐷; 𝑡 ∈ 𝑇 

�  
9

𝑘=0

𝑧𝑘ℓ𝑞𝑏𝑡 = 1    ∀  ℓ ∈ {𝑝, . . . ,𝑃};𝑞 ∈ 𝑄;𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 

𝑤𝑞𝑏𝑡𝐼𝐶 = �  
𝑃

ℓ=𝑝

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝐼𝑘ℓ𝑞𝑏𝑡    ∀  𝑞 ∈ 𝑄; 𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 

𝐼𝑘ℓ𝑞𝑏𝑡 ≤ 𝐼𝑏𝑡𝑈 ⋅ 𝑧𝑘ℓ𝑞𝑏𝑡    ∀  ℓ ∈ {𝑝, . . . ,𝑃};𝑘 ∈ {0, . . . ,9};𝑞 ∈ 𝑄;𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 

�  
9

𝑘=0

𝐼𝑘ℓ𝑞𝑏𝑡 = 𝐼𝑏𝑡     ∀  ℓ ∈ {𝑝, . . . ,𝑃};𝑞 ∈ 𝑄;𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 

𝐼𝑛𝐿 ≤ 𝐼𝑛𝑡 ≤ 𝐼𝑛𝑈    ∀  𝑛 ∈ 𝑇𝐴; 𝑡 ∈ 𝑇 
𝑦𝑛𝑛′𝑡 ∈ {0,1}    ∀  𝑛𝑛′ ∈ 𝑁; 𝑡 ∈ 𝑇 
𝐹𝑛𝑛′𝑡 ≥ 0;    𝐼𝑛𝑡 ≥ 0;     0 ≤ 𝐶𝑞𝑏𝑡 ≤ 1    ∀  𝑏 ∈ 𝐵;𝑛𝑛′ ∈ 𝑁;𝑛 ∈ 𝐵 ∪ 𝐷;  𝑡 ∈ 𝑇;𝑞 ∈ 𝑄 
𝐼𝑘ℓ𝑞𝑏𝑡 ≥ 0    𝐹�𝑘ℓ𝑞𝑏𝑛𝑡 ≥ 0    ∀  ℓ ∈ {𝑝, . . . ,𝑃};𝑘 ∈ {0, . . . ,9};𝑞 ∈ 𝑄;𝑏 ∈ 𝐵;𝑛 ∈ 𝐵 ∪ 𝐷; 𝑡 ∈ 𝑇 
𝑧𝑘ℓ𝑞𝑏𝑡 ∈ {0,1}    ∀  ℓ ∈ {𝑝, . . . ,𝑃};𝑘 ∈ {0, . . . ,9};𝑞 ∈ 𝑄;𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 

Because Problem (MPBP') is a maximization problem, it yields a lower bound on (MPBP) 

provided that it finds a feasible solution. Next, we can similarly derive problem (MPBPR), 

which yields a relaxation (and thus an upper bound) of (MPBP). 

Max�  
𝑡∈𝑇

� �  
𝑛∈S∪𝐵

�  
𝑑∈𝐷

𝛽𝑑𝐹𝑛𝑑𝑡 −�  
𝑠∈𝑆

�  
𝑛∈𝐵∪𝐷

𝛽𝑠𝐹𝑠𝑛𝑡 − �  
𝑛𝑛′∈𝑁

(𝛼𝑛𝑛′𝑦𝑛𝑛′𝑡 + 𝛽𝑛𝑛′𝐹𝑛𝑛′𝑡)� 

Subject to 
𝐹𝑛𝑛′𝑡 ≤ 𝐹𝑛𝑛′

𝑈 𝑦𝑛𝑛′𝑡    ∀  𝑛𝑛′ ∈ 𝑁; 𝑡 ∈ 𝑇 
𝐹𝑛𝑛′𝑡 ≥ 𝐹𝑛𝑛′𝐿 𝑦𝑛𝑛′𝑡    ∀  𝑛𝑛′ ∈ 𝑁; 𝑡 ∈ 𝑇 
𝐶𝑞𝑏𝑡−1 ≤ 𝐶𝑞𝑑𝑈 + 𝑀(1 − 𝑦𝑏𝑑𝑡)    ∀  𝑞 ∈ 𝑄;𝑑 ∈ 𝐷; 𝑡 ∈ 𝑇 
𝐶𝑞𝑏𝑡−1 ≥ 𝐶𝑞𝑑𝐿 − 𝑀(1 − 𝑦𝑏𝑑𝑡)    ∀  𝑞 ∈ 𝑄;𝑑 ∈ 𝐷; 𝑡 ∈ 𝑇 

𝐶𝐼𝑁𝑞𝑠 ≤ 𝐶𝑞𝑑𝑈 +𝑀(1− 𝑦𝑠𝑑𝑡)    ∀  𝑞 ∈ 𝑄; 𝑠 ∈ 𝑆; 𝑡 ∈ 𝑇 

𝐶𝐼𝑁𝑞𝑠 ≥ 𝐶𝑞𝑑𝐿 −𝑀(1− 𝑦𝑠𝑑𝑡)    ∀  𝑞 ∈ 𝑄; 𝑠 ∈ 𝑆; 𝑡 ∈ 𝑇 

𝐼𝑠𝑡 = 𝐼𝑠𝑡−1 + 𝐹𝐼𝑁𝑠𝑡 − �  
𝑛∈𝐵∪𝐷

𝐹𝑠𝑛𝑡    ∀  𝑠 ∈ 𝑆; 𝑡 ∈ 𝑇 

𝐼𝑏𝑡 = 𝐼𝑏𝑡−1 + �  
𝑛∈𝑆∪𝐵

𝐹𝑛𝑏𝑡 − �  
𝑛∈𝐵∪𝐷

𝐹𝑏𝑛𝑡    ∀  𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 

𝐼𝑑𝑡 = 𝐼𝑑𝑡−1 + �  
𝑛∈𝑆∪𝐵

𝐹𝑛𝑑𝑡 − 𝐹𝑂𝑈𝑇𝑑𝑡    ∀  𝑑 ∈ 𝐷; 𝑡 ∈ 𝑇 

𝑤𝑞𝑏𝑡𝐼𝐶 = 𝑤𝑞𝑏𝑡−1𝐼𝐶 + �  
𝑠∈𝑆

𝐹𝑠𝑏𝑡𝐶𝐼𝑁𝑞𝑠 + �  
𝑏′∈𝐵

𝑤𝑞𝑏′𝑏𝑡𝐹𝐶 − �  
𝑛∈𝐵∪𝐷

𝑤𝑞𝑏𝑛𝑡𝐹𝐶     ∀  𝑞 ∈ 𝑄;𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 

𝑦𝑛𝑏𝑡 + 𝑦𝑏𝑛′𝑡 ≤ 1    ∀  𝑏 ∈ 𝐵;𝑛 ∈ 𝑆 ∪ 𝐵;𝑛′ ∈ 𝐵 ∪ 𝐷 

(MPBPR) 
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𝑤𝑞𝑏𝑛𝑡𝐹𝐶 = �  
𝑃

ℓ=𝑝

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝐹�𝑘ℓ𝑞𝑏𝑛𝑡 + �  
1

𝑘=0

10𝑝 ⋅ 𝑘 ⋅ 𝐹�𝑘𝑞𝑏𝑛𝑡   ∀  𝑞 ∈ 𝑄; 𝑏 ∈ 𝐵;𝑛 ∈ 𝐵 ∪ 𝐷; 𝑡 ∈ 𝑇 

𝐶𝑞𝑏𝑡 = �  
𝑃

ℓ=𝑝

�  
9

𝑗=0

10ℓ ⋅ 𝑘 ⋅ 𝑧𝑘ℓ𝑞𝑏𝑡 + �  
1

𝑘=0

10𝑝 ⋅ 𝑘 ⋅ �̃�𝑘𝑞𝑏𝑡            ∀  𝑞 ∈ 𝑄; 𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 

𝐹�𝑘ℓ𝑞𝑏𝑛𝑡 ≤ 𝐹𝑏𝑛𝑈 ⋅ 𝑧𝑘ℓ𝑞𝑏𝑡    ∀  ℓ ∈ {𝑝, . . . ,𝑃};𝑘 ∈ {0, . . . ,9};𝑞 ∈ 𝑄; 𝑏 ∈ 𝐵;𝑛 ∈ 𝐵 ∪ 𝐷; 𝑡 ∈ 𝑇 
𝐹�𝑘𝑞𝑏𝑛𝑡 ≤ 𝐹𝑏𝑛𝑈 ⋅ �̃�𝑘𝑞𝑏𝑡    ∀  𝑘 ∈ {0, … ,9};𝑞 ∈ 𝑄; 𝑏 ∈ 𝐵;𝑛 ∈ 𝐵 ∪ 𝐷; 𝑡 ∈ 𝑇 

�  
9

𝑘=0

𝐹�𝑘ℓ𝑞𝑏𝑛𝑡 = 𝐹𝑏𝑛𝑡    ∀  ℓ ∈ {𝑝, . . . ,𝑃};𝑞 ∈ 𝑄; 𝑏 ∈ 𝐵;𝑛 ∈ 𝐵 ∪ 𝐷; 𝑡 ∈ 𝑇 

�  
1

𝑘=0

𝐹�𝑘𝑞𝑏𝑛𝑡 = 𝐹𝑏𝑛𝑡    ∀  𝑞 ∈ 𝑄; 𝑏 ∈ 𝐵;𝑛 ∈ 𝐵 ∪ 𝐷; 𝑡 ∈ 𝑇 

�  
9

𝑘=0

𝑧𝑘ℓ𝑞𝑏𝑡 = 1    ∀  ℓ ∈ {𝑝, . . . ,𝑃};𝑞 ∈ 𝑄; 𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 

�  
1

𝑘=0

�̃�𝑘𝑞𝑏𝑡 = 1    ∀  𝑞 ∈ 𝑄;𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 

𝑤𝑞𝑏𝑡𝐼𝐶 = �  
𝑃

ℓ=𝑝

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝐼𝑘ℓ𝑞𝑏𝑡 + �  
1

𝑘=0

10𝑝 ⋅ 𝑘 ⋅ 𝐼𝑘ℓ𝑞𝑏𝑡    ∀  𝑞 ∈ 𝑄; 𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 

𝐼𝑘ℓ𝑞𝑏𝑡 ≤ 𝐼𝑏𝑡𝑈 ⋅ 𝑧𝑘ℓ𝑞𝑏𝑡    ∀  ℓ ∈ {𝑝, . . . ,𝑃};𝑘 ∈ {0, . . . ,9};𝑞 ∈ 𝑄; 𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 
𝐼𝑘𝑞𝑏𝑡 ≤ 𝐼𝑏𝑡𝑈 ⋅ �̃�𝑘𝑞𝑏𝑡    ∀  𝑘 ∈ {0, . . . ,9};𝑞 ∈ 𝑄;𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 

�  
9

𝑘=0

𝐼𝑘ℓ𝑞𝑏𝑡 = 𝐼𝑏𝑡     ∀  ℓ ∈ {𝑝, . . . ,𝑃}; 𝑞 ∈ 𝑄;𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 

�  
1

𝑘=0

𝐼𝑘𝑞𝑏𝑡 = 𝐼𝑏𝑡    ∀  𝑞 ∈ 𝑄; 𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 

𝐼𝑛𝐿 ≤ 𝐼𝑛𝑡 ≤ 𝐼𝑛𝑈     ∀  𝑛 ∈ 𝑇𝐴; 𝑡 ∈ 𝑇 
𝑦𝑛𝑛′𝑡 ∈ {0,1}    ∀  𝑛𝑛′ ∈ 𝑁; 𝑡 ∈ 𝑇 
𝐹𝑛𝑛′𝑡 ≥ 0;    𝐼𝑛𝑡 ≥ 0;     0 ≤ 𝐶𝑞𝑏𝑡 ≤ 1    ∀  𝑏 ∈ 𝐵;𝑛𝑛′ ∈ 𝑁;𝑛 ∈ 𝑇𝐴;  𝑡 ∈ 𝑇;𝑞 ∈ 𝑄 
𝐼𝑘ℓ𝑞𝑏𝑡 ≥ 0    𝐹�𝑘ℓ𝑞𝑏𝑛𝑡 ≥ 0    ∀  ℓ ∈ {𝑝, . . . ,𝑃};𝑘 ∈ {0, . . . ,9};𝑞 ∈ 𝑄;𝑏 ∈ 𝐵;𝑛 ∈ 𝐵 ∪ 𝐷; 𝑡 ∈ 𝑇 
𝐼𝑘𝑞𝑏𝑡 ≥ 0    𝐹�𝑘𝑞𝑏𝑛𝑡 ≥ 0    ∀  𝑘 ∈ {0, . . . ,9};𝑞 ∈ 𝑄; 𝑏 ∈ 𝐵;𝑛 ∈ 𝐵 ∪ 𝐷; 𝑡 ∈ 𝑇 
𝑧𝑘ℓ𝑞𝑏𝑡 ∈ {0,1}    ∀  ℓ ∈ {𝑝, . . . ,𝑃};𝑘 ∈ {0, . . . ,9};𝑞 ∈ 𝑄; 𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 
0 ≤ �̃�𝑘𝑞𝑏𝑡 ≤ 1    ∀  𝑘 ∈ {0,1};𝑞 ∈ 𝑄; 𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 

6.2. Model Reformulation – Binary 

As mentioned earlier, using a numerical base of 2 will yield the minimum number of binary 

variables in the discretization.  While the models (MPBP') and (MPBPR) remain largely the 

same, summations from k = {0..9} are replaced with k = {0, 1}, and the constraints for 𝐶𝑞𝑏𝑡, 
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𝑤𝑞𝑏𝑛𝑡𝐹𝐶 , and 𝑤𝑞𝑏𝑡𝐼𝐶  are replaced with the following in (MPBP'): 

𝐶𝑞𝑏𝑡 = 10Π�  
𝑃

ℓ=𝑝

�  
9

𝑗=0

2ℓ ⋅ 𝑘 ⋅ 𝑧𝑘ℓ𝑞𝑏𝑡    ∀  𝑞 ∈ 𝑄; 𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 (21) 

𝑤𝑞𝑏𝑛𝑡𝐹𝐶 = 10Π�  
𝑃

ℓ=𝑝

�  
9

𝑘=0

2ℓ ⋅ 𝑘 ⋅ 𝐹�𝑘ℓ𝑞𝑏𝑛𝑡    ∀  𝑞 ∈ 𝑄;𝑏 ∈ 𝐵;𝑛 ∈ 𝑇𝐴; 𝑡 ∈ 𝑇 (22) 

𝑤𝑞𝑏𝑡𝐼𝐶 = 10Π�  
𝑃

ℓ=𝑝

�  
9

𝑘=0

2ℓ ⋅ 𝑘 ⋅ 𝐼𝑘ℓ𝑞𝑏𝑡    ∀  𝑞 ∈ 𝑄;𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 (23) 

And in (MPBPR), these constraints are replaced with 

𝐶𝑞𝑏𝑡 = 10Π�  
𝑃

ℓ=𝑝

�  
9

𝑗=0

2ℓ ⋅ 𝑘 ⋅ 𝑧𝑘ℓ𝑞𝑏𝑡 + �  
1

𝑘=0

10𝑝 ⋅ 𝑘 ⋅ �̃�𝑘𝑞𝑏𝑡            ∀  𝑞 ∈ 𝑄;𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 (24) 

𝑤𝑞𝑏𝑛𝑡𝐹𝐶 = 10Π�  
𝑃

ℓ=𝑝

�  
9

𝑘=0

2ℓ ⋅ 𝑘 ⋅ 𝐹�𝑘ℓ𝑞𝑏𝑛𝑡 + �  
1

𝑘=0

10𝑝 ⋅ 𝑘 ⋅ 𝐹�𝑘𝑞𝑏𝑛𝑡   ∀  𝑞 ∈ 𝑄; 𝑏 ∈ 𝐵;𝑛 ∈ 𝑇𝐴; 𝑡 ∈ 𝑇 (25) 

𝑤𝑞𝑏𝑡𝐼𝐶 = 10Π�  
𝑃

ℓ=𝑝

�  
9

𝑘=0

2ℓ ⋅ 𝑘 ⋅ 𝐼𝑘ℓ𝑞𝑏𝑡 + �  
1

𝑘=0

10𝑝 ⋅ 𝑘 ⋅ 𝐼𝑘ℓ𝑞𝑏𝑡    ∀  𝑞 ∈ 𝑄; 𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 (26) 

Where the power of 10 in these expressions, Π, is such that 10Π ∙ 2P ≥ 𝐶𝑞𝑏𝑡𝑈 . 

6.3. Global Optimization Algorithms 

In order to use the previously described formulations to solve the multiperiod blend scheduling 

problem, various heuristics and global optimization algorithms can be used.  The simplest and 

perhaps most intuitive method is as follows: 

Heuristic 1 

Step 0. Choose p = P ≥ �𝑙𝑜𝑔10𝑥𝑗𝑈� 

Step 1. Solve (P') to obtain an approximation of the solution z'. 
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Step 2. Fix the binary variables y in (P) to the values found by the solution of (P') in Step 1, and 

solve (P) with these fixed binary variables using a local (or global) NLP algorithm to 

obtain some z using the solution to (P') as a starting point.  If (P') is infeasible, let z' = +∞. 

Step 3. Optionally, set p = p – 1, and return to step 1. 

Heuristic 1 first solves the discretized problem, (P'), to obtain an approximate solution.  

However, as this solution is limited to the discretization points, we can assume the process 

binary variables y (as opposed to the binary variables introduced by the discretization, which are 

ignored) to be correct, fix them, and solve the resulting NLP. This method, while simple and 

intuitive, is strictly a heuristic method, as it lacks any rigorous termination criteria, and the 

assumption that the correct process binary variables were chosen could be incorrect. The 

accuracy of the solution can be increased by decreasing p, but p must still be chosen a priori.  

Larger values of p will result in smaller problems (fewer discretization points), but in a less 

accurate solution.  Smaller values of p will conversely result in higher accuracy, but larger 

problems.  However, rigorous algorithms can be derived as shown below. 

As (P') is an inner approximation of the problem, and (PR) is a relaxation, they correspond to a 

lower and upper bound, respectively, on problem (P) when maximizing.  Thus, two global 

optimization algorithms can be introduced to allow the solution of problem (P) to some tolerance 

ε.  The first solves the upper and lower bounding problems in tandem: 

Algorithm 1 

Step 0. Choose p = P ≥ �𝑙𝑜𝑔10𝑥𝑗𝑈�. Set zL = −∞. 

Step 1. Solve (PR) to obtain the upper bound zR. 
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Step 2. Solve (P') to obtain the lower bound z'.  If (P') is infeasible, let z' = −∞. Update overall 

lower bound zL = max{ z', zL} 

Step 3. If (zR - zL)/zR ≤ ε, STOP, the solution is globally optimal.  Otherwise, set p = p – 1, and 

return to step 1. 

This algorithm is intuitive, but has the major shortcoming that it must solve two MILPs at each 

iteration.  To improve performance, the lower bounding problem in step 2 can be replaced by 

the use of a local NLP solver after fixing the binary variables y, yielding Algorithm 2: 

Algorithm 2 

Step 0. Choose p = P ≥ �𝑙𝑜𝑔10𝑥𝑗𝑈� 

Step 1. Solve (PR) to obtain the upper bound zR. 

Step 2. Fix the binary variables y in (P) to the values found by the solution of (PR) in Step 1, 

reducing it to an NLP.  Solve (P) with these fixed binary variables using a local NLP 

algorithm to obtain some lower bound zL using the solution to (PR) as a starting point. 

Step 3. If (zR - zL)/zR ≤ ε, STOP, the solution is globally optimal.  Otherwise, set p = p – 1 and 

return to step 1. 

These algorithms have been shown to be effective in solving nonconvex MINLPs to global 

optimality in significantly less time than the leading global optimization solvers, namely 

BARON and GloMIQO.  In the following sections, we apply Heuristic 1, and Algorithms 1 and 

2, in addition to BARON and GloMIQO, to the multiperiod blend scheduling problem. 

7. Computational Results 

Several multiperiod blend scheduling problems were solved using Heuristic 1 and Algorithms 1 



31 

 

and 2 described in Section 5.3, as well as commercial solvers BARON and GloMIQO for 

comparison. Details regarding these multiperiod blend scheduling problems are shown in 

Appendix B.  In the results that follow, wall times (i.e. "The time that passes according to the 

clock on the wall") are reported as compared to CPU time, as the MILP solvers are able to take 

advantage of multiple threads. All computations were performed on a dual CPU computer with 

two Intel Xeon X5650 processors at 2.66GHz each, 16 GB of RAM, and running Ubuntu Linux 

10.04. The models were implemented and solved using GAMS 23.8.1, BARON 10.2.0, 

GloMIQO 1.0.0, and Gurobi 4.6.1 (Gurobi, 2011). 

7.1. Heuristic 1 

Heuristic 1 solves (MPBP'), fixes the process binary variables y, and solves the resulting NLP to 

yield an approximate solution to the globally optimal solution.  However, as there is no way to 

determine the optimality gap in this approach, a discretization level must be chosen carefully.  

For the multiperiod blend scheduling problem, C is discretized and ranges between 0 and 1 in the 

sample problems (concentrations outside of this range, or in a subset of this range, can be 

scaled).  A sufficiently fine discretization level is chosen for all problems: p = -3 (i.e. 10-3).  

Results for solving the test suite of multiperiod blend scheduling problems using Heuristic 1 at 

this discretization level are shown in Table 8.  For all but one problem, Heuristic 1 can find an 

approximate solution in less than 1 hour, and the remaining case required less than 2 hours.  

Note that compared to the problem sizes reported in Table 5, Heuristic 1 requires many more 

variables and constraints due to the discretized reformulation. 

Table 8: Computational results for Heuristic 1 

Tanks 6 8 8 8 8 8 8 
Time Periods 3 3 3 3 4 4 4 

Total Wall Time (s) 9.96 839.0 245.0 250.2 337.3 4800.6 978.5 



32 

 

MILP Solve (Gurobi) 
Wall Time (s) 9.94 838.8 244.9 250.1 336.9 4800.1 978.1 

Objective Function 13.3594 45.2554 7.3818 13.5268 53.9496 9.2051 19.9806 
Constraints 1886 7089 6811 7092 9557 9581 9083 

Continuous Variables 1319 4632 4466 4632 6713 6717 6449 
Binary Variables 420 855 855 855 1144 1148 1128 

NLP Post-Solve (BARON) 
Wall Time (s) 0.02 0.16 0.03 0.19 0.32 0.5 0.37 

Objective Function 13.3594 45.2804 7.3936 13.5268 53.9627 9.2266 20.039 
MILP-NLP Difference 0.00% 0.06% 0.16% 0.00% 0.02% 0.23% 0.29% 

Constraints 215 459 657 579 467 447 633 
Continuous Variables 131 327 465 419 323 327 457 

The MILP-NLP difference is also reported in the table, which shows the relative difference 

between the solutions of (MPBP') and the NLP post-solve using BARON as the NLP solver.  

In some cases, the NLP solution is the same as the MILP solution (0% difference), but in other 

cases there is a very small gap.  This gap can be shown to decrease with finer discretization, but 

can be large for coarse discretization levels. 

Using Heuristic 1, the multiperiod blend scheduling problems can be solved in significantly less 

time than using MINLP solvers such as BARON or GloMIQO.  However, the major shortfall of 

this method is that it lacks any way of determining the optimality gap, and so it cannot be 

properly compared to commercial global solvers.  This method does give a fairly accurate 

approximate solution to the problem that could be used as a lower bound (in a maximization 

problem) or as a starting point in an algorithm. 

7.2. Algorithm 1 

As described in Section 5.3, Algorithm 1 solves both (MPBP') and (MPBPR) in succession, 

increasing the discretization, and repeating until the gap is closed. As both Problems (MPBP') 

and (MPBPR) are MILPs, Gurobi can be used to solve both while taking advantage of 12 

threads for maximum parallelization. The results for this algorithm are shown in Table 9. Note 

that a limit of 4 iterations is imposed in order to avoid numerical difficulties at high precision. 
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Table 9: Computational results for Algorithm 1 

Tanks 6 8 8 8 8 8 8 
Time Periods 3 3 3 3 4 4 4 

Total Wall Time (s) 2.17 4573.5 2588.7 426.5 338.7 12309.0 1525.9 
Relative Gap 0 5.19 ⋅ 10−4 1.60 ⋅ 10−3 0 6.86 ⋅ 10−4 2.34 ⋅ 10−3 3.39 ⋅ 10−3 

Iterations 2 4 4 4 3 4 4 

Lower 
Bound 

𝒑 = 𝟎 −∞ −∞ −∞ −∞ −∞ −∞ −∞ 
𝒑 = −𝟏 13.36 44.69 7.13 13.08 53.60 8.33 −∞ 
𝒑 = −𝟐  45.19 7.38 13.49 53.93 9.15 19.68 
𝒑 = −𝟑  45.26 7.38 13.53  9.21 19.97 

Upper 
Bound 

𝒑 = 𝟎 15.38 47.49 19.63 14.33 54.46 9.71 20.94 
𝒑 = −𝟏 13.36 45.90 9.49 13.53 53.96 9.45 20.53 
𝒑 = −𝟐  45.37 7.39 13.53 53.96 9.24 20.04 
𝒑 = −𝟑  45.28 7.39 13.53  9.23 20.04 

Wall 
Time (s) 
Lower 
Bound 

𝒑 = 𝟎 0.02 0.03 0.04 0.03 0.45 0.05 0.03 
𝒑 = −𝟏 0.78 190.38 31.24 11.59 40.39 457.56 0.12 
𝒑 = −𝟐  491.16 126.9 55.52 118.38 2947.53 436.28 
𝒑 = −𝟑  2199.86 413.99 115.01  7201.38 764.07 

Wall 
Time (s) 
Upper 
Bound 

𝒑 = 𝟎 0.08 0.3 0.54 0.21 1.16 4.13 0.68 
𝒑 = −𝟏 1.2 40.42 133.99 13.67 27.43 49.15 8.23 
𝒑 = −𝟐  422.71 534.47 57.65 150.53 659.04 85.74 
𝒑 = −𝟑  1408.33 1347.15 172.53  989.73 230.3 

 
Algorithm 1 is clearly an improvement over BARON, as can be seen by comparing the results in 

Tables 5 and 9. Note that the times reported in the lower portion of the table are for each 

individual subproblem (they are not cumulative). While the MINLP formulation required more 

than two hours to solve in all except the smallest case, Algorithm 1 can solve the same problems 

in less than two hours in all but one case. For most problems, less than an hour (and in some 

cases, significantly less) is required to solve the example multiperiod blend scheduling problems 

to global optimality. 

7.3. Algorithm 2 

Algorithm 2 is similar to Algorithm 1, but instead of using problem (MPBP'), the binary 

variables from the original problem (MPBP) are fixed to the values returned by the solution of 

(MPBPR). The lower bound is then obtained using a local NLP solver. Results for this algorithm 

are shown in Table 10. 
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Table 10: Computational results for Algorithm 2 

Tanks 6 8 8 8 8 8 8 
Time Periods 3 3 3 3 4 4 4 

Total Wall Time (s) 3.97 2839.9 120.5 15.5 41.3 2831.1 44.2 
Relative Gap 0 1.03 ⋅ 10−4 0 0 7.99 ⋅ 10−7 0 0 

Iterations 2 4 3 2 2 4 3 

Lower 
Bound 

𝒑 = 𝟎 7.49 32.18 11.26 11.04 39.68 8.92 16.89 
𝒑 = −𝟏 13.36 30.29 5.08 13.53 53.96 8.67 19.5 
𝒑 = −𝟐  45.3 7.39   9.2 20.03 
𝒑 = −𝟑  45.3    9.23  

Upper 
Bound 

𝒑 = 𝟎 15.38 47.49 19.63 14.33 54.46 9.71 20.94 
𝒑 = −𝟏 13.36 45.9 9.49 13.53 53.96 9.45 20.53 
𝒑 = −𝟐  45.37 7.39   9.24 20.03 
𝒑 = −𝟑  45.29    9.23  

Wall 
Time (s) 
Lower 
Bound 

𝒑 = 𝟎 2.41 0.9 0.62 3.13 17.49 2.14 2.53 
𝒑 = −𝟏 13.36 30.29 5.08 13.53 53.96 8.67 19.5 
𝒑 = −𝟐  1.36 0.09   1.3 0.51 
𝒑 = −𝟑  0.53    1.02  

Wall 
Time (s) 
Upper 
Bound 

𝒑 = 𝟎 0.26 0.54 0.42 0.26 0.95 3.23 0.86 
𝒑 = −𝟏 1.23 94.37 24.43 11.86 21.34 43.91 7.79 
𝒑 = −𝟐  867.33 94.75   783.62 31.91 
𝒑 = −𝟑  1872.71    1993.72  

Using Algorithm 2, the multiperiod blend scheduling problems are solved even more quickly 

than using Algorithm 1. In most cases, less than a minute is required to solve the problems to 

global optimality. Even the problems that require more time to converge still finish in less than 

one hour. This is, in some cases, computational reductions of more than two orders of magnitude 

are achieved. 

The comparative performance of Heuristic 1 and Algorithms 1 and 2 shown in Table 11 is worth 

noting.  Algorithm 1 exhibits the worst performance, which is to be expected as it solves two 

MILPs at each iteration, (MPBP') and (MPBPR), while both Heuristic 1 and Algorithm 2 solve 

only 1 MILP at each iteration.  However, the more surprising result is that Algorithm 2 

generally performs faster than Heuristic 1.  Even when solving multiple MILPs (one for each 

iteration), Algorithm 2 generally performs better than Heuristic 1, which only solves a single 

MILP.  This is largely explained by Heuristic 1 solving a single large MILP (representing a 

very fine discretization) while Algorithm 2 solves several smaller MILPs (starting at a coarse 
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discretization and increasing precision with each iteration). 

Table 11: Comparison of performance between Heuristic 1 and Algorithms 1 and 2 

Tanks 6 8 8 8 8 8 8 
Time Periods 3 3 3 3 4 4 4 

Total 
Wall 

Time (s) 

Heuristic 1 9.96 839.0 245.0 250.2 337.3 4800.6 978.5 
Algorithm 1 2.17 4573.5 2588.7 426.5 338.7 12309.0 1525.9 
Algorithm 2 3.97 2839.9 120.5 15.5 41.3 2831.1 44.2 

7.4. Algorithm 2 – Binary Formulation 

The seven problems in the previous section were solved using the binary formulation of Section 

6.2 with Algorithm 2. As seen in Table 12, solving the problems with Algorithm 2 using the 

binary (base 2) formulation, performance is generally better than the decimal formulation, but 

not always.  Five out of the seven problems were solved slightly faster using the binary 

formulation, but the decimal formulation outperformed the binary formulation in the other two 

cases by a significant margin. 

While the binary formulation yields slightly faster solve times, likely due to the smaller problem 

sizes (see Table 13), it is only a marginal improvement.  However, one approach that could be 

used to increase the performance of the binary formulation is to skip discretization levels (e.g. p 

= p + 2 instead of p = p + 1 after each iteration). 
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Table 12: Computational results for Algorithm 2 using the binary formulation 

Tanks 6 8 8 8 8 8 8 
Time Periods 3 3 3 3 4 4 4 

Total Wall Time (s) 1.89 4492.71 95.78 10.23 26.9 4787.7 35.57 
Relative Gap 0.00% -0.03% 0.00% 0.00% 0.00% 0.00% -0.02% 

Iterations 5 11 8 5 5 11 8 

Lower 
Bound 

p = 0 -∞ -∞ -∞ -∞ -∞ -∞ -∞ 
p = 1 -∞ -∞ -∞ -∞ -∞ -∞ -∞ 
p = 2 -∞ -∞ -∞ -∞ -∞ -∞ -∞ 
p = 3 -∞ -∞ -∞ -∞ -∞ -∞ -∞ 
p = 4 13.3594 -∞ 5.0826 13.5268 53.9627 -∞ -∞ 
p = 5  -∞ 5.0826   -∞ -∞ 
p = 6  -∞ 5.0826   -∞ -∞ 
p = 7  45.29657 7.3936   9.201263 20.039 
p = 8  45.29657    9.201263  p = 9  45.29657    9.201263  p = 10  45.29657    9.2266  

Upper 
Bound 

p = 0 15.3796 47.49117 19.6306 14.3266 54.4587 9.705844 20.9379 
p = 1 15.3796 47.49117 19.6306 14.3266 54.4587 9.705844 20.9379 
p = 2 15.3796 47.49117 19.6306 14.3266 54.4587 9.705844 20.9379 
p = 3 15.3796 47.49117 19.6306 14.3266 54.4587 9.705844 20.9379 
p = 4 13.3594 45.89925 9.4916 13.5268 53.9627 9.445313 20.5272 
p = 5  45.89925 9.4916   9.445313 20.5272 
p = 6  45.89925 9.4916   9.445313 20.5272 
p = 7  45.36722 7.3936   9.239259 20.03524 
p = 8  45.36722    9.239259  p = 9  45.36722    9.239259  p = 10   45.28203       9.2266   

Lower 
Bound 
Wall 

Time (s) 

p = 0 0.14 0.12 0.04 0.03 0.03 0.02 0.03 
p = 1 0.02 0.04 0.03 0.04 0.06 0.03 0.04 
p = 2 0.02 0.05 0.03 0.04 0.05 0.03 0.04 
p = 3 0.02 0.04 0.03 0.04 0.04 0.03 0.04 
p = 4 0.02 0.02 0.02 0.02 0.02 0.04 0.02 
p = 5  0.02 0.02   0.02 0.02 
p = 6  0.02 0.02   0.02 0.02 
p = 7  0.02 0.02   0.02 0.03 
p = 8  0.02    0.02  p = 9  0.02    0.02  p = 10  0.02    0.03  

Upper 
Bound 
Wall 

Time (s) 

p = 0 0.28 0.66 0.55 0.23 0.77 3.14 0.95 
p = 1 0.14 0.73 0.43 0.49 1.02 2.91 0.95 
p = 2 0.13 0.76 0.46 0.47 1.1 2.97 0.69 
p = 3 0.15 0.76 0.59 0.42 0.97 3.04 0.85 
p = 4 0.97 39.89 20.11 8.45 22.84 86.34 4.49 
p = 5  29.57 20.33   132.33 4.14 
p = 6  56.29 20.43   96.05 4.54 
p = 7  984.48 32.67   471.16 18.72 
p = 8  1505.68    426.01  p = 9  451.14    677.55  p = 10  1422.36    2885.92  
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Table 13: Problem size statistics for base 2 and base 10 formulations of Algorithm 2 when solving an 8 tank, 3 time 
period problem (8T-3P-2Q-721). 

Numerical Base 2 10 
Total Wall Time (s) 10.23 15.5 

 Iteration 
  

Equations 

1 2404 3556 
2 2836 5140 
3 3268 

 4 3700 
 5 4132 
 

Variables 

1 987 2230 
2 1243 2742 
3 1499 

 4 1755 
 5 2011 
 

Binary 
Variables 

1 135 327 
2 183 567 
3 231 

 4 279 
 5 327 
 

7.5. Fixed Precision 

If a satisfactory level of precision is known, a single iteration of Algorithm 2 can be used to 

significantly decrease computational time.  Table 14 shows the problem sizes and 

computational performance of this approach, comparing the original MINLP solved by BARON 

and GloMIQO with a single iteration of Algorithm 2 at the precision level p = -3.  Note that 

even at 7200s, the gap remaining for the global optimization solvers is large in most cases, and 

significantly larger than the optimality gaps of Algorithm 2.  It is also interesting to note that 

while both global optimization solvers take significantly longer to converge than Algorithm 2, 

especially compared to a single iteration of Algorithm 2, GloMIQO tends to have smaller gaps at 

7200s than BARON. 

7.6. Additional Remarks 

While the algorithms and approaches presented are a significant improvement over solving the 

original MINLP with global optimization solvers, several approaches and modifications can be 
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used to potentially improve performance. 

• Discretizing other variables, such as F and I in the multiperiod blend scheduling problem, 

can yield smaller problems depending on the number of qualities in the problem, 

resulting in potentially better performance in these cases.  For the problems presented, 

though, we have found that discretizing the concentrations, C, tends to yield the best 

performance. 

• Using numerical bases other than 10 and 2 is possible, but performance is likely to be 

comparable to the results already shown. 

• The discretized variables can have arbitrary upper and lower bounds, and the 

discretization scheme can be translated or scaled accordingly to accommodate these 

bounds.   

• Redundant constraints and McCormick envelopes can be added to tighten the relaxation 

of the bilinear terms (Kolodziej et al, 2012). 

• Regarding the discretization scheme and relaxation, the slack variables introduced in the 

relaxed problems can alternatively be bounded by McCormick envelopes or other convex 

envelopes in order to decrease problem size. 

In addition, several variations in the algorithmic approaches can be introduced, especially 

variations of the relaxation.  These remain open for investigation in the future. 
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Table 14: Computational results for fixed-precision radix-based discretization 

 Original MINLP BARON GloMIQO Algorithm 2 (p = -3) 

Problem Binary 
Variables 

Total 
Variables Equations Wall Time 

(s) Gap Wall Time 
(s) Gap Binary 

Variables 
Total 

Variables Equations Wall Time 
(s) Gap 

6T-3P-2Q-029 36 103 214 21.12 0.10% 1771 0.10% 420 1819 1990 1.25 0.00% 

8T-3P-2Q-146 87 223 624 7200 18.0% 7200 1.96% 855 5743 7441 870.88 0.16% 

8T-3P-2Q-718 87 223 607 7200 62.8% 7200 76.2% 855 5569 7151 97.69 0.00% 

8T-3P-2Q-721 87 223 628 7200 8.82% 7200 1.04% 855 5743 7444 11.78 0.00% 

8T-4P-2Q-480 124 313 885 7200 134% 7200 0.39% 1148 8233 10093 741.28 0.41% 

8T-4P-2Q-531 104 273 737 7200 12.1% * * 1128 7933 9577 31.84 0.00% 

8T-4P-2Q-852 120 305 861 7200 11.3% 7200 0.26% 1144 8225 10069 22.10 0.00% 

*Solver Failure 
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8. Conclusion 

This paper has addressed the multiperiod blend scheduling problem, an important extension to 

the pooling problem in order to account for time varying supply and demand and operational 

constraints, which is important in scheduling applications in process networks.  The multiperiod 

blend scheduling problem has been formulated as a nonconvex MINLP which is difficult to solve 

as was initially shown with a small analytical example and a small numerical example.  The 

alternative approaches developed in this paper, based on radix discretization, perform 

significantly better than traditional MINLP techniques, with decreased computational time of 

more than two orders of magnitude observed in some cases.  While Heuristic 1 is an intuitive 

approach using the discretization approach, and Algorithm 1 is rigorous and intuitive with both 

an upper and lower bounding problem, they do not perform as well as Algorithm 2 in solving the 

multiperiod blend scheduling problem.  The approach used in Algorithm 2 exhibits superior 

performance compared to both Heuristic 1 and Algorithm 1 and to other global optimization 

solvers, such as BARON and GloMIQO.  This novel discretization scheme and the algorithms 

derived from it allow for the efficient solution of bilinear programming problems by 

reformulating them to MILPs and further reducing their problem size compared to other 

discretization schemes. 

The multiperiod blend scheduling problem, however, is a complex problem to solve since the 

proposed global optimization techniques were only able to solve problems with 8 tanks, 4 time 

periods, and 2 product qualities within a reasonable time period. Realistic problems with tens or 

hundreds of time periods are still untractable by the proposed methods.  In order to address 

larger multiperiod blend scheduling problems, decomposition methods could be investigated to 
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create smaller and more easily solved subproblems. 
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Appendix A – Derivation of Radix-Based Discretization 

We present in this appendix a summarized derivation of the radix-based discretization method 

given in Kolodziej et al (2012).  Given a nonconvex bilinear term wij = xi∙xj, the 

multiparametric disaggregation technique described by Teles et al. (2012) can be used to 

discretize a bilinear programming problem. This reformulation can be derived in terms of 

generalized disjunctive programming (GDP) (Grossmann & Ruiz, 2011) and exact linearization 

(Oral & Kettani, 1992).  For simplicity in the notation, we first rewrite the bilinear product wij = 

xi∙xj as a single bilinear term w = u∙v. This product can be represented exactly with the following 

constraints and disjunction: 

𝑤 = 𝑢 ⋅ 𝑣 (A1) 

𝑣 = �  
ℓ∈ℤ

𝜆ℓ (A2) 

∨
𝑘=0

9
�𝜆ℓ = 10ℓ ⋅ 𝑘�    ∀  ℓ ∈ ℤ (A3) 

where v is discretized through the disjunction in (A3) that selects one digit k for each power ℓ 
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∈ ℤ. 

Considering the convex hull reformulation of the disjunction in (A3) (Balas, 1985) by 

introducing the disaggregated variables �̂�kℓ and the binary variables zkℓ, leads to the following 

equations where K = {k | k = 0,1,…9}:  

𝜆ℓ = �  
9

𝑘=0

�̂�𝑘ℓ    ∀  ℓ ∈ ℤ 
(A4) 

�̂�𝑘ℓ = 10ℓ ⋅ 𝑘 ⋅ 𝑧𝑘ℓ    ∀  ℓ ∈ ℤ; 𝑘 ∈ 𝐾 
(A5) 

�  
9

𝑘=0

𝑧𝑘ℓ = 1    ∀  ℓ ∈ ℤ 
(A6) 

𝑧𝑘ℓ ∈ {0,1}    ∀  ℓ ∈ ℤ;𝑘 ∈ 𝐾  

Substituting equation (A5) into equation (A4) and substituting equation (A7) into equation (A2) 

leads to the fully discretized (but still exact representation of) v: 

𝑣 = �  
ℓ∈ℤ

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝑧𝑘ℓ (A8) 

�  
9

𝑘=0

𝑧𝑘ℓ = 1    ∀  ℓ ∈ ℤ (A6) 

𝑧𝑘ℓ ∈ {0,1}    ∀  ℓ ∈ ℤ;𝑘 ∈ 𝐾  

Considering the product w = u∙v by substituting equation (A8) into equation (A1) leads to 
 

𝑤 = 𝑢 ⋅ ��  
ℓ∈ℤ

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝑧𝑘ℓ�  = �  
ℓ∈ℤ

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝑢 ⋅ 𝑧𝑘ℓ 

which involves the nonlinear term u∙zkℓ. Performing an exact linearization (Oral & Kettani, 

1992), we introduce a new continuous variable, ûkℓ = u∙zkℓ, yielding 

 𝑤 = �  
ℓ∈ℤ

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝑢�𝑘ℓ (A9) 
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and the following lower and upper bound constraints: 

𝑢�𝑘ℓ ≤ 𝑢𝑈 ⋅ 𝑧𝑘ℓ    ∀  ℓ ∈ ℤ;𝑘 ∈ 𝐾 (A10) 

𝑢�𝑘ℓ ≥ 𝑢𝐿 ⋅ 𝑧𝑘ℓ    ∀  ℓ ∈ ℤ;𝑘 ∈ 𝐾 (A11) 

where uU and uL are the non-negative upper and lower bounds on u. Furthermore, to relate u to 

ûkℓ, we derive one additional constraint from equation (A6): 

�  
9

𝑘=0

𝑧𝑘ℓ = 1    ∀  ℓ ∈ ℤ 

�  
9

𝑘=0

𝑢 ⋅ 𝑧𝑘ℓ = 𝑢    ∀  ℓ ∈ ℤ 

�  
9

𝑘=0

𝑢�𝑘ℓ = 𝑢    ∀  ℓ ∈ ℤ 

(A6) 

 

(A12) 

In this way, we arrive at the final set of mixed-integer linear constraints for representing the 

bilinear product w = u∙v.  Since it is infeasible to compute the infinite sums over all integers, we 

represent v to a finite level of precision using a maximum power of 10 (P) and a minimum power 

of 10 (p).  This yields the constraints proposed by Teles, Castro, & Matos (2012): 

𝑤 = �  
𝑃

ℓ=𝑝

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝑢�𝑘ℓ 

𝑣 = �  
𝑃

ℓ=𝑝

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝑧𝑘ℓ 

𝑢�𝑘ℓ ≤ 𝑢𝑈 ⋅ 𝑧𝑘ℓ    ∀  ℓ ∈ 𝐿;𝑘 ∈ 𝐾 
𝑢�𝑘ℓ ≥ 𝑢𝐿 ⋅ 𝑧𝑘ℓ    ∀  ℓ ∈ ℤ;𝑘 ∈ 𝐾 

�  
9

𝑘=0

𝑢�𝑘ℓ = 𝑢    ∀  ℓ ∈ 𝐿 

�  
9

𝑘=0

𝑧𝑘ℓ = 1    ∀  ℓ ∈ 𝐿 

𝑧𝑘ℓ ∈ {0,1}    ∀  ℓ ∈ 𝐿;𝑘 ∈ 𝐾 

(A13) 

where L = {ℓ = p,p+1,…P}.  
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Because of this finite level of precision, these constraints are no longer an exact representation of 

the product w = u∙v.  When we incorporate the constraints (A13) into problem (P) by redefining 

wij = xi∙xj, and selecting xj as the variable on which discretization is performed, the resulting 

problem (P') shown below will represent a mixed-integer approximation to the original problem:  

Max 𝑧′ = 𝑓0(𝑥,𝑦) = �  
(𝑖,𝑗)∈𝐵𝐿0

𝑎𝑖𝑗0𝑤𝑖𝑗 + ℎ0(𝑥,𝑦) 

Subject to 

𝑓𝑞(𝑥,𝑦) = �  
(𝑖,𝑗)∈𝐵𝐿𝑞

𝑎𝑖𝑗𝑞𝑤𝑖𝑗 + ℎ𝑞(𝑥,𝑦) ≤ 0    𝑞 ∈ 𝑄\{0} 

𝑤𝑖𝑗 = �  
𝑃

ℓ=𝑝

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝑥�𝑖𝑗𝑘ℓ    ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄 

𝑥𝑗 = �  
𝑃

ℓ=𝑝

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝑧𝑗𝑘ℓ    ∀  𝑗 ∈ {𝑗|(𝑖, 𝑗) ∈ 𝐵𝐿𝑞 ,𝑞 ∈ 𝑄} 

𝑥�𝑖𝑗𝑘ℓ ≤ 𝑥𝑖𝑈 ⋅ 𝑧𝑗𝑘ℓ    ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄;𝑘 ∈ 𝐾; ℓ ∈ 𝐿 

𝑥�𝑖𝑗𝑘ℓ ≥ 𝑥𝑖𝐿 ⋅ 𝑧𝑗𝑘ℓ    ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄;𝑘 ∈ 𝐾; ℓ ∈ 𝐿 

�  
9

𝑘=0

𝑥�𝑖𝑗𝑘ℓ = 𝑥𝑖    ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄;𝑘 ∈ 𝐾; ℓ ∈ 𝐿 

�  
9

𝑘=0

𝑧𝑗𝑘ℓ = 1    ∀  𝑗 ∈ {𝑗|(𝑖, 𝑗) ∈ 𝐵𝐿𝑞 ,𝑞 ∈ 𝑄};𝑘 ∈ 𝐾; ℓ ∈ 𝐿 

𝑧𝑗𝑘ℓ ∈ {0,1}    ∀  𝑗 ∈ {𝑗|(𝑖, 𝑗) ∈ 𝐵𝐿𝑞 ,𝑞 ∈ 𝑄};𝑘 ∈ 𝐾; ℓ ∈ 𝐿 

𝑥 ∈ 𝑆 ∩ Ω ⊂ ℝ𝑛 

𝑦 ∈ {0,1} 

(P') 

where xj and wij represents the discrete and continuous approximations to xj and wij, respectively, 

in the constraints (A9)-(A12) and (A6). 

 

To derive the relaxed problem (PR) using radix-based discretization, we again switch to the 

notation w = u∙v for the bilinear term and begin with the discretization of v from the truncated set of 
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constraints (A13) by adding the slack term Δv (bounded between 0 and 10p) to represent a 

continuous v, denoted as vR: 

𝑣𝑅 = �  
𝑃

ℓ=𝑝

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝑧𝑘ℓ + Δ𝑣 

�  
9

𝑘=0

𝑧𝑘ℓ = 1    ∀  ℓ ∈ 𝐿 

𝑧𝑘ℓ ∈ {0,1}    ∀  ℓ ∈ 𝐿;𝑘 ∈ 𝐾 
0 ≤ Δ𝑣 ≤ 10𝑝 

(A14) 

We can rewrite Δv using a form similar to the discretization scheme already described. Given the 

following relationship, 

0 ≤�  
1

𝑘=0

10𝑝 ⋅ 𝑘 ⋅ �̃�𝑘 ≤ 10𝑝 

0 ≤ �̃�𝑘 ≤ 1 

 

we use this expression to represent Δv: 

Δ𝑣 = �  
1

𝑘=0

10𝑝 ⋅ 𝑘 ⋅ �̃�𝑘 

0 ≤ �̃�𝑘 ≤ 1 

 

The constraints (A14) can now be rewritten as 

𝑣𝑅 = �  
𝑃

ℓ=𝑝

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝑧𝑘ℓ + �  
1

𝑘=0

10𝑝 ⋅ 𝑘 ⋅ �̃�𝑘 

�  
9

𝑘=0

𝑧𝑘ℓ = 1    ∀  ℓ ∈ 𝐿 

𝑧𝑘ℓ ∈ {0,1}    ∀  ℓ ∈ 𝐿;𝑘 ∈ 𝐾 
0 ≤ �̃�𝑘 ≤ 1    ∀  𝑘 ∈ {0,1} 

(A15) 

Following a similar derivation as for problem (P) we obtain the new optimization problem, (PR): 

Max 𝑧𝑅 = 𝑓0 = �  
(𝑖,𝑗)∈𝐵𝐿0

𝑎𝑖𝑗0𝑤𝑖𝑗 + ℎ0(𝑥) 

Subject to 

(PR) 
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    𝑓𝑞(𝑥) = �  
(𝑖,𝑗)∈𝐵𝐿𝑞

𝑎𝑖𝑗𝑞𝑤𝑖𝑗 + ℎ𝑞(𝑥) ≤ 0    𝑞 ∈ 𝑄\{0} 

    𝑤𝑖𝑗 = �  
𝑃

ℓ=𝑝

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝑥�𝑖𝑗𝑘ℓ + �  
1

𝑘=0

10𝑝 ⋅ 𝑘 ⋅ 𝑥�𝑖𝑗𝑘     ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄 

    𝑥𝑗 = �  
𝑃

ℓ=𝑝

�  
9

𝑘=0

10ℓ ⋅ 𝑘 ⋅ 𝑧𝑖𝑗𝑘ℓ + �  
1

𝑘=0

10𝑝 ⋅ 𝑘 ⋅ �̃�𝑖𝑗𝑘     ∀𝑗 ∈ {𝑗|(𝑖, 𝑗) ∈ 𝐵𝐿𝑞 , 𝑞 ∈ 𝑄} 

    𝑥�𝑖𝑗𝑘ℓ ≤ 𝑥𝑖𝑈 ⋅ 𝑧𝑖𝑗𝑘ℓ    ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄; ℓ ∈ 𝐿; 𝑘 ∈ 𝐾 
    𝑥�𝑖𝑗𝑘ℓ ≥ 𝑥𝑖𝐿 ⋅ 𝑧𝑖𝑗𝑘ℓ    ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄; ℓ ∈ 𝐿;𝑘 ∈ 𝐾 
    𝑥�𝑖𝑗𝑘 ≤ 𝑥𝑖𝑈 ⋅ �̃�𝑖𝑗𝑘     ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄;𝑘 ∈ {0,1} 
    𝑥�𝑖𝑗𝑘 ≥ 𝑥𝑖𝐿 ⋅ �̃�𝑖𝑗𝑘     ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄;𝑘 ∈ {0,1} 

    �  
9

𝑘=0

𝑥�𝑖𝑗𝑘ℓ = 𝑥𝑖     ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑄;𝑞 ∈ 𝑄; ℓ ∈ 𝐿 

    �  
1

𝑘=0

𝑥�𝑖𝑗𝑘 = 𝑥𝑖    ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑄;𝑞 ∈ 𝑄 

    �  
9

𝑘=0

𝑧𝑖𝑗𝑘ℓ = 1    ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄; ℓ ∈ 𝐿 

    �  
1

𝑘=0

�̃�𝑖𝑗𝑘 = 1      ∀(𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄 

    𝑧𝑖𝑗𝑘ℓ ∈ {0,1}    ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄; ℓ ∈ 𝐿;𝑘 ∈ 𝐾 
    0 ≤ �̃�𝑖𝑗𝑘 ≤ 1    ∀  (𝑖, 𝑗) ∈ 𝐵𝐿𝑞;𝑞 ∈ 𝑄;𝑘 ∈ {0,1} 
    𝑥 ∈ 𝑆 ∩ Ω ⊂ ℝ𝑛 

While (PR) does not exactly represent the product wij = xi∙xj and is feasible for values of wij, xi, 

and xj that do not satisfy wij = xi∙xj, the bilinear term is feasible in (PR).  Thus, (PR) is a 

relaxation of (P). 
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Appendix B – Sample Multiperiod blend scheduling Problems 

The suite of 7 test problems were randomly generated. Each is denoted by the number of tanks, 

the number of time periods, and the number of product qualities, as well as a random three-digit 

code to distinguish different problems of the same size. For example, the first sample problem, 

6T-3P-2Q-029, is a 6 tank, 3 time period, 2 quality problem. 

 

B.1.  Problem 6T-3P-2Q-029 

Table 15: Supply tank specifications 

 𝑪𝒔 (% mass) 𝑭𝒔 (𝟏𝟎𝟑 kg) in time  
Tank Qual. 1 Qual. 2 1 2 3 𝜷𝒔 ($/kg) 

1 0.6 0.4 0.0 1.0 0.0 0.9 
2 0.2 0.4 0.6 0.1 0.9 0.9 

Table 16: Demand tank specifications 

 Bounds on 𝑪 (% mass) 𝑭𝒅 (𝟏𝟎𝟑 kg) in time  
Tank Qual. 1 Qual. 2 1 2 3 𝜷𝒅 ($/kg) 

5 0.1-0.9 0.4-0.4 0.25 0.81 0.88 8.6 
6 1.0-1.0 0.6-0.8 0.01 0.14 0.10 7.1 

Table 17: Initial conditions and costs of flows 

  𝑪𝟎 (% mass) Cost Coefficients 𝜶 (𝟏𝟎𝟑 $), 𝜷 ($/ kg) to Tank 
Tank 𝑰𝟎 Qual. 1 Qual. 2 3 4 5 6 

1 1.0 -- -- 0.84, 0.84 0.05, 0.55 0.94, 0.32 0.81, 0.60 
2 0.5 -- -- 0.79, 0.80 0.05, 0.28 0.65, 0.49 0.97, 0.75 
3 0.2 0.2 0.5 -- 0.57, 0.30 0.26, 0.89 0.45, 0.82 
4 0.1 0.7 0.6 -- -- 0.10, 0.86 -- 
5 1.8 -- 0.8 -- -- -- -- 
6 0.5 -- 0.2 -- -- -- -- 

 
Globally optimal objective function value: 13.3594  
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B.2.  Problem 8T-3P-2Q-146 

Table 18: Supply tank specifications 

 𝑪𝒔 (% mass) 𝑭𝒔 (𝟏𝟎𝟑 kg) in time  
Tank Qual. 1 Qual. 2 1 2 3 𝜷𝒔 ($/kg) 

1 0.7 0.2 0.3 0.1 0.7 0.2 
2 0.9 0.0 0.0 0.8 0.3 1.0 

Table 19: Demand tank specifications 

 Bounds on 𝑪 (% mass) 𝑭𝒅 (𝟏𝟎𝟑 kg) in time  
Tank Qual. 1 Qual. 2 1 2 3 𝜷𝒅 ($/kg) 

7 0.7-1.0 0.5-0.9 0.95 0.44 0.77 9.6 
8 0.8-1.0 0.1-0.7 0.03 0.38 0.80 9.6 

Table 20: Initial conditions and costs of flows 

  𝑪𝟎 (% mass) Cost Coefficients 𝜶 (𝟏𝟎𝟑 $), 𝜷 ($/ kg) to Tank 
Tank 𝑰𝟎 Qual. 1 Qual. 2 3 4 5 6 7 8 

1 1.6 -- -- -- 0.20, 0.25 0.62, 0.47 0.35, 0.83 0.59, 0.55 0.92, 0.29 
2 1.8 -- -- 0.76, 0.75 0.38, 0.57 0.08, 0.05 -- -- 0.53, 0.78 
3 0.3 0.7 0.0 -- 0.93, 0.13 0.57, 0.47 0.01, 0.34 0.16, 0.79 0.31, 0.53 
4 1.8 0.8 0.9 0.17, 0.60 -- 0.26, 0.65 0.69, 0.75 0.45, 0.08 0.23, 0.91 
5 1.3 0.7 0.8 0.15, 0.83 0.54, 1.00 -- 0.08, 0.44 0.11, 0.96 0.00, 0.77 
6 0.2 0.7 0.4 0.82, 0.87 0.08, 0.40 0.26, 0.80 -- 0.43, 0.91 0.18, 0.26 
7 0.6 -- -- -- -- -- -- -- -- 
8 1.1 -- -- -- -- -- -- -- -- 

 
Globally optimal objective function value: 45.2966  
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B.3.  Problem 8T-3P-2Q-718 

Table 21: Supply tank specifications 

 𝑪𝒔 (% mass) 𝑭𝒔 (𝟏𝟎𝟑 kg) in time  
Tank Qual. 1 Qual. 2 1 2 3 𝜷𝒔 ($/kg) 

1 0.7 0.1 1.0 0.8 0.4 0.2 
2 0.7 0.5 0.6 0.5 0.8 0.2 

Table 22: Demand tank specifications 

 Bounds on 𝑪 (% mass) 𝑭𝒅 (𝟏𝟎𝟑 kg) in time  
Tank Qual. 1 Qual. 2 1 2 3 𝜷𝒅 ($/kg) 

7 0.9-1.0 0.0-0.5 0.08 0.17 0.83 8.1 
8 0.5-0.9 0.2-0.6 0.13 0.39 0.80 5.8 

Table 23: Initial conditions and costs of flows 

  𝑪𝟎 (% mass) Cost Coefficients 𝜶 (𝟏𝟎𝟑 $), 𝜷 ($/ kg) to Tank 
Tank 𝑰𝟎 Qual. 1 Qual. 2 3 4 5 6 7 8 

1 0.1 -- -- -- 0.18, 0.13 1.00, 0.17 0.03, 0.56 0.88, 0.67 0.19, 0.37 
2 1.5 -- -- 0.46, 0.98 0.16, 0.86 -- 0.64, 0.38 0.19, 0.43 0.48, 0.12 
3 1.0 0.1 0.7 -- 0.59, 0.23 0.58, 0.58 0.25, 0.29 0.62, 0.27 0.82, 0.98 
4 1.0 0.0 0.1 0.73, 0.34 -- -- 0.58, 0.11 0.91, 0.88 0.82, 0.26 
5 1.8 0.5 0.1 0.59, 0.02 0.43, 0.31 -- 0.16, 0.18 0.42, 0.09 0.60, 0.47 
6 1.2 0.8 0.8 0.70, 0.70 0.64, 0.03 0.07, 0.32 -- 0.53, 0.65 0.41, 0.82 
7 1.2 -- -- -- -- -- -- -- -- 
8 1.7 -- -- -- -- -- -- -- -- 

 
Globally optimal objective function value: 7.3936  
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B.4.  Problem 8T-3P-2Q-721 

Table 24: Supply tank specifications 

 𝑪𝒔 (% mass) 𝑭𝒔 (𝟏𝟎𝟑 kg) in time  
Tank Qual. 1 Qual. 2 1 2 3 𝜷𝒔 ($/kg) 

1 0.4 0.1 1.0 0.1 0.4 0.1 
2 0.1 0.9 0.6 0.2 0.8 0.2 

Table 25: Demand tank specifications 

 Bounds on 𝑪 (% mass) 𝑭𝒅 (𝟏𝟎𝟑 kg) in time  
Tank Qual. 1 Qual. 2 1 2 3 𝜷𝒅 ($/kg) 

7 0.1-0.4 0.2-1.0 0.02 0.17 0.73 5.1 
8 0.2-0.9 0.4-0.7 0.04 0.65 0.65 4.0 

Table 26: Initial conditions and costs of flows 

  𝑪𝟎 (% mass) Cost Coefficients 𝜶 (𝟏𝟎𝟑 $), 𝜷 ($/ kg) to Tank 
Tank 𝑰𝟎 Qual. 1 Qual. 2 3 4 5 6 7 8 

1 0.3 -- -- 0.30, 0.47 0.23, 0.84 0.19, 0.23 0.17, 0.23 -- 0.44, 0.31 
2 1.7 -- -- -- 0.92, 0.43 0.18, 0.90 0.98, 0.44 -- 0.11, 0.26 
3 1.2 0.5 0.3 -- 0.41, 0.59 0.26, 0.60 0.71, 0.22 0.12, 0.30 0.32, 0.42 
4 1.1 0.9 0.4 0.51, 0.09 -- 0.26, 0.80 0.03, 0.93 0.73, 0.49 0.58, 0.24 
5 0.3 0.1 0.8 0.46, 0.96 0.55, 0.52 -- 0.23, 0.49 0.62, 0.68 0.40, 0.37 
6 1.7 0.4 0.2 0.99, 0.04 0.89, 0.91 0.80, 0.10 -- 0.26, 0.34 0.68, 0.14 
7 1.2 -- -- -- -- -- -- -- -- 
8 0.7 -- -- -- -- -- -- -- -- 

 
Globally optimal objective function value: 13.3527  
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B.5.  Problem 8T-4P-2Q-480 

Table 27: Supply tank specifications 

 𝑪𝒔 (% mass) 𝑭𝒔 (𝟏𝟎𝟑 kg) in time  
Tank Qual. 1 Qual. 2 1 2 3 4 𝜷𝒔 ($/kg) 

1 0.1 0.2 0.0 0.2 0.7 0.5 0.0 
2 0.9 0.8 0.0 0.6 0.6 0.5 0.9 

Table 28: Demand tank specifications 

 Bounds on 𝑪 (% mass) 𝑭𝒅 (𝟏𝟎𝟑 kg) in time  
Tank Qual. 1 Qual. 2 1 2 3 4 𝜷𝒅 ($/kg) 

7 0.7-1.0 0.3-0.6 0.30 0.19 0.18 0.63 2.4 
8 0.5-0.8 0.3-0.8 0.34 0.69 0.37 0.78 4.2 

Table 29: Initial conditions and costs of flows 

  𝑪𝟎 (% mass) Cost Coefficients 𝜶 (𝟏𝟎𝟑 $), 𝜷 ($/ kg) to Tank 
Tank 𝑰𝟎 Qual. 1 Qual. 2 3 4 5 6 7 8 

1 1.2 -- -- -- 0.92, 0.43 0.18, 0.90 0.98, 0.44 0.11, 0.26 0.41, 0.59 
2 0.7 -- -- 0.26, 0.60 0.71, 0.22 0.12, 0.30 0.32, 0.42 0.51, 0.09 0.26, 0.80 
3 1.0 0.4 0.2 -- 0.03, 0.93 0.73, 0.49 0.58, 0.24 0.46, 0.96 0.55, 0.52 
4 0.8 0.4 0.1 0.23, 0.49 -- 0.62, 0.68 0.40, 0.37 0.99, 0.04 0.89, 0.91 
5 0.2 0.1 0.9 0.80, 0.10 0.26, 0.34 -- 0.68, 0.14 0.72, 0.11 0.65, 0.49 
6 0.5 1.0 0.6 0.78, 0.72 0.90, 0.89 0.33, 0.70 -- 0.20, 0.03 0.74, 0.50 
7 0.2 -- -- -- -- -- -- -- -- 
8 0.4 -- -- -- -- -- -- -- -- 

 
Globally optimal objective function value: 9.2266  
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B.6.  Problem 8T-4P-2Q-531 

Table 30: Supply tank specifications 

 𝑪𝒔 (% mass) 𝑭𝒔 (𝟏𝟎𝟑 kg) in time  
Tank Qual. 1 Qual. 2 1 2 3 4 𝜷𝒔 ($/kg) 

1 1.0 0.6 0.4 0.1 0.2 0.8 0.5 
2 0.6 0.9 0.8 0.1 0.4 0.8 0.2 

Table 31: Demand tank specifications 

 Bounds on 𝑪 (% mass) 𝑭𝒅 (𝟏𝟎𝟑 kg) in time  
Tank Qual. 1 Qual. 2 1 2 3 4 𝜷𝒅 ($/kg) 

7 0.6-1.0 0.7-1.0 0.06 0.53 0.66 0.29 8.9 
8 0.5-0.9 0.2-0.6 0.40 0.42 0.63 0.43 0.3 

Table 32: Initial conditions and costs of flows 

  𝑪𝟎 (% mass) Cost Coefficients 𝜶 (𝟏𝟎𝟑 $), 𝜷 ($/ kg) to Tank 
Tank 𝑰𝟎 Qual. 1 Qual. 2 3 4 5 6 7 8 

1 1.8 -- -- -- 0.19, 0.37 -- -- 0.46, 0.98 -- 
2 1.2 -- -- 0.16, 0.16 0.64, 0.38 0.19, 0.43 0.48, 0.12 -- 0.59, 0.23 
3 1.2 0.5 0.1 -- 0.38, 0.58 0.25, 0.29 0.62, 0.27 0.82, 0.98 0.73, 0.34 
4 1.7 0.8 0.8 0.11, 0.58 -- 0.91, 0.88 0.82, 0.26 0.59, 0.02 0.43, 0.31 
5 1.6 0.7 0.1 0.18, 0.16 0.42, 0.09 -- 0.60, 0.47 0.70, 0.70 0.64, 0.03 
6 1.2 0.7 0.5 0.32, 0.07 -- 0.53, 0.65 -- 0.41, 0.82 0.72, 0.97 
7 0.4 -- -- -- -- -- -- -- -- 
8 0.5 -- -- -- -- -- -- -- -- 

 
Globally optimal objective function value: 20.02668  
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B.7.  Problem 8T-4P-2Q-852 

     
Table 33: Supply tank specifications 

 𝑪𝒔 (% mass) 𝑭𝒔 (𝟏𝟎𝟑 kg) in time  
Tank Qual. 1 Qual. 2 1 2 3 4 𝜷𝒔 ($/kg) 

1 0.7 0.2 0.3 0.1 0.7 1.0 0.2 
2 0.9 0.8 0.0 0.8 0.3 0.0 1.0 

Table 34: Demand tank specifications 

 Bounds on 𝑪 (% mass) 𝑭𝒅 (𝟏𝟎𝟑 kg) in time  
Tank Qual. 1 Qual. 2 1 2 3 4 𝜷𝒅 ($/kg) 

7 0.6-1.0 0.5-0.9 0.44 0.77 0.19 0.45 9.6 
8 0.8-1.0 0.1-1.0 0.38 0.80 0.49 0.65 9.6 

Table 35: Initial conditions and costs of flows 

  𝑪𝟎 (% mass) Cost Coefficients 𝜶 (𝟏𝟎𝟑 $), 𝜷 ($/ kg) to Tank 
Tank 𝑰𝟎 Qual. 1 Qual. 2 3 4 5 6 7 8 

1 1.6 -- -- 0.35, 0.83 0.59, 0.55 0.92, 0.29 0.76, 0.75 0.38, 0.57 -- 
2 1.8 -- -- -- 0.08, 0.05 0.53, 0.78 0.93, 0.13 0.57, 0.47 0.01, 0.34 
3 0.3 0.7 0.0 -- 0.16, 0.79 0.31, 0.53 0.17, 0.60 0.26, 0.65 0.69, 0.75 
4 1.8 0.8 0.9 0.45, 0.08 -- 0.23, 0.91 0.15, 0.83 0.54, 1.00 0.08, 0.44 
5 1.3 0.7 0.8 0.11, 0.96 0.00, 0.77 -- 0.82, 0.87 0.08, 0.40 0.26, 0.80 
6 0.2 0.7 0.4 0.43, 0.91 0.18, 0.26 0.15, 0.14 -- 0.87, 0.58 0.55, 0.14 
7 0.6 -- -- -- -- -- -- -- -- 
8 1.1 -- -- -- -- -- -- -- -- 

 
Globally optimal objective function value: 53.9627  
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