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Abstract

This paper addresses the long-term planning of electric power infrastructures considering high renewable

penetration. To capture the intermittency of these sources, we propose a deterministic multi-scale Mixed-

Integer Linear Programming (MILP) formulation that simultaneously considers annual generation investment

decisions and hourly operational decisions. We adopt judicious approximations and aggregations to improve

its tractability. Moreover, to overcome the computational challenges of treating hourly operational decisions

within a monolithic multi-year planning horizon, we propose a decomposition algorithm based on Nested

Benders Decomposition for multi-period MILP problems to allow the solution of larger instances. Our

decomposition extends previous nested Benders methods by handling integer and continuous state variables.

We apply the proposed modeling framework to a case study in the ERCOT region, and demonstrate massive

computational savings from our decomposition.

Keywords: strategic planning, OR in energy, large-scale optimization

1. Introduction

Energy systems planning models allow the evaluation of alternate scenarios for future growth, providing

information to support the decision-making process and the selection of technologies in the power sector

[1, 2, 3]. Generation and transmission expansion models can vary widely in scope (local versus regional) as

well as in resolution of time and space. These models can be used to study the impact of new technology

developments, resource cost trends, and policy shifts on the projected generation mix in order to meet future

demand.

Although transmission expansion is not considered in this work, it is important to be aware of its impact

on long-term planning decisions, and thus we discuss it here. Traditionally, generation and transmission

expansion are modeled separately: the generation is planned �rst and the transmission network is designed
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to meet this supply [4, 5, 6, 7, 8]. Their simultaneous optimization is, however, a better way of capturing

the trade-o� between investing in local generation or transmission from remote supplies [9].

There is growing interest to use planning models to study scenarios with increasing penetration of so-

lar and wind generation [10]. Historically, since power systems were dominated by dispatchable thermal

resources, planning models could ignore short-term operating constraints and have longer time periods with-

out impacting much the quality of the results. However, in a system deriving a large proportion of generation

from intermittent resources, it is critical to include/consider hourly or subhourly operational decisions to

assess the �exibility of the system [11, 12, 13]. Only then it is possible to systematically/rigorously assess the

trade-o� between long-term investment decisions and short-term operating decisions. Accordingly, several

papers have studied the impact of including operating constraints such as unit commitment, ramping limits

and operating reserves in long term planning models [14, 15, 16, 17, 18, 19, 20].

Other directions recently taken by researchers in the area of generation and transmission expansion are

to represent competitive market behavior between generation entities/participants using game theory and

multi-level optimization [21, 22, 23], and to model the uncertainties [24, 25, 26]. O'Neill et al. [27] present a

comprehensive formulation including detailed generator, topology, transmission and operational aspects from

production cost planning models into a long-term stochastic two-stage mixed-integer planning framework.

The complexity in the formulation makes the model computationally intractable and poses new challenges

to the power systems community.

In this paper, we propose an optimization modeling framework to evaluate the changes in the power

systems infrastructure required to meet the projected electricity demand over the next few decades, while

taking into account detailed operating constraints, and the variability and intermittency of renewable gen-

eration sources. The modeling framework, which is based on mixed-integer linear programming (MILP),

takes the viewpoint of a central planning entity whose goal is to identify the source (nuclear , coal, natural

gas, wind and solar), generation technology (e.g., steam, combustion and wind turbines, photo-voltaic and

concentrated solar panels), location (regions), and capacity of future power generation technologies that

can meet the projected electricity demand, while minimizing the amortized capital investment of all new

generating units, the operating costs of both new and existing units, and corresponding environmental costs

(e.g. carbon tax and renewable generation quota).

The major challenge lies in the multi-scale integration of detailed operation decisions at the hourly (or sub-

hourly) level with investment planning decisions over a few decades. In order to improve its computational

tractability, judicious modeling approximations and aggregations are considered. Although there is novelty

in the formulation of the problem, the main contribution of this work is the solution strategy. We propose a

decomposition algorithm based on Nested Benders Decomposition for mixed-integer multi-period problems

to solve large-scale models. This framework was originally developed for stochastic programming [28], but
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we have adapted it to deterministic multi-period problems. We have extended it to handle integer and

continuous state variables, and have applied acceleration techniques to improve the overall performance of

the algorithm.

In Section 2, a formal problem statement is given, and in Section 3 we describe the modeling strategies

adopted to handle the spatial and temporal multi-scale aspect of the problem. The MILP formulation is

presented in Section 4. Section 5 describes the proposed decomposition algorithm. Section 6 shows the

results for a real-world case study for the Electric Reliability Council of Texas (ERCOT) region, and a

comparison between the performance of the full size MILP formulation and the proposed algorithm.

2. Problem statement

The proposed planning problem involves choosing the optimal investment strategy and operating schedule

for the power system in order to meet the projected load demand over the time-horizon for each location.

A set of existing and potential generators is given, and for which the energy source (nuclear, coal, natural

gas, wind or solar)1 and the generation technology are known.

• For the existing generators we consider: (a) coal: steam turbine (coal-st-old); (b) natural gas: boiler

plants with steam turbine (ng-st-old), combustion turbine (ng-ct-old), and combined-cycle (ng-cc-old);

(c) nuclear: steam turbine (nuc-st-old); (d) solar: photo-voltaic (pv-old); (e) wind: wind turbine

(wind-old);

• For the potential generators we consider: (a) coal: without (coal-new) and with carbon capture (coal-

ccs-new); (b) natural gas: combustion turbine (ng-ct-new), combined-cycle without (ng-cc-new) and

with carbon capture (ng-cc-ccs-new); (c) nuclear: steam turbine (nuc-st-new); (d) solar: photo-

voltaic (pv-new) and concentrated solar panel (csp-new); (e) wind: wind turbine (wind-new);

Also known are: their nameplate (maximum) capacity; expected lifetime; �xed and variable operating

costs; start-up cost (�xed and variable); cost for extending their lifetimes; CO2 emission factor and carbon

tax, if applicable; fuel price, if applicable; and operating characteristics such as ramp-up/ramp-down rates,

operating limits, contribution to spinning and quick start fraction for thermal generators, and capacity factor

for renewable generators.

For the case of existing generators, their age at the beginning of the time-horizon and location are also

known. For the case of potential generators, the capital cost and the maximum yearly installation of each

generation technology are also given. Additionally, the projected load demand is given for each location, as

well as the distance between locations, the transmission loss per mile, and the transmission line capacity

between locations.

1In this paper we do not consider hydroelectric power as it is available in very limited amounts in the ERCOT region.
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The problem is then to determine: a) when, where, which type, and in how many new generators to

invest; b) whether or not to extend the life of the generators that reached their expected lifetime; and c) an

approximate operating schedule for each installed generator, and the approximate power �ow between each

location in order to meet the projected load demand while minimizing the overall operating, investment, and

environmental costs.

3. Modeling strategies and assumptions

The mix of combinatorial and operational elements of the problem described in Section 2 means that,

depending on the time horizon and area considered, the corresponding optimization problem may be too

large and intractable for current commercial general purpose MILP solvers. Therefore, in order to solve

the resulting deterministic MILP to provable optimality for large areas and over a few decades, it is key to

explore judicious modeling aggregations and approximations to address the multi-scale aspects, both in its

spatial and temporal dimensions. In order to signi�cantly reduce computation time, generator clustering

[29] and time sampling [30] approaches are adopted.

3.1. Spatial representation

In order to allow the solution of large-scale instances, the area of scope is divided into regions that have

similar climate (e.g., wind speed and solar incidence over time), and load demand pro�les. It is assumed

that the potential locations for the generators are the midpoints of each region r. Additionally, based on

the work of Palmintier and Webster [29], generators that have the same characteristics, such as generation

technology and operating status (i.e., existing or potential), are aggregated into clusters i for each region r.

The spatial con�guration of the problem is shown in Figure 1 for the ERCOT region.

The major impact of this approximation in the model formulation is that the discrete variables associated

with generators correspond to integer rather than binary variables to represent the number of generators

under a speci�c status in cluster i.

3.2. Temporal representation

It is crucial to include hourly level information to evaluate scenarios with increasing renewable energy

generation [17], because of the variability in that resource, as well as the changes in load. On the other hand,

strategic capacity and transmission expansion decisions must be optimized over a long-term horizon (e.g.,

a few decades). Therefore, the investment decisions are made on a yearly basis, while operating decisions

are made at the hourly level. To tackle the problem's multi-scale nature and reduce computation time,

each year is modeled using d representative days with hourly resolution resulting in 24 subperiods. We

employ a k-means clustering approach to select these days from historical data (see Section 6), where the

goal of the clustering procedure is to select representative days to approximate: (i) the �duration curves�
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Figure 1: Model representation of regions and clusters (regional map modi�ed from [31])

of historical load and renewables time series, (ii) the temporal correlation of each time series, and (iii) the

hourly correlation between each time series. The temporal con�guration of the problem is shown in Figure

2.

Figure 2: Multi-scale representation

3.3. Transmission representation

Transmission is also an important aspect of a power systems infrastructure, in�uencing where to build

power plants, which ones to operate, and how much power to be generated by each of them. The rigorous

way of representing transmission between generation and load nodes in the system is through optimal power

�ow models [32, 33]. As explained in Section 3.1, the proposed model uses a reduced network, which for the

example in Figure 1 has only 5 nodes representing the 5 regions. Additionally, in order to further simplify the
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transmission model, the "truck-route" representation is adopted as described in [2] and [9]. The transmission

network is represented similarly to pipelines, assuming that the �ow in each line can be determined by an

energy balance between nodes. This approximation ignores Kirchho�'s voltage law, which dictates that the

power will �ow along the path of least impedance. It is also assumed that the transmission lines have a

maximum capacity, and that transmission expansion is not considered. Additionally, the transmission losses

are characterized by a fraction loss per mile, and are not endogeneously calculated.

4. MILP Formulation

This section presents a deterministic MILP formulation organized into 3 groups of constraints: opera-

tional, investment-related, and generator balances. Note that if an index appears in a summation or next to

a ∀ symbol without a corresponding set, all elements in that set are assumed.

4.1. Operational constraints

The energy balance (1) ensures that the sum of instantaneous power pi,r,t,d,s generated by generator

cluster i in region r plus the di�erence between the power �ow going from regions r′ to region r, pflow
r′,r,t,d,s,

and the power �owing from region r to regions r′, pflow
r,r′,t,d,s, equals the load demand Lr,t,d,s at that region r

plus a slack for curtailment of renewable generation cur,t,d,s, at all times.

∑
i

(pi,r,t,d,s) +
∑
r′ 6=r

(
pflow
r′,r,t,d,s · (1− T loss

r,r′ ·Dr,r′)− pflowr,r′,t,d,s

)
= Lr,t,d,s + cur,t,d,s ∀ r, t, d, s (1)

The distance between regions Dr,r′ assumes the midpoint for each region, and the transmission loss T loss
r,r′

is approximated by a fraction loss per mile.

The capacity factor constraint (2) limits the power outlet pi,r,t,d,s of renewable generators to be equal to

a fraction Cfi,r,t,d,s of the nameplate capacity Qgnp
i,r in each sub-period s. ngorn

i,r,t represents the number of

renewable generators that are operational in year t. Due to the �exibility in sizes for renewable generators,

ngorn
i,r,t is relaxed to be continuous.

pi,r,t,d,s = Qgnp
i,r · Cfi,r,t,d,s · ngo

rn
i,r,t ∀ i ∈ IRN

r , r, t, d, s (2)

The unit commitment constraint (3) computes the number of generators that are ON, ui,r,t,d,s, or in

startup, sui,r,t,d,s, and shutdown, sdi,r,t,d,s, modes in cluster i in sub-period s of representative day d of year

t, and treated as integer variables.

ui,r,t,d,s = ui,r,t,d,s−1 + sui,r,t,d,s − sdi,r,t,d,s ∀ i ∈ ITH
r , r, t, d, s (3)
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The ramping limit constraints (4)-(5) capture the limitation on how fast thermal units can adjust their

output power, pi,r,t,d,s, where Ru
max
i is the maximum ramp-up rate, Rdmax

i is the maximum ramp-down

rate, and Pgmin
i is the minimum operating limit [29].

pi,r,t,d,s − pi,r,t,d,s−1 ≤ Rumax
i ·Hs ·Qgnp

i,r · (ui,r,t,d,s−sui,r,t,d,s)

+ max
(
Pgmin

i , Rumax
i ·Hs

)
·Qgnp

i,r·sui,r,t,d,s ∀ i ∈ ITH
r , r, t, d, s

(4)

pi,r,t,d,s−1 − pi,r,t,d,s ≤ Rdmax
i ·Hs ·Qgnp

i,r · (ui,r,t,d,s−sui,r,t,d,s)

+ max
(
Pgmin

i , Rdmax
i ·Hs

)
·Qgnp

i,r·sdi,r,t,d,s ∀ i ∈ ITH
r , r, t, d, s

(5)

Note that the �rst terms on the right hand side of (4) and (5) apply only for normal operating mode

(i.e., generator is ON), while the second terms apply for the startup and shutdown modes.

The operating limits constraints (6)-(7) specify that each thermal generator is either OFF and outputting

zero power, or ON and running within the operating limits Pgmin
i · Qgnp

i,r and Qgnp
i,r. The variable ui,r,t,d,s

(integer variable) represents the number of generators that are ON in cluster i ∈ ITH
r at the time period t,

representative day d, and sub-period s.

ui,r,t,d,s · Pgmin
i ·Qgnp

i,r ≤ pi,r,t,d,s ∀ i ∈ ITH
r , r, t, d, s (6)

pi,r,t,d,s + qspin
i,r,t,d,s ≤ ui,r,t,d,s ·Qg

np
i,r ∀ i ∈ ITH

r , r, t, d, s (7)

The upper limit constraint is modi�ed in order to capture the need for generators to run below the max-

imum considering operating reserves, where qspin
i,r,t,d,s is a variable representing the spinning reserve capacity.

The total operating reserve constraint (8) dictates that the total spinning reserve, qspin
i,r,t,d,s, plus quick-

start reserve, qQstart
i,r,t,d,s, must exceed the minimum operating reserve, Opmin, which is a percentage of the load

Lr,t,d,s in a reserve sharing region r at each sub-period s.

∑
i∈ITH

r

(
qspin
i,r,t,d,s + qQstart

i,r,t,d,s

)
≥ Opmin · Lr,t,d,s ∀ i ∈ ITH

r , r, t, d, s (8)

Spinning Reserve is the on-line reserve capacity that is synchronized to the grid system and ready to

meet electric demand within 10 minutes of a dispatch instruction by the independent system operator (ISO).

Quick-start (or non-spinning) reserve is the extra generation capacity that is not currently connected to the

system but can be brought on-line after a short delay.

The total spinning reserve constraint (9) speci�es that the total spinning reserve qspin
i,r,t,d,s must exceed the

minimum spinning reserve, Spinmin, which is a percentage of the load Lr,t,d,s in a reserve sharing region r
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at each sub-period s.

∑
i∈ITH

r

qspin
i,r,t,d,s ≥ Spin

min · Lr,t,d,s ∀ i ∈ ITH
r , r, t, d, s (9)

The maximum spinning reserve constraint (10) states that the maximum fraction of capacity of each

generator cluster that can contribute to spinning reserves is given by Fracspin
i , which is a fraction of the

nameplate capacity Qgnp
i,r.

qspin
i,r,t,d,s ≤ ui,r,t,d,s ·Qg

np
i,r · Frac

spin
i ∀ i ∈ ITH

r , r, t, d, s (10)

The maximum quick-start reserve constraint dictates that the maximum fraction of the capacity of each

generator cluster that can contribute to quick-start reserves is given by FracQstart
i (fraction of the nameplate

capacity Qgnp
i,r), and that quick-start reserves can only be provided by the generators that are OFF, i.e., not

active.

qQstart
i,r,t,d,s ≤ (ngoth

i,r,t − ui,r,t,d,s) ·Qg
np
i,r · Frac

Qstart
i ∀ i ∈ ITH

r , r, t, d, s (11)

Here the integer variable ngoth
i,r,t represents the number of thermal generators that are operational (i.e.,

installed and ready to operate) at year t.

4.2. Investment-related constraints

The planning reserve requirement (12) ensures that the operating capacity is greater than or equal to the

annual peak load Lmax
t , plus a prede�ned fraction of reserve margin Rmin

t of the annual peak load Lmax
t .

∑
i∈IRN

r

∑
r

(
Qgnp

i,r ·Q
v
i · ngorn

i,r,t

)
+
∑
i∈ITH

r

∑
r

(
Qgnp

i,r · ngo
th
i,r,t

)
≥ (1 +Rmin

t ) · Lmax
t ∀ t (12)

For all thermal generators, their full nameplate capacity Qgnp
i,r counts towards the planning reserve re-

quirement. However, for the renewable technologies (wind, PV and CSP), their contribution is less than

the nameplate due to the inability to control dispatch and the uncertainty of the output [2]. Therefore, the

fraction of the capacity that can be reliably counted towards the planning reserve requirement is referred to

as the capacity value Qv
i .

The minimum annual renewable generation requirement (13) ensures that, in case of policy mandates,

the renewable generation quota target, RNmin
t , which is a fraction of the energy demand EDt, is satis�ed.

If not, i.e, if there is a de�cit def rn
t from the quota, this is subjected to a penalty that is included later in
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the objective function.

∑
d

∑
s

Wd ·Hs ·

 ∑
i∈IRN

r

∑
r

pi,r,t,d,s − cur,t,d,s

+ def rn
t ≥ RNmin

t · EDt ∀ t (13)

Here Wd represents the weight of the representative day d, Hs is the length of the sub-period, cur,t,d,s is

the curtailment of renewable generation, and EDt represent the energy demand in year t:

EDt =
∑
r

∑
d

∑
s

(Wd ·Hs · Lr,t,d,s)

The maximum yearly installation constraints (14)-(15) limit the yearly installation per generation type

in each region r to an upper bound Qinst,UB
i,t in MW/year. Here ngbrni,r,t and ngb

th
i,r,t represent the number of

renewable and thermal generators built in region r in year t, respectively. Note that due to the �exibility in

sizes for renewable generators, ngbrni,r,t is relaxed to be continuous.

∑
r

ngbrni,r,t ≤ Q
inst,UB
i,t /Qgnp

i,r ∀ i ∈ IRnew
r , t (14)

∑
r

ngbthi,r,t ≤ Q
inst,UB
i,t /Qgnp

i,r ∀ i ∈ ITnew
r , t (15)

4.3. Generator balance constraints

Concerning renewable generator clusters, we de�ne a set of constraints (16)-(17) to compute the number

of generators in cluster i that are ready to operate ngorn
i,r,t, taking into account the generators that were

already existing at the beginning of the planning horizon NgRold
i,r , the generators built ngbrni,r,t, and the

generators retired ngrrn
i,r,t at year t. It is important to highlight that we assume no lead time between the

decision to build/install a generator and the moment it can begin producing electricity.

ngorn
i,r,t = NgRold

i,r + ngbrni,r,t − ngrrn
i,r,t ∀ i ∈ IRN

r , t = 1 (16)

ngorn
i,r,t = ngorn

i,r,t−1 + ngbrni,r,t − ngrrn
i,r,t ∀ i ∈ IRN

r , t > 1 (17)

As aforementioned, due to the �exibility in sizes for renewable generators, ngorn
i,r,t, ngb

rn
i,r,t, and ngr

rn
i,r,t

are relaxed to be continuous. Note that ngbrni,r,t for i ∈ IRold
r is �xed to zero in all time periods, i.e., the

clusters of existing renewable generators cannot have any new additions during the time horizon considered.

We also de�ne a set of constraints (18)-(19) to enforce the generators that reached the end of their

lifetime to either retire, ngrrn
i,r,t, or have their life extended, nge

rn
i,r,t. Ng

r
i,r,t is a parameter that represents
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the number of old generators (i.e., i ∈ Iold
r ) that reached the end of their lifetime, LTi, at year t.

Ngr
i,r,t = ngrrn

i,r,t + ngern
i,r,t ∀ i ∈ IRold

r , r, t (18)∑
t′′≤t−LTi

ngbrni,r,t′′ =
∑
t′≤t

(
ngrrn

i,r,t′ + ngern
i,r,t′

)
∀ i ∈ IRnew

r , r, t (19)

Concerning thermal generator clusters, we de�ne a set of constraints (20)-(21) to compute the number of

generators in cluster i that are ready to operate ngoth
i,r,t, taking into account the generators that were already

existing at the beginning of the planning horizon NgTold
i,r , the generators built ngbthi,r,t, and the generators

retired ngrth
i,r,t at year t.

ngoth
i,r,t = NgTold

i,r + ngbthi,r,t − ngrth
i,r,t ∀ i ∈ ITH

r , t = 1 (20)

ngoth
i,r,t = ngoth

i,r,t−1 + ngbthi,r,t − ngrth
i,r,t ∀ i ∈ ITH

r , t > 1 (21)

Note that ngbthi,r,t for i ∈ ITold
r is �xed to zero in all time periods, i.e., the clusters of existing thermal

generators cannot have any new additions during the time horizon considered.

We also de�ne a set of constraints (22)-(23) to enforce the generators that reached the end of their lifetime

to either retire, ngrth
i,r,t, or have their life extended nge

th
i,r,t.

Ngr
i,r,t = ngrth

i,r,t + ngeth
i,r,t ∀ i ∈ ITold

r , r, t (22)∑
t′′≤t−LTi

ngbthi,r,t′′ =
∑
t′≤t

(
ngrth

i,r,t′ + ngeth
i,r,t′

)
∀ i ∈ ITnew

r , r, t (23)

Finally, we have constraint (24) that ensures that only installed generators can be in operation:

ui,r,t,d,s ≤ ngoth
i,r,t ∀ i ∈ ITnew

r , r, t, d, s (24)

4.4. Objective Function

The objective of this model is to minimize the net present cost, Φ, over the planning horizon, which

includes operating costs Φopex, investment costs Φcapex, and potential penalties ΦPEN for not meeting the

the targets on renewables.

min Φ =
∑
t

(
Φopex
t + Φcapex

t + ΦPEN
t

)
(25)

The operating expenditure, Φopex
t , comprises the variable V OCi,t and �xed FOCi,t operating costs, as

well as fuel cost P fuel
i per heat rate HRi, carbon tax TxCO2

t for CO2 emissions EFCO2
i , and start-up cost
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(variable cost P fuel
i that depends on the amount of fuel burned for startup F start

i , and �xed cost Cstart
i ).

Φopex
t = If t ·

[∑
d

∑
s

Wd · hs ·

(∑
i

∑
r

(V OCi,t + P fuel
i ·HRi + TxCO2

t · EFCO2
i ·HRi) · pi,r,t,d,s

)

+

 ∑
i∈IRN

r

∑
r

FOCi,t ·Qgnp
i,r · ngo

rn
i,r,t

+

 ∑
i∈ITH

r

∑
r

FOCi,t ·Qgnp
i,r · ngo

th
i,r,t


+
∑
i∈ITH

r

∑
r

∑
d

∑
s

Wd ·Hs · sui,r,t,d,s ·Qgnp
i,r

·
(
F start
i · P fuel

i + F start
i · EFCO2 · TxCO2

t + Cstart
i

)]
(26)

The capital expenditure, Φcapex
t , includes the amortized cost of acquiring new generators, DICi,t, and

the amortized cost of extending the life of generators that reached their expected lifetime. The latter is

assumed to be a fraction LEi of the investment cost, DICi,t, in a new generator with the same or equivalent

generation technology. In this framework, the investment cost takes into account the remaining value at the

end of the time horizon by considering the annualized capital cost and multiplying it by the number of years

remaining in the planning horizon at the time of installation to calculate the DICi,t.

Φcapex
t = If t ·

[ ∑
i∈IRnew

r

∑
r

DICi,t · CCm
i ·Qg

np
i,r · ngb

rn
i,r,t +

∑
i∈ITnew

r

∑
r

DICi,t · CCm
i ·Qg

np
i,r · ngb

th
i,r,t

+
∑
i∈IRN

r

∑
r

DICi,t · LEi ·Qgnp
i,r · nge

rn
i,r,t +

∑
i∈ITH

r

∑
r

DICi,t · LEi ·Qgnp
i,r · nge

th
i,r,t

] (27)

The capital multiplier CCm
i associated with new generator clusters is meant to account for di�erences in

depreciation schedules applicable to each technology, with higher values being indicative of slower depreci-

ating schedule and vice versa.

Lastly, the penalty cost, ΦPEN
t , includes the potential �nes for not meeting the renewable energy quota,

PEN rn
t , and curtailing the renewable generation.

ΦPEN
t = If t ·

(
PEN rn

t · def rn
t + PEN c ·

∑
r

∑
d

∑
s

cur,t,d,s

)
(28)

The parameters If t, DICi,t, ACCi,t, and T
remain
t are de�ned in Appendix A.

The integrated planning and operations model for the electric power systems is then given by the multi-

period MILP model de�ned by equations (1)-(28).
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5. Nested Decomposition for Multiperiod MILP Problems

Even though the multi-period MILP formulation in 4 incorporates modeling strategies to reduce the

size of the model, it can still be very expensive to solve and potentially intractable depending on the size

of the area considered, and the time resolution of the representative periods per season. Therefore, we

propose a decomposition algorithm based on Nested Benders Decomposition [34], Stochastic Dual Dynamic

Programming (SDDP) [35], and Generalized Dual Dynamic Programming (GDDP) [36].

These methods are used in the context of Multistage Linear Stochastic Programming (MLSP), but their

major limitation is that they can only be applied to convex subproblems. Thus, they are not suitable for our

problem, which gives rise to mixed-integer subproblems. In this context, Cerisola et al. [37] propose a variant

of Benders Decomposition for multistage stochastic integer programming and apply it to the stochastic unit

commitment problem. Thome et al. [38] introduce an extension of the SDDP framework by using Lagrangean

Relaxation to convexify the recourse function applied to nonconvex hydrothermal operation planning. Zou

et al. [28] present a valid Stochastic Dual Dynamic Integer Programming (SDDiP) algorithm for Multistage

Stochastic Integer Programming (MSIP) with binary state variables, and prove that for some of the cuts

presented the algorithm converges in a �nite number of steps. In their more recent paper, Zou et al. [39]

apply their SDDiP algorithm to Stochastic Unit Commitment problems. Finally, Steeger and Rebennack [40]

propose a dynamic convexi�cation within Benders Decomposition using Lagrangean relaxation and apply it

to the electricity market bidding problem.

In this work, we have adapted the algorithm proposed in [28] for deterministic multi-period MILP models

and apply it to the formulation given in Section 4. Moreover, we extend the approach in [28] by allowing

for integer and continuous state variables. To facilitate the understanding of the algorithm, we �rst describe

how the multi-period MILP model de�ned by equations (1)-(28) is decomposed by time period (year). Then,

we introduce a more concise notation to represent the decomposed 1-year-long MILPs, and use this notation

to describe the Nested Decomposition algorithm in Section 5.2.

5.1. Decomposition by time period (year)

In our formulation, the only constraints that depend on more than one time period are equations (17),

(19), (21), and (23). Therefore, these constraints have to be reformulated in order to be able to solve the

problem separately for each time period, which is done by duplicating the linking variables, ngorn
i,r,t, ngo

th
i,r,t,

ngbrni,r,t, ngb
th
i,r,t.

Equation (17), which computes the number of renewable generators that are operational at time period t

based on the number of generators built and retired at t and operational at t−1, is substituted by equations

12



(29) and (30).

ngorn
i,r,t = ngorn,prev

i,r,t + ngbrni,r,t − ngrrn
i,r,t ∀ i ∈ IRN

r , t > 1 (29)

ngorn,prev
i,r,t = ˆngorn

i,r,t−1 ← µo,rn
i,r,t ∈ R|I

RN
r |+|T |−1 ∀ i ∈ IRN

r , t > 1 (30)

Here ngorn,prev
i,r,t is the duplicated variable representing ngorn

i,r,t−1, and ˆngorn
i,r,t−1 is the solution for ngorn

i,r,t at

time period t− 1, which is �xed when solving time period t. The Lagrange multiplier µo,rn
i,r,t of equation (30)

is unrestricted in sign.

Similarly, equation (21), which refers to thermal generators, is substituted by equations (31) and (32).

ngoth
i,r,t = ngoth,prev

i,r,t + ngbthi,r,t − ngrth
i,r,t ∀ i ∈ ITH

r , t > 1 (31)

ngoth,prev
i,r,t = ˆngoth

i,r,t−1 ← µo,th
i,r,t ∈ R|I

TH
r |+|T |−1 ∀ i ∈ ITH

r , t > 1 (32)

Here ngoth,prev
i,r,t is the duplicated variable representing ngoth

i,r,t−1, and ˆngoth
i,r,t−1 is the solution for ngoth

i,r,t at

time period t− 1, which is �xed when solving time period t. The Lagrange multiplier µo,th
i,r,t of equation (32)

is unrestricted in sign.

Equations (19) and (23) compute the age of the new generators that are built during the planning horizon

to be able to enforce their retirement (or life extension) when they achieve the end of their lifetime. Hence,

these constraints link time period t to time period t−LTi, where LTi is the expected lifetime of a generator

in cluster i. In order to decouple those time periods, (19) has to be replaced by (33) and (34).

ngbrn,LT
i,r,t = ngrrn

i,r,t + ngern
i,r,t ∀ i ∈ IRnew

r , r, t (33)

ngbrn,LT
i,r,t = ˆngb

rn

i,r,t−LTi
← µb,rn

i,r,t ∈ R|I
Rnew
r |+|R|+|T | ∀ i ∈ IRnew

r , r, t (34)

Here ngbrn,LT
i,r,t is the duplicated variable representing the renewable generators built in year t−LTi, ngbrni,r,t−LTi

.

Thus, the model is able to track when the end of the generators' lifetime is, which is the year they were built

plus their lifetime, LTi. ˆngb
rn

i,r,t−LTi
is the solution for ngbrni,r,t at year t − LTi, which is �xed when solving

time period t. The Lagrange multiplier µb,rn
i,r,t of equation (34) is unrestricted in sign.

Similarly, constraint (23) is replaced by (35) and (36).

ngbth,LT
i,r,t = ngrth

i,r,t + ngeth
i,r,t ∀ i ∈ ITnew

r , r, t (35)

ngbth,LT
i,r,t = ˆngb

th

i,r,t−LTi
← µb,th

i,r,t ∈ R|I
Tnew
r |+|R|+|T | ∀ i ∈ ITnew

r , r, t (36)

Here ngbth,LT
i,r,t is the duplicated variable representing the thermal generators built at year t−LTi, ngbthi,r,t−LTi

.

ˆngb
th

i,r,t−LTi
is the solution for ngbthi,r,t at time period t−LTi, which is �xed when solving time period t. The

13



Lagrange multiplier µb,th
i,r,t of equation (36) is unrestricted in sign.

Furthermore, the objective function for a given time period is solved independently, and incorporates the

cuts for future cost that are added in the following iterations. These cuts, given by equation (38), project

the problem onto the subspace de�ned by the linking variables, and will be explained in detail in Section

5.2.2. Hence, equation (25) is replaced by (37)-(38),

min Φt = Φopex
t + Φcapex

t + ΦPEN
t + αt (37)

αt ≥ Φ̂t+1,k +
∑

i∈IRN
r ,r

µo,rn
i,r,t+1,k ·

(
ˆngorn
i,r,t,k − ngorn

i,r,t

)
+

∑
i∈ITH

r ,r

µo,th
i,r,t+1,k ·

(
ˆngoth
i,r,t,k − ngoth

i,r,t

)
+

∑
i∈IRN

r ,r

µb,rn
i,r,t+LTi,k

·
(

ˆngb
rn

i,r,t,k − ngbrni,r,t
)

+
∑

i∈ITH
r ,r

µb,th
i,r,t+LTi,k

·
(

ˆngb
th

i,r,t,k − ngbthi,r,t
)
∀ k

(38)

where k is the iteration counter.

The MILP subproblem for a given time period t and iteration k, described by equations (1)-(16), (18),

(20), (22), (24), (29)-(38), can be more concisely represented by (Pt,k).

Pt,k : Φt,k(x̂t−1,k, φt,k) = min
xt,yt,zt

ft(xt, yt) + φt,k(x̂t,k) (39a)

s.t. zt = x̂t−1,k ← µt,k ∈ Rn (39b)

(xt, yt, zt) ∈ Xt (39c)

where the feasible region Xt is the mixed-integer set given by

Xt =

{
(xt, yt, zt) :(1)− (16), (18), (20), (22), (24), (29), (31), (33), (35) (40a)

xt ∈ Zn1
+ × Rn2

+ , yt ∈ Zm1
+ × Rm2

+ , zt ∈ Rn
}

(40b)

and n = n1 + n2, m = m1 +m2.

The components of (Pt,k) map to our problem as follows:

• xt represents the state (i.e., linking) variables, ngorn
i,r,t, ngo

th
i,r,t, ngb

rn
i,r,t, ngb

th
i,r,t. These are mixed

integer variables since ngorn
i,r,t, ngb

rn
i,r,t ∈ R+, and ngo

th
i,r,t, ngb

th
i,r,t ∈ Z+.

• zt represents the duplicated state variables, ngorn,prev
i,r,t , ngoth,prev

i,r,t , ngbrn,LT
i,r,t , ngbth,LT

i,r,t , which are contin-

uous variables.

• yt represents the local variables, i.e. all the other variables not listed above. These are mixed-integer

variables.
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• x̂t−1,k is the state of the system at the start of a time period t of iteration k, i.e., the solution for xt

obtained in a previous period of the Forward Pass that is linked to (thus �xed in) the current time

period (both in iteration k). In our problem this corresponds to the �xed values of ˆngorn
i,r,t−1, ˆngoth

i,r,t−1,

ˆngb
rn

i,r,t−LTi
, ˆngb

th

i,r,t−LTi
from equations (30), (32), (34), (36), such that x̂t−1,k = (x̂o

t−1,k, x̂
b
t−LT,k),

where x̂o
t−1,k maps to ( ˆngorn

i,r,t−1, ˆngoth
i,r,t−1), and x̂b

t−LT,k maps to ( ˆngb
rn

i,r,t−LTi
, ˆngb

th

i,r,t−LTi
). Note

that x̂bt−LT,k is a slight abuse of notation since the lifetimes LTi of di�erent generator clusters may

di�er. These �xed values are also used in the following Backward Pass.

• f(xt, yt) is the objective function in terms of the state and local variables, xt and yt, respectively.

• φt,k is the cost-to-go as a function of x̂t,k.

• Constraint (39b) represents the equalities (30), (32), (34), (36), and µt,k represent their Lagrange

multipliers µo,rn
i,r,t, µ

o,th
i,r,t, µ

b,rn
i,r,t, µ

b,rn
i,r,t, respectively, such that µt,k = (µo

t,k, µ
b
t,k), where µo

t,k maps to

(µo,rn
i,r,t, µ

o,th
i,r,t), and µ

b
t,k maps to (µb,rn

i,r,t, µ
b,rn
i,r,t).

The cost-to-go function, φt,k(·), is de�ned as:

φt,k(x̂t,k) := min
xt,αt

{αt : αt ≥ Φ̂t+1,k + µᵀ
t+1,k(x̂t,k − xt)} (41)

where Φ̂t+1,k is the optimal value for time period t + 1, µt+1,k is the Lagrange multiplier for the equality

constraint, both obtained in the Backward Pass of iteration k, such that µt+1,k = (µo
t+1,k, µ

b
t+LT,k), where

µo
t+1,k maps to (µo,rn

i,r,t+1, µ
o,th
i,r,t+1), and µ

b
t+LT,k maps to (µb,rn

i,r,t+LT , µ
b,rn
i,r,t+LT ). Note that µ

b
t+LT,k is a slight

abuse of notation since the lifetimes LTi of di�erent generator clusters may di�er. x̂t,k is the solution for xt

obtained in the Forward Pass of iteration k and �xed in the following Backward Pass.

5.2. Description of the algorithm

The Nested Decomposition algorithm consists of decomposing the problem per time period (year) and

solving it iteratively in a forward and a backward fashion. The Forward Pass yields a feasible upper bound,

while the Backward Pass, which generates cuts from the relaxed subproblems, provides a lower bound. New

cuts are added in the Backward Pass of each iteration k, and are kept in the following Forward Pass, until

the di�erence between the upper and lower bounds is less then a pre-speci�ed tolerance, ε1, as shown in

Figure 3.

5.2.1. Forward Pass

The purpose of the forward pass is to generate a feasible solution to the full problem. It accomplishes

this by making decisions in time period t, implementing the investment decisions for that period, and then

repeating the process in the subsequent period. Therefore, this �rst step consists of solving the optimization
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Figure 3: Steps at iteration k of the Nested Decomposition algorithm

problem for each time period sequentially, using the solution from the appropriate previous time period for

x̂t−1,k. This �rst part of the algorithm, the Forward Pass, is illustrated in Figure 4.

Figure 4: Forward Pass for iteration k generates a feasible solution to the full/original problem (over the full planning
horizon)

The problem is assumed to have complete continuous recourse, which means that for any value of state

variable (i.e., linking variable) and local integer variables, there are values for the continuous local variables

such that the solution is feasible. This assumption is valid since feasibility can be achieved by adding

nonnegative slack variables and penalizing them in the objective function.

The upper bound, UBk, is calculated in the Forward Pass as follows in (42). It is easy to see that the

sum of the optimal solutions of the Forward Pass subproblems at iteration k, Φ̂t,k, minus the cost-to-go

approximations, α̂t, for all time periods at that iteration, yields a valid upper bound, since the sequential

solution of the time periods in a myopic fashion, without relaxing any constraint or integrality, gives a feasible
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solution to the full-space MILP problem.

UBk =
∑
t

(
Φ̂t,k − α̂t

)
∀ k (42)

5.2.2. Backward Pass

After solving the Forward subproblem for all the time periods, the next step is the Backward Pass, the

purpose of which is to generate cuts. This step consists of solving the subproblems from the last to the �rst

time period, so the solutions of future periods can be used to generate cuts to provide approximations to

predict the cost-to-go functions within the planning horizon. These are cumulative cuts, but speci�c for each

time period; i.e., they are added at each iteration k whenever a new Backward Pass subproblem for year t

is solved, and they are kept in the formulation of the following Forward Pass. Note that the �xed variables

stored in the Forward Pass, x̂t, are also used in the Backward Pass. The overall procedure of the Backward

Pass is represented in Figure 5.

Figure 5: The backward pass generates cuts for the cost-to-go function approximations using the solutions from the
forward pass

The lower bound, LBk, is calculated in the Backward Pass as in (43). It is easy to see that the relaxed

solution of the �rst time period t = 1 is a lower bound to the total cost since it only has a subset of the

original constraints of the original problem.

LBk = Φ̂1,k ∀ k (43)

If our problem were convex and solved by standard Nested Benders Decomposition, the objective value

and the Lagrange multiplier of the equality constraint (39b) would be enough to generate the Benders cut
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(44). We assume here that t is �xed.

αt ≥ Φ̂t+1,k + µᵀ
t+1,k(x̂t,k − xt) ∀ k (44)

However, the cut cannot be directly generated because the subproblems have integer variables, and thus,

are non-convex. In order to provide a valid cut, the subproblems have to be convexi�ed, which can be done by

considering the linear or the Lagrangean relaxation of the MILP. The cuts generated by the relaxed problems

are the Benders and Lagrangean cuts, respectively (which follows the same notation as [28]). A third type

of cut proposed by [28] as a Strengthened Benders cut is also valid for the Backward Pass subproblems.

The choice of cuts directly impacts the performance of the algorithm as some cuts are tighter and

more/less computationally expensive to generate than the others. It is possible, and sometimes recommended,

to combine di�erent cuts in the algorithm if one does not strictly dominate the other. Following, we will

de�ne the di�erent types of cuts that can be used in the Backward Pass, present their potential advantages

and disadvantages, and in Section 5.3 we will demonstrate their validity.

Benders cut. The Benders cut is exactly like (44), but the coe�cients, i.e., the optimal solution of the

immediately after period, Φ̂LP
t+1,k, and the multipliers for the complicating equalities, µt+1,k, are obtained

from the solution of the linear relaxation, as represented in equation (45). We assume here that t is �xed.

αt ≥ Φ̂LP
t+1,k + µᵀ

t+1,k(x̂t,k − xt) ∀ k (45)

This is the weakest of the possible cuts, but it has the advantage of being easily and quickly computed.

It is expected to perform well if the formulation is tight and the solution of the linear relaxation is close to

the actual solution of the MILP [41, 42]. For certain multistage capacity planning problems with integer

recourse, there is evidence that Benders cuts alone are su�cient for driving the optimality gap to zero as the

number of stages increases (see, e.g., [43], Corollaries 1 and 2). However, it is important to highlight that

if this is the cut being used, the algorithm does not have guaranteed �nite convergence since there can be a

duality gap.

Lagrangean cut. The MILP subproblem (Pt,k), given by (39), can also be convexi�ed by considering its

Lagrangean relaxation, which yields the convex hull of the noncomplicating constraints [44]. In our case this

is done by dualizing the linking equalities (39b) and penalizing their violation in the objective function by

the vector of Lagrange multipliers, µt,k. Thus, the Lagrangean relaxation of (Pt,k) is de�ned by (Lt,k), in
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(46).

Lt,k : ΦLR
t (µt,k, x̂t−1,k, φt,k) = min

xt,yt,zt
ft(xt, yt) + φt,k(x̂t,k)− µᵀ

t,k(zt − x̂t−1,k)

s.t. (xt, yt, zt) ∈ Xt
(46)

The closer the Lagrange multipliers are to their optimal value, the tighter the approximation is, and the

stronger the cuts generated by theses multipliers are. The optimal Lagrange multipliers, µ̄t,k, are obtained

by the maximization problem (47).

ΦLD
t,k (x̂t−1,k, φt,k) = max

µt,k

ΦLR
t,k (µt,k, x̂t−1,k, φt,k) (47)

The Lagrangean cut uses the coe�cients obtained by the maximization problem (47), as represented in

equation (48). We assume here that t is �xed.

αt ≥ Φ̂LD
t+1,k + µ̄ᵀ

t+1,k(x̂t,k − xt) ∀ k (48)

The maximization problem in (47) can, however, be computationally expensive. Therefore, we adapted

the Lagrange multiplier optimization algorithm for each of the subproblems of the Backward Pass based on

[38] using the subgradient method [45]. The steps of the Backward Pass within the Nested Decomposition

algorithm if only Lagrangean cuts are used is described below.

For a time period t = T, ...,1 in iteration k:

1. Solve the original MILP subproblem in (39) to get the actual objective value, ΦOP
t,k ;

2. Solve the linear relaxation of the MILP subproblem in (39), and store the dual variables, µt,k;

3. Use the dual variables from the LP relaxation as an initial guess for the Lagrange multipliers;

4. Solve the Lagrangean subproblem in (46) to obtain the optimal value ΦLR
t,k ;

5. Check stopping criteria:

(a) If ΦOP
t,k −ΦLR

t,k ≤ ε2, where ε2 is a pre-speci�ed tolerance, store the optimal value ΦLR
t,k ,

and multipliers µt,k, and go to the next subproblem t − 1, adding the appropriate

future cost cut.

(b) If no signi�cant progress is achieved after re-solving the Lagrangean relaxation,

i.e., if |ΦLR,old
t,k − ΦLR

t,k | ≤ ε3, where ε3 is a pre-speci�ed tolerance and ΦLR,old
t,k is

the solution of the Lagrangean Relaxation in the previous step of the subgradient

method, this means that no further e�ort should be made to decrease the duality

gap of this subproblem in this iteration k. Store the optimal value ΦLR
t,k , and the

multipliers µt,k, and go to the next subproblem t−1, adding the appropriate future
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cost cut.

6. If the stopping criteria are not met, update the set of multipliers using the subgradient method:

µt,k = µt,k − stept,k · (zt − x̂t−1,k)

where stept,k =
ΦOP

t,k−ΦLR
t,k

(zt)2
, and go back to step 3.

Zou et al. [28] proved that if all the linking variables are binary, the Lagrangean cut is tight and the

Nested Decomposition algorithm converges in a �nite number of steps. However, in our case the state

variables are integer and continuous, thus �nite convergence is not guaranteed and there may be a duality

gap associated with the solution [46].

Strengthened Benders cut. As mentioned in the previous sections, depending on the structure of the problem,

the Benders cuts can be weak and the Lagrangean cuts can take a long time to compute. In order to mitigate

potential performance issues, Zou et al. [28] proposed the Strengthened Benders cut, which is a compromise

between Benders and Lagrangean cuts. Its generation is similar to the Lagrangean cut, but it does not use

the subgradient method to improve the multipliers. Instead, it uses the coe�cients from the �rst Lagrangean

relaxation solved after the initialization of the multipliers using LP relaxation as shown in (49). We assume

that t is �xed here.

αt ≥ Φ̂LR
t+1,k + µᵀ

t+1,k(x̂t,k − xt) ∀ k (49)

These cuts are at least as tight as the Benders cut [28], but usually less computationally expensive than

the Lagrangean cuts.

5.3. Validity of the cuts

The Nested Decomposition algorithm is valid as long as the cuts generated in the Backwards Pass are

valid according to the following de�nition [28].

De�nition 1. Let {(Φ̂t,k, µt,k)} be the coe�cients obtained from the Backward Pass in iteration k, and

x̂t,k be the value for xt obtained in the Forward Pass of iteration k and �xed for the Backward Pass.

Let Φt(x̂t−1,k) be the optimal solution for subproblem t for a x̂t−1,k assuming exact representation of the

cost-to-go-function. A cut is valid for all periods t ∈ T and all iterations k ∈ K if

Φt(x̂t−1,k) ≥ Φ̂t+1,k + (µt+1,k)ᵀ(x̂t,k − xt) (50)

The validity of the Benders, Lagrangean and Strengthened Benders cuts is proved in Theorems 1, 2, and

3, respectively.
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Theorem 1. The Benders cut (45), generated by solving the linear relaxation of (Pt,k), underestimates

Φt(x̂t−1,k).

Proof. It trivially follows that the linear relaxation of (Pt,k), with optimal value ΦLP
t,k , underestimates the

optimal value Φt,k of the original problem (Pt,k), that is, Φt,k ≥ ΦLP
t,k . Therefore, since the Benders cut is

valid for the LP problem, as proved by [34], it is also valid for the MILP problem.

Theorem 2. The Lagrangean cut (48), generated by solving the Lagrangean dual of (Pt,k), underestimates

Φt(x̂t−1,k).

Proof. This proof is an extension for mixed-integer state variables of the proof presented in [28], in which

only binary state variables are considered. For the last period t = T , the cost-to-go function φt,k = 0. If we

relax the equality zt = x̂t−1,k in (Pt,k) using the optimal multiplier of the Lagrangean problem (47), µ̄k,t,

we have for any x̂t−1,k ∈ Zn1
+ × Rn2

+ , where n1 + n2 = n,

Φt(x̂t−1,k) ≥ min
xt,yt,zt

{
ft(xt, yt)− µ̄ᵀ

t,k(zt − x̂t−1,k) : (xt, yt, zt) ∈ Xt

}
= ΦLD

t,k

(51)

Thus, the Lagrangean cut is valid for t = T . Next, we prove by induction that the Lagrangean cut is

also valid for the remaining timeperiods. Consider t ≤ T − 1 and assume the Lagrangean cut de�ned by

{(Φ̂t+2,k, µ̄t+2,k, x̂t+1,k)} is valid. Note that:

Φt(x̂t−1,k) = min
xt,yt,zt,αt

{
ft(xt, yt) + αt : (xt, yt, zt) ∈ Xt, zt = x̂t−1,k, αt ≥ Φt+1

}
(52)

Since the cut de�ned by {(Φ̂t+2,k, µ̄t+2,k, x̂t+1,k)} is valid, i.e. Φt+1(xt) ≥ Φ̂t+2,k+(µ̄t+2,k)ᵀ(x̂t+1,k−xt+1)

for any xt+1 ∈ Zn1
+ × Rn2

+ , then the new feasible region X ′t that incorporates this cut is a relaxation of the

original feasible region Xt of (52). Hence, by dualizing the equality constraint we have that

Φt(x̂t−1,k) ≥ min
xt,yt,zt,αt

{
ft(xt, yt) + αt : (xt, yt, zt) ∈ X ′t , zt = x̂t−1,k

}

≥ min
xt,yt,zt,αt

{
ft(xt, yt) + αt − µ̄ᵀ

t,k(zt − x̂t−1,k) : (xt, yt, zt) ∈ X ′t

}
= ΦLD

t,k

(53)

Thus, the Lagrangean cut de�ned by {(Φ̂t+1,k, µ̄t+1,k, x̂t,k)} is valid for t ∈ T , which completes the proof

of Theorem 2.
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Theorem 3. The Strengthened Benders cut (49), generated by solving the Lagrangean relaxation of (Pt,k)

using the multipliers from the linear relaxation of (Pt,k), underestimates Φt(x̂t−1,k).

Proof. Since the Lagrangean dual is the tightest of the Lagrangean relaxations, the proof for Theorem 2 is

also valid for Theorem 3.

5.4. Accelerated Nested Decomposition Algorithm

The proposed Nested Decomposition algorithm (as described in Sections 5.2.1 and 5.2.2) performs very

well for our type of problem as will be shown in the results. However, there is potential for improvement,

particularly in the early iterations, since the initial planning years have little information of what happens

in future years. It is well known that Benders decomposition and its variants can oscillate wildly during

initial iterations when the cost-to-go approximations of future stages is poor [42]. Here, we propose an

acceleration technique aimed at 'warm-starting' the initial cost-to-go approximations with information from

an aggregated expansion model, which can potentially speed up the convergence.

The �rst step is to solve an aggregated version of the full-space MILP and use its solution to pre-generate

cuts before entering in the �rst Forward Pass. The level of aggregation can be decided by the user. The

key is to balance the trade-o� between a highly aggregated model, which is fast to solve but generates

weaker cuts, and a barely aggregated model, which will take almost as long to solve as the original MILP

(especially if the solution of the LP relaxation is the main bottleneck) but generates stronger cuts. After

some preliminary experiments, we opted to aggregate the model by having only one representative day per

year with hourly-level information and relaxing the integrality of the unit commitment variables.

The aggregated model can provide multiple solutions for the linking variables xt by using the solver's

solution pool option [47]. The decision of how many solutions to use for cut generation is also user-de�ned

(the larger the number of solutions used, the better the representation of the original model, but the longer

it takes to compute). These solution values are �xed, x̂t,0, and used to generate cuts in a pre-Backward

Pass, which is solved before entering the Nested Decomposition iterations. Thus, the algorithm uses the

information from this aggregated model that has a view of the full planning horizon (but in an approximated

fashion) to gather information about future periods and what are potential good solutions, so that in early

iterations, the cost-to-go approximations possess stronger cuts and, consequently, more relevant information

about the cost of future investment decisions. Note that any of the cuts presented before can be used in this

step of the algorithm.

After �nishing this pre-Backward Pass, the algorithm goes to the �rst Forward Pass keeping the pre-

generated cuts. From this point on, the algorithm follows the same steps as in the standard Nested Decom-

position. The main steps of the improved Nested Decomposition are shown in Figure 6.
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Figure 6: Accelerated Nested Decomposition algorithm using pre-generated cuts from an aggregated model to improve
initial cost-to-go approximations.

Remark. Both the Nested Decomposition Algorithm and its accelerated version do not have guaranteed

�nite convergence with any of the presented cuts for the case of integer and continuous state variables, since

there might be a duality gap associated with the solution.

6. Case study

In order to test the formulation proposed in Section 4 and the algorithm proposed in Section 5, we

applied them to a case study approximating the Texas Interconnection, a power grid that covers most of

the state of Texas. This system is managed by the Electric Reliability Council of Texas (ERCOT), which

is an independent system operator responsible for the �ow of electric power of about 90% of Texas' electric

load. The choice for this interconnection is based on the fact that it is one of the three minor grids in the

continental U.S. power transmission grid, so it is a fairly isolated system that has manageable size. Since

our focus is on assessing our multi-scale model and decomposition algorithms, the results presented here

should not be interpreted as a detailed analysis of the ERCOT system along the lines of other e�orts in the

literature [48].

Within the ERCOT covered area, we consider four geographical regions: Northeast, West, Coastal and

South. We also include a �fth region, Panhandle, which is technically outside the ERCOT limits but due

to its renewable generation potential, it supplies electricity to the ERCOT regions. Thus, Panhandle is

considered a zone with zero load demand, i.e., it is only a supplier, not a consumer. The regions are shown

in Figure 1. We assume the geographical midpoints for the Northeast, West, Coastal, South and Panhandle

are Dallas, Glasscock County, Houston, San Antonio, and Amarillo, respectively.

For each of the regions, we use load and capacity factor pro�les with an hourly resolution. Representative

days are constructed using a k-means clustering algorithm. After normalizing 2004-2010 zonal load and

renewables pro�les into a list of 2555 vectors (7 years of data times 365 days per year � leap days were
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excluded), d clusters (for d = 1, ..., D = 12) are constructed to �nd a most representative day, chosen as

the day closest in Euclidean distance to the centroid of each resulting cluster. Each representative day is

then assigned a weight proportional to the number of historical days in the corresponding cluster. Finally,

the weighted load pro�le is normalized to equal 2015 aggregate ERCOT load of 347.5 TWh so that a fair

comparison between runs with di�erent numbers of clusters can be made. We assume a constant load growth

of 1.4%/year to project load for the 30 years of the planning horizon being studied.

The investment cost, �xed and variable operating costs are derived from the National Renewable Energy

Laboratory (NREL), available in the 2016 Annual Technology Baseline (ATB) Spreadsheet [49]. We consider

a 30-year time horizon, in which the �rst year is 2015. The fuel price data for coal, natural gas and uranium

correspond to the reference scenario of EIA Annual Energy Outlook 2016 [50]. A discount rate of 5.7% as

chosen in [2] is used to distinguish between the costs incurred in various years of the planning horizon. All

of our computation results assume no carbon tax or renewable generation quota is imposed.

We assume that the transmission loss is 1%/100 miles, which is the same fraction loss per miles used

by [2]. The transmission line capacities were generated combining information from [51, 52, 53]. The

operating data such as ramping limits, minimum operating reserve requirements, are from a range of sources

[54, 55, 56, 57, 58]. The planning reserve requirement is assumed to be 13.75% [59]. For the nominal capacity

of the clusters in each region, we use data from [58], which has a list of all the power plants in ERCOT for

di�erent categories. We compile this data into 7 existing cluster types and combine them with the data from

[60] to have this information divided by the regions. Then, for each of the clusters in each region, we assume

that the nominal capacity is the mean size of all generators within that cluster.

We �rst solve the proposed model for 1 to 12 representative days, with an optimality gap tolerance of

1%, to assess the impact of the number of representative days in the planning strategy. Then, we solve the

proposed model as a full-space MILP, as well as using the Nested Decomposition with the cuts presented in

Section 5.2.2 for the 4 representative days variant of the model, and applied the acceleration technique from

Section 5.4 to the cut with the best performance. The two best versions of the algorithm are also tested for

the 12 representative days.

Our computational tests were performed on a standard desktop computer with an Intel(R) Core(TM) i7-

2600 CPU @ 3.40 GHz processor, with 8GB of RAM, running on Windows 7. We implement the monolithic

formulation and all the versions of the Nested Decomposition algorithm in GAMS 24.7.1, and solve the LPs

and MILPs using CPLEX version 12.6.3.

6.1. Impact of the number of representative days in the planning strategy

To evaluate the impact of including more representative days on the generation investment decisions, we

ran the proposed model for 1 to 12 representative days per year. The fractional di�erence relative to the

12-day representation by generation source is shown in Figure 7. This plot does not include coal and nuclear

24



because their �nal year capacities are exactly the same irrespective of the number of representative days

considered. The wind capacity su�ers minor �uctuation and slowly converges to a capacity that is 3% higher

than the 1-day model projected. On the other hand, a major di�erence occurs in projected PV and NG

generation capacities. For 1 to 4 representative days, there is a clear trend of decreasing PV and increasing

NG contributions as we increase the number of representative days. With the exception of the outlier in the

"5 representative days" results, this trend can be seen for all the variants until the results reach a plateau

with small �uctuations. This trend is in agreement with the results presented in [61]. It is important to

highlight that the jump in the installed capacity of PV and natural gas with 5 representative days is due

in part to the approach for selecting representative days. Namely, historical data are clustered according

to the joint distribution of load and renewables capacity factors. This does not guarantee that the pro�le

used to represent individual technologies will better match that technology's historical duration curves as

the number of representative days is increased.

Figure 7: Capacity projections of natural gas, solar PV and wind at the end of the time horizon, varying with the
number of representative days selected. The capacities are represented as a fraction of capacity projected by the
12-day model.

After this preliminary experiment, we opted to test the algorithm for 4 and 12 representative days per

year. The 4 representative days variant was chosen because its results are similar to those of the 12-day

variant, while requiring less computational time. We also opted to solve the 12 representative days variant

because it exploits better the full potential of the Nested Decomposition algorithm, which may be needed

for more complex models that require higher time resolution (e.g, models that consider storage)[61].
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6.2. 4 representative days variant

The full-space MILP model using 4 representative days has 1,201,761 constraints, 413,644 discrete vari-

ables, and 594,147 continuous variables. After invoking CPLEX's presolver, the model was reduced to 800,755

constraints, 25,231 binary variables, 388,493 integer variables, and 225,367 continuous variables. We solved

the problem using several methods: (1) we solved the monolithic formulation directly in CPLEX; (2) we

applied the Nested Decomposition algorithm with each of the cut options; (3) we employed the acceleration

technique to the Nested Decomposition variant with the best performance in (2). For all the versions of

the algorithm, we set a maximum of 20 iterations and an optimality gap tolerance of 0.01% for any MILP

subproblem, and for the full-space MILP we set a maximum time of 4 hours. The comparison between the

performance of the full-space MILP and the various algorithm versions is shown in Figure 8.

Figure 8: Algorithm performance in the 4-representative day model. The results show that the Benders cut and its
accelerated version are the fastest in �nding a solution within 1% optimality gap.

All of the versions of the algorithm found solutions within 10% gap in less than 10 minutes, while the �rst

integer solution by the monolithic MILP took 2.04 hours. The Benders cuts was the most e�cient among

the possible cuts, �nding a solution within 1% gap in 47.5 minutes. This was already expected due to the

tightness of the linear relaxation, and to how quickly the Benders cuts are generated. Further improvements

can be gained by employing the accelerated version (see Section 5.4) in which warm-start cuts are generated

before invoking the Nested Benders approach. The accelerated Nested Decomposition with Benders cuts

greatly reduces the optimality gap in the initial iterations and is the fastest (39.6 minutes) at �nding a

solution within 1% optimality gap.
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6.3. 12 representative days variant

The full-space MILP model for the 12 representative days variant has 3,626,721 constraints, 1,243,084

discrete variables, and 1,774,947 continuous variables. After invoking CPLEX's presolver, the model was

reduced to 2,428,687 constraints, 77,071 binary variables, 1,183,373 integer variables, and 673,825 continu-

ous variables. Despite these reductions, CPLEX terminated with a 100% optimality gap after solving the

monolithic formulation for 24 hours, our chosen time limit. We solved the problem using the Nested De-

composition algorithm with the two versions that performed the best using 4 representative days (Benders

cuts, and warm-start cuts + Benders cuts). For those, we set a maximum of 20 iterations and an optimality

gap tolerance of 0.01% for any MILP subproblem. The comparison between the performance of the two

algorithms is shown in Figure 9.

Figure 9: Algorithm performance in the 12-representative day model. The results show that the Accelerated Nested
Decomposition algorithm provides smaller optimality gaps in the initial iterations.

Both versions of the algorithm obtained solutions within 2% optimality gap in less than 5 hours. We

notice again that by "warm-starting" the algorithm we were able to reduce the optimality gap in the initial

iterations. The accelerated version found a solution with a 2% gap in its 4th iteration and 3.5 hours, while

the normal Benders cut version took 4.6 hours and 7 iterations to reach the same optimality gap.

6.4. Cost breakdown comparison

We also compare the impact of the having more representative days in the cost breakdown, which is

shown in Figure 10. The results indicate that for both cases the cost is driven by the fuel consumption (coal,

natural-gas and uranium), which accounts for about 60% of the total cost. The major di�erence between

these representations is in the startup contribution, which goes from 0.3% to 1.5% of the total cost when

considering 4 and 12 representative days. These results show that by having a better representation of the
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dynamics of the systems, i.e., higher number of representative days with hourly load and capacity factor,

the startup cost becomes more relevant.

Figure 10: Breakdown of system costs using 4 and 12 representative days.

7. Conclusion

In this paper we propose an MILP model to solve power systems planning problem considering increasing

share of renewables. We adopt clustering and time scale strategies in order to reduce the size of the model

without greatly impacting the quality of the results. Although there are novelties in the problem formulation,

especially in the description of retirement and handling of multi-scale aspects, the major contribution of

this paper is in its solution strategy. We develop a decomposition algorithm based on Nested Benders

Decomposition for this multi-period deterministic problem with integer and continuous state variables. We

also present several options of valid cuts for the Backward Pass, and make use of an acceleration technique

to speed up the conversion of the algorithm.

The formulation and solution framework are tested for a case study in the ERCOT region. The results

show that the algorithm can provide substantial speed-up and allow the solution of larger instances. This

improvement in solution time is important because it allows one to perform several sensitivity analysis and

better understand the drivers for a variety of scenarios. Additionally, we conclude that for the proposed

model and case study, it is su�cient to have 4 representative days per year in order to adequately represent

the variability in load and capacity factor for the di�erent regions. In other instances, such as when studying

the potential role of energy storage technologies, it may be necessary to consider more than 4 representative

days to model grid operations. For those cases, the developed algorithms are shown to be critical to �nding

an optimal solution in a reasonable amount of time.

There are several future research direction worth investigating. Regarding the model formulation, it would

be interesting to see the impacts of including storage, transmission expansion, and having a more detailed
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representation of transmission. Regarding the algorithm, there is potential for parallelization, especially

for the Lagrangean cut version of the algorithm, which could improve its performance and make it more

competitive with other versions.

Nomenclature

Indices and Sets

r ∈ R set of regions within the area considered
i ∈ I set of generator clusters
i ∈ Ir set of generator clusters in region r
i ∈ Iold

r set of existing generator clusters in region r at the beginning of the time horizon, Iold
r ⊆ Ir

i ∈ Inew
r set of potential generator clusters in region r, Inew

r ⊆ Ir
i ∈ ITH

r set of thermal generator clusters in region r, ITH
r ⊆ Ir

i ∈ IRN
r set of renewable generator clusters in region r, IRN

r ⊆ Ir
i ∈ ITold

r set of existing thermal generator clusters in region r, ITold
r ⊆ ITH

r

i ∈ ITnew
r set of potential thermal generator clusters in region r, ITnew

r ⊆ ITH
r

i ∈ IRold
r set of existing renewable generator clusters in region r, IRold

r ⊆ IRN
r

i ∈ IRnew
r set of potential renewable generator clusters in region r, IRnew

r ⊆ IRN
r

t ∈ T set of time periods (years) within the planning horizon
d ∈ D set of representative days in each year t
s ∈ S set of sub-periods of time per representative day d in year t
k ∈ K set of iterations in the Nested Decomposition algorithm

Deterministic Parameters

Lr,t,d,s load demand in region r in sub-period s of representative day d of year t (MW)
Lmax

t peak load in year t (MW)
Wd weight of the representative day d
Hs duration of sub-period s (hours)
Qgnp

i,r nameplate (nominal) capacity of a generator in cluster i in region r (MW )
Ngold

i,r number of existing generators in each cluster, i ∈ Iold
r , per region r at the beginning of the time

horizon
Ngmax

i maximum number of generators in the potential clusters i ∈ Inew
r

Qinst,UB
i,t upper bound on yearly capacity installations based on generation technology (MW/year)

Rmin
t system's minimum reserve margin for year t (fraction of the peak load)

EDt energy demand during year t (MWh)
LTi expected lifetime of generation cluster i (years)
T remain
t remaining time until the end of the time horizon at year t (years)
Ngr

i,r,t number of generators in cluster i of region r that achieved their expected lifetime
Qv

i capacity value of generation cluster i (fraction of the nameplate capacity)
Cfi,r,t,d,s capacity factor of generation cluster i ∈ IRN

r in region r at sub-period s, of representative day d of
year t (fraction of the nameplate capacity)

Pgmin
i minimum operating output of a generator in cluster i ∈ ITH

r (fraction of the nameplate capacity)
Rumax

i maximum ramp-up rate for cluster i ∈ ITH
r (fraction of nameplate capacity)

Rdmax
i maximum ramp-down rate for cluster i ∈ ITH

r (fraction of nameplate capacity)
F start
i fuel usage at startup (MMbtu/MW)
Fracspin

i maximum fraction of nameplate capacity of each generator that can contribute to spinning reserves
(fraction of nameplate capacity)

FracQstart
i maximum fraction of nameplate capacity of each generator that can contribute to quick-start reserves

(fraction of nameplate capacity)
Opmin minimum total operating reserve (fraction of the load demand)
Spinmin minimum spinning operating reserve (fraction of the load demand)
T loss
r,r′ transmission loss factor between region r and region r′ 6= r (%/miles)
Dr,r′ distance between region r and region r′ 6= r (miles)
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Ir nominal interest rate
If t discount factor for year t
OCCi,t overnight capital cost of generator cluster i in year t ($/MW)
ACCi,t annualized capital cost of generator cluster i in year t ($/MW)
DICi,t discounted investment cost of generator cluster i in year t ($/MW) 2

CCm
i capital cost multiplier of generator cluster i (unitless)

LEi life extension cost for generator cluster i (fraction of the investment cost of corresponding new
generator)

FOCi,t �xed operating cost of generator cluster i ($/MW)
P fuel
i,t price of fuel for generator cluster i in year t ($/MMBtu)
HRi heat rate of generator cluster i (MMBtu/MWh)
TxCO2

t carbon tax in year t ($/kg CO2)
EFCO2

i full lifecycle CO2 emission factor for generator cluster i (kgCO2/MMBtu)
V OCi,t variable O&M cost of generator cluster i ($/MWh)
RNmin

t minimum renewable energy production requirement during year t (fraction of annual energy demand)
PEN rn

t penalty for not meeting renewable energy quota target during year t ($/MWh)
PENc

t penalty for curtailment during year t ($/MWh)
Cstart

i �xed startup cost for generator cluster i ($/MW)
ˆngorn

i,r,t,k solution from the Forward Pass, iteration k, of the number of operational renewable generators in
cluster i of region r at year t, ngorn

i,r,t, which is a �xed parameter for the year t+ 1 (unitless)
ˆngoth

i,r,t,k solution from the Forward Pass, iteration k, of the number of operational thermal generators in
cluster i of region r at year t, ngoth

i,r,t, which is a �xed parameter for the year t+ 1 (unitless)
ˆngb

rn

i,r,t,k solution from the Forward Pass, iteration k, of the number of renewable generators built in cluster
i of region r at year t, ngbrni,r,t, which is a �xed parameter for the year t+ LTi (unitless)

ˆngb
th

i,r,t,k solution from the Forward Pass, iteration k, of the number of thermal generators built in cluster i
of region r at year t, ngbthi,r,t, which is a �xed parameter for the year t+ LTi (unitless)

µo,rn
i,r,t,k multiplier of the linking equality related to the number of operational renewable generators in cluster

i of region r at year t− 1 in iteration k (unitless)
µo,th
i,r,t,k multiplier of the linking equality related to the number of operational thermal generators in cluster

i of region r at year t− 1 in iteration k (unitless)
µb,rn
i,r,t,k multiplier of the linking equality related to the number of renewable generators built in cluster i of

region r at year t− LTi in iteration k (unitless)
µb,th
i,r,t,k multiplier of the linking equality related to the number of thermal generators built in cluster i of

region r at year t− LTi in iteration k (unitless)
x̂t,k �xed solution of xt in iteration k (concise notation)
x̂o
t,k �xed solution of xt in iteration k corresponding to ˆngorn

i,r,t,k and ˆngoth
i,r,t,k (concise notation)

x̂b
t,k �xed solution of xt in iteration k corresponding to ˆngb

rn

i,r,t,k and ˆngb
th

i,r,t,k (concise notation)
Φ̂t,k �xed optimal value for subproblem corresponding to period t in iteration k
µt,k Lagrange multiplier (concise notation)
µo
t,k Lagrange multiplier corresponding to µo,rn

i,r,t,k and µo,th
i,r,t,k (concise notation)

µb
t,k Lagrange multiplier corresponding to µb,rn

i,r,t,k and µb,th
i,r,t,k (concise notation)

µ̄t,k optimal Lagrange multiplier (concise notation)
stept,k stepsize used in the subgradient method (unitless)
ε1, ε2, ε3 tolerances for the decomposition algorithm

Continuous variables

Φ net present cost3 throughout the time horizon, including amortized investment cost, operational
and environmental cost ($)

Φopex
t amortized operating costs in year t ($)

2DICi,t is used in the calculation for the life extension investment cost, which is in terms of a fraction LEi of the capital
cost. Therefore the investment cost for the existing cluster is approximated as being the same as for the potential clusters that
have the same or similar generation technology.

3All the costs are in 2015 USD.
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Φcapex
t amortized investment costs in year t ($)

ΦPEN
t amortized penalty costs in year t ($)

pi,r,t,d,s power output of generation cluster i in region r during sub-period s of representative day d of year
t (MW)

def rn
t de�cit from renewable energy quota target during year t (MWh)

cur,t,ss,s curtailment slack generation in region r during sub-period s of representative day d of year t (MW)
pflow
r,r′,t,d,s power transfer from region r to region r′ 6= r during sub-period s of representative day d of year t

(MW)
qspin
i,r,t,d,s spinning reserve capacity of generation cluster i in region r during sub-period s of representative

day d of year t (MW)
qQstart
i,r,t,d,s quick-start capacity reserve of generation cluster i in region r during sub-period s of representative

day d of year t (MW)
ngorn

i,r,t number of generators that are operational in cluster i ∈ IRN
r of region r in year t (continuous

relaxation)
ngbrni,r,t number of generators that are built in cluster i ∈ IRN

r of region r in year t (continuous relaxation)
ngrrn

i,r,t number of generators that retire in cluster i ∈ IRN
r of region r in year t (continuous relaxation)

ngern
i,r,t number of generators that had their life extended in cluster i ∈ IRN

r of region r in year t (continuous
relaxation)

Φt objective function value for subproblem t assuming exact representation of the cost-to-go function
($)

Φt,k objective function value for subproblem t in iteration k ($)
φt,k cost-to-go function ($)
αt expected future year cost, when calculating the cost for year t ($)
ΦLP

t,k net present cost of the linear relaxation of the subproblem for year t in iteration k ($)
ΦLR

t,k net present cost of the Lagrangean relaxation of the subproblem for year t in iteration k ($)
ΦLD

t,k net present cost of the Lagrangean dual of the subproblem for year t in iteration k ($)
ΦOP

t,k net present cost of the original MILP subproblem for year t in iteration k ($)
ngorn,prev

i,r,t number of generators that are operational in cluster i ∈ IRN
r of region r in year t − 1 (continuous

relaxation)
ngbrn,LT

i,r,t number of generators that are built in cluster i ∈ IRN
r of region r in year t − LTi (continuous

relaxation)
ngoth,prev

i,r,t number of generators that are operational in cluster i ∈ ITH
r of region r in year t − 1 (continuous

relaxation)
ngbth,prev

i,r,t number of generators that are built in cluster i ∈ ITH
r of region r in year t − LTi (continuous

relaxation)
xt state (linking) variables in the concise notation
zt duplicated state variables in the concise notation
yt local variables in the concise notation

Discrete variables

ngoth
i,r,t number of generators that are operational in cluster i ∈ ITH

r of region r in year t (integer variable)
ngbthi,r,t number of generators that are built in cluster i ∈ ITH

r of region r in year t (integer variable)
ngrth

i,r,t number of generators that retire in cluster i ∈ ITH
r of region r in year t (integer variable)

ngeth
i,r,t number of generators that had their life extended in cluster i ∈ ITH

r of region r in year t (integer
variable)

ui,r,t,d,s number of thermal generators ON in cluster i ∈ Ir of region r during sub-period s of representative
day d of year t (integer variable)

sui,r,t,d,s number of generators starting up in cluster i during sub-period s of representative day d in year t
(integer variable)

sdi,r,t,d,s number of generators shutting down in cluster i during sub-period s of representative day d in year
t (integer variable)

Acronyms

NG natural gas
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ST steam turbine
CT gas-�red combustion turbine
CC combined cycle
CCS carbon capture and storage
PV solar photo-voltaic
CSP concentrated solar panel
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Appendix A. Calculated parameters

Regarding the parameters used in equations (26)-(28), the discount factor in year t, If t, is calculated from the interest
rate, Ir:

If t =
1

(1 + Ir)t

and the discounted investment cost DICi,t is given by:

DICi,t = ACCi,t ·

 ∑
t′≤min(LTi,T remain)

DFt′


where the annualized capital cost ACCi,t is given by:

ACCi,t =
OCCi,t · Ir

1− 1

(1+Ir)LTi

and the remaining time in the horizon T remain
t is de�ned by T remain

t = T − t+ 1.
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