
Using Regularization and Second Order
Information in Outer Approximation for Convex

MINLP
Jan Kronqvista, David E. Bernalb, and Ignacio E. Grossmannb

aProcess Design and Systems Engineering Åbo Akademi University,
Turku, Finland

bDepartment of Chemical Engineering, Carnegie Mellon University,
Pittsburgh PA, USA

December 14, 2017

Abstract

In this paper, we present two new methods for solving convex mixed-
integer nonlinear programming problems based on the outer approxima-
tion method. The first method is inspired by the level method and uses a
regularization technique to reduce the step size when choosing new inte-
ger combinations. The second method combines ideas from both the level
method and the sequential quadratic programming technique and uses a
second order approximation of the Lagrangean when choosing the new
integer combinations. The main idea behind the methods is to choose the
integer combination more carefully in each iteration, in order to obtain
the optimal solution in fewer iterations compared to the original outer
approximation method. We prove rigorously that both methods will find
and verify the optimal solution in a finite number of iterations. Further-
more, we present a numerical comparison of the methods based on 109
test problems, which illustrates the benefits of the proposed methods.

1 Introduction
Mixed-integer nonlinear programming (MINLP) is a class of optimization pro-
blems containing both integer and continuous variables as well as nonlinear
functions. The integer variables make it possible to incorporate logic relati-
ons and discrete quantities in the mathematical model. Together with linear
and nonlinear constraints, MINLP becomes a powerful framework for modeling
real-world optimization problems, and thus, there is a vast number of applica-
tions in areas such as engineering, computational chemistry, and finance [1, 2].
MINLP problems are by definition non-convex; however, they are still commonly

1

classified as either convex or non-convex. An MINLP problem is considered as
convex if an integer relaxation results in a convex nonlinear programming (NLP)
problem [3]. Convexity is a desirable property since it enables the direct use
of several decomposition techniques for solving the problem. Such decomposi-
tion techniques are, e.g., outer approximation (OA) [4], extended cutting plane
(ECP) [5], extended supporting hyperplane (ESH) [6], generalized Benders de-
composition (GBD) [7], and branch and bound (BB) techniques [8]. For reviews
of MINLP methods and applications see [9, 3, 10, 11]. Even if there are several
methods available for solving convex MINLP problems, it is still a challenging
type of optimization problems as shown in the solver benchmark in [6].

Methods such as OA, ECP, ESH, and GBD all generate an iteratively impro-
ving linear approximation of the MINLP problem, where the nonlinear functions
are underestimated by first-order Taylor series expansions. The linear approx-
imation is a mixed-integer linear programming (MILP) problem and is often
referred to as the MILP-master problem. All these methods iteratively choose
the integer trial solutions as the minimizer of the MILP-master problem. Choo-
sing the iterative solutions as the minimizer of a linear approximation is similar
to the approach used in Kelley’s method [12], which is an algorithm intended
for convex NLP problems. It is known that Kelley’s method is not efficient
at handling nonlinearities and it has a poor complexity bound, e.g., see [13].
Kelley’s method is sometimes even referred to as unstable since the iterative
solutions tend to make large jumps in the search space [14]. Since methods such
as ECP, ESH, GBD, and OA choose the iterative integer solutions in the same
manner as Kelley’s method, they could also suffer from the same instability.
Several techniques to reduce the instability of Kelley’s method has successfully
been used for NLP problems, e.g., regularization to reduce the step size or the
concept of a trust region [15].

Due to the non-convex nature of MINLP problems, it is not trivial to use
regularization of the step size or a trust region when solving such problems, since
the integer requirements may cause solutions to be far apart in the search space.
However, recently there has been interest in the idea of using regularization
for solving convex MINLP problems, e.g., using quadratic stabilization with
Benders decomposition was proposed in [16] and using regularization combined
with a cutting plane method was presented in [17].

Here we present an approach for introducing stabilization in the subpro-
blems for choosing the integer combination in OA. The stabilization technique
is inspired by the regularization used in the level method for NLP, see [18, 19],
and the method is referred to as level-based outer approximation (L-OA). By
modifying the L-OA method it is possible to include second order information
in the subproblems of choosing the integer combination, and we refer to this
method as quadratic outer approximation (Q-OA). In Q-OA we use a second
order Taylor series expansion for the Lagrangean function as the objective in
the subproblems for finding a new integer combination. A similar quadratic
approach was presented in [20]. However, the level constraint used in the level
method provides a more robust way of enforcing an improvement and avoiding
cycling. Furthermore, the level constraint forces the solutions to be chosen as

2

an interpolation between the minimizer of the Lagrangean approximation and
the minimizer of the linear approximation in the MILP-master problem. The
proposed methods are motivated by the strong convergence properties of the
level method compared to Kelley’s, and recent advances in software for solving
MILP and mixed-integer quadratic programming (MIQP) problems.

The proposed methods are intended to accelerate the convergence of OA by
choosing the integer combinations more carefully, using either a regularization
technique or second-order information. Due to the regularization and the use
of second-order derivatives, the proposed methods should be better at handling
nonlinearities compared to OA. However, each iteration in L-OA and Q-OA
will also be more complex than an iteration in OA. For MINLP problems with
only a few nonlinear terms, there might not be significant improvements by the
proposed methods. The methods are, thus, mainly intended for problems with
moderate to high degree of nonlinearity. We begin with a brief review of OA in
section 2, and from there we continue presenting the basics of L-OA and Q-OA
in section 3 and 4. In section 5, it is proven that the convergence properties
of OA still hold with the modifications in the proposed methods. Finally, in
section 6 we present a numerical comparison of Q-OA, L-OA, and OA, based
on test problems from the problem library MINLib2 [21].

2 Background
The MINLP problems considered here can be written as follows,

min
x,y

f(x,y)

s.t. gj(x,y) ≤ 0 ∀j = 1, . . . l,

Ax+By ≤ b,

x ∈ Rn, y ∈ Zm.

(MINLP)

In order to guarantee global convergence, we need to assume some properties
of the nonlinear functions. Throughout this paper we rely on the following
assumptions:

Assumption 1. The nonlinear functions f, g1, . . . , gl : Rn × Rm → R are convex
and continuously differentiable.

Assumption 2. The linear constraints define a nonempty compact set.

Assumption 3. For each feasible integer combination y, an integer combina-
tion such that there exist x variables for which the problem is feasible, a
constraint qualification holds, e.g., Slater’s condition [22].

These are the typical assumptions needed for rigorously proving convergence of
OA, see [4, 20]. OA can be generalized to be applicable to non-differentiable
problems, e.g., see [23], although such problems are not considered here.

3

We begin by briefly presenting the main steps of the outer approximation
method. As previously mentioned, the method uses a linear approximation of
the MINLP problem to obtain trial solutions for the integer variables. Once
an integer combination is obtained, the corresponding continuous variables can
be determined by solving a continuous optimization problem. The previously
obtained trial solutions

{
(xi,yi)

}k

i=0
are used to construct the linear approxi-

mation of the MINLP problem. At iteration k, the next integer combination
yk+1 is obtained by solving the following MILP subproblem

min
x,y,µ

µ

s.t. f(xi,yi) +∇f(xi,yi)T
[
x− xi

y − yi

]
≤ µ ∀i = 1, . . . , k,

gj(x
i,yi) +∇gj(x

i,yi)T
[
x− xi

y − yi

]
≤ 0 ∀i = 1, . . . k,∀j ∈ Ai,

Ax+By ≤ b,

x ∈ Rn, y ∈ Zm, µ ∈ R.
(OA-master)

Here Ai are index sets containing the indexes of the nonlinear constraint active
at the trial solution (xi,yi) [20]. Due to convexity, we know that the feasible
set is overestimated and that the objective will be underestimated, e.g., see
[4]. The optimum of problem (OA-master), thus, gives a valid lower bound
to the MINLP problem, which is referred to as LBk+1. Once the new integer
combination yk+1 is obtained, the corresponding x variables can be obtained
by solving the following convex NLP subproblem,

min
x

f(x,yk+1)

s.t. gj(x,y
k+1) ≤ 0 ∀j = 1, . . . l,

Ax+Byk+1 ≤ b,

x ∈ Rn.

(NLP-I)

If problem (NLP-I) is feasible and solved to optimality, we obtain xk+1 and
furthermore, the optimum provides a valid upper bound UBk+1 to the MINLP
problem. Otherwise, if the NLP problem is infeasible we need a different appro-
ach to obtain the x variables and this can be done, for example, by solving a
feasibility problem. The feasibility problem minimizes the constraint violation
with the current choice of y variables, e.g., using the ℓ∞ norm, and it can be
defined as,

min
x,r

r

s.t. gj(x,y
k+1) ≤ r ∀j = 1, . . . l,

Ax+Byk+1 ≤ b,

x ∈ Rn, r ∈ R+.

(NLP-f)

4

By solving problem (NLP-f) the continuous variables xk+1 are obtained. Ho-
wever, in this case, (xk+1,yk+1) is not a feasible solution, and thus, no upper
bound is obtained in this iteration. The feasibility problem always satisfies Sla-
ter’s condition and due to the convexity assumption, we know that the feasibility
problem is always feasible and tractable.

In case the difference between the upper and lower bound is not within the
desired tolerance, we improve the linear approximation by adding new lineari-
zations to problem (OA-master). These linearizations are often referred to as
cutting planes or supporting hyperplanes, and they are given by,

f(xk+1,yk+1) +∇f(xk+1,yk+1)T
[
x− xk+1

y − yk+1

]
≤ µ,

gj(x
k+1,yk+1) +∇gj(x

k+1,yk+1)T
[
x− xk+1

y − yk+1

]
≤ 0 ∀j ∈ Ak+1.

(1)

Due to convexity, the cuts will not exclude any feasible solution from the search
space [24]. Adding these cuts to the MILP subproblem ensures that the integer
combination yk+1 will not be obtained in a consecutive iteration unless it is the
optimal integer solution. Convergence can be ensured since each iteration will
either result in a new integer combination or verify optimality. For more details
of OA see [4, 20, 25]. The basic steps of OA are summarized as a pseudo-code
in Algorithm 1.

Here we have not considered the integer cuts used in [4], since these are
not needed for convex problems. To get a better understanding of OA and to
highlight the differences compared to the other methods, consider the following
simple example

minimize − 6x− y

s.t. 0.3(x− 8)2 + 0.04(y − 6)4 + 0.1e2xy−4 ≤ 56

1/x+ 1/y − x0.5y0.5 ≤ −4

2x− 5y ≤ −1

1 ≤ x ≤ 20, 1 ≤ y ≤ 20, x ∈ R, y ∈ Z.

(Ex 1)

Later, we use the same example to illustrate the differences between the
original OA and the proposed methods. To make the results comparable, we
will use the starting point, x0 = 5.29, y0 = 3 with all the methods. Instead
of solving the relaxed problem in the initialization step in Algorithm 1, we
simply use (x0, y0) as a starting point. OA required 7 iterations to solve this
problem, of which the first six iterations are shown in Figure 2. For this specific
problem, the first four iterations all result in infeasible solutions where one of the
nonlinear constraints are violated. As mentioned in Algorithm 1, the resulting
solutions of the subproblems correspond to the optimal solution of (NLP-f). The
optimal solution is obtained in iteration five, but verifying optimality requires
two additional iterations.

Next, we will show how ideas from the level method can be combined with
OA to get a stabilized approach for choosing new integer combinations.

5

Algorithm 1 An algorithm summarizing the basic steps of the outer approxi-
mation method
Define accepted optimality gap ϵ ≥ 0.

1. Initialization.

1.1 Obtain a relaxed solution x̃, ỹ by solving an integer relaxation of the
MINLP problem.

1.2 Generate cuts at x̃, ỹ according to (1) and construct problems
(OA-master).

1.3 Set iteration counter k = 1, UB0 = inf and LB0 = − inf.

2. Repeat until UBk−1 − LBk−1 ≤ ϵ.

2.1 Solve problem (OA-master) to obtain yk and LBk

2.4 Solve problem (NLP-I) with integer variables fixed as yk to obtain
xk.

2.4.1 If problem (NLP-I) is infeasible, obtain xk by solving feasibility
problem (NLP-f) and set UBk = UBk−1.

2.5 Generate cuts at xk,yk according to (1) and add these to problems
(OA-master).

2.6 If xk,yk is feasible, set UBk = min{f(xk,yk), UBk−1}.
2.7 Increase iteration counter, k = k + 1

3 Return the best found solution.

3 Level-based OA
The level method was originally presented in [18], as a method for solving non-
smooth NLP problems. Like OA, the level method also constructs a linear
approximation of the original optimization problem. However, the trial solutions
are not chosen as the minimizer of the linear approximation. Instead, the trial
solutions are obtained by projecting the current solution onto a specific level
set of the linearly approximated objective function. For more details see [19,
13]. Here we will use a similar approach combined with OA, which we show is
equivalent to adding specific trust regions to the problems (OA-master) in the
original OA.

Here we assume that a feasible solution to the MINLP problem x̄, ȳ is known.
Such a solution can for example be obtained by first preforming some original
OA iterations or by using a specific procedure such as the feasibility pump
[26]. An upper bound to the MINLP problem is, thus, given by f(x̄, ȳ) and
cuts at x̄, ȳ can be generated according to (1) to form problem (OA-master).
A valid lower bound LB1 can be obtained by solving the linear subproblem

6

Figure 1: The figure to the left shows the feasible regions of the constraints in
problem (Ex 1). The second figure shows the integer relaxed feasible region,
contours of the objective and the optimal solution.

(OA-master), and thus we have bounds for the optimal solution f∗, i.e., LB1 ≤
f∗ ≤ f(x̄, ȳ).

From the bounds of the optimal solution we can in each iteration k estimate
a value of the optimal solution according to,

f̂∗
k = (1− α)f(x̄, ȳ) + αLBk, (2)

where α ∈ (0, 1] and x̄, ȳ is chosen as the best found feasible solution, similarly
as in the level method. The lower bound LBk is obtained as in the original OA,
by solving problem (OA-master). In eq. (2) α is a parameter which states how
much we trust the linear approximation of the MINLP problem. Setting α close
to one results in an estimated optimum f̂∗

k close to the lower bound, while setting
it close to zero results in an estimated optimum close to the best incumbent
solution. The next integer solution yk+1 can now be obtained by projecting
x̄, ȳ onto the f̂∗

k level set of the linearly approximated objective function. The
projection is performed by solving the following MIQP problem,

min
x,y,µ

∥∥∥∥x− x̄
y − ȳ

∥∥∥∥2
s.t. µ ≤ f̂∗

k

f(xi,yi) +∇f(xi,yi)T
[
x− xi

y − yi

]
≤ µ ∀i = 1, . . . , k,

gj(x
i,yi) +∇gj(x

i,yi)T
[
x− xi

y − yi

]
≤ 0 ∀i = 1, . . . k,∀j ∈ Ai,

Ax+By ≤ b,

x ∈ Rn, y ∈ Zm, µ ∈ R,
(MIQP-Proj)

7

Figure 2: The figures show the feasible region defined by the nonlinear con-
straints in dark gray, and the light gray areas show the outer approximation
obtained by the generated cuts. The squared dots represent the solutions obtai-
ned from the MILP subproblem and diamond shaped dots represent the soluti-
ons obtained by one of the NLP subproblems. The dot in the first figure shows
the starting point (x0, y0).

where ∥·∥ is the Euclidean norm. The MIQP problem should contain all the sup-
porting hyperplanes and cutting planes present in problem (OA-master), which
was solved to obtain the lower bound. The next integer solution yk+1 is thereby
chosen as a point as close as possible to the best known feasible solution which
reduce the linearly approximated objective to at most f̂∗

k . Since f̂∗
k is calculated

according to (2) there always exists a solution to the MIQP problem, e.g., the
minimizer of problem (OA-master) will satisfy all the constraints. Once the new
integer combination is obtained, the corresponding continuous variables can be
determined using the same technique as described in the previous section. We
summarize the level based outer approximation as a pseudo-code in Algorithm
2.

The difference compared to the original OA is the two-step procedure for
obtaining the new integer combination, which involves both the solution of
an MILP and an MIQP subproblem. This increases the complexity at each
iteration. However, as we will prove later the MIQP need not to be solved to
optimality. Basically, any feasible solution to the MIQP will be sufficient for
ensuring convergence. The computational aspects are described in more detail
in section 6 and convergence of both L-OA and Q-OA is proved in section 5.

To obtain a geometrical understanding of how L-OA differs to the original

8

Algorithm 2 An algorithm summarizing the basic steps of level-based outer
approximation (L-OA)

Define accepted optimality gap ϵ ≥ 0 and choose the parameter α ∈ (0, 1].

1. Initialization.

1.1 Obtain a feasible solution x̄, ȳ, either by OA or by any other techni-
que.

1.2 Generate cuts at x̄, ȳ according to (1) and construct problems
(OA-master) and (MIQP-Proj).

1.3 Set iteration counter k = 1, and LB0 = − inf.

2. Repeat until f(x̄, ȳ)− LBk−1 ≤ ϵ.

2.1 Solve problem (OA-master) to obtain LBk

2.2 Calculate the estimated optimal value f̂∗
k according to (2).

2.3 Solve problem (MIQP-Proj) to obtain yk

2.4 Solve problem (NLP-I) with integer variables fixed as yk to obtain
xk.

2.4.1 If problem (NLP-I) is infeasible, obtain xk by solving feasibility
problem (NLP-f).

2.5 Generate cuts at xk,yk according to (1) and add these to problems
(OA-master) and (MIQP-Proj).

2.6 If xk,yk is feasible and f(xk,yk) ≤ f(x̄, ȳ), set x̄, ȳ = xk,yk.
2.7 Increase iteration counter, k = k + 1

3 Return x̄, ȳ as the optimal solution.

OA, we again consider problem (Ex 1). Here we use the same starting point
as before and we set the level parameter as α = 0.4. To solve the problem
with these parameters L-OA requires four iterations. The three first iterations
are shown in Figure 3. In the fourth iteration, we are able to verify optimality
directly after solving the MILP subproblem since we obtain LB4 = f(x̄, ȳ).

As mentioned earlier, L-OA will find similar integer solutions as adding
specific trust regions to the MILP subproblems in the original OA. This property
is further described in Theorem 1.
Theorem 1. The procedure of solving problems (OA-master) and (MIQP-Proj)
will result in a solution equivalent to adding the trust region constraint∥∥∥∥x− x̄

y − ȳ

∥∥∥∥2 ≤ rk, (3)

to problem (OA-master) in the original OA, where rk i chosen as the optimum

9

Figure 3: The figure illustrates the first three iterations needed to solve problem
(Ex 1) with the L-OA method. The dashed circles represent the contours of
the objective function in the MIQP subproblems and the red line shows the
level constraint given by µ ≤ f̂∗

k . The circular dots represent the best-found
solution so far, the squared dots represent the solutions obtained from the MIQP
subproblem and diamond shaped dots represent the solutions obtained by one
of the NLP subproblems.

of problem (MIQP-Proj).

Proof. First, assume that there exists a unique solution to problem (MIQP-Proj),
and denote the minimizer as xMIQP,yMIQP, µMIQP. As stated the radius of the
trust region constraint is chosen as

rk =

∥∥∥∥xMIQP − x̄
yMIQP − ȳ

∥∥∥∥2 (4)

Adding the trust region constraint given by eq. (3) with radius rk to problem
(OA-master) gives the solution xMILP,yMILP, µMILP. Now, assume this solution
is not the same as the MIQP solution. Since the MIQP solution is assumed to
be unique and not equal to the MILP solution, it follows that,

rk >

∥∥∥∥xMILP − x̄
yMILP − ȳ

∥∥∥∥2 . (5)

Furthermore, since (OA-master) minimizes µ we get µMILP ≤ µMIQP ≤ f̂∗
k .

This leads to a contradiction since xMILP,yMILP, µMILP would then define a
feasible solution to problem (MIQP-Proj) with an objective strictly lower than
the solution obtained by solving the minimization problem.

In case there is not a unique solution to problem (MIQP-Proj), then all
these solutions are also optimal solutions to problem (OA-master) with the
trust region constraint. To prove the statement, assume xMILP,yMILP, µMILP

is not an optimal solution to problem (MIQP-Proj). As assumed the MILP
solution is not an optimal solution to problem (MIQP-Proj) and it satisfies the
trust region constraint given by eq. (3). Therefore, eq. (5) must hold with

10

strict inequality. This leads to the same contradiction as in the case of a unique
solution.

Note that there are no practical implications that follow from Theorem 1
because the radius of the trust region resulting in similar solutions cannot be
determined in advance. However, the Theorem shows that the procedure used
in L-OA can be viewed as a technique of using a trust region with OA. Next,
we show that it is possible to use a similar approach as L-OA to incorporate
second order information in the task of obtaining the integer combinations.

4 Quadratic outer approximation
In order to obtain better integer solutions, it would be desirable to use infor-
mation regarding the curvature of the constraints and objective in the task of
choosing the integer combinations. Here we propose a technique where second-
order information is incorporated by minimizing a second order Taylor series
expansion of the Lagrangean function. By using the Lagrangean it is possible
to include curvature of both the constraints and objective while keeping the
constraints of the subproblems linear.

Here we define the Lagrangean function L : Rn × Rm × Rl → R as

L(x,y, λ) = f(x,y) +

l∑
j=1

λjgj(x,y), (6)

where λj ≥ 0 is the Lagrange multiplier of the j-th nonlinear constraint. Here
we do not include the linear constraints in the Lagrangean, since these are
handled directly in the subproblems. The Lagrangean is frequently used in
NLP techniques and has the following important properties

Property 1. If all nonlinear functions f, g1, . . . , gj in problem (MINLP) are con-
vex, then with nonnegative multipliers the Lagrangean defined in eq. (6)
will be a convex function in the x,y variables, e.g., see [27, 24].

Property 2. Strong duality holds for convex optimization problems that satisfy
Slater’s condition; i.e., there exists valid multipliers such that the mini-
mum of the Lagrangean is equal to the minimum of the original problem
[24].

Since the MINLP problems are non-convex by nature, we cannot expect
strong duality to hold. However, the first property is important since it will
ensure that the subproblem we use for finding the integer combinations will be
tractable. We do not want to directly minimize the Lagrangean, because, that
problem is basically as difficult as the original problem. Therefore, we will use
a second order approximation of the Lagrangean, which is given by

L(x̄, ȳ, λ̄) +∇x,yL(x̄, ȳ, λ̄)T
[
∆x
∆y

]
+

1

2

[
∆x
∆y

]T
∇2

x,yL(x̄, ȳ, λ̄)
[
∆x
∆y

]
, (7)

11

where ∇x,yL is the gradient of the Lagrangean with respect to x,y and ∇2
x,y

denotes the Hessian matrix. To make the notation more compact we have
introduced the ∆-variables that are given by ∆x = x− x̄ and ∆y = y − ȳ. Due
to Property 1, we know that that the Hessian ∇2

x,y will be positive semidefinite
for all λ ≥ 0. For small changes in the ∆-variables eq. (7) should give a good
approximation, although the approximation does not under or over estimate the
real Lagrangean function.

The natural approach of using the quadratic approximation in OA would be
to replace the linear objective of the MILP-master problem by the quadratic
function given by eq. (7). However, this approach will not work on its own
because the second order approximation does not necessarily underestimate the
Lagrangean. Therefore, it is possible that the approximation point x̄, ȳ is the
optimum of the approximation even if it is not the optimal solution to the
original problem, and thus, it can stagnate at non-optimal solutions. To avoid
this, the method presented in [20] uses an ϵ improvement strategy, where the
next solution must reduce the linearly approximated objective by a small ϵ-value.
The ϵ improvement is enforced by the following constraints

µ ≤ f(x̄, ȳ)− ϵ

f(xi,yi) +∇f(xi,yi)T
[
x− xi

y − yi

]
≤ µ ∀i = 1, . . . , k,

(8)

where x̄, ȳ is the best found solution. With this approach ϵ must be chosen
smaller than the desired optimality gap. Thus, it will only result in a small
reduction requirement. Therefore, the quadratic outer approximation method
in [20] will rely heavily on the second order approximation of the Lagrangean.
In case the approximation point x̄, ȳ with the corresponding multipliers λ̄ is not
the optimal solution to the MINLP, then the Lagrangean might not give a good
approximation of the original problem and this might cause slow convergence.
Due to the discrete nature of MINLP problems, it is possible that only the
optimal integer combination with the corresponding continuous variables will
result in the optimal set of active constraints and nonzero multipliers.

Here we use a different approach, which combines information from both the
linear approximation with the quadratic approximation of the Lagrangean, to
make sure the proposed method does not stagnate at non-optimal solutions. By
using the same approach as in L-OA, an estimate of the optimal solution f̂∗

k can
be calculated according to eq. (2). The estimated optimum can further be used
to construct the following reduction constraint,

µ ≤ f̂∗
k

f(xi,yi) +∇f(xi,yi)T
[
x− xi

y − yi

]
≤ µ ∀i = 1, . . . , k.

(9)

As long as f̂∗
k is calculated using the same technique as in L-OA there will always

exist a solution that satisfies the reduction constraints in eq. (9). Furthermore,
since f̂∗

k is chosen as an interpolation between the upper and lower bound it

12

will usually result in a stricter reduction constraint. We will now construct the
master problem by minimizing the quadratic approximation of the Lagrangean
with the reduction constraint given by eq. (9), the accumulated cuts given by
eq. (1) and all linear constraints from the MINLP problem. The new integer
combination yk+1 is, thus, obtain by solving the following MIQP problem,

min
x,y,µ

∇x,yL(x̄, ȳ, λ̄)T
[
∆x
∆y

]
+

1

2

[
∆x
∆y

]T
∇2

x,yL(x̄, ȳ, λ̄)
[
∆x
∆y

]
s.t. µ ≤ f̂∗

k

f(xi,yi) +∇f(xi,yi)T
[
x− xi

y − yi

]
≤ µ ∀i = 1, . . . , k

gj(x
i,yi) +∇gj(x

i,yi)T
[
x− xi

y − yi

]
≤ 0 ∀i = 1, . . . k,∀j ∈ Ai,

Ax+By ≤ b,

x ∈ Rn, y ∈ Zm, µ ∈ R,
(QOA-master)

where∆x = x− x̄ and∆y = y − ȳ. As in L-OA x̄, ȳ is chosen as the best found
feasible solution and λ̄ are the corresponding Lagrangean multipliers obtained
by solving problem (NLP-I). The NLP subproblem with fixed integer variables
will provide both the x variables and the multipliers λ. If the NLP subproblem
is infeasible we solve the problem (NLP-f), from which we obtain the corre-
sponding multipliers. As mentioned before ∇2

x,y is positive semidefinite due to
the convexity of the nonlinear functions; therefore, the MIQP problem can be
solved efficiently with software such as Gurobi[28] or Cplex[29].

Once the next integer solution has been obtained, the continuous variables
are determined as in OA or L-OA, and more cuts are generated according to eq.
(1). The lower bound is updated in each iteration as in L-OA by solving problem
(OA-master). The quadratic outer approximation method is summarized as a
pseudocode in Algorithm 3.

As in L-OA, each iteration includes both an MILP and an MIQP subproblem.
We will show later that it is sufficient to merely obtain a feasible solution to the
MIQP, which can reduce the computational complexity of both the L-OA and Q-
OA method. Section 5 proves the method’s convergence to the optimal solution
in a finite number of iterations, and Section 6 discusses the computational aspect
more in detail.

The technique used for obtaining the integer combinations in Q-OA actually
results in an interpolation between the minimizer of the linear approximation
in problem (OA-master) and the minimizer of the Lagrangean approximation,
where α in eq. (2) is the interpolation parameter. Setting α = 1 will force the
solution of problem (QOA-master) to the minimizer of problem (OA-master),
and setting α close to zero will allow the solution to be close to the minimizer
of the Lagrangean approximation. The Q-OA method will, therefore, be less
sensitive to the accuracy of the Lagrangean approximation, compared to the

13

Algorithm 3 An algorithm summarizing the basic steps of the quadratic outer
approximation (Q-OA) method

Define accepted optimality gap ϵ ≥ 0 and choose the parameter α ∈]0, 1].

1. Initialization.

1.1 Obtain a feasible solution x̄, ȳ and the multipliers λ̄ , either by OA
or by any other technique.

1.2 Generate cuts at x̄, ȳ according to (1) and construct problems
(OA-master) and (QOA-master).

1.3 Set iteration counter k = 1, and LB0 = − inf.

2. Repeat until f(x̄, ȳ)− LBk−1 ≤ ϵ.

2.1 Solve problem (OA-master) to obtain LBk

2.2 Calculate the estimated optimal value f̂∗
k according to (2).

2.3 Solve problem (QOA-master) to obtain yk

2.4 Solve problem (NLP-I) with integer variables fixed as yk to obtain
xk and λk.

2.4.1 If problem (NLP-I) is infeasible, obtain xk by solving feasibility
problem (NLP-f).

2.5 Generate cuts at xk,yk according to (1) and add these to problems
(OA-master) and (QOA-master).

2.6 If xk,yk is feasible and f(xk,yk) ≤ f(x̄, ȳ), set x̄, ȳ, λ̄ = xk,yk, λk.
2.7 Increase iteration counter, k = k + 1

3 Return x̄, ȳ as the optimal solution.

method in [20]. In the next section, we prove that the finite convergence of
Q-OA can still be guaranteed even if the Hessian of the Lagrangean is only
estimated as long as it remains positive semidefinite.

To provide a geometric interpretation of the method and to show how it
differs from OA and L-OA, we apply the method to the illustrative test pro-
blem (Ex 1). We use the same starting point (x0, y0) as before and we set the
level parameter as α = 0.5. To solve the problem with these parameters Q-OA
requires three iterations. The first two iterations are shown are shown in Figure
3. In the third iteration, we are able to verify optimality after only solving the
MILP subproblem, since we obtain LB3 = f(x̄, ȳ). From the figure, note that
the reduction constraint given by eq. (9), prevents the algorithm form taking a
too short step in the first iteration and the optimal solution is actually obtained
in the first iteration. If the trial solution had only been chosen as the minimizer
of the Lagrangean relaxation, it would have resulted in less progress per itera-

14

Figure 4: The figures illustrate the first two iterations needed to solve problem
(Ex 1) with the Q-OA method. The dashed eclipses represent the contours
of the approximated Lagrangean used as objective in the MIQP subproblem
and the red line shows the level constraint given by µ ≤ f̂∗

k . The circular dots
represent the best found solution so far, the squared dots represent the solutions
obtained from the MIQP subproblem and diamond shaped dots represent the
solutions obtained by one of the NLP subproblems.

tion. It should also be noted that not a single infeasible integer combination
was encountered.

5 Convergence properties
Proving finite convergence of L-OA and Q-OA can be done quite similarly as
for the original OA, and some of the results from [4, 20] are directly applicable.
Finite convergence can be proven as follows. We show that an infeasible integer
combination obtained by L-OA or Q-OA will be cut off by the cuts generated
according to eq. (1) and therefore, this integer combination cannot be obtained
in any future iteration. Next, we prove that a specific integer combination
cannot be obtained twice with either method, unless optimality is proven. The
methods, therefore, obtain new integer combinations in each iteration, and since
there are only a finite number of such combinations, the methods will converge
in a finite number of iteration.

Convexity of the nonlinear functions is crucial here since it ensures that no
feasible integer solution is cut off by the cuts generated by L-OA or Q-OA and
that problem (OA-master) gives a valid lower bound, as is stated in Lemma 1.

Lemma 2. Solving problem (OA-master) will give a valid lower bound to the
optimum of the MINLP problem.

Proof. From the first order convexity condition we know that for any convex

15

differentiable function ϕ(x,y),

ϕ(x,y) ≥ ϕ(x0,y0) +∇ϕ(x0,y0)T
[
x− x0

y − y0

]
∀(x,y), (x0,y0) ∈ Dϕ,

where Dϕ is the domain in which the function is convex. Therefore the feasible
region of the problem (MINLP) will be overestimated and the objective function
will be underestimated at each iteration.

Lemma 3. An infeasible integer combination yk, i.e., an integer combination
such that problem (NLP-I) is infeasible, will be cut off by the cuts generated in
L-OA and Q-OA.

Proof. It is proved in [20], that solving the feasibility problem and adding cuts
for the active constraints will cut off yk from the search space. For more details
see [20] Lemma 1 page 331.

Lemma 4. If the lower bound is not equal to the upper bound, then there exists
a solution to the MIQP subproblems in L-OA and Q-OA.

Proof. Due to convexity, the linearly approximated problem (OA-master) will
always be feasible if the MINLP problem is feasible. The MIQP subproblem in
both L-OA and Q-OA contains the same constraints as problem (OA-master)
and the reduction constraint. Since f̂∗

k is calculated according to eq. (2), the
solution to problem (OA-master) is a feasible solution to the MIQP subproblem.
In case problem (OA-master) is infeasible, the search is terminated and MIQP
will not be solved since it verifies that the MINLP is infeasible.

Theorem 5. If the lower bound is not equal to the upper bound, then the MIQP
subproblems in L-OA and Q-OA will give a new integer combination.

Proof. By Lemma 2, we know that all infeasible integer combination that has
been found are cut off from the search space by the cuts added to the sub-
problems. Since the upper and lower bound are not equal, we know that the
estimated optimum will be smaller than the upper bound, i.e., f̂∗

k < f(x̄, ȳ).
This is obviously true for all feasible solutions found so far, which we denote as
x̂i, ŷi, and the following relation is obtained,

f̂∗
k < f(x̄, ȳ) ≤ f(x̂i, ŷi) ∀i. (10)

At all the obtained feasible solutions x̂i, ŷi the methods generate the following
linearizations of the objective,

f(x̂i, ŷi) +∇f(x̂i, ŷi)T
[
x− x̂i

y − ŷi

]
≤ µ. (11)

The minimum value of µ at these feasible solutions, denoted µ̂i, will therefore
satisfy the following relation,

f̂∗
k < f(x̄, ȳ) ≤ µ̂i ∀i. (12)

16

In both the MIQP subproblem in L-OA and Q-OA, we have the reduction
constraint µ ≤ f̂∗

k , and from eq. (11) it follows that the next solution must
satisfy,

∇f(x̂i, ŷi)T
[
x− x̂i

y − ŷi

]
< 0 ∀i. (13)

Now, assume that one of the obtained feasible solutions x̃, ỹ ∈ {x̂i, ŷi} can be
perturbed in the x-variables by ∆x such that it satisfies all constraints of the
MIQP subproblem and the property given by eq. (13). Since x̃ was obtained
by solving problem (NLP-I), it must satisfy the KKT-conditions,

∇xf(x̃, ỹ) +

l∑
j=1

λj∇xgj(x̃, ỹ) +AT γ = 0

gj(x̃, ỹ) ≤ 0 ∀j = 1, . . . , l

Ax̃+Bỹ ≤ b

λ, γ ≥ 0

λjgj(x̃, ỹ) = 0 ∀j = 1, . . . , l

(Ax̃+Bỹ − b) ◦ γ = 0,

(14)

where ∇x is the gradient with respect to x-variables, and γ are the multipliers
of the linear constraints. At the solution x̃, ỹ, the methods will generate the
following supporting hyperplanes,

gj(x̃, ỹ) +∇gj(x̃, ỹ)
T

[
x− x̃
y − ỹ

]
≤ 0 ∀j | λj ̸= 0. (15)

Since these are all active constraints, the constant on the left hand side must
be zero, i.e., gj(x̃, ỹ) = 0. The perturbation ∆x must satisfy eq. (15), which
can be written as ,

λj∇xgj(x̃, ỹ)
T∆x ≤ 0 ∀j = 1, . . . , l. (16)

The same is also true for the linear constraints. For all active linear constraints
∆x cannot increase the value of the left hand side. This condition can be
summed over all linear constraints by the multipliers γ as,

γTA∆x ≤ 0. (17)

The perturbation also has to satisfy the reduction stated in eq. (13), which
yields,

∇xf(x̃, ỹ)
T∆x < 0. (18)

Adding all inequalities from eq. (16), (17) and (18) results in the following strict
inequality,

∇xf(x̃, ỹ)
T∆x+

l∑
j=1

λj∇xgj(x̃, ỹ)
T∆x+ γTA∆x < 0. (19)

17

However, taking the inner product of ∆x and both sides of the first KKT con-
dition results in the following equality

∇xf(x̃, ỹ)
T∆x+

l∑
j=1

λj∇xgj(x̃, ỹ)
T∆x+ γTA∆x = 0, (20)

which leads to a contradiction. Therefore, there cannot exist a ∆x that satisfies
all constraints of the MIQP subproblems without a change in the y-variables.
As stated in Lemma 3, there always exists a solution to the MIQP subproblems
as long as the lower bound is not equal to the upper bound. Solving the MIQP
subproblem will, therefore, result in a new integer combination different from
all previously obtained solutions.

Note that, no assumptions were made in Theorem 2 regarding optimality
of the MIQP subproblem. Therefore, the theorem is true for any solution that
satisfies all constraints of the MIQP subproblem, optimal or not. Furthermore,
Theorem 2 holds even if we make an arbitrary change to the objective function in
the MIQP subproblems. An estimate of the Hessian in Q-OA will, therefore, be
sufficient for Theorem 2 to hold. The next theorem summarizes the convergence
properties.

Theorem 6. Both L-OA and Q-OA will terminate after a finite number of
iterations, either by verifying optimality of the best-found solution or proving
that the MINLP problem is infeasible.

Proof. From Lemma 1, it is clear that solving problem (OA-master) will either
give a valid lower bound or prove infeasibility. Furthermore, the proof of Lemma
1 also shows that no feasible solution will be excluded from the search space.
According to Theorem 2, both L-OA and Q-OA will find new integer combina-
tions at each iteration as long as the gap between the upper and lower bound is
not equal to zero. Since the linear constraints are assumed to give rise to a com-
pact set, it is clear that there can only exist a finite number of different integer
combinations, and thus, both methods must terminate after a finite number of
iterations.

Hence, we have proved that both proposed methods converge to a global
optimal solution in a finite number of iterations. In the next section, we present
a numerical comparison of the proposed methods and compare the results to
the original OA method.

6 Computational results
In this section, we discuss our computational experiments and the obtained
results. To compare the practical performance of the methods, we have imple-
mented the original OA as well as L-OA and Q-OA. The main advantage of
L-OA and Q-OA compared to the original OA, is the ability to handle highly

18

nonlinear MINLP problems more efficiently. L-OA is more conservative when
choosing the trial solutions, and tries to stay close to the best found feasible
solution, which should reduce the number of infeasible integer combinations
obtained. In Q-OA we are also able to incorporate second order information
when choosing new integer combinations. Hence, the new integer combination
is chosen with information regarding the curvature around the current solution.
From the test problems, we observed a significant reduction of the number of
iterations with both L-OA and Q-OA compared to the original OA.

To test and compare the methods we have implemented them and applied
them to convex MINLP problems obtained from MINLPlib2 (rev. 373, as of
2017-11-07)1 [30]. This set was chosen since it contains a large variety of different
test problems originating from both practical applications as well as theoretical
test problems. As mentioned earlier both L-OA and Q-OA are intended for
problems with high to medium degrees of non-linearity, and therefore, we used
the following criteria for choosing the test problems

1. Classified as convex.

2. Having at least one discrete variable.

3. Having at least one continuous variable.

4. Satisfying the following inequality
nnonlin

n+m
> 0.5, (21)

where nnonlin is the number of variables present in some nonlinear term and
m + n is the total number of discrete and continuous variables. There are in
total 109 convex MINLP problems in MINLPlib2 (rev. 373, as of 2017-11-07)
that satisfy the given criteria. These problems originate from several applicati-
ons such as from process synthesis, facility layout problems, batch design with
storage, portfolio optimization and MINLP test problems. The test instances
have between 7 and 4530 variables and 0 to 1822 constraints. More details of
the test instances are provided in the supplemental material.

Next, we describe some details regarding the implementation of the methods
and the computational results are presented in section 6.2 and 6.3.

6.1 Implementation details
The implementation of the methods compared here was made in MATLAB using
Gurobi 7.5.1[28] as subsolver for the MILP/MIQP subproblems and IPOPT
3.12.7 [31] for the NLP subproblems. Furthermore, we use some functionality
from OPTI Toolbox [32] to read the test problems.

Both L-OA and Q-OA require a feasible starting solution, and to obtain such
a solution we start by performing a few original OA iterations. Once a feasible

1http://www.gamsworld.org/minlp/minlplib2/html/index.html

19

solution is obtained, we switch to either L-OA or Q-OA. The level parameter α
was set to 0.5 with both methods in the comparison.

According to Theorem 2, it is not necessary to find the optimal solution for
the MIQP subproblems, and any feasible solution for these problems is sufficient
for guaranteeing that both L-OA and Q-OA converge to the global optimum.
This is an important property, since solvers such as Gurobi or CPLEX are often
able to quickly find several feasible solutions, and quite often the majority of
the solution time is spent proving optimality. Here we use a strategy of stop-
ping the solver once a certain number of feasible solution have been found, and
specifically, we stop after 10 solutions have been found. This is simply done
by setting the SolutionLimit parameter to 10. By this approach, we ensure
we obtain a good solution to the MIQP problem, while significantly reducing
the total solution time. For the MIQP subproblems, we always have a feasi-
ble solution available, the solution to the MILP subproblem (OA-master), and
providing this as a starting solution to Gurobi also improved the performance.
For the MILP subproblems, we used the default settings in Gurobi, and we also
used the default settings for IPOPT.

The NLP subproblem (NLP-I) is always convex for these test problems. Ho-
wever, for some specific test problems we encountered some difficulties where
the solver failed to find the optimal solution. Such difficulties could, for exam-
ple, be caused by a specific integer combination not satisfying the constraint
qualifications. These issues were not frequent and they only occurred for a few
test problem in the entire MINLPLib2. To deal with such issues we chose a
simple approach; if the NLP subproblem (NLP-I) is feasible but the NLP solver
fails, we generate cutting planes for all violated constraints at the solution given
by the MILP subproblem (OA-master) according to eq. (1). These cuts will
exclude the current solution to subproblem (OA-master) from the search space
[33], and thus prevent cycling. Adding these cuts is equivalent to performing an
iteration with the ECP method. From the convergence properties of the ECP
method, we know that adding these cuts will eventually result in a new integer
combination or verify optimality of an obtained solution.

Since the problems we consider are all convex, the Hessian of the Lagrangean
is always positive semidefinite. However, due to numerical accuracy we did
encounter a few cases where the Hessian was not strictly positive semidefinite,
i.e., the smallest eigenvalue was not positive but in the range of −10−9. To make
sure that the MIQP subproblems are convex, we slightly modify the diagonal
elements of the Hessian. For each row i of the Hessian which contains a nonzero
element, we modify the diagonal by

∇2
x,yL(i, i) := ∇2

x,yL(i, i) + |λmin|, (22)

where λmin is chosen as the smallest eigenvalue of the Hessian. This modification
guarantees that all eigenvalues are positive [34], and thus, ensures convexity of
the MIQP subproblem. The modification of the Hessian is only done in case
one of the eigenvalues are negative.

As termination criteria, we used both an absolute optimality tolerance ϵ and

20

a relative optimality tolerance ϵrel. The search is, thus terminated if either

f(x̄, ȳ)− LB ≤ ϵ or f(x̄, ȳ)− LB

|f(x̄, ȳ)|+ 10−10
≤ ϵrel

are satisfied. Here LB denotes the current lower bound. These can be considered
as the standard termination criteria for MINLP problems.

All tests were performed on an Intel Core i7 2.93GHz CPU desktop with
16GB of RAM running Windows 7, and as termination criteria, we set the
tolerances ϵ = 10−5 and ϵrel = 10−3 and a time limit of 900s.

6.2 Illustrative examples
In this section we present more detailed results of two particular instances of
the selected test set. These instances were chosen such that they could ex-
emplify the results shown in the following section. The selected instances are
cvxnonsep_nsig40 2 and ibs2 3. The first instances were proposed by Kron-
qvist et al. [35], it contains 20 integer variables and 20 continuous variables a
linear objective and a signomial constraints. This seemingly simple problem is
designed to be challenging for methods such as OA and ECP due to a highly
nonlinear constraint. The second instance has 1500 binary variables, 1510 con-
tinuous variables, a linear objective, and 1821 constraints, of which 10 are non-
linear including square and logarithm operators. This problem represents a
particular challenge for the OA method given its combinatorial complexity and
the fact that most of its variables, discrete and continuous, are involved in a
nonlinear fashion in the constraints.

To illustrate how the methods differ for these problems, we show the upper
and lower bounds obtained by each method. Figures 5 and 6 show the evolution
of the bounds as a function of time for problems cvxnonsep_nsig40 and ibs2,
respectively. From the figures, it can be observed that Q-OA is able to improve
the upper bound more quickly than the other methods. This is usually the
case and is explained by that fact that Q-OA utilizes more information when
choosing the integer combinations than the other methods. Especially for the
instance ibs2, there was a clear advantage of incorporating information of the
second order derivatives, and Q-OA clearly performs better than L-OA.

From the results presented in the bounds profiles and in the Table 1, we no-
tice how the inclusion of level regularization can improve the performance of the
OA method while solving convex MINLPs. For the instance cvxnonsep_nsig40
we notice a reduction in time of 59% and 66% using the L-OA and the Q-OA
method, respectively. Although the new methods require the solution of an
MIQP subproblem in each iteration, the extra time invested in finding the next
integer combination is compensated with a reduction in both iterations and
time.

For the instance ibs2, OA is unable to close the optimality gap under 0.1%
within the time limit of 900 seconds even though it performs 431 iterations.

2http://www.gamsworld.org/minlp/minlplib2/html/cvxnonsep_nsig40.html
3http://www.gamsworld.org/minlp/minlplib2/html/ibs2.html

21

0.3 1 3 10 30 100 370132

135

140

145

150

155

time [s]

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

LB OA LB L-OA LB Q-OA
UB OA UB L-OA UB Q-OA

Figure 5: Bound profiles for instance cvxnonsep_nsig40 against time. The
figure shows the upper bound (UB) and lower bound (LB) obtained by the OA,
L-OA, and Q-OA methods.

1 3 10 30 100 300 9004

10

15

20
25
30
35
40

time [s]

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

LB OA LB L-OA LB Q-OA
UB OA UB L-OA UB Q-OA

Figure 6: Bound profiles for instance ibs2 against time. The figure shows the
upper bound (UB) and lower bound (LB) obtained by the OA, L-OA, and Q-OA
methods.

22

Table 1: Detailed results of the illustrative examples while solving them with
the OA, L-OA, and Q-OA methods
Instance Solution

method Time [s] Iterations NLP
time [s]

MILP
time [s]

MIQP
time [s]

Infeasible
NLPs

Optimality
Gap

cvxnonsep_nsig40
OA 360.86 663 31.69 328.13 0 1 0.00098
L-OA 147.87 201 9.84 55.35 82.37 0 0.000999
Q-OA 121.55 144 6.65 38.68 75.99 0 0.000913

ibs2
OA 900* 431 152.86 747.14 0 6 0.005368
L-OA 900* 41 40.16 17.98 841.86 6 0.1093
Q-OA 103.89 16 48.60 6.469 48.68 2 0.000997

*Time limit.

When solving the problem with L-OA the upper bound initially diminishes faster
in terms of both time and iterations compared to OA, the MIQP subproblems
become hard to solve resulting in only 41 iterations before hitting the time limit.
When utilizing second order information with the Q-OA method, the problem
is solved within an optimality gap of 0.1% in 104 seconds and just after 16
iterations while only encountering 2 infeasible NLP subproblems. Note that
the lower bounds found for both illustrative examples are close to the optimal
value for all methods, given that they were obtained by solving the continuous
relaxation of the MINLP problems.

6.3 Numerical results
Having observed the improvement in performance of the proposed methods
compared to OA in the illustrative examples, we considered the whole test set
defined at the beginning of this section. In order to compare the performance of
the methods, we have used performance profiles [36] both in terms of solution
time and iterations in Figures 7 and 8, respectively. The profiles show the num-
ber of problems solved against the respective performance ratio threshold τ . A
data point at each plot represents the number of instances that each method
solved within a factor τ of the best solver.

Figure 7 shows how the Q-OA method is superior to both L-OA and OA
in the selected test set in terms of solution time. The figure shows that Q-OA
solves most instances to the desired optimality gap, and it solves the problems
in the least amount of time. L-OA has initially the worst performance of the
3 methods for τ ≤ 3, but in the end, the performance is similar to that of
OA without reaching the number of solved instances by Q-OA. It is also worth
mentioning, that all the instances that remained unsolved with Q-OA are also
unsolved with both OA and L-OA. Q-OA is thus able to solve all the problems
solved with the other methods and some additional problems.

The performance profiles in terms of iterations in Figure 8 show a clear
advantage of Q-OA compared to the other 2 methods. Considering iterations the
L-OA method performs better than OA whenever the iterations factor τiter ≥
1.5.

Given that the performance profiles show the results without distinguishing
the individual instances, we include Table 2, which shows a direct comparison

23

1 2 5 10 20 40 700

10

20

30

40

50

60

70

80

90

100

τt

P
ro

bl
em

s
so

lv
ed

w
ith

in
0.

1%
of

op
tim

al
ity

OA L-OA Q-OA

Figure 7: Time performance profiles for test problems.

1 2 5 10 20 40 700

10

20

30

40

50

60

70

80

90

100

τiter

P
ro

bl
em

s
so

lv
ed

w
ith

in
0.

1%
of

op
tim

al
ity

OA L-OA Q-OA

Figure 8: Iterations performance profiles for test problems.

24

Table 2: Number of instances solved and comparison in solution time and ite-
rations of OA, L-OA, and Q-OA.
Method Instances

solved
Less time
than OA

Fewer iterations
than OA

Less time
than L-OA

Fewer iterations
than L-OA

Less time
than Q-OA

Fewer iterations
than Q-OA

OA 94 / 109 - - 61 / 94 23 / 94 38 / 94 3 / 94
L-OA 95 / 109 34 / 95 57 / 95 - - 9 / 94 2 / 94
Q-OA 96 / 109 57 / 96 80 / 96 86 / 96 84 / 96 - -

of the methods in terms of solution time and iterations. Note that Q-OA is able
to solve 1 and 2 instances more than L-OA and OA, respectively.

None of the methods was able to find a solution within 0.1% of optimality
gap for 13 instances in the test set. When comparing the proposed methods
to OA, we see that L-OA is able to reduce the solution time in 36% of the
instances and the iterations in 60%, while Q-OA reduced the time in 59% of the
instances and the iterations in 83%. From the results, it was also noticed that
the benefits of Q-OA are more apparent for the more challenging instances.
Comparing the two proposed methods we see that Q-OA solves 90% of the
instances in less time and 87.5% of the instances is fewer iterations than L-OA.
Detailed solution information for all instances and methods can be found in the
supplemental material.

An interesting result is that the proposed methods significantly decreased
the number of infeasible NLP subproblems found while solving the selected
problems. Using OA we obtained 877 infeasible NLP subproblems while using
L-OA and Q-OA we obtained 259 and 257, respectively. This can be explained
by the fact that the integer combinations are chosen closer in the search space to
the best feasible solution, and information about the curvature is utilized with
the proposed methods. Choosing an integer combination close to a feasible
solution also results in trial solutions close to the feasible region, which resulted
in fewer infeasible trial solutions.

The solutions reported here were obtained using the level parameter α = 0.5.
Changing the value of α affects the performance of the proposed methods for
the particular instances. We performed several tests varying the value of α,
which resulted in significant changes for individual instances but insignificant
when considering the whole test set.

7 Conclusions and future work
We have presented two new methods for solving convex MINLP problems, ba-
sed on a regularization technique and a second order approximation of the La-
grangean. We have proven that both methods converge to the global optimal
solution in a finite number of iterations, and shown that the proofs hold, even if
the MIQP subproblem is only solved approximately. Both methods are mainly
intended for problems with moderate to high degrees of nonlinearity, and for
such problems, both methods performed better than the original OA. The new
method called Q-OA required significantly fewer iteration than the original OA

25

and there was also a clear advantage in the solution time. The advantage is due
to the fact that more information is utilized when choosing the integer combi-
nations. The method L-OA uses a regularization technique which we showed
is equivalent to using a trust region. The regularization prevents large jumps
between iterations and tries to keep the trial solutions close to the feasible re-
gion, and for the test problems, it gave an advantage over the original OA. For
the test problems, Q-OA performed better than the other methods, both with
respect to the number of iteration and time and furthermore, we were able to
solve a greater percentage of problems within the time limit with Q-OA.

As future work we plan to implement the methods in a more efficient and
flexible framework, e.g., within an MINLP solver like DICOPT[37] or as part of
a Toolkit in an optimization modeling software such as Pyomo or JuliaOpt. It
could also be worth to investigate a dynamic update of the level parameter α.
For example, it could be possible to adjust the parameter based on the current
optimality gap.

Acknowledgements
Jan Kronqvist is grateful for the grants given by Walter Ahlström foundation,
Svenska tekniska vetenskapsakademien i Finland, Tekniikan edistämissäätiö,
TFIF and Waldemar von Frenckells stiftelse, which made the research visit at
Carnegie Mellon University possible. David E. Bernal and Ignacio E. Grossmann
would like to thank the Center Advanced Process Decision Making (CAPD) for
its financial support.

References
[1] C. A. Floudas, “Deterministic Global Optimization, vol. 37 of Nonconvex

Optimization and its Applications,” 2000.

[2] L. T. Biegler and I. E. Grossmann, “Retrospective on optimization,” Com-
puters & Chemical Engineering, vol. 28, no. 8, pp. 1169–1192, 2004.

[3] J. Lee and S. Leyffer, eds., Mixed Integer Nonlinear Programming, vol. 154.
Springer Science & Business Media, 2011.

[4] M. A. Duran and I. E. Grossmann, “An outer-approximation algorithm for
a class of mixed-integer nonlinear programs,” Mathematical Programming,
vol. 36, no. 3, pp. 307–339, 1986.

[5] T. Westerlund and F. Petterson, “An extended cutting plane method for
solving convex MINLP problems,” Computers & Chemical Engineering,
vol. 19, pp. S131–S136, 1995.

[6] J. Kronqvist, A. Lundell, and T. Westerlund, “The extended supporting
hyperplane algorithm for convex mixed-integer nonlinear programming,”
Journal of Global Optimization, vol. 64, no. 2, pp. 249–272, 2016.

26

[7] A. M. Geoffrion, “Generalized Benders decomposition,” Journal of Opti-
mization Theory and Applications, vol. 10, no. 4, pp. 237–260, 1972.

[8] R. J. Dakin, “A tree-search algorithm for mixed integer programming pro-
blems,” The Computer Journal, vol. 8, no. 3, pp. 250–255, 1965.

[9] P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann,
C. D. Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wächter,
“An algorithmic framework for convex mixed integer nonlinear programs,”
Discrete Optimization, vol. 5, no. 2, pp. 186–204, 2008.

[10] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan,
“Mixed-integer nonlinear optimization,” Acta Numerica, vol. 22, pp. 1–131,
2013.

[11] F. Trespalacios and I. E. Grossmann, “Review of mixed-integer nonlinear
and generalized disjunctive programming methods,” vol. 86, no. 7, pp. 991–
1012, 2014.

[12] J. E. Kelley, Jr, “The cutting-plane method for solving convex programs,”
Journal of the Society for Industrial & Applied Mathematics, vol. 8, no. 4,
pp. 703–712, 1960.

[13] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course, vol. 87. Springer, 2004.

[14] D. den Hertog, J. Kaliski, C. Roos, and T. Terlaky, “A logarithmic bar-
rier cutting plane method for convex programming,” Annals of Operations
Research, vol. 58, no. 2, pp. 67–98, 1995.

[15] A. Bagirov, N. Karmitsa, and M. M. Mäkelä, Introduction to Nonsmooth
Optimization: Theory, Practice and Software. Springer, 2014.

[16] S. Zaourar and J. Malick, “Quadratic stabilization of Benders decomposi-
tion.” working paper or preprint, 2014.

[17] W. de Oliveira, “Regularized optimization methods for convex MINLP pro-
blems,” TOP, vol. 24, no. 3, pp. 665–692, 2016.

[18] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov, “New variants of bundle
methods,” Mathematical Programming, vol. 69, no. 1-3, pp. 111–147, 1995.

[19] K. C. Kiwiel, “Proximal level bundle methods for convex nondifferentiable
optimization, saddle-point problems and variational inequalities,” Mathe-
matical Programming, vol. 69, no. 1-3, pp. 89–109, 1995.

[20] R. Fletcher and S. Leyffer, “Solving mixed integer nonlinear programs by
outer approximation,” Mathematical Programming, vol. 66, no. 1, pp. 327–
349, 1994.

27

[21] GAMS World, “Mixed-integer nonlinear programming library,” 2017. [On-
line; accessed 13-November-2017].

[22] M. Slater et al., “Lagrange multipliers revisited,” tech. rep., Cowles Foun-
dation for Research in Economics, Yale University, 1959.

[23] Z. Wei and M. M. Ali, “Outer Approximation Algorithm for One Class of
Convex Mixed-Integer Nonlinear Programming Problems with Partial Dif-
ferentiability,” Journal of Optimization Theory and Applications, vol. 167,
no. 2, pp. 644–652, 2015.

[24] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

[25] J. Viswanathan and I. E. Grossmann, “A combined penalty function and
outer-approximation method for MINLP optimization,” Computers & Che-
mical Engineering, vol. 14, no. 7, pp. 769–782, 1990.

[26] P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot, “A feasibility pump for
mixed integer nonlinear programs,” Mathematical Programming, vol. 119,
no. 2, pp. 331–352, 2009.

[27] P. Wolfe, “A duality theorem for non-linear programming,” Quarterly of
applied mathematics, vol. 19, no. 3, pp. 239–244, 1961.

[28] I. Gurobi Optimization, “Gurobi optimizer reference manual,” 2016.

[29] IBM Corp. and IBM, “V12.6: User’s Manual for CPLEX,” International
Business Machines Corporation, vol. 12, no. 1, p. 481, 2009.

[30] GAMSWorld, “Mixed-integer nonlinear programming library,” 2016. [On-
line; accessed 24-November-2016].

[31] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical Programming, vol. 106, no. 1, pp. 25–57, 2006.

[32] J. Currie and D. I. Wilson, “OPTI: Lowering the Barrier Between Open
Source Optimizers and the Industrial MATLAB User,” in Foundations of
Computer-Aided Process Operations (N. Sahinidis and J. Pinto, eds.), (Sa-
vannah, Georgia, USA), 8–11 January 2012.

[33] T. Westerlund and R. Pörn, “Solving pseudo-convex mixed integer optimi-
zation problems by cutting plane techniques,” Optimization and Engineer-
ing, vol. 3, no. 3, pp. 253–280, 2002.

[34] S. A. Gershgorin, “Uber die Abgrenzung der Eigenwerte einer Matrix,”
Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences mathé-
matiques et na, no. 6, pp. 749–754, 1931.

28

[35] J. Kronqvist, A. Lundell, and T. Westerlund, “Reformulations for utilizing
separability when solving convex MINLP problems,” Submitted for publi-
cation, 2017.

[36] E. D. Dolan and J. J. Moré, “Benchmarking optimization software with
performance profiles,” Mathematical Programming, Series B, vol. 91, no. 2,
pp. 201–213, 2002.

[37] I. E. Grossmann, J. Viswanathan, A. Vecchietti, R. Raman, and E. Kalvel-
agen, “GAMS/DICOPT: A Discrete Continuous Optimization Package,”
2002.

A Test set
The main properties of the test problems are shown in Table 3, showing the
number of integer variables mint, binary variables mbin, continuous variables n,
and total variables n+m. The table also shows the number of constraints, the
number of nonlinear functions, i.e., nonlinear objective function and constraint
functions, and the ratio between number of variables present in a nonlinear term
and the total of variables nnonlin

n+m .

Table 3: List of instances in convex MINLP test set.

Instance mint mbin n n+m ncons nnlfunc nnonlin

n+m

cvxnonsep_normcon40 20 0 20 40 1 1 1
cvxnonsep_nsig40 20 0 20 40 1 1 1
cvxnonsep_pcon40 20 0 20 40 1 1 1
cvxnonsep_psig40 20 0 20 40 0 1 1
cvxnonsep_normcon30 15 0 15 30 1 1 1
cvxnonsep_nsig30 15 0 15 30 1 1 1
cvxnonsep_pcon30 15 0 15 30 1 1 1
cvxnonsep_psig30 15 0 15 30 0 1 1
cvxnonsep_normcon20 10 0 10 20 1 1 1
cvxnonsep_nsig20 10 0 10 20 1 1 1
cvxnonsep_pcon20 10 0 10 20 1 1 1
cvxnonsep_psig20 10 0 10 20 0 1 1
du-opt 13 0 7 20 9 1 1
du-opt5 13 0 7 20 9 1 1
ex1223b 0 4 3 7 9 5 1
ibs2 0 1500 1510 3010 1821 10 0.996678
squfl030-150 0 30 4500 4530 4650 1 0.993377
squfl020-150 0 20 3000 3020 3150 1 0.993377
smallinvSNPr1b010-011 100 0 1 101 4 1 0.990099
smallinvSNPr1b020-022 100 0 1 101 4 1 0.990099
smallinvSNPr1b050-055 100 0 1 101 4 1 0.990099
smallinvSNPr1b100-110 100 0 1 101 4 1 0.990099

29

smallinvSNPr1b150-165 100 0 1 101 4 1 0.990099
smallinvSNPr1b200-220 100 0 1 101 4 1 0.990099
smallinvSNPr2b010-011 100 0 1 101 4 1 0.990099
smallinvSNPr2b020-022 100 0 1 101 4 1 0.990099
smallinvSNPr2b050-055 100 0 1 101 4 1 0.990099
smallinvSNPr2b100-110 100 0 1 101 4 1 0.990099
smallinvSNPr2b150-165 100 0 1 101 4 1 0.990099
smallinvSNPr2b200-220 100 0 1 101 4 1 0.990099
smallinvSNPr3b010-011 100 0 1 101 4 1 0.990099
smallinvSNPr3b020-022 100 0 1 101 4 1 0.990099
smallinvSNPr3b050-055 100 0 1 101 4 1 0.990099
smallinvSNPr3b100-110 100 0 1 101 4 1 0.990099
smallinvSNPr3b150-165 100 0 1 101 4 1 0.990099
smallinvSNPr3b200-220 100 0 1 101 4 1 0.990099
smallinvSNPr4b010-011 100 0 1 101 4 1 0.990099
smallinvSNPr4b020-022 100 0 1 101 4 1 0.990099
smallinvSNPr4b050-055 100 0 1 101 4 1 0.990099
smallinvSNPr4b100-110 100 0 1 101 4 1 0.990099
smallinvSNPr4b150-165 100 0 1 101 4 1 0.990099
smallinvSNPr4b200-220 100 0 1 101 4 1 0.990099
smallinvSNPr5b010-011 100 0 1 101 4 1 0.990099
smallinvSNPr5b020-022 100 0 1 101 4 1 0.990099
smallinvSNPr5b050-055 100 0 1 101 4 1 0.990099
smallinvSNPr5b100-110 100 0 1 101 4 1 0.990099
smallinvSNPr5b150-165 100 0 1 101 4 1 0.990099
smallinvSNPr5b200-220 100 0 1 101 4 1 0.990099
squfl030-100 0 30 3000 3030 3100 1 0.990099
squfl040-080 0 40 3200 3240 3280 1 0.987654
squfl015-080 0 15 1200 1215 1280 1 0.987654
squfl010-080 0 10 800 810 880 1 0.987654
squfl015-060 0 15 900 915 960 1 0.983607
squfl020-050 0 20 1000 1020 1050 1 0.980392
squfl025-040 0 25 1000 1025 1040 1 0.97561
squfl020-040 0 20 800 820 840 1 0.97561
squfl010-040 0 10 400 410 440 1 0.97561
smallinvDAXr1b010-011 30 0 1 31 4 1 0.967742
smallinvDAXr1b020-022 30 0 1 31 4 1 0.967742
smallinvDAXr1b050-055 30 0 1 31 4 1 0.967742
smallinvDAXr1b100-110 30 0 1 31 4 1 0.967742
smallinvDAXr1b150-165 30 0 1 31 4 1 0.967742
smallinvDAXr1b200-220 30 0 1 31 4 1 0.967742
smallinvDAXr2b010-011 30 0 1 31 4 1 0.967742
smallinvDAXr2b020-022 30 0 1 31 4 1 0.967742
smallinvDAXr2b050-055 30 0 1 31 4 1 0.967742
smallinvDAXr2b100-110 30 0 1 31 4 1 0.967742
smallinvDAXr2b150-165 30 0 1 31 4 1 0.967742

30

smallinvDAXr2b200-220 30 0 1 31 4 1 0.967742
smallinvDAXr3b010-011 30 0 1 31 4 1 0.967742
smallinvDAXr3b020-022 30 0 1 31 4 1 0.967742
smallinvDAXr3b050-055 30 0 1 31 4 1 0.967742
smallinvDAXr3b100-110 30 0 1 31 4 1 0.967742
smallinvDAXr3b150-165 30 0 1 31 4 1 0.967742
smallinvDAXr3b200-220 30 0 1 31 4 1 0.967742
smallinvDAXr4b010-011 30 0 1 31 4 1 0.967742
smallinvDAXr4b020-022 30 0 1 31 4 1 0.967742
smallinvDAXr4b050-055 30 0 1 31 4 1 0.967742
smallinvDAXr4b100-110 30 0 1 31 4 1 0.967742
smallinvDAXr4b150-165 30 0 1 31 4 1 0.967742
smallinvDAXr4b200-220 30 0 1 31 4 1 0.967742
smallinvDAXr5b010-011 30 0 1 31 4 1 0.967742
smallinvDAXr5b020-022 30 0 1 31 4 1 0.967742
smallinvDAXr5b050-055 30 0 1 31 4 1 0.967742
smallinvDAXr5b100-110 30 0 1 31 4 1 0.967742
smallinvDAXr5b150-165 30 0 1 31 4 1 0.967742
smallinvDAXr5b200-220 30 0 1 31 4 1 0.967742
squfl025-030 0 25 750 775 780 1 0.967742
squfl025-025 0 25 625 650 650 1 0.961538
squfl010-025 0 10 250 260 275 1 0.961538
fac2 0 12 54 66 33 1 0.818182
fac3 0 12 54 66 33 1 0.818182
fac1 0 6 16 22 18 1 0.727273
ex1223 0 4 7 11 13 5 0.636364
st_e14 0 4 7 11 13 5 0.636364
batchdes 0 9 10 19 19 2 0.526316
cvxnonsep_pcon20r 10 0 29 39 20 19 0.512821
cvxnonsep_pcon30r 15 0 44 59 30 29 0.508475
cvxnonsep_pcon40r 20 0 59 79 40 39 0.506329
cvxnonsep_psig40r 20 0 62 82 42 41 0.5
cvxnonsep_normcon40r 20 0 60 80 41 40 0.5
cvxnonsep_nsig40r 20 0 60 80 41 40 0.5
cvxnonsep_psig30r 15 0 47 62 32 31 0.5
cvxnonsep_normcon30r 15 0 45 60 31 30 0.5
cvxnonsep_nsig30r 15 0 45 60 31 30 0.5
cvxnonsep_psig20r 10 0 32 42 22 21 0.5
cvxnonsep_normcon20r 10 0 30 40 21 20 0.5
cvxnonsep_nsig20r 10 0 30 40 21 20 0.5
st_miqp4 3 0 3 6 4 1 0.5

31

B Detailed results
Details regarding the computational results are given in Table 4, showing the
number of iterations, time and final gap for each test problem and method.
The sign ∗ indicates that the time limit was exceeded. The gap reported is
calculated as |LB − UB|/|LB| where LB and UB are the lower and upper
bounds, respectively.

32

Table 4: Detailed results

OA L-OA Q-OA
Instance Time [s] Iterations Gap Time [s] Iterations Gap Time [s] Iterations Gap
cvxnonsep_normcon40 900* 1856* 0.0123* 900* 549* 0.0076* 900* 535* 0.0075*
cvxnonsep_nsig40 360.863 663 0.0010 147.874 201 0.0010 121.554 144 0.0009
cvxnonsep_pcon40 119.204 290 0.0010 112.095 158 0.0009 108.194 148 0.0006
cvxnonsep_psig40 322.982 629 0.0010 168.723 210 0.0009 165.35 205 0.0009
cvxnonsep_normcon30 900* 1134* 0.0016* 538.453 455 0.0009 574.245 456 0.0006
cvxnonsep_nsig30 381.401 915 0.0010 42.286 78 0.0009 48.464 83 0.0009
cvxnonsep_pcon30 52.22 156 0.0010 41.269 72 0.0009 37.914 60 0.0008
cvxnonsep_psig30 266.827 694 0.0009 98.742 160 0.0007 89.545 141 0.0009
cvxnonsep_normcon20 104.701 311 0.0007 55.874 114 0.0010 49.974 102 0.0009
cvxnonsep_nsig20 35.909 119 0.0009 26.007 50 0.0010 16.489 32 0.0009
cvxnonsep_pcon20 19.183 63 0.0010 17.829 35 0.0009 13.166 25 0.0008
cvxnonsep_psig20 113.183 379 0.0008 9.25 19 0.0010 2.967 7 0.0008
du-opt 1.223 5 0.0005 4.066 9 0.0009 0.919 3 0.0000
du-opt5 1.203 5 0.0002 2.541 6 0.0008 0.89 3 0.0001
ex1223b 1.53 5 0.0000 2.225 5 0.0000 2.116 5 0.0000
squfl030-150 900* 88* 3.8776* 900* 9* 1.7116* 900* 13* 2.0196*
squfl020-150 900* 98* 2.7303* 900* 19* 1.4643* 900* 42* 1.4822*
smallinvSNPr1b010-011 1.894 6 0.0000 4.122 8 0.0000 2.35 5 0.0000
smallinvSNPr1b020-022 2.208 7 0.0000 4.63 9 0.0000 3.063 6 0.0000
smallinvSNPr1b050-055 3.18 10 0.0000 6.182 11 0.0000 4.249 8 0.0000
smallinvSNPr1b100-110 3.534 10 0.0000 7.272 13 0.0000 3.627 7 0.0008
smallinvSNPr1b150-165 3.412 11 0.0007 5.254 10 0.0003 2.535 5 0.0003
smallinvSNPr1b200-220 3.879 12 0.0006 5.994 12 0.0008 2.483 5 0.0008
smallinvSNPr2b010-011 1.194 4 0.0000 2.965 6 0.0000 1.819 4 0.0000
smallinvSNPr2b020-022 2.09 7 0.0000 4.63 9 0.0000 3.026 6 0.0000
smallinvSNPr2b050-055 3.051 10 0.0000 5.514 10 0.0000 2.483 5 0.0000
smallinvSNPr2b100-110 3.858 12 0.0003 5.91 11 0.0009 4.864 9 0.0007
smallinvSNPr2b150-165 3.212 10 0.0004 5.389 10 0.0000 2.532 5 0.0004
smallinvSNPr2b200-220 4.059 13 0.0004 6.539 12 0.0000 4.364 8 0.0000
smallinvSNPr3b010-011 2.301 7 0.0000 3.181 6 0.0000 2.73 5 0.0000
smallinvSNPr3b020-022 2.026 6 0.0000 3.673 7 0.0000 3.095 6 0.0000
smallinvSNPr3b050-055 3.084 10 0.0000 5.639 10 0.0000 4.318 8 0.0000
smallinvSNPr3b100-110 3.213 10 0.0006 4.998 9 0.0006 2.375 5 0.0006
smallinvSNPr3b150-165 3.412 11 0.0000 5.286 10 0.0009 3.156 6 0.0007
smallinvSNPr3b200-220 4.238 13 0.0000 6.489 12 0.0008 3.073 6 0.0001
smallinvSNPr4b010-011 7.176 20 0.0000 9.898 16 0.0000 9.05 14 0.0000
smallinvSNPr4b020-022 2.192 7 0.0000 3.523 7 0.0000 3.117 6 0.0000
smallinvSNPr4b050-055 3.477 11 0.0000 5.572 10 0.0003 3.733 7 0.0001
smallinvSNPr4b100-110 3.686 12 0.0000 6.667 12 0.0000 4.724 9 0.0000

33

smallinvSNPr4b150-165 4.373 14 0.0000 5.88 11 0.0002 3.64 7 0.0000
smallinvSNPr4b200-220 3.351 11 0.0000 5.726 11 0.0000 3.077 6 0.0000
smallinvSNPr5b010-011 4.618 14 0.0000 9.93 16 0.0000 7.46 12 0.0000
smallinvSNPr5b020-022 2.841 9 0.0000 3.579 7 0.0000 3.15 6 0.0000
smallinvSNPr5b050-055 3.479 11 0.0000 5.51 10 0.0000 2.443 5 0.0000
smallinvSNPr5b100-110 2.751 8 0.0000 6.007 11 0.0000 3.657 7 0.0000
smallinvSNPr5b150-165 4.421 14 0.0005 5.848 11 0.0008 3.119 6 0.0005
smallinvSNPr5b200-220 3.785 12 0.0000 5.276 10 0.0000 3.023 6 0.0000
squfl030-100 900* 113* 3.2451* 900* 11* 1.9290* 900* 48* 1.9899*
squfl040-080 900* 123* 3.4900* 900* 10* 1.8806* 900* 46* 1.8806*
squfl015-080 900* 152* 1.1302* 900* 71* 1.2469* 900* 75* 1.2660*
squfl010-080 900* 181* 0.1943* 900* 121* 0.2657* 900* 132* 0.2509*
squfl015-060 900* 200* 0.4635* 900* 130* 0.4371* 900* 110* 0.8024*
squfl020-050 900* 190* 1.1339* 900* 88* 1.2583* 900* 99* 1.3194*
squfl025-040 900* 199* 1.1967* 900* 60* 1.5676* 900* 98* 1.5676*
squfl020-040 900* 231* 0.3661* 900* 112* 0.5885* 900* 114* 0.6238*
squfl010-040 238.235 159 0.0000 205.645 104 0.0001 206.827 101 0.0001
smallinvDAXr1b010-011 11.335 35 0.0008 14.291 25 0.0001 12.691 22 0.0008
smallinvDAXr1b020-022 12.043 38 0.0005 14.295 25 0.0005 10.002 17 0.0005
smallinvDAXr1b050-055 14.076 43 0.0006 14.803 25 0.0005 10.445 18 0.0005
smallinvDAXr1b100-110 16.173 51 0.0008 12.489 22 0.0009 6.212 11 0.0009
smallinvDAXr1b150-165 14.641 46 0.0009 14.059 24 0.0009 3.493 7 0.0009
smallinvDAXr1b200-220 14.787 47 0.0009 11.347 20 0.0008 4.671 9 0.0007
smallinvDAXr2b010-011 12.981 40 0.0010 14.629 25 0.0001 12.975 22 0.0008
smallinvDAXr2b020-022 12.396 39 0.0005 12.641 22 0.0004 9.675 17 0.0005
smallinvDAXr2b050-055 13.484 42 0.0008 12.23 22 0.0009 10.662 18 0.0005
smallinvDAXr2b100-110 13.918 44 0.0010 12.966 22 0.0008 5.869 11 0.0010
smallinvDAXr2b150-165 16.614 51 0.0010 10.966 19 0.0010 3.617 7 0.0009
smallinvDAXr2b200-220 16.22 49 0.0009 11.232 20 0.0006 4.741 9 0.0007
smallinvDAXr3b010-011 12.487 38 0.0010 18.347 31 0.0007 12.795 22 0.0008
smallinvDAXr3b020-022 12.574 38 0.0005 13.228 23 0.0009 9.789 17 0.0005
smallinvDAXr3b050-055 14.313 44 0.0006 14.523 25 0.0008 10.837 18 0.0005
smallinvDAXr3b100-110 15.528 47 0.0009 13.817 24 0.0006 7.497 13 0.0010
smallinvDAXr3b150-165 15.892 48 0.0010 11.882 21 0.0009 4.153 8 0.0009
smallinvDAXr3b200-220 16.602 52 0.0009 11.495 20 0.0006 5.817 10 0.0009
smallinvDAXr4b010-011 11.106 35 0.0007 12.699 22 0.0007 13.449 22 0.0008
smallinvDAXr4b020-022 13.016 40 0.0005 14.626 25 0.0006 10.425 17 0.0005
smallinvDAXr4b050-055 15.155 45 0.0009 13.019 23 0.0006 10.559 18 0.0005
smallinvDAXr4b100-110 14.402 44 0.0009 11.205 20 0.0009 7.405 13 0.0010
smallinvDAXr4b150-165 15.547 48 0.0010 11.21 20 0.0009 4.091 8 0.0009
smallinvDAXr4b200-220 14.571 44 0.0008 11.565 21 0.0009 6.78 11 0.0009
smallinvDAXr5b010-011 12.773 40 0.0006 12.884 22 0.0007 14.052 22 0.0008

34

smallinvDAXr5b020-022 11.054 34 0.0005 10.71 19 0.0005 10.791 18 0.0005
smallinvDAXr5b050-055 13.882 42 0.0008 13.168 23 0.0010 9.071 15 0.0008
smallinvDAXr5b100-110 14.225 44 0.0009 11.124 20 0.0007 7.497 13 0.0009
smallinvDAXr5b150-165 17.016 51 0.0010 10.465 19 0.0010 6.072 11 0.0009
smallinvDAXr5b200-220 15.207 47 0.0010 10.104 18 0.0009 7.396 11 0.0009
squfl025-030 900* 266* 0.4438* 900* 136* 0.6127* 900* 150* 0.6333*
squfl025-025 900* 267* 0.4102* 900* 118* 0.6177* 900* 133* 0.7265*
squfl010-025 132.307 145 0.0000 116.474 94 0.0007 123.704 94 0.0000
fac2 2.544 7 0.0000 3.546 7 0.0000 3.108 6 0.0000
fac3 2.347 7 0.0000 3.331 7 0.0000 2.965 6 0.0000
fac1 1.469 3 0.0000 1.171 3 0.0000 1.199 3 0.0000
ex1223 1.483 5 0.0000 2.181 5 0.0000 2.147 5 0.0000
st_e14 1.456 5 0.0000 2.174 5 0.0000 2.154 5 0.0000
batchdes 0.605 2 0.0000 0.612 2 0.0000 0.599 2 0.0000
cvxnonsep_pcon20r 1.816 7 0.0002 4.207 9 0.0003 1.942 5 0.0008
cvxnonsep_pcon30r 1.899 7 0.0002 4.474 9 0.0006 3.191 7 0.0007
cvxnonsep_pcon40r 1.607 6 0.0008 4.99 10 0.0006 4.484 9 0.0010
cvxnonsep_psig40r 1.273 5 0.0007 4.853 9 0.0003 2.215 5 0.0003
cvxnonsep_normcon40r 3.112 7 0.0000 5.694 9 0.0007 2.974 5 0.0007
cvxnonsep_nsig40r 2.341 8 0.0005 7.702 13 0.0007 2.589 6 0.0007
cvxnonsep_psig30r 1.855 7 0.0003 5.055 10 0.0002 2.528 6 0.0008
cvxnonsep_normcon30r 3.203 9 0.0000 6.422 12 0.0005 3.577 7 0.0009
cvxnonsep_nsig30r 1.645 5 0.0007 4.95 10 0.0006 2.39 6 0.0007
cvxnonsep_psig20r 1.831 6 0.0006 7.545 15 0.0008 2.486 6 0.0008
cvxnonsep_normcon20r 1.913 6 0.0000 5.456 11 0.0000 4.562 10 0.0009
cvxnonsep_nsig20r 1.449 5 0.0009 4.906 10 0.0006 2.211 5 0.0006
st_miqp4 0.386 2 0.0000 0.369 2 0.0000 0.375 2 0.0000
ibs2 900* 431* 0.0054* 900* 41* 0.1093* 103.888 16 0.0010

35

