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1 Introduction

In this paper, we address the design of networks that involves the selection
and location of facilities in the continuous 2-dimensional space. The problem
is formulated as a continuous facility location-allocation problem with lim-
ited capacity, also known as the Capacitated Multi-facility Weber Problem
(CMWP) with fixed costs. The objective of this type of problem is to deter-
mine locations in continuous 2-dimensional space for opening new facilities
that are connected to supply and customer nodes, taking into account limited
capacities and transportation costs [4].

The Weber problem was named after Alfred Weber [23], whose work is
considered to have established the foundations of modern location theories.
In his first problem, he considered one facility to be located based on two
supplier and one customer, when these three points are not collinear [23,12].
The basic model assumes Euclidean distances, but other distance functions
such as Manhattan (or `1) norm and `p norm have also been used depending
on the application and region where the transportation is considered.

The capacitated version of the Weber problem, known as Capacitated
Multi-facility Weber problem (CMWP), considers that the facilities to be in-
stalled have a maximum capacity. As shown by Sherali and Nordai [19], this
class of problems is NP-hard even if all the fixed points are located on a straight
line. The general formulation for a CMWP is as follows.

minΦ =
∑
i,j

cij · fij ·
{

(xi − xj)2 + (yi − yj)2
}1/2

(1a)

s.t.
∑
j

fij = ai ∀ i ∈ I (1b)

∑
i

fij = dj ∀ j ∈ J (1c)

fij ≥ 0 ∀ i ∈ I, j ∈ J (1d)

xi, yi ≥ 0 ∀ i ∈ I (1e)

where i is the index of the facilities to be located, j is the index of customers,
(xj , yj) are the fixed coordinates of the customer j, ai is the capacity of facility
i, dj is the demand of customer j, and cij is the cost of unit flow per unit
distance from facility i to customer j. The decision variables are: (xi, yi), which
represent the coordinates of a new facility i; and fij , which is the material flow
between facility i to customer j.

Cooper [6] was the first to attempt solving this type of location-allocation
problem in 1972. He proposed exact and approximate solution methods based
on the property that an optimal allocation occurs at the extreme point of the
transportation polytope, while the optimal set of locations lies on the convex
hull of the locations of the existing facilities. His exact formulation requires
the explicit enumeration of the extreme points of the transportation poly-
tope, limiting its application to small problems. Coopers heuristic approach,
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known as the Alternating Transportation-Location (ATL) method, exploits
the structure of the problem by alternating the solution of the transporta-
tion and allocation problems until convergence is achieved, but there is no
guarantee of global optimality. His ATL heuristic is further developed in [7,8],
extending it to CMWP with fixed charges.

Sherali and Shetty [17] develop a cutting plane algorithm for the rectilin-
ear distance location-allocation problem. Sherali and Tuncbilek [20] propose
a branch-and-bound algorithm for the squared-Euclidean distance location-
allocation problem. Sherali, Al-Loughani, Subramanian [18] developed a branch-
and-bound algorithm based on the partitioning of the allocation space that
finitely converges to a global optimum within a tolerance. Chen, Pan, Ko [5]
reformulated the problem as a sequence of nonlinear second order conic prob-
lems, and applied the semi-smooth Newton method to solve it.

Apart from the exact methods, there are several heuristic methods that
have been applied to this problem [4,3]. Akyuz, Oncan and Altinel [1] use
Lagrangean relaxation and the subgradient method to develop a heuristic for
the multi-commodity CMWP. Luis, Salhi and Nagy [14] report a new variant of
the CMWP with fixed costs for opening facilities and propose a constructive
heuristic based on the concept of restricted regions and greedy randomized
adaptive search procedure (GRASP).

In this paper, we propose an extension of the CMWP that considers fixed
cost for opening new facilities, and two sets of fixed-location points: suppliers i
and customers j, as represented in Figure 1. The latter goes back to the original
Weber problem, in which the location of the facility had to be determined in
relation to 2 suppliers and 1 customer points. The model is a nonconvex Mixed-
Integer Nonlinear Programming (MINLP), in which the nonconvexity comes
from the variable multiplication in the transportation cost. This is, to the best
of our knowledge, an original problem not reported before that high practical
applicability [13].

Fig. 1 Representation of the nodes in the network

The remainder of the paper is organized as follows. We begin by presenting
in Section 2 the problem statement, its General Disjunctive Programming
(GDP) formulation, and its reformulation as a nonconvex MINLP. In Section
3 we propose a global optimization algorithm based on the partitioning of the
space, which is guaranteed to have ε-convergence. In Section 4 we introduce
a small test problem. The performance of the algorithm is assessed in Section
5 by solving randomly generated instances with the proposed algorithm and
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comparing the solution, optimality gap and computational time with general
purpose global optimization solvers.

2 Problem statement

Given is a set of suppliers i ∈ I, with their respective fixed locations (xi, yi),
availability ai, and cost of material supply csi. Given is also a set of customers
j ∈ J , with their respective fixed locations (xj , yj), and demands dj . Given are
the fixed and variable costs (ffk and vfk, respectively) of potential facilities
k ∈ K with N different types, which are divided in subsets Kn ∀ n = {1, ..., N}
such that

⋃
nKn = K. The corresponding maximum capacity, mck, and con-

version to product flows, cvk, of these potential facilities are also known. Given
are also the transportation costs between suppliers and facilities, and facilities
and customers (fti,k, ftk,j : fixed costs; vti,k, vtk,j : variable costs). The prob-
lem is to find the optimal network of facilities (number, types, location, and
corresponding flows) that minimizes the total cost.

The variables in the problem are the coordinates of potential facilities,
(xk, yk), the distances between supplier and facility, Di,k, and between facility
and customer, Dk,j , the flows between supplier and facility, fi,k, and between
facility and customer, fk,j , and the amount produced by each facility, fk. There
are also Boolean variables Wk (true if facility is built; false otherwise); Zi,k

(true if material supply is transported between supplier and facility; false oth-
erwise); and Zk,j (true if product is transported between facility and customer;
false otherwise). The GDP [22] formulation is given by Equations (2a)-(2m).

min Φ =
∑
k

Costk +
∑
i

∑
k

Costi,k +
∑
k

∑
j

Costk,j (2a)


Wk

Costk = ffk + vfk · fk
0 ≤ fk ≤ mck
0 ≤ xk ≤ xUk
0 ≤ yk ≤ yUk

 ∨

¬Wk

Costk = 0
fk = 0
xk = 0
yk = 0

 ∀ k ∈ K (2b)


Zi,k

Costi,k = csi · fi,k + fti,k + vti,k · fi,k ·Di,k

0 ≤ fi,k ≤ fUi,k
DL

i,k ≤ Di,k ≤ DU
i,k

 ∨
 ¬Zi,k

Costi,k = 0
fi,k = 0

 (2c)

∀ i ∈ I, k ∈ K
Zk,j

Costk,j = ftk,j + vtk,j · fk,j ·Dk,j

0 ≤ fk,j ≤ fUk,j
DL

k,j ≤ Dk,j ≤ DU
k,j

 ∨
 ¬Zk,j

Costk,j = 0
fk,j = 0

 (2d)

∀ k ∈ K, j ∈ J
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Di,k ≥
√

(xi − xk)2 + (yi − yk)2 ∀ i ∈ I, k ∈ K (2e)

Dk,j ≥
√

(xj − xk)2 + (yj − yk)2 ∀ k ∈ K, j ∈ J (2f)

Wk ⇐⇒
∨
i

Zi,k ∀ k ∈ K (2g)

Wk ⇐⇒
∨
j

Zk,j ∀ k ∈ K (2h)

∑
k

fi,k ≤ ai ∀ i ∈ I (2i)∑
i

fi,k · cvk = fk ∀ k ∈ K (2j)

fk =
∑
j

fk,j ∀ k ∈ K (2k)

∑
k

fk,j = dj ∀ j ∈ J (2l)

Wk, Zi,k, Zk,j ∈ {True, False} ∀ i ∈ I, k ∈ K, j ∈ J (2m)

The objective function (2a) includes costs for the facilities and for the trans-
portation from the suppliers and to the customers. Disjunction (2b) determines
the selection of facilities (Wk), while the disjunctions (2c) and (2d) determine
the transportation links {i, k} and {k, j} with the corresponding Boolean
variables (Zi,k, Zk,j). Constraints (2e) and (2f) represent the Euclidean dis-
tances between suppliers and facilities, and facilities and customers, while the
logic relations in (2g) and (2h) establish the existence of links depending on
the choice of the facilities and vice-versa. Finally, constraints (2i)-(2l) define
the mass balances as well as the availabilities and demands.

The model (2) is a nonconvex GDP due to the bilinear terms (f ·D) in the
transportation cost, as can be seen in disjunctions (2c)-(2d). Equations (2e)-
(2f) are nonlinear convex constraints since they correspond to Euclidean norms
[2]. The presence of nonconvexities was the main motivation for representing
the problem as a GDP. By having the bilinear terms as part of the disjunctions,
the transportation costs are calculated only for the selected connections within
an iterative procedure.

The GDP can be transformed into an MINLP using the hull reformula-
tion, which yields the tightest relaxation for each disjunction [22]. Since the
disaggregated variables can be reformulated back to the original variables, the
resulting MINLP is given by Equations (3a)-(3v).

min Φ =
∑
k

Costk +
∑
i

∑
k

Costi,k +
∑
k

∑
j

Costk,j (3a)

Costk = ffk · wk + vfk · fk ∀ k ∈ K (3b)

Costi,k = csi · fi,k + fti,k · zi,k + vti,k · fi,k ·Di,k ∀ i ∈ I, k ∈ K (3c)
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Costk,j = ftk,j · zk,j + vtk,j · fk,j ·Dk,j ∀ k ∈ K, j ∈ J (3d)

Di,k ≥
√

(xi − xk)2 + (yi − yk)2 ∀ i ∈ I, k ∈ K (3e)

Dk,j ≥
√

(xj − xk)2 + (yj − yk)2 ∀ k ∈ K, j ∈ K (3f)∑
k

fi,k ≤ ai ∀ i ∈ I (3g)∑
i

fi,k · cvk = fk ∀ k ∈ K (3h)

fk =
∑
j

fk,j ∀ k ∈ K (3i)

∑
k

fk,j = dj ∀ j ∈ J (3j)

wk ≥ zi,k ∀ i ∈ I, k ∈ K (3k)∑
i

zi,k ≥ wk ∀ k ∈ K (3l)

wk ≥ zk,j ∀ k ∈ K, j ∈ J (3m)∑
j

zk,j ≥ wk ∀ k ∈ K (3n)

0 ≤ fk ≤ mck · wk ∀ k ∈ K (3o)

0 ≤ xk ≤ xUk · wk ∀ k ∈ K (3p)

0 ≤ yk ≤ yUk · wk ∀ k ∈ K (3q)

0 ≤ fi,k ≤ fUi,k · zi,k ∀ i ∈ I, k ∈ K (3r)

DL
i,k · zi,k ≤ Di,k ≤ DU

i,k · zi,k ∀ i ∈ I, k ∈ K (3s)

0 ≤ fk,j ≤ fUk,j · zk,j ∀ k ∈ K, j ∈ J (3t)

DL
k,j · zk,j ≤ Dk,j ≤ DU

k,j · zk,j ∀ k ∈ K, j ∈ J (3u)

wk, zi,k, zk,j ∈ {0, 1} ∀ i ∈ I, k ∈ K, j ∈ J
(3v)

We assume that the facilities of the same type have the same costs and
characteristics associated with them, i.e., ffk, vfk, mck, fti,k, vti,k, ftk,j ,
vtk,j are the same ∀ k ∈ Kn. Therefore, in order to break the symmetry, we
add Equations (3w)-(3w) to the formulation. These contraints enforce that for
facilities k of the same type, i.e., k ∈ Kn, n ∈ N , the model will chose first to
build the ones with the lower indexes, and those will be located in lower xk
coordinate.

wk ≥ wk+1 ∀ k ∈ Kn, n ∈ N (3w)

xk ≥ xk+1 ∀ k ∈ Kn, n ∈ N (3x)
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Fig. 2 Representation bilevel decomposition algorithm

3 Bilevel decomposition algorithm

Although global optimization solvers perform reasonably well for small-scale
instances of the nonconvex MINLP problem (3), their performance scales
poorly and it becomes computationally very expensive for mid to large-scale
problems. For this reason, we propose a bilevel decomposition algorithm that
consists of decomposing the problem into a master problem and a subproblem.
The master problem is based on a relaxation of the nonconvex MINLP (3),
which yields an MILP that predicts the selection of facilities and their links
to suppliers and customers, as well as a lower bound on the cost of problem
(2) or (3). The subproblem corresponds to a nonconvex NLP of reduced di-
mensionality that results from fixing the binary variables wk, zi,k, zk,j in the
MINLP problem (3), according to the binary variables predicted in the MILP
master problem. Figure 2 shows the algorithm.

3.1 Master problem

The non-linearity and nonconvexity of the formulation (3) arise from the fact
that the distances are decision variables. If the coordinates for the potential
facilities are fixed, the distances can be pre-computed and used as parameters
in the model. In order to take advantage of this property, the master problem
partitions the space into p sub-regions as represented in Figure 3.

In order to derive a valid relaxation for the original MINLP (3), we consider
that each of the facilities can be located in each of the sub-regions. Therefore,
it is possible to determine a priori the minimum distance between suppliers
and facilities, and between facilities and customers. Specifically, by discretizing
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Fig. 3 Representation of the p sub-regions

the 2-dimensional space, we are able to pre-calculate the minimum distance
between the fixed points and each sub-region p, D̂i,p and D̂j,p, as follows:

dxi,p = max{|xi − xp| − x̄/2, 0} ∀ i ∈ I, p ∈ P (4a)

dyi,p = max{|yi − yp| − ȳ/2, 0} ∀ i ∈ I, p ∈ P (4b)

dxj,p = max{|xj − xp| − x̄/2, 0} ∀ j ∈ J , p ∈ P (4c)

dyj,p = max{|yj − yp| − ȳ/2, 0} ∀ j ∈ J , p ∈ P (4d)

D̂i,p = max{
√
dx2i,p + dy2i,p, D

L
i,p} ∀ i ∈ I, p ∈ P (4e)

D̂j,p = max{
√
dx2j,p + dy2j,p, D

L
j,p} ∀ j ∈ J , p ∈ P (4f)

where (xp, yp) are the coordinates of the mid-point of each sub-region p; x̄ and
ȳ are the length of sub-region p in the x and y directions, respectively; DL

i,p and

DL
i,p are the lower bounds for the distances, not allowing the model to chose

to build a facility k on top of a fixed point from a supplier or a customer.
Making use of the partitions and the minimum distances, (4e)-(4f), the

MINLP reformulation (3) can then be rewritten as an MILP in (5). The ob-
jective of this model is to decide which facilities k to build in each sub-region
p and how to allocate the raw-material and products between suppliers i,
customers j and these facilities k.

min ΦP =
∑
k

∑
p

Costk,p +
∑
i

∑
k

∑
p

Costi,k,p +
∑
k

∑
j

∑
p

Costk,j,p

(5a)

Costk,p = ffk · wk,p + vfk · fk,p ∀ k ∈ K, p ∈ P (5b)

Costi,k,p = csi · fi,k,p + fti,k · zi,k,p
+ vti,k · D̂i,p · fi,k,p ∀ i ∈ I, k ∈ K, p ∈ P (5c)

Costk,j,p = ftk,j · zk,j,p + vtk,j · D̂j,p · fk,j,p ∀ k ∈ K, j ∈ J , p ∈ P (5d)
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k

∑
p

fi,k,p ≤ ai ∀ i ∈ I (5e)

∑
i

fi,k,p · cvk = fk,p ∀ k ∈ K, p ∈ P (5f)

fk,p =
∑
j

fk,j,p ∀ k ∈ K, p ∈ P (5g)

∑
k

∑
p

fk,j,p = dj ∀ j ∈ J (5h)

wk,p ≥ zi,k,p ∀ i ∈ I, k ∈ K, p ∈ P (5i)∑
i

zi,k,p ≥ wk,p ∀ k ∈ K, p ∈ P (5j)

wk,p ≥ zk,j,p ∀ k ∈ K, j ∈ J , p ∈ P (5k)∑
j

zk,j,p ≥ wk,p ∀ k ∈ K, p ∈ P (5l)

∑
p

wk,p ≤ 1 ∀k ∈ K (5m)

∑
p

zi,k,p ≤ 1 ∀i ∈ I, k ∈ K (5n)

∑
p

zk,j,p ≤ 1 ∀k ∈ K, j ∈ J (5o)

∑
p′≤p

wk′,p′ ≥
∑
p

wk,p ∀ k′ < k, k ∈ Kn, n ∈ N

(5p)

0 ≤ fk,p ≤ mck · wk,p ∀k ∈ K, p ∈ P (5q)

0 ≤ fi,k,p ≤ fUi,k,p · zi,k,p ∀i ∈ I, k ∈ K, p ∈ P (5r)

0 ≤ fk,j,p ≤ fUk,j,p · zk,j,p ∀k ∈ K, j ∈ J , p ∈ P (5s)

wk,p, zi,k,p, zk,j,p ∈ {0, 1} ∀ i ∈ I, k ∈ K, j ∈ J , p ∈ P
(5t)

Note that the MILP (5) has a considerably larger number of variables and
constraints than the MINLP (3) since they must be defined for each partition
p. It can easily be shown that the MILP master problem yields a lower bound
to the total cost.

Proposition 1 The MILP master problem (5) yields a lower bound to the
original MINLP problem (3).

Proof First we note that although the variables are disaggregated by parti-
tions, the inequalities in (5m), (5n), (5o) ensure that only one facility and
one link in the original MINLP are selected. Second, since we consider the
shortest distance between the fixed points and the sub-regions as in (4e)-(4f),
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the transportation costs are underestimated. Thus, the MILP yields a Lower
Bound (LB) to the original problem.

3.2 Subproblem

The subproblem consists of solving (3) for the fixed decisions of which facilities
k to build, ŵk, and how to allocate their material supply ẑi,k and products
ẑk,j as selected in the MILP (5). The subproblem (6) is a reduced nonconvex
NLP that is solved using a global optimization solver.

min ΦN =
∑
k

Costk +
∑
i

∑
k

Costi,k +
∑
k

∑
j

Costk,j

Costk = ffk · ŵk + vfk · fk ∀ k ∈ K
(6a)

Costi,k = csi · fi,k + fti,k · ẑi,k + vti,k · fi,k ·Di,k ∀ i ∈ I, k ∈ K (6b)

Costk,j = ftk,j · ẑk,j + vtk,j · fk,j ·Dk,j ∀ k ∈ K, j ∈ J (6c)

Di,k ≥
√

(xi − xk)2 + (yi − yk)2 ∀ i ∈ I, k ∈ K (6d)

Dk,j ≥
√

(xj − xk)2 + (yj − yk)2 ∀ k ∈ K, j ∈ J (6e)∑
k

fi,k ≤ ai ∀ i ∈ I (6f)∑
i

fi,k · cvk = fk ∀ k ∈ K (6g)

fk =
∑
j

fk,j ∀ k ∈ K (6h)

∑
k

fk,j = dj ∀ j ∈ J (6i)

0 ≤ fk ≤ mck · ŵk ∀ k ∈ K (6j)

0 ≤ xk ≤ x̄Uk · ŵk ∀ k ∈ K (6k)

0 ≤ yk ≤ ȳUk · ŵk ∀ k ∈ K (6l)

0 ≤ fi,k ≤ fUi,k · ẑi,k ∀ i ∈ I, k ∈ K (6m)

DL
i,k · zi,k ≤ Di,k ≤ D̄U

i,k · ẑi,k ∀ i ∈ I, k ∈ K (6n)

0 ≤ fk,j ≤ fUk,j · ẑk,j ∀ k ∈ K, j ∈ J (6o)

DL
k,j · ẑk,j ≤ Dk,j ≤ D̄U

k,j · ẑk,j ∀ k ∈ K, j ∈ J (6p)

The NLP subproblem (6), which comprises the original problem (3) for a
fixed set of discrete decisions, yields an Upper Bound (UB). The key point in
the NLP is that we update the bounds of the facilities coordinates such that
their location (xk, yk) has to be within the bounds of the sub-region p chosen in
(5), xLk ≤ xk,≤ x̄Uk and yLk ≤ yk,≤ ȳUk . This assumption greatly impacts on the
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tractability because the bounds forDi,k andDk,j , which are part of the bilinear

terms, become tighter (DL
i,k ≤ Di,k ≤ D̄U

i,k and DL
k,j ≤ Dk,j ≤ D̄U

i,k), and thus
the McCormick convex envelopes [15] also become tighter, strengthening the
lower bounds in the global optimization search of this NLP.

3.3 Algorithm

As discussed earlier in this section, the bilevel decomposition algorithm con-
sists of iteratively solving the MILP master problem and the NLP subproblem,
and refining the partitioning of space at each iteration. By shrinking the sub-
regions, the minimum distances get closer to the actual distances, thus the
lower bound becomes tighter; the selection of which facilities to build in each
region gets closer to the optimal; and the bounds for Di,k, and Dk,j in the
subproblem becomes tighter; hence, it is easier for the global optimization
solver to find the optimal solution. The only drawback is that the size of the
MILP master problem becomes larger, and thus harder to solve. The proposed
procedure is shown in Algorithm 1.

Algorithm 1 Bilevel decomposition algorithm for CMWP
1: for a pre-specified optimality tolerance of ε do
2: Determine the tightest rectangle x× y that includes all the fixed points;
3: Partition this rectangle in px × py ;
4: Set iteration iter = 1;
5: while gap > ε do
6: Solve the MILP master problem (5) and compute Lower Bound (LBiter);
7: Fix the decision of which facilities k to build, wk;
8: Fix the decisions of how to allocate the materials, zi,k, and products, zk,j
9: Fix the bounds for xk and yk according to the sub-region p that was selected for

facility k to be built
10: Solve the nonconvex NLP subproblem (6) using a global optimization solver, and

compute an Upper Bound (UBiter)
11: gap = UBiter − LBiter

12: px = px +Nx and py = py +Ny , where Nx, Ny ∈ N
13: iter = iter + 1
14: end while
15: end for

The partitioning does not need to be uniform. For a fixed number of facili-
ties, an nonuniform grid would perform better since only the sub-regions that
had potential to place a facility would have their grid refined. Thus, the algo-
rithm would not waste computational power in refining the sub-regions that
will not have any facility. However, for the problem that is proposed in (2), the
number of facilities k to be built is a decision variable. Based on experiments,
the model tends to pick fewer and larger facilities in the early stages of the
partitioning, and the structure of the network can completely change from one
iteration to another. Therefore, we decided to adopt a uniform partitioning in
this paper.
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A bottleneck in the performance of this procedure is the solution of the
subproblem, which is nonconvex NLP. However, it does not have to be solved
to global optimality to yield a valid upper bound. Therefore, we specify a
maximum solution time for the subproblem so that the algorithm does not
waste time trying to achieve global optimality in the early iterations, when
the bounds for Di,k, and Dk,j are still loose.

The proposed bilevel decomposition algorithm 1 converges to the global
optimum in a finite number of steps with an ε-tolerance. We first establish the
following proposition.

Proposition 2 For an infinite number of partitions the MILP (5) and the
MINLP (3) yield the same optimal solution Φ∗.

Proof It trivially follows that for an infinite number of partitions the MILP
(5) becomes an exact infinite dimensional representation of the MINLP (3).
Thus, both (3) and (5) have the same optimal solution Φ∗.

Theorem 1 Algorithm 1 converges in a finite number of iterations to the
global optimum of problem (3) within an ε-tolerance at the bounds, LB ≤
UB − ε.

Proof Algorithm 1 consists at solving a sequence of MILP problems (5) by
increasing the number of partitions such that the set of partitions Piter at
iteration iter is contained in the next iteration Piter ⊂ Piter+1. Thus, it follows
that the lower bounds from (5) satisfy Φiter ≤ Φiter+1. From Proposition 2
we have that Φ∞ = Φ∗. Since we only consider a finite number of iterations,
it follows that Φiter < Φ∗. Since the NLP subproblem (6) is solved to global

optimality, it follows that Φiter < Φ∗ ≤ ΦN̂ , where ΦN̂ is the incumbent, i.e.
the best feasible solution of the NLP subproblem (6). For a given tolerance ε, a

finite number of iterations îter can be selected such that Φîter ≤ ΦN̂ − ε. Since
Φîter = LB, and ΦN̂ = UB, LB ≤ UB − ε. Thus, the algorithm converges
with an ε tolerance in a finite number of steps.

4 Small Test Problem

In order to test the Algorithm 1, we applied it first to a small test problem
with 2 suppliers and 2 customer points. Supplier 1 is located at coordinates
(0,0), and supplier 2 is located at (0,5). Customer 1 is located at coordinates
(5,0), and customer 2 is located at (5,5). The fixed points of the network are
represented in Figure 4. The cost of supply material from supplier 1 is 20 and
from supplier 2 is 22. Both suppliers have an availability of 120, and both
markets have a demand of 100.

There are 2 types of facilities. Type 1 has two potential facilities with a
maximum capacity of 125 each, fixed cost of 7.18, and variable cost of 0.087.
Type 2 has one potential facility with a maximum capacity of 250, fixed cost of
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Fig. 4 Small test problem’s network Fig. 5 Small test problem’s optimal network

Table 1 Small test problem results

Lower Bound Upper Bound Gap

iter = 1 4776.392 5159.830 8.028%
iter = 2 4916.468 5039.304 2.498%
iter = 3 4946.704 5039.304 1.872%
iter = 4 4968.799 5039.304 1.419%
iter = 5 4982.116 5039.304 1.148%
iter = 6 4991.011 5039.304 0.968%
iter = 7 4997.371 5039.304 0.839%
iter = 8 5002.145 5039.304 0.743%
iter = 9 5005.859 5039.304 0.668%
iter = 10 5008.832 5039.304 0.608%
iter = 11 5011.265 5039.304 0.560%
iter = 12 5013.293 5039.304 0.519%
iter = 13 5015.009 5039.304 0.484%

10.77, and variable cost of 0.067. All the facilities have a conversion to product
flow of 90%.

The fixed transportation costs, fti,k and fti,k, are 10, and the variable
transportation costs, vti,k and vti,k, are 0.3 for any type of link. It is assumed
that the minimum allowed distance between a fixed supply or customer point
and a facility is 0.5. The MILP master problem is solved to 0.01% optimality
gap, and the maximum CPU time allowed for the NLP subproblem is 200 sec-
onds. The monolithic MINLP version of the problem, (3), has 68 constraints,
15 binary variables, and 38 continuous variables.

Starting from px and py equal 1, i.e., no partition, and increasing them by 1
at each iteration, it takes 13 iterations and 11.87 seconds to solve this problem
to 0.5% optimality tolerance. The lower bound, upper bound and optimality
gap at each iteration are reported in Table 1.

As one can see, the lower bound gradually tightens up as the number
of iterations iter, and consequently the number of partitions increase. The
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optimal solution of 5039.304 is the same as found by the general purpose
global optimization solvers. However, while the algorithm solved this problem
within an optimality tolerance of 0.5% in 11.87 seconds, BARON solved it in
1247.10 seconds, and ANTIGONE and SCIP could not solve it in 1 hour. The
optimal network is shown in Figure 5.

5 Computational Results

In order to compare the performance of our proposed algorithm with currently
available general purpose global optimization solvers, we randomly generated
12 test cases. The network varies in size as follows.

– Network 1: 2 suppliers × 2 consumers;
– Network 2: 5 suppliers × 5 consumers;
– Network 3: 10 suppliers × 10 consumers;
– Network 4: 20 suppliers × 20 consumers;
– Network 5: 40 suppliers × 40 consumers;

The 5 network structures are represented in Figures 6-10.

Fig. 6 Network 1 Fig. 7 Network 2

For each of the network options, the choice of 1, 2 and 3 types of facilities
were tested, such that:

– Type 1: up to 2 large-scale facilities
– Type 2: up to 10 mid-scale facilities;
– Type 3: up to 20 small-scale facilities;

Therefore, for each of the network structure the problem was solved for 2, 12
and 32 potential facilities.

Each test case was solved using Algorithm 1 and by general purpose global
optimization solvers, BARON, ANTIGONE and SCIP. We set the optimality
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Fig. 8 Network 3 Fig. 9 Network 4

Fig. 10 Network 5

tolerance to 1% and the maximum total CPU time to 1 hour. Regarding the
algorithm, it is required that the master problem has to be solved to 0.1%
optimality gap, and it is allowed a maximum CPU time of 200 seconds for
the solution of each NLP subproblem. We start the algorithm with a 10× 10
partitioning of the space and at each iteration this partitioning is increased by
Nx, Ny = 5.

Our computational tests were performed on a standard desktop computer
with an Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz processor, with 8GB
of RAM, running on Windows 7. We implemented the monolithic formulation
and the global optimization algorithm in GAMS 24.7.1, solve the MILPs using
CPLEX version 12.6.3 [11], the NLPs using BARON version 16.3.4 [21], and
the MINLPs using BARON version 16.3.4 [21], ANTIGONE [16], and SCIP
[10].
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Table 2 Monolithic MINLP formulation size

Binary Variables Continuous Variables Constraints

N1-T1 10 27 49
N2-T1 22 51 91
N3-T1 42 91 161
N4-T1 82 171 301
N5-T1 162 331 581

N1-T2 197 137 329
N2-T2 132 281 551
N3-T2 252 521 921
N4-T2 492 1001 1661
N5-T2 972 1961 3141

N1-T3 160 357 1089
N2-T3 352 741 1671
N3-T3 672 1381 2641
N4-T3 1312 2661 4581
N5-T3 2592 5221 8461

The case-studies are named such that the first 2 letters represent the net-
work (i.e., N1, N2, N3, N4, and N5, represent Network 1, 2, 3, 4, and 5,
respectively), and the last 2 letters represent the number of facility types con-
sidered (i.e., T1, T2, T3 represent 1 type, 2 types and 3 types, respectively).
The size of monolithic MINLP formulation (3) for each of the test cases is
shown in Table 2, and their results are shown in Table 3.

The results in Table 3 show that the bilevel decomposition algorithm was
able to find the optimal solution within 1% optimality tolerance in 87% of
the the case studies, and performed better than the other general purpose
optimization solvers in 73% of them. It can be noticed that the improvement
in performance due to the use of the algorithm is clearer for larger instances,
specifically the networks with higher number of supplier and customer fixed
points. The global optimization solver that performed the best for this type
of problem was BARON. Antigone was the global solver that had the worst
performance, not being able to find a feasible solution in 47% of the test cases.
The performance curves for the Algorithm 1 and each of the global solvers are
shown in Figure 11 [9].

6 Conclusions

In this paper we have presented a new version of the Capacitated Multi-facility
Weber Problem that has fixed costs, multiple types of facilities, and two sets of
fixed points representing suppliers and consumers. We have proposed a GDP
formulation for this problem, which was reformulated as an MINLP, and then
introduced a bilevel decomposition algorithm for this nonconvex problem. We
prove that this algorithm converges to the global optimal within an ε tolerance
in a finite number of iterations.
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Table 3 Computational experiments’ results

Algorithm 1 BARON ANTIGONE SCIP

N1-T1
Minimum Cost 10.537 10.537 10.537 10.537
Gap 0.4% 1.0% 1.0% 1.0%
CPU Time (s) 0.725 0.090 0.267 0.360

N2-T1
Minimum Cost 23.850 23.850 23.850 23.850
Gap 0.8% 1.0% 1.0% 1.0%
CPU Time (s) 5.046 2.480 8.014 12.780

N3-T1
Minimum Cost 44.913 44.957 44.913 44.932
Gap 0.9% 1.0% 1.0% 3.3%
CPU Time (s) 45.854 164.330 225.297 3600

N4-T1
Minimum Cost 60.410 60.416 60.617 60.491
Gap 0.8% 1.6% 1.0% 4.18%
CPU Time (s) 340.541 3600 3183.016 3600

N5-T1
Minimum Cost 91.926 92.515 Infeasible 93.253
Gap 0.8% 3.5% NA 8.4%
CPU Time (s) 705.269 3600 0.311 3600

N1-T2
Minimum Cost 10.537 10.537 10.537 10.537
Gap 0.4% 1.0% 1.0% 1.0%
CPU Time (s) 3.243 1.910 1.093 2.040

N2-T2
Minimum Cost 23.850 23.850 23.850 23.850
Gap 0.8% 1.0% 1.0% 1.0%
CPU Time (s) 12.055 18.810 280.717 73.980

N3-T2
Minimum Cost 44.913 44.913 No solution returned 44.989
Gap 0.9% 1.0% NA 3.6%
CPU Time (s) 50.038 3114.320 3600 3600

N4-T2
Minimum Cost 60.411 60.425 No solution returned 61.042
Gap 0.8% 2.0% NA 5.73%
CPU Time (s) 627.567 3600 3600 3600

N5-T2
Minimum Cost 91.966 92.466 Infeasible 94.362
Gap 1.2% 5.5% NA 10.2%
CPU Time (s) 3600 3600 7.491 3600

N1-T3
Minimum Cost 3.921 3.921 3.921 3.921
Gap 0.6% 1.0% 1.0% 1.0%
CPU Time (s) 15.520 3.921 47.262 3.480

N2-T3
Minimum Cost 23.850 23.850 23.850 23.850
Gap 0.8% 1.0% 1.0% 1.0%
CPU Time (s) 51.521 93.350 726.475 118.430

N3-T3
Minimum Cost 44.932 44.913 No solution returned 44.989
Gap 0.9% 1.0% NA 3.46%
CPU Time (s) 80.239 1697.660 3600 3600

N4-T3
Minimum Cost 60.408 60.459 No solution returned 61.235
Gap 0.8% 2.1% NA 5.7%
CPU Time (s) 2461.583 3600 3600 3600

N5-T3
Minimum Cost 92.621 92.2545 Infeasible 94.2516
Gap 2.0% 5.4% NA 10.1%
CPU Time (s) 3600 3600 57.453 3600
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Fig. 11 Performance curves comparing the bilevel decomposition algorithm with global
optimization solvers

We test the algorithm for 15 test cases varying from 2 suppliers and 2
consumers, to 40 suppliers and 40 consumers, from 1 to 3 types of facilities, and
from 2 to 32 potential facilities, and compare the results with general purpose
global optimization solvers. The results show that our algorithm performs more
efficiently for 73% of the test cases within 1% of optimality gap, and that the
improvement in performance is more noticeable for larger instances.
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