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Abstract

This paper addresses the solution of a nonlinear boolean quadratic programming problem using

three different approaches. The first uses a classic linearization technique to transform the original

problem into a Mixed Integer Linear Programming (MILP) problem for which multiple formula-

tions are studied. The second uses the capabilities of current MILP solvers to deal with Mixed

Integer Quadratic Programming (MIQP) problems, and the third relies on the utilization of opti-

mization solvers available that can deal with nonlinear combinatorial problems. Two additional

strategies relying on the MILP formulations are evaluated. Special emphasis is placed on the

definition of computationally efficient MILP reformulations and their comparison with other ap-

proaches. The results indicate that the most efficient approach relies on solving the problem as

a MIQP problem using a specific MILP solver from the set of solvers tested, while the most ef-

ficient MILP formulations are still a better option than solving the problem as a MIQP using the

remaining MILP solvers tested, and their performance is considerably superior to the application

of general purpose solvers.

Key words: Mixed Integer Programming, Boolean Quadratic Polytope, Nonconvex 0-1 Quadratic

Programming

History:

1. Introduction

Boolean Quadratic Programming (BQP) problems are a specific class of problems that involve

only binary variables and a bilinear term in the objective function. The general formulation of a

BQP is given by

min{cTx+ xTQx : Ax ≤ b, x ∈ {0, 1}n}, (1)
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where c, b ∈ <n , Q ∈ <n×n, and A ∈ <n×n. BQP, as well as the unconstrained BQP, belongs to

the class of NP-hard problems and is considered a classic problem in combinatorial optimization,

see for example Padberg (1989) for the characterization of the polytope of an unconstrained BQP.

Important real world applications of BQP include a class of problems on facilities location, the so

called Quadratic Assignment Programming (QAP) (Loiola et al., 2007), tasks allocation (Billionnet

et al., 1992), and molecular conformation (Phillips and Rosen, 1994).

In this work the focus is on the computational solution of a specific class of Cardinality BQP

(CBQP) problems defined as:

min{cTx+ xTQx : x ∈ Bn,M}, (P1)

where

Bn,M =

{
x :

∑
1≤x≤n

xi = M

}
∩Bn : Bn = {0, 1}n,

and c ∈ <n , Q ∈ <n×n and Q is not necessarily a positive semidefinite matrix. This is a non-

convex nonlinear combinatorial problem involving a quadratic term in the objective function and a

cardinality constraint. The formulation (P1) is a specific case of the BQP. An annotated review on

CBQP is given by Bruglieri et al. (2006), where some applications are described and the problem

is characterized. Typical applications include problems in edge-weighted graphs (see Billionnet

(2005) for a detailed description), and facility location problems (Bruglieri et al., 2006).

The objective of this work is to evaluate the practical options available to solve CBQP problems

using the common available software. In the last decades significant theory has been developed to

characterize the convex hull of the BQP and CBQP leading to the development of strong valid in-

equalities and several Mixed Integer Programming (MILP) formulations, which will be described

later in this work. On the other hand, in the recent years MILP solvers have implemented algo-

rithms to deal with Mixed Integer Quadratic Programming (MIQP) problems that are able to cope

with nonconvex CBQP; examples include CPLEX, GUROBI, XPRESS and SCIP (Achterberg,

2009). In addition, nowadays there are several solvers available such as BARON (Tawarmalani

and Sahinidis, 2005), or GloMiQO (Misener and Floudas, 2012), which can rigorously address

nonlinear combinatorial problems. Therefore, based on the many options available to solve CBQP

involving common available software, our goal is to identify the best approach, and therefore, three

options are evaluated: 1) the solution by an MILP reformulation using an MILP solver, where effi-

cient formulations are sought; 2) the utilization of MIQP solvers; and 3) using a set of solvers that

can address this type of problems. In addition, two tailored strategies based on the MILP reformu-

lation are evaluated: 1) solving a sequence of MILP problems with the goal of identifying violated
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inequalities and at a latter step add them to the model; and 2) implementation of a callback to a

user cut generation routine within a commercial MILP solver.

1.1. Reformulations of BQP problems

In general, the solution of a BQP using an MILP solution approach involves the linearization of the

nonlinear term in the objective function and the construction of a valid MILP formulation. Note

that in this work the term BQP is used to refer to the unconstrained version of the BQP. A well

known MILP reformulation of the BQP is given by

min cx+
∑

1≤i<j≤n

(qij + qji)zij

subject to zij ≥ xi + xj − 1, ∀i < j
zij ≤ xi, ∀i < j
zij ≤ xj, ∀i < j
zij ≥ 0, ∀1 ≤ i < j
x ∈ Bn

, (P2)

where the variables z are continuous and the constraint zij ≤ 1 is redundant. This formulation is

built on the linearization technique proposed by Glover and Woolsey (1974) for 0-1 polynomials,

whereas the term xixj is replaced by a new variable zij and the following inequalities are added:

zij ≥ xi + xj − 1, ∀i < j (1)

zij ≤ xi, ∀i < j (2)

zij ≤ xj, ∀i < j. (3)

The inequalities above can also be derived from the logical proposition (Raman and Grossmann,

1991):

xi ∧ xj ⇔ zij, 1 ≤ i < j ≤ n, (4)

or derived using the Reformulation-Linearization Technique (RLT) of Sherali and Adams (1998)

from the following equations:

zij ≥ max
{
xl
ixj + xix

l
j − xl

ix
l
j, x

u
i xj + xix

u
j − xu

i x
u
j

}
(5)

zij ≤ min
{
xu
i xj + xix

l
j − xu

i x
l
j, x

l
ixj + xix

u
j − xl

ix
u
j

}
, (6)
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where the superscripts l and u represent the lower and upper bound, respectively, of the variables.

Following the same reasoning the nonlinear CBQP can be transformed into the linear CBQP:

min W =
∑
i

cixi +
∑
i

∑
j>i

(qij + qji) zij

subject to
∑
i

xi = M

zij ≥ xi + xj − 1, ∀i < j
zij ≤ xi, ∀i < j
zij ≤ xj, ∀i < j
zij ≥ 0 ∀1 ≤ i < j
xi ∈ {0, 1},∀i.

(P4)

From the theoretical point of view, the properties of the convex hull of the BQP and CBQP have

been studied using polyhedral theory and convex analysis. An important remark is that important

results valid for the BQP polytope are also valid for the CBQP (Mehrotra, 1997). Padberg (1989) is

a classic reference on the characterization of the convex hull of the BQP problem, and has proposed

three families of facets: triangle, clique, cut, and generalized cut inequalities. These inequalities

were latter studied by Boros and Hammer (1993), who have established new relations between

different types of inequalities. Barahona et al. (1989) and Pardalos and Rodgers (1990) addressed

the solution of the BQP using algorithmic techniques within a Linear Programming Branch &

Bound (BB) framework. The first proposed a branch and cut algorithm where cutting planes are

applied on each node, while Pardalos and Rodgers (1990) have studied a specific preprocessing

technique to fix the variables. Based on the inequalities developed by Padberg (1989), Sherali

et al. (1995) proposed a new class of facets for the BQP. Gueye and Michelon (2005) and later

Gueye and Michelon (2009) proposed a linearization framework where the objective is to derive

reduced formulations of the classic formulation P2. Hansen and Meyer (2009) studied also the

derivation of reduced derivations that aim at obtaining a good relaxation without comprimising

computaional performance. Following the same objective, Liberti (2007) proposed an efficient

compact linearization for BQP subject to assignment constraints. Burer and Letchford (2009)

extended the results described for the BQP in the characterization of box constrained quadratic

programming problem. Mehrotra (1997) studied the specific case of the following BQP:

max{cTx+ xTQx : x ∈ Bn,M}, (7)

where

Bn,M =

{
x :

∑
1≤x≤n

xi ≤M

}
∩Bn : Bn = {0, 1}n,
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and discussed the derivation of some inequalities based on the inequalities of the Knapsack Con-

strained Boolean Quadratic Programming (KCBQP) polytope (Johnson et al., 1993). This author

proposed two types of inequalities, the tree inequalities and the star inequality, and discussed the

additional valid inequalities, long-cycle and long-tree inequalities. In addition, he has developed

a cutting plane algorithm using the tree and star inequalities, but discarded the utilization of the

long-cycle and long-tree inequalities due to difficulties on the solution of the separation problems.

Faye and Trinh (2003, 2005) extended the work of Padberg (1989) over the BQP by considering

the constraint: ∑
1≤x≤n

xi = M,

and proved that the family of clique inequality facets of the linear BQP also induce facets of the

CBQP. The ultimate goal of the works mentioned above is the identification of valid inequalities

that are facets of the polytope of the BQP and CBQP. Some of these works were concerned about

the characterization of the problem and derivation of facet inducing inequalities without concerns

on the practical implication of the resulting size of the problems and the impact on the computa-

tional solution. The importance of having a tighter relaxation for a given MILP problem is well

known within a BB framework. However, the size of the LP problem to be solved at each node may

also have a significant impact on the total computational time required to solve the corresponding

MILP problem to global optimality. A reference on the theoretical and computational aspect is the

work of Billionnet (2005), who has studied the efficiency of several MILP formulations for specific

types of CBQP arising from weighted-edge graphs problems.

1.1.1. Formulations

In this section we introduce the formulations used for the the MILP solution approach. These for-

mulations are based on the classic formulation presented, and on the combination of different valid

inequalities proposed in the literature. From these inequalities, those that lead to smaller problems

were selected, and the ones that require the solution of separation problems are not considered.

Mehrotra (1997) reports that this type of problem and the associated separation problems of some

inequalities may easily lead to additional intractable problems, and conditions the utilization of

branch and cut algorithms. Our goal is to derive an efficient MILP formulation from the compu-

tational point of view, which means that the quality of the continuous relaxation may be sacrificed

for the sake of a smaller formulation. Six different MILP formulations are described next.

The first formulation is the most naive linearization that leads to the smallest representation of
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the CBQP problem:

min W =
∑
i

cixi +
∑
i

∑
j>i

(qij + qji) zij

subject to
∑
i

xi = M

zij ≥ xi + xj − 1, ∀i < j
zij ≥ 0, ∀1 ≤ i < j
xi ∈ {0, 1}, ∀i

. (F0)

The Formulation (F0) is only valid for problems with qi′j + qji′ ≥ 0. For qij + qji < 0, this

formulation is not equivalent to the original problem to be solved, because it leads to solutions

with xi′ = 0 and zi′j = 1, which are not valid solutions of the original problem. The following

formulation is based on the classic linearization, which results by adding the inequalities zij ≤ xi

and zij ≤ xj to the previous formulation.

min W =
∑
i

cixi +
∑
i

∑
j>i

(qij + qji) zij

Subject to
∑
i

xi = M

zij ≥ xi + xj − 1, ∀i < j
zij ≤ xi, ∀i < j
zij ≤ xj, ∀i < j
zij ≥ 0 ∀1 ≤ i < j
xi ∈ {0, 1}, ∀i.

(F1)

The inequalities zij ≤ xi and zij ≤ xj cut-off solutions with xi′ = 0 and zi′j = 1 for qi′j + qji′ < 0,

leading to a more generic formulation. The formulation (F2) is based on the classic formulation,

plus it includes the following constraint:∑
i<j

zij +
∑
i>j

zj,i = (M − 1)xj ∀j,

which is in this work adapted from the star inequality proposed by Mehrotra (1997).

min W =
∑
i

cixi +
∑
i

∑
j>i

(qij + qji) zij

Subject to
∑
i

xi = M

zij ≥ xi + xj − 1, ∀i < j
zij ≤ xi, ∀i < j
zij ≤ xj, ∀i < j∑
i<j

zij +
∑
i>j

zj,i = (M − 1)xj ∀j

zij ≥ 0, ∀1 ≤ i < j.
xi ∈ {0, 1},∀i.

(F2)
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The formulation (F3) is built by eliminating the inequality zij ≥ xi + xj − 1 from the formulation.

The underlying rationale is that a more compact formulation is obtained, at the cost of a potential

weaker lower bound

min W =
∑
i

cixi +
∑
i

∑
j>i

(qij + qji) zij

Subject to
∑
i

xi = M

zij ≤ xi ∀i < j
zij ≤ xj ∀i < j∑
i<j

zij +
∑
i>j

zj,i = (M − 1)xj ∀j

zij ≥ 0, ∀1 ≤ i < j
xi ∈ {0, 1},∀i.

(F3)

The formulation (F4) is based on (F3) but considering the triangular inequalities proposed by

Padberg (1989) for sets of three variables defined by i, j, k.

min W =
∑
i

cixi +
∑
i

∑
j>i

(qij + qji) zij

Subject to
∑
i

xi = M

zij ≤ xi ∀i < j
zij ≤ xj ∀i < j∑
i<j

zij +
∑
i>j

zj,i = (M − 1)xj ∀j

zij ≥ zik + zjk − xk ∀i < j < k
zik ≥ zij + zjk − xj ∀i < j < k
zjk ≥ zij + zik − xi ∀i < j < k
zij ≥ 0, ∀1 ≤ i < j
xi ∈ {0, 1},∀i.

(F4)

The triangular inequalities were initially proposed for the BQP problem, but it was proved that

they are valid for the CBQP and that they lead to a tigher relaxation. Formulation (F5) is a more

compact reformulation of (F3) without the constraint zij ≤ xj .

min W =
∑
i

cixi +
∑
i

∑
j>i

(qij + qji) zij

Subject to
∑
i

xi = M

zij ≤ xi ∀i < j∑
i<j

zij +
∑
i>j

zj,i = (M − 1)xj ∀j

zij ≥ 0, ∀1 ≤ i < j
xi ∈ {0, 1},∀i.

(F5)

The last formulation is based on formulation (F3) with two additional equations:∑
i

yi = |I| −M
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xi = 1− yi, ∀i

leading to formulation (F6):

min W =
∑
i

cixi +
∑
i

∑
j>i

(qij + qji) zij

Subject to
∑
i

xi = M

zij ≤ xi ∀i < j
zij ≤ xj ∀i < j∑
i<j

zij +
∑
i>j

zj,i = (M − 1)xj ∀j∑
i

yi = |I| −M

xi = 1− yi, ∀i
zij ≥ 0, ∀1 ≤ i < j
yi ≥ 0, ∀i
xi ∈ {0, 1}, ∀i

. (F6)

The size of each formulation for n = 50 is summarized in Table 1 in terms of the number of equa-

tions, variables, and nonzero elements. The number of binary variables correspond to the number

of variables xi, while the number of continuous variables is associated with zij . Formulation (F0)

is the most compact formulation, while formulation (F4) leads to the largest model due to the

inclusion of the triangular inequalities, which are defined over ∀i < j < k. The formulations

Table 1: Size of the MILP formulations for n = 50.
Formulation 0-1 Var Cont. Var NEQ NonZeros

F0 50 1,226 1,227 5,001
F1 50 1,226 3,677 9,901
F2 50 1,226 3,727 12,401
F3 50 1,226 2,502 8,726
F4 50 1,226 60,077 241,476
F5 50 1,226 1,277 6,276
F6 50 1,276 2,553 8,876

described encompass a set of valid MILP representations of the same original problem, ranging

from compact formulations to formulations expected to have a tight continuous relaxation.

1.1.2. Quality of the formulations

In this section a theoretical analysis of the quality of the relaxations of the MILP formulations

described is presented. Here, the variable Wn represents the value of the objective function of

the continuous relaxation of the formulation (Fn). The formulations (F0) and (F1) adapted for
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the CBQP are well known to have a loose continuous relaxation. From these, the lower bound

provided by (F1) will be at least great or equal than (F0), due to the fact that (F1) considers the two

additional constraints: zij ≤ xi and zij ≤ xj . The formulation (F2) has one more constraint, the

star inequality, that is known to be a strong valid inequality (Faye and Trinh, 2005), which leads to

an improved relaxation. Therefore, the following relation is valid:

W0 ≤ W1 ≤ W2.

The formulation (F3) is equal to the formulation (F2) minus the constraint zij ≥ xi+xj−1. It will

be shown later that this inequality may be redundant for some instances, which may transform the

formulation (F3) into an efficient approach for those cases. On the other hand, it may be a strong

inequality, and thus, his omission leads to a weak formulation. Thus, the relation between their

objective functions is the following:

W3 ≤ W2.

The formulation (F4) is based on formulation (F3) and it includes additionally the triangular in-

equalities, therefore it is continuous relaxation is stronger than (F3):

W3 ≤ W4.

The formulation (F5) results from eliminating some constraints in order to obtain a more compact

formulation. Thus the objective function is bounded by W3 and W2:

W5 ≤ W3 ≤ W2.

By the same reasoning the formulation (F6) leads to an objective function that is at least as tight as

(F3):

W3 ≤ W6.

1.2. Convexification of nonconvex BQP problems

Problem P1 is a pure combinatorial problem that can be solved through an MILP formulation as

shown in the previous section, or it can be solved using recent algorithms available within the

MILP solvers. Currently, the common available MILP solvers are able to solve MIQP problems

with the following formulation:

min{cTx+ xTQx : x : Ax ≤ b, x ∈ {0, 1}n}, (8)
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with nonconvex objective functions, i.e. problems where the matrix Q is not positive semidefinite.

Note that for relaxation problems with x ∈ [0, 1]n, the matrix Q must be positive semidefinite, in

order to define a convex program that has a unique local minimum. The exact procedure used by

the MILP solvers to transform the nonconvex objective function into a convex objective function

is not clear. However, several authors have proposed convexification procedures. Billionnet and

Elloumi (2007) show that the objective function of the problem

min{cTx+ xTQx : x ∈ {0, 1}n} (MIQP_F)

can be transformed into a convex function, fu(x) = cTx+xTQx+Penalty(u), where Penalty(u)

is a penalty that depends on the vector u, which under specific conditions leads to a convex prob-

lem:

min{fu(x) : x ∈ [0, 1]n} (QP_Fu)

that is then a valid lower bound of the former problem. Their objective was to derive a convex

MIQP problem that could be used within a branch & bound based algorithm.

The underlying rationale is the perturbation of the objective function f(x) = cTx+xTQx with

a vector u and a matrix D = diag(u) such that a new convex objective function is defined: fu(x) =

(c+ u)T x + xT (Q − D)x. The function fu can be rewritten as fu = f(x) +
∑n

i=1 ui (xi − x2
i ),

which clearly shows that fu(x) = f(x) when x ∈ {0, 1}n. The problem min{fu(x) : x ∈ [0, 1]n}
is convex if (Q−D) results in a positive semidefinite matrix. The function fu depends on the value

of the vector u, and the matrix D is a diagonal matrix obtained from the vector u. Therefore, given

that fu(x) = f(x) when x ∈ {0, 1}n, solving the nonconvex problem (MIQP_F) is equivalent to

solve the problem

min{fu(x) : x ∈ {0, 1}n} (MIQP_Fu)

within a branch & bound framework where the continuous relaxation is given by the problem

(QP_Fu). However, the determination of a specific vector u such that (Q − D) � 0 is essential

to define the convex problem, and in addition a strong lower bound. This vector can be deter-

mined based on the calculation of the minimum eigenvalue of matrix Q, or through the solution

of a semidefinite programming (SDP) (Billionnet and Plateau, 2009). These authors proposed an

interesting approach based on duality theory and on the solution of a SDP problem, solved in a

preprocessing step. The solution of the SDP problem determines also a vector u, which is used to

formulate a convex BQP, whereas their results show it leads to improved lower bounds.

10



2. Computational experiments

The computational experiments aim at evaluating the value of the first approach using different

MILP formulations, and the performance of the different solvers available for directly solving this

type of problem.

The MILP formulations described are characterized by the size of the model and by the quality

of the continuous relaxation in terms of the value of the objective function. However, with the com-

bination of these two characteristics it is not trivial to infer which formulation will have a better

performance with a BB based MILP solver. Furthermore, current MILP solvers have implemented

several algorithms at the level of the pre-processing techniques, cutting planes, heuristics, paral-

lelization and search over the tree, which make it difficult to estimate the performance of an MILP

formulation (see Lima and Grossmann (2011); Bixby and Rothberg (2007); Rothberg (2007) for

reviews on some MILP solver features). Therefore, the computational experiments were designed

with the following objectives: 1) identify the best MILP formulation to handle the CBQP problem

under study; 2) evaluate the performance of the MIQP solvers, and compare it with the best MILP

formulations; 3) assess the utilization of MINLP solvers that were not designed specifically for

nonlinear combinatorial problems, but still have the capability to solve them. The performance

of the MILP formulations is analyzed using three different MILP solvers: CPLEX, GUROBI and

XPRESS, while to solve the BQP as a MIQP, the same MILP solvers are used plus the solver SCIP.

As an alternative the BQP problem is also solved using DICOPT, BARON and GloMIQO.

In order to assess the quality of the formulations and solvers, several cases studies based on

a CBQP problem are considered by combining different sizes of the problem, n = {50, 75, 100},
and two different values for the constant M, M = {n/5, n/1.25}. A detailed computational anal-

ysis to evaluate the impact of the coefficients of the matrix Q is presented for two instances with

Q = {U(5, 100), N(0, 1)}, where U(5,100) means that Q is generated using a random number

generation function with an uniform distribution between 5 and 100; and N(0,1) indicates that Q is

based on a normal distribution with mean 0 and standard deviation of 1. Note that with U(5,100)

all coefficients of the matrix Q are positive, while for N(0,1) some coefficients may be negative.

Therefore, the formulation (F0) is not used for the instances where qij + qji may be negative. This

analysis is made over all the solvers considered and is used to select a reduced set of approaches

for further investigation.

However, to further infer the influence of Q, 20 additional instances with Q randomly generated

are considered for the cases with n = 50 and M = {n/5, n/1.25}, and solved with CPLEX and
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GUROBI using the MILP formulations and the MIQP original problem.

In this work the focus is on a single problem with different instances, in place of a battery of

benchmark problems, relying on the fact that the instances selected are sufficient to show some of

the computational trends involved when dealing with these type of problems. The computer used

has an Intel Core i7@3.07GHz CPU, 64 bits, and 8Gb of RAM. All models are implemented in

the modeling system GAMS.

The results are presented in four sections, in the first and second sections detailed computa-

tional results obtained with all solvers are discussed for M = n/5 and M = n/1.25, respectively.

In the third section, the performance of the 22 instances of Q with GUROBI and CPLEX are an-

alyzed, and in the last section the influence of the number of threads and software developments

within one solver is illustrated for one case study.

2.1. BQP with M = n/5

The first set of test problems is based on a CBQP with the parameter M given by M = n/5,

n = {50, 75, 100}, and for two instances with Q = {U(5, 100), N(0, 1)}. The results obtained

with the MILP formulations are presented first, and next the performance of the MIQP and general

solvers is analyzed.

In Table 2, the values of the objective function of the continuous relaxations of the MILP

formulations for n = 50,M = 10 are presented. From this table is clear that formulations (F0)

and (F1) are loose formulations, while formulation (F4) leads to the tightest formulation. For

the first set of problems with n = 50,M = 10, CPLEX, GUROBI and XPRESS were able to

solve the problem to global optimality using any of the formulations. However, it is clear that the

Table 2: Value of the objective function for the continuous linear relaxation of each MILP formu-
lation, for n = 50,M = 10.The optimal solutions are W = 3760.72 and W = −535.72 for the
cases generated with the matrices Q with U(5,100) and N(0,1), respectively.

Formulation U(5,100) N(0,1)

F0 327.55 -
F1 327.55 -1,362.72
F2 2,694.76 -908.49
F3 2,694.76 -908.49
F4 3,409.89 -630.15
F5 2,328.32 -1,095.62
F6 2,694.76 -908.49

U(5,100) - Uniform distribution between 5 and 100 used to generate the matrix Q. N(0,1) - Normal distribution with
mean 0 and standard deviation 1 used to generate the matrix Q. Bold means best results.
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formulation used has a strong influence on the CPU time required. The formulations (F3) and (F6)

feature the lower CPU times for U(5,100), independently of the solver (see Table 3), while for

N(0,1) these formulations are still efficient but with CPLEX the formulation (F2) has also a lower

CPU time. The most inefficient formulations were (F1) and (F4) independently of the solvers and

of the instances. The poor performance of (F0) and (F1) is explained by the poor initial lower

bound provided by the continuous relaxation, while the good initial lower bound of (F3), (F5) and

(F6) helped to achieve the lower CPU times of these formulations. The tighter formulation, (F4),

as expected requires the solution of the smallest number of nodes, less than 84, to prove optimality,

but it takes two orders of magnitude more time than the fastest formulations.

For the problem with 75 equations, the formulations (F3), (F5) and (F6) solved the problem

within the time limit for specific instances and solvers (see Table 4). For n = 100, all MILP

formulations with both solvers were not able to close the gap between the bounds within the time

limit of one hour.

Table 3: Results obtained for each MILP formulation for the optimal solutions with n = 50,M =
10. The optimal solutions are W = 3760.72 for U(5,100) and W = −535.72 for N(0,1).

U(5,100)

CPLEX GUROBI XPRESS

Formulation # Nodes CPU (s) # Nodes CPU (s) # Nodes CPU (s)

F0 2,645,063 944 2,140,922 279 3,929,271 567
F1 1,653,687 1,785 1,592,331 584 1,202,453 397
F2 4,302 17 3,597 36 4,249 27
F3 4,091 12 4,040 29 4,859 19
F4 59 735 84 509 47 844
F5 13,540 23 15,873 27 30,715 32
F6 4,091 12 3,137 15 5,097 20

N(0,1)

F0 - - - - - -
F1 2,570 33 18,956 48 42,499 66
F2 1,406 7 1,938 14 3,129 18
F3 1,842 8 1,664 9 3,869 16
F4 60 870 42 297 77 874
F5 17,066 22 1,661 7 6,151 15
F6 1,842 7 1,190 8 3,869 16

U(5,100) - Uniform distribution between 5 and 100 used to generate the matrix Q. N(0,1) - Normal distribution with
mean 0 and standard deviation 1 used to generate the matrix Q. Versions used: CPLEX 12.4, GUROBI 4.6.1, XPRESS
22.01.15. Bold means best result.

The same problem was solved with the MIQP solvers from CPLEX, GUROBI, XPRESS, and

SCIP and with a set of MINLP solvers that can handle the nonlinearities and integer variables. For

the set of instances with n = 50 and U(5,100), CPLEX, GUROBI and XPRESS can prove global
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Table 4: Results obtained for each MILP formulation for n = 75,M = 15. The optimal solutions
are W = 8, 726.10 and W = −1020.70 for U(5,100) and N(0,1), respectively.

U(5,100)

CPLEX GUROBI

Formulation # Nodes W Gap(%) CPU (s) # Nodes W Gap(%) CPU (s)

F0 850,817 9246.17 54.04 3,636 5,526,141 8,800.39 46.2 3,609
F1 445,892 9612.77 60.47 3,600 2,455,688 8,726.10 49.7 3,604
F2 118,933 8,758.26 5.4 3,601 87,084 8,726.10 6.1 3,600
F3 189,201 8,726.10 0.0 3,002 173,591 8,726.10 0.0 3,115
F4 10 11,186.35 32.4 3,601 13 8,961.34 15.7 3,601
F5 350,637 8,726.10 0.0 3,122 1,034,674 8,774.86 7.8 3,601
F6 64,820 8,726.10 7.1 3,600 173,591 8,726.10 0.0 3,132

N(0,1)

F0 - - - - - - - -
F1 64,533 -987.83 31.1 3,603 342,392 -998.80 58.9 3,601
F2 145,712 -1,020.70 8.1 3,601 96,395 -997.67 19.1 3,600
F3 172,803 -1,020.70 0.0 2,383 202,286 -1,020.70 0.0 3,279
F4 9 -134.48 952.2 3,601 14 -875.64 54.9 3,601
F5 506,064 -1,020.70 0.0 3,582 815,246 -1,020.70 25.7 3,601
F6 172,803 -1,020.70 0.0 2,362 202,286 -1,020.70 0.0 3,244

U(5,100) - Uniform distribution between 5 and 100 used to generate the matrix Q. N(0,1) - Normal distribution with
mean 0 and standard deviation 1 used to generate the matrix Q. Versions used: CPLEX 12.4, GUROBI 4.6.1. Bold
means best result.

optimality of the solutions obtained within the maximum time set of one hour for the instances

with U(5,100), while BARON was able to find the global minimum, but it is not able to prove

global optimality. DICOPT, GloMIQO, and SCIP returned only suboptimal solutions (see Table

6). For the instances where the coefficients qij may be negative, CPLEX and GUROBI are still

efficient solvers, 1 and 6 seconds respectively, to solve the problems with n = 50 and N(0,1). On

the other hand, BARON and SCIP can solve this problem to optimality, showing the impact of the

values of the coefficients on these solvers.

Increasing the size of the model, for n = 75 only CPLEX was able to solve the problem using

250 and 188 seconds for the instances with U(5,100) and N(0,1), respectively. For n = 100 all

solvers failed to prove optimality of the solutions obtained independently of the matrix Q (see

Tables 7 and 8). In terms of the general purpose solvers, for the three cases of n the output log of

GloMIQO indicates that the problem is linear and transfers the problem to CPLEX. After one hour,

it does not return a solution from CPLEX, and the final solution returned is the integer solution

from the relaxed NonLinear Programming (NLP) problem. Similarly, for the three cases of n

DICOPT stops after finding that the solution of the initial relaxed NLP is integral, and returns a

local solution.
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Table 5: Results obtained for each MILP formulation for n = 100,M = 20. The best known
solution for U(5,100) is W = 16, 134.42 and the optimal solution for N(0,1) is W = −1, 642.72.

U(5,100)

CPLEX GUROBI
Formulation # Nodes W Gap(%) CPU (s) # Nodes W Gap(%) CPU (s)

F0 961,870 17,411.09 72.8 3,869 1,712,439 16,188.65 69.9 3,604
F1 344,628 17,634.95 74.3 3,601 827,596 16,361.04 72.9 3,604
F2 34,062 16,188.06 20.7 3,603 15,173 16,185.19 22.7 3,600
F3 51,782 16,176.60 19.2 3,602 27,560 16,222.25 21.0 3,600
F4 2 20,728.54 34.9 3,602 0 18,548.58 27.2 3,603
F5 128,323 16,134.42 19.7 3,604 140,220 16,227.30 22.6 3,600
F6 24,637 16,227.30 21.4 3,600 27,553 16,222.25 21.0 3,600

N(0,1)

F0 - - - - - - - -
F1 7,842 -1,512.21 78.7 3,602 53,424 -1,380.25 200.4 3,600
F2 39,327 -1,613.93 72.5 3,602 15,622 -1,630.92 77.2 3,600
F3 59,581 -1,642.72 65.1 3,604 30,119 -1,634.83 69.3 3,600
F4 0 -251.39 - 5,458 0 -945.74 169.5 3,604
F5 138,261 -1,630.92 75.0 3,604 133,167 -1,642.72 78.6 3,600
F6 59,563 -1,642.72 65.1 3,603 30,205 -1,634.83 69.3 3,600

U(5,100) - Uniform distribution between 5 and 100 used to generate the matrix Q. N(0,1) - Normal distribution with
mean 0 and standard deviation 1 used to generate the matrix Q. Versions used: CPLEX 12.4, GUROBI 4.6.1. Bold
means best result.

Figure 1 shows the value of the objective function of the initial relaxations for the differ-

ent MILP formulations, for the MIQP solvers, and BARON for the instances with n = 50 and

U(5,100). The performance of the MILP formulations presented in Table 3 is explained by the

quality of the initial relaxation at the root node and by the size of the respective formulation. The

initial values of the relaxations of XPRESS and BARON suggest that these solvers are using re-

formulations similar to the ones used in formulations (F0) and (F1); while GUROBI has a loose

formulation. The superior performance of CPLEX in the solution of the MIQP arises from the

quality of the lower bound at the root node, plus the fact that during the branch and bound it deals

with a much smaller problem than the MILP formulations.

In addition, two alternative approaches were implemented based on MILP formulations for

n = 75 and U(5,100):

1. A sequence of problems is solved, where the first solves the MILP formulation (F3) with

the objective of finding the best solution. This is accomplished by invoking the heuristic

available within CPLEX to polish MILP solutions (Rothberg, 2007). The solution of this step

is then used as the starting point in step three. In the second step the continuous relaxation of

formulation (F3) is solved, and in the third step the formulation (F3) is complemented with
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Table 6: Results obtained with different solvers, solving the problem using the MIQP formulation
for n = 50,M = 10. The optimal solutions are W = 3760.72 for U(5,100) and W = −535.72 for
N(0,1).

U(5,100) N(0,1)

Solver W Gap (%) # Nodes CPU (s) W Gap (%) # Nodes CPU (s)

BARON 3,760.72 20.3 362,520 3,601 -535.72 0.0 9,436 525
CPLEX 3,760.72 0.0 153,111 4 -535.72 0.0 19,671 1
DICOPT 3,843.61 - - 0.1 -503.53 - - 0.1
GloMIQO 3,843.61 - - 3,611 -535.72 - - 85
GUROBI 3,760.72 0.0 1,762,117 68 -535.72 0.0 94,335 6
SCIP 3,843.61 32.1 12,346,262 3,741 -535.72 0.0 655,552 242
XPRESS 3,760.72 0.0 2,314,773 562 -504.64 51.6 981,014 3,599

Table 7: Results obtained with different solvers, solving the problem using the MIQP formulation
for n = 75,M = 15. The optimal solutions are W = 8, 726.10 and W = −1020.70 for U(5,100)
and N(0,1), respectively.

U(5,100) N(0,1)

Solver W Gap (%) # Nodes CPU (s) W Gap (%) # Nodes CPU (s)

BARON 8,726.10 55.6 74,164 3,600 -1,020.70 59.3 9,638 3,600
CPLEX 8,726.10 0.0 5,838,445 250 -1,020.70 0.0 5,077,269 188
DICOPT 9,142.59 - - 0.1 -884.35 - - 0.1
GloMIQO 9,142.59 - - 3,600 -884.35 - - 3,600
GUROBI 8,726.10 39.8 19,356,919 3,722 -1,020.70 30.4 20,157,785 3,699
SCIP 9,142.59 70.4 10,171,737 3,737 -886.62 93.0 3,451,412 3,650
XPRESS 9,702.62 53.3 2,538,562 4,341 -866.11 160.8 496,308 3,600

Table 8: Results obtained with different solvers, solving the problem using the MIQP formulation
for n = 100,M = 20. The best known solution for U(5,100) is W = 16, 134.42 and the optimal
solution for N(0,1) is W = −1, 642.72.

U(5,100) N(0,1)

Solver W Gap (%) # Nodes CPU (s) W Gap (%) # Nodes CPU (s)

BARON 16,134.42 70.5 19,007 3,600 -1,642.72 118.5 2,492 3,601
CPLEX 16,134.42 1.9 53,324,748 3,601 -1,642.72 0.0 42,062,241 3,593
DICOPT 16,622.48 - - 0.1 -1389.26 - - 0.1
GloMIQO 16,622.48 - - 3,600 -1389.26 - - 3,600
GUROBI 16,222.25 81.3 10,828,371 3,640 -1,642.72 95.9 9,963,334 3,624
SCIP 16,622.48 86.9 5,990,440 3,698 -1,389.26 173.6 1,611,804 3,625
XPRESS 18,851.98 74.7 917,088 3,600 -1,257.84 283.7 219,324 3,600
U(5,100) - Uniform distribution between 5 and 100 used to generate the matrix Q. N(0,1) - Normal distribution with
mean 0 and standard deviation 1 used to generate the matrix Q. Versions used: BARON 10.2.0, CPLEX 12.4, DICOPT
GAMS 23.8.1, GloMIQO 1.0.0, GUROBI 4.6.1., SCIP 2.1.1, XPRESS 22.01.15. Bold means best result.
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Figure 1: Comparison between the different values of the objective function of the continuous
relaxations of the different formulations and the values calculated by the solvers used. n = 50,
M = 10, U(5,100).

the triangular inequalities that were violated in the second step. With this approach, CPLEX

can solve this problem with n = 75 in approximately 2000s, which means that the CPU time

was reduced in 1000 seconds(a reduction of 33%) when compared with the results shown in

Table 4. Notwithstanding, the performance of this strategy is still superior to using BARON,

DICOPT, GloMIQO, GUROBI, SCIP and XPRESS (see Table 7), but it still requires more

time than the MIQP solution with CPLEX, which took 250 seconds.

2. The second approach relies on using CPLEX with callbacks during the branch and bound

algorithm to generate cuts that cut off solutions of the continuous relaxation. This approach

is implemented using the BCH tool from GAMS. In this implementation the formulation

(F3) is used, and in the generation cut routine the triangular inequalities that are violated

are added to the continuous relaxation solved within the branch and cut algorithm within the

MILP solver. With this approach the cuts generated during the root node iterations reduce the

initial lower bound from 5866.5374 (gap of 33.87%) to 7538.7465 (gap of 15.01%) in 36.30

seconds (still at the root node), while using only the formulation (F3) takes approximately
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339 seconds to reach the lower bound of 7543.3882. However, this approach did not present

a solid performance, since it was not able to close the gap within one hour. An important

remark is that the current implementation of the BCH tool in GAMS does not allow to use

multiple threads, which is an important drawback, as it will be shown later.

2.2. BQP with M = n/1.25

The MILP formulations were also tested with M = n/1.25. The results show that the best MILP

formulations for M = n/5 do not have the same performance for M = n/1.25. The formulations

(F0), (F1) and (F2) took 944s, 1785s and 17s for n = 50, U(5,100) and M = n/5, while for

n = 50, U(5,100), and M = n/1.25 took 28s, 47s and 3s, respectively. With an opposite trend,

formulation (F3) took 3s in the first case and 902s in the second case (see Table 9). On the other

hand, for M = n/1.25, formulations (F1) and (F2) have the best performance with CPLEX and

GUROBI (see Tables 9, 10, 11). Note that these trends are independent of the matrix Q, since

for N(0,1) the formulation (F2) for M = n/1.25 features also considerably lower CPU times

than (F3), precisely 2s with (F2) against 821s with (F3) (see Table 9). This clearly shows that

the best formulations for M = n/5 are not the best choice for M = n/1.25. This comparison

is highlighted in Table 12 for n = 50. For n = 50 and U(50,100) GUROBI, performed better

than CPLEX with (F2), but GUROBI with (F3), (F5) and (F6) took a large number of nodes to

prove optimality. Similarly results were obtained with N(0,1). Another remark is that GUROBI

was able to solve the three problems with n = {50, 75, 100} within the time limit of one hour,

independently of the matrix Q. These results suggest that the relative quality of the relaxation

of each MILP formulation depends on the value of M . Figure 2 shows the initial lower bounds

predicted by each formulation, where it is clear that formulation (F2) has in this case a stronger

lower bound than Formulations (F3), (F5) and (F6). The explanation resides on the fact that for

M = n/5 the solution of the continuous relaxation of (F2) has several values of xi equal to zero

or with xi + xj < 1, while for M = n/1.25, the solution of the relaxation has more variables

xi with the value of 1 and with a value greater than in the case M = n/5. The first situation is

explained by the fact that this is a minimization problem and that M � n, while in the second

situation M < n, and therefore in the latter case, some xi must be 1 to satisfy the cardinality

constraint. This situation makes the inequality zij ≥ xi + xj − 1 redundant in the first situation,

and an important inequality in the second case. Therefore, for M = n/5 its omission reduces the

size of the problem, increasing the efficiency of the formulation, while for M = n/1.25 is a strong

valid inequality, contributing for the efficiency of the formulation (F2).
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Table 9: Results obtained for each MILP formulation for the optimal solutions with n = 50,M =
40. The optimal solutions are W = 78, 951.35 for U(5,100) and W = −899.16 for N(0,1).

U(5,100)

CPLEX GUROBI
Formulation # Nodes CPU (s) # Nodes CPU (s)

F0 53,817 28 14,451 6
F1 33,438 47 14,576 12
F2 79 3 37 2
F3 249,517 902 341,355 1,891
F4 3 382 0 46
F5 228,350 1,002 2,468,245 3,411
F6 249,517 899 243,187 1,486

N(0,1)

F0 - - - -
F1 36 8 365 3
F2 23 2 39 4
F3 271,390 821 240,099 1,344
F4 0 216 3 91
F5 680,126 1,848 2,578,025 3,470
F6 271,390 821 288,585 1,469

U(5,100) - Uniform distribution between 5 and 100 used to generate the matrix Q. N(0,1) - Normal distribution with
mean 0 and standard deviation 1 used to generate the matrix Q. Bold means best result.

Table 10: Results obtained for each MILP formulation for n = 75,M = 60. The optimal solutions
are W = 181, 773.25 and W = −1, 691.89 for U(5,100) and N(0,1), respectively.

U(5,100)

CPLEX GUROBI

Formulation # Nodes W Gap(%) CPU (s) # Nodes W Gap(%) CPU (s)

F0 1,595,505 181,817.45 1.4 3,945 3,218,639 181,773.25 0.0 2,673
F1 787,619 181,821.04 1.0 3,895 2,420,466 181,773.25 0.7 3,603
F2 465 181,773.25 0.0 28 287 181,773.25 0.0 27
F3 128,414 181,773.25 4.9 3,603 41,161 181,797.12 5.9 3,600
F4 0 187,388.48 NA 3,602 1 181,773.25 0.1 3,602
F5 127,538 181,773.25 5.0 3,604 41,355 181,773.25 6.6 3,600
F6 127,917 181,773.25 4.9 3,603 41,148 181,797.12 5.9 3,600

N(0,1)

F0 - - - - - - - -
F1 448 -1691.89 0.0 55 7,363 -1691.89 0.0 161
F2 250 -1691.89 0.0 15 683 -1691.89 0.0 64
F3 162,531 -1691.89 180.8 3,604 42,374 -1691.89 217.3 3,600
F4 0 393.53 0.0 3,601 3 -1691.89 0.0 1,575
F5 190,046 -1691.89 194.4 3,604 41,994 -1677.34 249.7 3,600
F6 162,903 -1691.89 180.7 3,603 42,369 -1691.89 217.3 3,600

†- Time limit reached during the solution of the continuous relaxation at the root node. U(5,100) - Uniform distribution
between 5 and 100 used to generate the matrix Q. N(0,1) - Normal distribution with mean 0 and standard deviation 1
used to generate the matrix Q. Bold means best result.
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Table 11: Results obtained for each MILP formulation for n = 100,M = 80. The optimal
solutions are W = 325, 188.73 and W = −3, 122.04 for U(5,100) and N(0,1), respectively.

U(5,100)

CPLEX GUROBI

Formulation # Nodes W Gap(%) CPU (s) # Nodes W Gap(%) CPU (s)

F0 512,509 325,707.52 3.2 3,968 1,518,397 325,188.73 2.4 3,606
F1 177,813 325,337.81 2.8 3,747 566,469 325,188.73 2.7 3,602
F2 20,768 325,188.73 0.1 3,601 15,332 325,188.73 0.0 3,557
F3 29,488 325,274.69 7.5 3,604 10,981 325,279.27 8.2 3,600
F4 0 334,176.31 0.0 19,198 0 325,644.93 0.3 3,605
F5 36,390 325,299.08 7.6 3,601 41,167 325,188.73 8.0 3,600
F6 29,509 325,274.69 7.5 3,604 10,981 325,279.27 8.2 3,600

N(0,1)

F0 - - - - - - - -
F1 11,851 -3,122.04 4.5 3,601 54,295 -3,122.04 22.0 3,600
F2 13,799 -3,122.04 0.0 1,887 8,840 -3,122.04 0.0 3,111
F3 34,295 -3,099.89 273.5 3,603 11,193 -3,059.44 303.5 3,600
F4 0 154.83 0.0 10,197 0 -3,072.91 9.8 3,604
F5 39,866 -3,108 284.0 3,604 41,230 -3,119.06 299.2 3,600
F6 34,255 -3,099.89 273.5 3,603 11,438 -3,059.44 302.7 3,600

†- Time elapsed during the solution of the continuous relaxation at the root node. The search over the tree did not ini-
tialize. U(5,100) - Uniform distribution between 5 and 100 used to generate the matrix Q. N(0,1) - Normal distribution
with mean 0 and standard deviation 1 used to generate the matrix Q. Bold means best result.

Table 12: Results obtained with CPLEX for each MILP formulation for n = 50 and U(5,100) for
different values of M .

M = 10 M = 40

Formulation # Nodes CPU (s) # Nodes CPU (s)

F0 2,645,063 944 53,817 28
F1 1,653,687 1,785 33,438 47
F2 4,302 17 79 3
F3 4,091 12 249,517 902
F4 59 735 3 382
F5 13,540 23 228,350 1,002
F6 4,091 12 249,517 899

Bold means best result.

Table 13 shows the results obtained for the MIQP formulations for different values of n and

M = n/1.25, solved with CPLEX and GUROBI. It is clear that for this type of MIQP problems,

CPLEX has a better performance than GUROBI. For example, CPLEX needs only 18 seconds to

solve the problem with n = 100 and U(5,100), while GUROBI after one hour still has a 2.6% gap.

Another remark is that with GUROBI, better results are obtained using the MILP formulation than

the MIQP solver.
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Table 13: Results obtained with CPLEX and GUROBI, solving the problem using the MIQP for-
mulation for M = n/1.25.

U(5,100) N(0,1)

Solver n W Gap (%) CPU (s) W Gap (%) CPU (s)

CPLEX 50 78951.35 0.0 1 -899.16 0.0 0
GUROBI 78951.35 0.0 9 -899.16 0.0 1
CPLEX 75 181773.25 0.0 4 -1691.89 0.0 1
GUROBI 181773.24 0.0 2,252 -1691.89 0.0 48
CPLEX 100 325188.73 0.0 18 -3122.04 0.0 10
GUROBI 325188.73 2.6 3,669 -3122.04 11.8 3,636

CPLEX 200 1316710.32 0.1 3,601 -9883.11 4.4 3,601
CPLEX 300 2971613.47 0.2 3,601 -19939.46 7.7 3,601
CPLEX 400 5296802.82 0.2 3,601 -28436.53 11.0 3,601
U(5,100) - Uniform distribution between 5 and 100 used to generate the matrix Q. N(0,1) - Normal distribution with
mean 0 and standard deviation 1 used to generate the matrix Q. Versions used: CPLEX 12.4, GUROBI 4.6.1.
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Figure 2: Comparison between the different values of the objective function of the continuous
relaxations of the different formulations and the values calculated by the solvers used. n = 50,
M = 40, U(5,100).
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2.3. Analysis of the impact of Q for n = 50

The impact of the matrix Q in the performance of the solvers is evaluated for two cases with n = 50

and M = {n/5, n/1.25} and for 20 additional instances with Q generated randomly using uniform

and normal distributions within different domains. From the results presented in the two previous

sections, CPLEX and GUROBI seem to be the most appropriate solvers to approach the problem

studied. Therefore, they are used to investigate the impact of Q on the relative performance of the

MILP and MIQP formulations. Figures 3 and 4 show the CPU time elapsed for the 22 instances

obtained with MILP and MIQP formulations with CPLEX, while Figures 5 and 6 present the same

type of results obtained with GUROBI.

The results obtained for the 22 instances confirm the analysis made on the previous sections re-

garding the relative quality of the MILP and MIQP formulations. First, analyzing the performance

of the MILP formulations for M = n/5 is clear that (F1) does not have a good performance,

and formulations (F3), (F5) and (F6) are the most efficient formulations (see Figures 3 and 5).

As discussed before, the formulation (F2) leads to lower CPU times for most of the cases with

M = n/1.25. These results are valid for CPLEX as well as for GUROBI.

The performance of the MIQP formulations with CPLEX is also aligned with the results shown

previously, more specifically CPLEX features better CPU times for all the instances using the

MIQP formulation. While with GUROBI, the results show that for 21 cases out of 22 there is at

least a MILP formulation that is better than the MIQP formulation, namely only for instance 1 the

MIQP solver has a lower CPU time (see Figures 5 and 6).
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Figure 3: Results obtained with CPLEX using MILP and MIQP formulations, for n = 50 and
M = n/5 for 22 instances with different matrices Q.
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Figure 4: Results obtained with CPLEX using MILP and MIQP formulations, for n = 50 and
M = n/1.25 for 22 instances with different matrices Q.
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Figure 5: Results obtained with GUROBI using MILP and MIQP formulations, for n = 50 and
M = n/5 for 22 instances with different matrices Q.
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Figure 6: Results obtained with GUROBI using MILP and MIQP formulations, for n = 50 and
M = n/1.25 for 22 instances with different matrices Q.
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2.4. Contributions of algorithms and hardware developments

In this section, the objectives are to assess the contribution of software developments within one

MILP solver, and evaluate the impact of using more than one CPU thread for the MILP and MIQP

approaches. Here, the only solver used is CPLEX and two different versions are considered 7.1

and 12.4. The first version does not have an MIQP solver available, neither has the option to use

more than one thread. In terms of hardware, the focus is on the number of threads used within the

branch and bound search. The current CPLEX version is used with one and eight threads, and the

results are then compared with the previous versions.

The formulations (F0) and (F3) with U(5,100) were solved using CPLEX 12.4 with one thread

and 8 threads, and with CPLEX 7.1. The results show that using the best formulation, (F3), with

CPLEX 7.1 remains a good option when compared with using the last version with a weak formu-

lation (see Tables 14 and 15). This demonstrates that strong formulations are worth and still may

overcome algorithmic advances implemented in CPLEX 12.4. In addition, for n = 50, U(5,100)

and M = 10 and with the formulation (F0), CPLEX 7.1 has a better performance than CPLEX

12.4 with only one thread, which is surprising. The performance of both the MILP and MIQP

solvers suggest that for this problem, the number of threads used has a significant impact over the

CPU time required to close the gap.

Table 14: Comparison between CPLEX 7.1 (2001) and CPLEX 12.4 (2012) when applied to two
MILP formulations with n = 50,M = 10 and U(5,100).

CPLEX 7.1 CPLEX 12.4 - 1 threads CPLEX 12.4 - 8 threads

Formulation Gap(%) CPU (s) Gap (%) CPU (s) Gap (%) CPU (s)

F0 0 1437 0 2249 0 944
F3 0 88 0 56 0 12

MIQP - - 0 19 0 4
U(5,100) - Uniform distribution between 5 and 100 used to generate the matrix Q.

Table 15: Comparison between CPLEX 7.1 (2001) and CPLEX 12.4 (2012) when applied to two
MILP formultions with n = 50,M = 40 and U(5,100).

CPLEX 7.1 CPLEX 12.4 - 1 thread CPLEX 12.4 - 8 threads

Formulation Gap(%) CPU (s) Gap (%) CPU (s) Gap (%) CPU (s)

F2 0 8 0 3 0 3
F5 1.38 3600 1.09 3600 0 1,002

MIQP - - 0 1 0 1
U(5,100) - Uniform distribution between 5 and 100 used to generate the matrix Q.
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3. Conclusions

In this paper we have presented the computational results obtained for the solution of a nonconvex

boolean quadratic programming problem. The identification of a computationally efficient MILP

formulation and the comparison with the other commercial approaches to solve this problem has

been the main subject of this work. The computational results show that the MILP formulations

are not efficient when compared with the MIQP solver available from CPLEX, but they are clearly

more efficient than the MIQP algorithms implemented in the other solvers that were tested. In

the specific case of CPLEX, a pre-processing stage has been implemented that is able to convex-

ify the objective function and generate a good lower bound that is better than most of the lower

bounds of the MILP formulations studied. The quality of the lower bound, plus the fact that no

additional inequalities are added to the formulation, makes the CPLEX MIQP approach very fast

when compared with the other MIQP solvers and MILP formulations. The superiority of the MILP

formulations over the other solvers is explained by the weak lower bound determined initially by

these solvers with the MIQP solver. The remaining solvers used, DICOPT, BARON, GloMIQO

and SCIP, do not seem to be appropriate tools to handle these type of problems. The main reason

seems to be the lack of specific convexification procedures for this type of nonlinearities. The

matrix Q has some impact over the computational results of the approaches tested, but it does not

change the relative performance of the MILP formulations or the performance of the MIQP or

MINLP solvers. The comparison of the results obtained with the last version of CPLEX with 1

and 8 threads, and with version 7.1 shows the importance of a good formulation and the positive

impact that the number of threads used may have on the required CPU time.
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