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Abstract We address the long-term planning of electric power infrastructure under
uncertainty. We propose a Multistage Stochastic Mixed-integer Programming for-
mulation that optimizes the generation expansion to meet the projected electricity
demand over multiple years while considering detailed operational constraints, in-
termittency of renewable generation, power flow between regions, storage options,
and multiscale representation of uncertainty (strategic and operational). To be able to
solve this large-scale model, which grows exponentially with the number of stages in
the scenario tree, we decompose the problem using Stochastic Dual Dynamic Inte-
ger Programming (SDDiP). The SDDiP algorithm is computationally expensive but
we take advantage of parallel processing to solve it more efficiently. The proposed
formulation and algorithm are applied to a case study in the region managed by the
Electric Reliability Council of Texas (ERCOT) for scenario trees considering natural
gas price and carbon tax uncertainty for the reference case and a hypothetical case
without nuclear power. We show that the parallelized SDDiP algorithm allows the
solution of multistage stochastic programming models with quadrillions of variables
and constraints in reasonable amounts of time.

1 Introduction

Changes in electricity demand, together with the wear-and-tear and retirement of old
generators, and the advances in the technology pool for electricity generation and
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storage, make it necessary to expand or adapt the electric power infrastructure. Gen-
eration expansion planning (GEP) models can be used to support these investment de-
cisions, as well as to study the impact of new technology developments, resource cost
trends, and policy shifts (e.g. carbon tax, minimum renewable generation quota) [77,
37,2,20].

Power systems are subject to a variety of systematic uncertainties such as fuel
prices, load demand, renewable generation, disruptive technologies, and future poli-
cies. However, because of the computational expense of combining uncertainty with
a complete representation of the grid, and integrating detailed operating decisions
with investment decisions over long planning horizons [81,62,70,61,52], most of
the available commercial tools [48,49,80,15] and academic models [16,80,68,36,
18,28,39] are deterministic. The body of literature that addresses GEP optimization
problem under uncertainty can be classified into two fundamental approaches for
capturing uncertainty: Robust Optimization and Stochastic Programming.

The main idea behind Robust Optimization (RO) is to guarantee feasibility over
a specified uncertainty set by modeling uncertain variables using bounds [5]. In gen-
eral, this means that the computational burden of RO is much lower than that of
stochastic programming. However, RO predicts more conservative results compared
to the latter [24]. Malcolm and Zenios [51] were the first to propose a RO model
for power systems capacity planning. Since then, other authors have explored GEP
formulations in the context of RO [58,12,43,42]. More recently, Adjustable Robust
Optimization (ARO) has risen to prominence as an alternative to classic RO. ARO
introduces recourse into the traditional RO formulation, allowing the model to re-
spond to some uncertainty and generate less conservative solutions [4,87]. Some of
the papers addressing GEP with ARO are [53,54,56,3].

Stochastic Programming (SP) is the most popular modeling framework for GEP
problems under uncertainty. SP tends to be more appropriate for long-term production
planning and strategic design decisions because it allows recourse decisions in the
future to adapt to how the uncertainties are revealed [24]. Thus, it is less conser-
vative than RO

::
as

::
it

:::::::
typically

::::::
limits

:::
the

:::::::::
feasibility

::::::::::
requirement

::
to

::
a
:::::
finite

:::::::
number

::
of

:::::::::
realization

::::::
instead

:::
of

::::::::
requiring

::::::::
feasibility

::::
for

:
a
::::::::::
continuous

:::::
region

:::
of

:::::::::
parameter

::::::::::
(uncertainty

:::
set). SP assumes uncertain data are random variables with known proba-

bility distributions and uses sampled values from this distribution to build a scenario
tree and optimize over the expectation [7]. As a downside, the solution is dependant
on the accuracy of the assumed probability distributions of the uncertain parameters.
However, there is mathematical theory and computational evidence that solutions
obtained from SP are often stable with respect to changes in input probability distri-
butions [73].

SP models can be formulated as two-stage and multistage problems. A typical
two-stage stochastic GEP model considers as first-stage here-and-now decisions the
investment decision over the entire planning horizon, which is made before the un-
certainty realization. In this context, the second-stage wait-and-see decisions are the
operational decisions, which are fully adaptive to the uncertainty realization. Some of
the GEP literature that formulates the problem as two-stage stochastic programming
includes [14,1,47,33,85,60,21,32,59,22].



Electric Power Infrastructure Planning Under Uncertainty 3

Multistage stochastic programming GEP models allow recourse between invest-
ment decisions in each stage, hence, they are also fully adaptive to the uncertainty
realization. Park and Baldick [64] propose a multistage stochastic mixed-integer
program to solve GEP under load and wind availability uncertainty, and solve the
model using a rolling-horizon. Zhan et al. [86] propose a multistage stochastic pro-
gramming model with endogenous uncertainty for GEPs with large amounts of wind
power, and introduce a quasi-exact solution approach to reformulate the model as a
mixed-integer linear programming model. Liu et al. [44] propose a multistage lin-
ear stochastic GEP model that captures both large-scale uncertainties (e.g., invest-
ment, fuel-cost demand-growth rate uncertainty), and small-scale uncertainties (e.g.,
hourly demand and renewable generation uncertainty), and use progressive hedging
algorithm to decompose the model by scenario and reduce computation times. Zou
et al. [88] propose a partially adaptive stochastic mixed-integer optimization model
in which the capacity expansion is fully adaptive to uncertainty up to a certain period
and follows a two-stage approach thereafter, and propose an approximation algorithm
to solve their model efficiently.

As mentioned before, even deterministic GEP models can pose significant com-
putational challenges as the temporal and spatial scale resolution are increased [39]

::::::
[46,39]. The added complexity of handling uncertainty greatly intensifies this chal-
lenge, especially for multistage stochastic programming formulations as the scenario
tree grows exponentially with the number of stages. Therefore, significant research
has been devoted to the development of decomposition techniques to allow the solu-
tion of these problems in an efficient matter.

The most popular decomposition methods applied to multistage stochastic pro-
gramming problems can be classified as scenario-based (e.g., Lagrangean Decompo-
sition [25], Dual Decomposition [9,35], Augmented Lagrangean [57] and Progres-
sive Hedging [84]), and stage-based decomposition (e.g., Nested Benders Decom-
position [6], Stochastic Dual Dynamic Programming (SDDP) [66], Stochastic Dual
Dynamic integer Programming (SDDiP) [89]). Both categories have guaranteed fi-
nite convergence for linear programming (LP) formulations. However, for the case of
mixed-integer linear programming (MILP) formulations they can provide bounds to
the optimal solution, but generally do not have guaranteed finite convergence.

Scenario-based decomposition often utilizes the framework of Lagrangean de-
composition to decompose the problem into scenarios by dualizing the nonanticipa-
tivity constraints. Examples of GEP decompositions that fit within this category are
[33,59,44]. Stage-base decomposition decomposes the model by nodes in the sce-
nario tree, and are usually based on Benders decomposition. Stage-based algorithms
have smaller subproblems and are more suitable for models in which the solution of
a single scenario is already computationally very demanding. SDDP has been widely
used in the context of optimal scheduling of hydrothermal generating systems [65,66,
76,82]. Regarding GEP problems, both Nested Decomposition and SDDP have been
used in combination with Benders decomposition for two-stage stochastic program-
ming models in which the operational subproblems are challenging [23,74]. SDDiP
[89], which is an extension of SDDP to multistage integer programming models, is a
promising technique to solve multistage stochastic integer programming models that
has great potential for GEP problems with hourly operating details.
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In this paper, we address the long-term planning of electric power infrastructure
under multiscale uncertainty. We propose a Multistage Stochastic Mixed-Integer Pro-
gramming (MSIP) formulation that takes the viewpoint of a central planning entity,
whose goal is to optimize the generation expansion to meet the projected electricity
demand over a long-planning horizon, while considering multiple sources (natural
gas, coal, nuclear, solar, wind and storage), detailed operational constraints on an
hourly basis, variability and intermittency of renewable generation sources, power
flow between regions, and multi-scale uncertainty (i.e. investment level uncertainty -
e.g. fuel price and carbon tax uncertainties - and operating level uncertainty - e.g. re-
newable availability and hourly load demand). The model is an extension of the deter-
ministic model by Lara et al. [39] and can be of the order of quadrillion variables and
constraints. To be able to solve such a large-scale model, we decompose the problem
using Stochastic Dual Dynamic Integer Programming (SDDiP) [89] and take advan-
tage of parallel processing to solve it more efficiently.

:::
The

::::::::::
framework

::::::::
presented

::::
here

:
is
:::::::
slightly

:::::::
different

::::
than

:::
the

:::
one

::::::::
proposed

:::
by

::::
[89]

::
as

:
it
::::::
allows

:::::::::::
mixed-integer

::::::::
recourse

:
at
:::
the

:::::::
expense

:::
of

:::::
losing

:::
the

:::::
finite

::::::::::
convergence

::::::::
property

:::
(i.e.

:::::
there

::
is

:
a
::::::::
potential

::::
dual

::::
gap).

::::
This

::
is

::::
first

::::::::
discussed

:::
by

::::
Lara

::
et

::
al.

::::
[39]

:
,
:::::
which

:::::::
presents

:::::
three

:::::::
options

::
of

::::
cuts

::
for

:::
the

::::::::::::
deterministic

::::::
version

::
of
::::

the
::::::
Nested

:::::::::::::
Decomposition

:::
and

::::::
prove

::::
their

:::::::
validity

:::
(not

::::
their

:::::::::
tightness)

::
in

:::
the

::::::
context

::
of

::::::::::::
mixed-integer

::::
state

::::::::
variables.

:

The proposed GEP model follows four out of the five trends listed by Babatunde
et al.’s survey on GEP [2]: (i) it handles uncertainty; (ii) it considers renewable energy
penetrations and includes short-term operating decisions; (iii) it includes the option
of adding energy storage; (iv) it addresses sustainable issues by having the option
of imposing minimum renewable generation quota, maximum CO2 emissions quota,
and/or carbon tax. The only trend from [2] that this paper does not address is the
deregulation of the power sector.

The major contributions of this paper are the following: (i) application of SDDiP
in the context of GEP optimization with integrated operating decisions, (ii) SDDiP
with mixed-integer recourse, (iii) parallelization scheme to solve the SDDiP more ef-
ficiently, and (iv) application of the model and algorithmic framework to a case-study
for Electric Reliability Council of Texas (ERCOT) region considering operational and
strategic uncertainty.

The remainder of the paper is organized as follows: Section 2 presents the prob-
lem statement, discusses modeling assumptions, proposes a concise representation of
the multistage mixed-integer linear programming model for GEP optimization un-
der uncertainty (the detailed model is shown in Appendix A), and discusses how the
scenario tree is generated. Section 3 describes the SDDiP algorithm, its framework,
major assumptions, and how we parallelize the algorithm. In Section 4 we first present
the results for a case-study for the ERCOT region, showing the order of magnitude
of problems the SDDiP algorithm can solve on a personal computer and the solution
time. Then, we compare the first-stage here-and-now decisions for the reference case
with natural gas price uncertainty, the no nuclear case with natural gas price uncer-
tainty, carbon tax uncertainty, and high carbon tax uncertainty, and show the value
of stochastic programming for the no nuclear case with high carbon tax uncertainty.
Finally, in Section 5 we draw some conclusions.
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2 Formulation

The proposed GEP problem involves choosing the optimal investment strategy and
operating schedule for the power system in order to meet the projected load demand
over the time-horizon for each location, while minimizing the expected net present
cost over the scenario tree. This is an extension of the MILP problem proposed by
[39] to multistage stochastic mixed-integer programming, in order to address uncer-
tainty.

A set of existing and potential generators is given, for which the energy source
(nuclear, coal, natural gas, wind or solar)1 and the generation technology are known.

– For the existing generators we consider: (a) coal: steam turbine (coal-st-old); (b)
natural gas: boiler plants with steam turbine (ng-st-old), combustion turbine (ng-
ct-old), and combined-cycle (ng-cc-old); (c) nuclear: steam turbine (nuc-st-old);
(d) solar: photovoltaic (pv-old); (e) wind: wind turbine (wind-old);

– For the potential generators we consider: (a) coal: without (coal-new) and with
carbon capture (coal-ccs-new); (b) natural gas: combustion turbine (ng-ct-new),
combined-cycle without (ng-cc-new) and with carbon capture (ng-cc-ccs-new);
(c) nuclear: steam turbine (nuc-st-new); (d) solar: photovoltaic (pv-new) and
concentrated solar panel (csp-new); (e) wind: wind turbine (wind-new);

Also known are: their nameplate (maximum) capacity; lifetime; fixed and vari-
able operating costs; start-up cost (fixed and variable); cost for extending their life-
times; CO2 emission factor and carbon tax, if applicable; fuel price; and operating
characteristics such as ramp-up/ramp-down rates, operating limits, and contribution
to spinning and quick start fraction for thermal generators.

For the case of existing generators, their age at the beginning of the time-horizon
and location are also known. For the case of potential generators, the capital cost
(which is a linear function of its nameplate capacity), and the maximum yearly in-
stallation of each generation technology are also given. Also given is a set of po-
tential storage units, with specified technology (we consider as options lithium-ion,
lead-acid, and flow batteries), capital cost, power rating, rated energy capacity, charge
and discharge efficiency, and storage lifetime. Additionally, the multiple profiles of
projected load demand and renewable availability (capacity factor) are given for each
location, as well as the distance between locations, the transmission loss per mile,
and the transmission line capacity between locations.

The problem is then to find the optimal ”here-and-now” decisions for the first-
stage and ”wait-and-see” decisions for the remaining stages and respective scenarios
regarding: a) location, year, type, and number of generators and storage units to in-
stall; b) when to retire generators and storage units; c) whether or not to extend the
life of the generators that reach their expected lifetime; d) an approximate operating
schedule for each installed generator; and e) the approximate power flow between
each location in order to meet the projected demand. The goal is to minimize the
expected net present cost over the scenario tree (including operating, investment, and

1 In this paper we do not consider hydroelectric power as it is available in very limited amounts in the
ERCOT region.
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environmental costs). The large-scale strategic level uncertain parameters are user-
defined and can be, for example, the yearly fuel price, and any potential carbon tax.
The small-scale operating level uncertain parameters (renewable generation avail-
ability and load demand) are captured through multiple representative days between
investment decisions.

2.1 Modeling assumptions

In order to improve tractability and allow the solution of the MSIP model for large
areas over a few decades with multiple scenarios, we adopted judicious modeling
aggregations and approximations to address the multi-scale aspects, both in its spatial
and temporal dimensions [39]. In order to significantly reduce computation time,
generator clustering [63] and time sampling [39] approaches are adopted.

The area considered is divided into regions that have similar climate (e.g., wind
speed and solar incidence over time), and load demand profiles. It is assumed that
the potential locations for the generators and storage units are the midpoints of each
region r. Additionally, generators and storage units that have the same characteristics,
such as technology and operating status (i.e., existing or potential), are aggregated
into clusters i and j, respectively, for each region r [63]. The major impact of this
approximation in the model formulation is that the discrete variables associated with
generators and storage units correspond to integer rather than binary variables to
represent the number of generators/storage units under a specific status in cluster i
and j, respectively.

We use
::
As

::::::::
discussed

::::::::::
extensively

::
in

:::
the

::::::::
literature

::::
(e.g.

::::::::::::::::::
[81,16,62,68,28,52]

:
),
::
a

::::::
system

::::
with

::::::::
increasing

:::::::::
renewable

::::::::::
penetration

:::
has

:::
the

::::
need

:::
for

::::::::::::
chronological

::::::
hourly

::
or

:::::::::
sub-hourly

::::::::::::
representation

:::
to

:::::
better

:::::::
address

:::
the

:::::::::
variability

::
in
:::::::::

renewable
:::::::

energy

::::::::
generation

::::
and

:::::
better

::::::
assess

:::
the

::::::::
trade-offs

::::::::
between

::::::::
long-term

:::::::::
investment

:::::::::
decisions

:::
and

:::::::::
short-term

::::::::
operating

:::::::::
decisions.

::::
We

:::
use

::::::::::::
representative

:::::
days

::
as

::
a
:::::::::::
compromise

:::::::
between

::::
time

::::::::
resolution

::::
and

:::::
model

::::::::::
tractability.

:::
We

:::
use

:
the same representative days

as [39], selected from historical data via k-means clustering approach, where the goal
of the clustering procedure is to select representative days to approximate: (i) the
duration curves of historical load and renewables time series, (ii) the temporal corre-
lation of each time series, and (iii) the hourly correlation between each time series.
The operating scenarios are drawn from this larger set of representative days.

::::
The

:::::
choice

::
of

:::
the

:::::::
number

::
of

::::::::::::
representative

::::
days

:::
per

::::
year

::
is

:::::
based

::
on

:::
the

:::::
result

:::::::::
presented

::
by

::::
[39].

::::
Lara

::
et

:::
al.

:::::::
conclude

::::
that

::
for

::::
this

:::
data

:::
set

:::
and

::::::::::
case-study,

:
4
::::::::::::
representative

::::
days

:::
per

::::
year

::::
were

::::::::
sufficient

::
to
::::::::::

adequately
::::::::
represent

:::
the

:::::::::
variability

::
in

::::
load

:::
and

::::::::
capacity

:::::
factor

::
for

:::
the

::::::::
different

:::::::
regions.

In order to further simplify the transmission model, the ”truck-route” represen-
tation is adopted, which assumes that the flow in each line can be determined by an
energy balance between nodes. This approximation ignores Kirchhoff’s voltage law,
which dictates that the power will flow along the path of least impedance. We also
assume that the transmission lines have a maximum capacity, and that transmission
expansion is not considered. Additionally, the transmission losses are characterized
by a fraction loss per mile, and are not endogeneously calculated.
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2.2 MSIP model

Assuming the data for this process is uncertain and evolves according to a stochastic
process, the MSIP model can be concisely formulated as in (1), following the similar
notation as [89].

min
(x1,y1)∈χ1

{
f1(x1,y1)+E

ξ̄[2,Γ ]|ξ[1,1]

[
min

(x2,y2)∈χ2(x1,ξ2)

{
f2(x2,y2,ξ2)+

...+E
ξ̄[Γ ,Γ ]|ξ[1,Γ−1]

[
min

(xΓ ,yΓ )∈χΓ (xΓ−1,ξΓ )

{
fΓ (xΓ ,yΓ ,ξΓ )

}]}]} (1)

where γ ∈ {1, ...,Γ } is the set of stages and Γ is the last stage; xγ is the set of state
variables that link different stages; yγ is the set of local variables that do not depend
on the decision of previous stages and is only contained in the subproblem at stage γ .
In the context of this GEP problem, the state variables are the number of generators
in cluster i of region r that are operational in year t and number of storage units in
cluster j of region r that are operational in year t. State variables are mixed-integer
as the number of active generators is forced to be integer for thermal units but it is
allowed to be fractional for renewable generators and storage units (for details see
Appendix A). It is important to highlight that while decision stages are ordered in
time, individual stages can have one or multiple time-periods t within it.

χγ(xγ−1,ξγ) is the feasible region of the stage γ , which depends on the decisions
in stage γ−1 and the uncertainty realization ξγ in stage γ . ξ̄ [γ,γ ′] denotes a sequence
of random data vectors corresponding to stages γ through γ ′ and ξ [1,γ − 1] denotes
a specific realization of this sequence of random vectors from stage 1 to stage γ −
1. E

ξ̄ [γ,Γ ]|ξ [1,γ−1] denotes the expectation operation in stage γ with respect to the

conditional distribution of ξ̄ [γ,Γ ] given realization ξ [1,γ−1] in stage γ−1.
This stochastic process has a finite number of realizations in the form of a sce-

nario tree T , with Γ stages and a set of nodes in each stage denoted by Sγ . Each node
n in stage γ > 1 has a unique parent node P(n) in stage γ − 1. The stage containing
node n is denoted by γ(n). The set of children nodes of a node n is denoted by C(n),
such that if n ∈ Sγ and m ∈C(n), then m ∈ Sγ+1. The set of nodes on the unique path
from origin node 1 to node n, including the latter, is denoted by Path(n). A node
n ∈ Sγ represents a state of the system in stage γ and corresponds to the sequence of
realizations {ξm}m∈Path(n). The probability of node n to happen, which is the prob-
ability of realization of the sequence {ξm}m∈Path(n), is denoted probn. For a node in
the last stage of the tree, n ∈ SΓ , the sequence of realizations {ξm}m∈Path(n) is called
a scenario sc ∈ SC and the set of nodes n that are part of this scenario sc are denoted
by Ssc. Therefore, the extensive form (also known as deterministic equivalent) of (1)
can be formulated as:

P : min
(xn,yn)

{
∑

n∈T
probn · fn(xn,yn) | (xP(n),xn.yn) ∈ χn ∀ n ∈T

}
(2)
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A summary of the notation of main parts of the scenario tree is shown in Figure
1. The detailed MSIP formulation is described in Appendix A.

Fig. 1 Summary of the notation for scenario tree T

2.3 Scenario tree generation

In our framework we capture both long-scale strategic and short-scale operating un-
certainties. The strategic uncertainties occur in the same time scale as the investment
decisions (i.e., yearly), while the operating uncertainties are captured through differ-
ent representative days’ profiles of hourly load demand and renewable availability
between investment decisions.

Our GEP problem can be represented with the multi-horizon framework proposed
by [34] and used by [44]. This methodology represents strategic and operating uncer-
tainties separately based on the observation that strategic decisions typically do not
depend directly on any particular operational scenario, implying that it is enough to
branch only between strategic stages, and the operational decisions can be seen as em-
bedded into (or attached to) their respective strategic nodes. However, multi-horizon
representation is not needed as we assume stage-wise independence in the scenario
tree (see Section 3.2.2 for more details).

For a problem with Ξ s strategic realizations per stage and Ξ o operational re-
alizations per stage leads to a problem with a total number of scenarios of SC =
(Ξ sΞ o)Γ−1. Figure 2 shows the standard and the recombining representations of
the scenario tree T . They are

:
A
:::::::::::
recombining

:::::::
scenario

::::
tree

::
is

:::
one

:::
in

:::::
which

:::
for

::::
any

:::
two

:::::
nodes

::
n
::::
and

::
n′

::
in

:::
St ,:::

the
:::
set

::
of

::::::::
children

:::::
nodes

:::::
C(n)

:::
and

:::::
C(n′)

:::
are

:::::::
defined

:::
by

:::::::
identical

::::
data

:::
and

:::::::::::
probabilities.

:::::::::
Therefore,

:::
the

:::::::
standard

:::
tree

::::
and

:::
the

::::::::::
recombining

::::
tree

::
are

:
equivalent in this context of stage-wise independence

:
,
:::::
when

:::
the

::::::::::
uncertainty

::
is

::::::::::
memory-less.

This scenario tree has Ξ s = 3 strategic realizations per stage and Ξ o = 2 opera-
tional realizations per stage, hence, it has a total of SC = (6)Γ−1 scenarios.
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Fig. 2 Standard (left) and recombining (right) representations of the scenario tree T with both strategic
and operating uncertainties. The circles represent the strategic decisions and while the squares represent
the operating decisions.

3 SDDiP Decomposition

As mentioned in Section 1, multistage stochastic programming models grow ex-
ponentially with the number of stages, leading to a large multi-scale problem that
quickly becomes intractable. Formulation 1 exploits the nested structure in this MSIP
problem. Therefore, we use Stochastic Dual Dynamic Integer Programming (SDDiP)
because it can take advantage this nested structure in the problem.

Birge was the first to apply Benders Decomposition on a nested fashion to solve
Multistage Stochastic Linear Programming (MSLP) models, in 1985 [6]. A few years
later, Pereira et al. [66] re-explained Nested Benders Decomposition using dynamic
programming notation, incorporated scenario sampling into the algorithm, and showed
that convergence can be significantly improved under the assumption of stage-wise
independence, calling this new decomposition method Stochastic Dual Dynamic Pro-
gramming (SDDP). Both Nested Benders Decomposition and SDDP convergence [6]
and almost-sure convergence [67] proofs, respectively, rely on the fact that cost-to-go
functions in MSLP models are piece-wise linear and convex. Therefore, both de-
composition methods had their application limited to convex multistage stochastic
programming models (and were mostly used for linear programming models).

Recently, there have been research efforts on extending Nested Benders/SDDP
to integer and mixed-integer stochastic programming models. Cerisola et al. [10]
propose a variant of Benders Decomposition for multistage stochastic integer pro-
gramming and apply it to the stochastic unit commitment problem. Thome et al. [82]
introduce an extension of the SDDP framework by using Lagrangean Relaxation to
convexify the recourse function applied to nonconvex hydrothermal operation plan-
ning. Zou et al. [89] propose a valid Stochastic Dual Dynamic Integer Programming
(SDDiP) algorithm for MSIP with binary state variables, and prove that for some of
the cuts presented the algorithm converges in a finite number of steps. Lara et al. [39]
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show that the cuts presented by Zou et al. [89] are still valid for problems with mixed-
integer state variables. However, finite convergence is not guaranteed, i.e., there may
be a duality gap.

The SDDiP algorithm consists of breaking down the scenario tree by nodes, and
solving it iteratively in a forward and backward fashion until the optimality tolerance
ε is satisfied, as shown in Figure 3. The Forward Pass yields a statistical upper bound,
while the Backward Pass, which generates cuts from the relaxed subproblems to outer
approximate the cost-to-go function, provides a lower bound. New cuts are added in
the Backward Pass of each iteration k, and are kept in the following Forward Pass,
until the difference between the upper and lower bounds is less then a pre-specified
tolerance.

Fig. 3 Steps at iteration k of the SDDiP algorithm, where Φ̂m,k and µm,k are the coefficients of the cuts, sc
is a scenario and SCsplk is the set of scenarios sampled in iteration k.

To be able to decompose the MSIP problem by node, we make copies of the state
variables xn. These new auxiliary variables, zn, are used to equate to the parent node’s
state and make sure that when solving node n we are continuing from the state of the
system at the end of its parent node. zn is, however, relaxed to be a continuous variable
within the same bounds as xn.

Going back to our MSIP problem, the node subproblems of (2) can be formulated
as follows ∀ n ∈T ,k ∈K :

Pn,k : Φn,k(x̂P(n),k,φn,k) := min
(xn,yn)

fn(xn,yn)+ ∑
m∈C(n)

qnmφm,k(x̂n,k)

s.t. (zn,xn.yn) ∈ χn

zn = x̂P(n),k ← µn,k ∈ R`

xn ∈ Z`1
+ ×R`2

+ , yn ∈ Zo1
+ ×Ro2

+ , zn ∈ R`

(3)
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where ` = `1 + `2, o = o1 + o2; K is the set of iterations; and qnm := probm/probn
is the conditional probability of transitioning from node n to node m for m ∈T \{1}
and n = P(m).

The approximate expected cost-to-go function, φn,k(·), is defined as:

φn,k(x̂n,k) := min
xn,αn

{
αn : αn ≥ ∑

m∈C(n)
qnm ·

(
Φ̂m,k′ +µ

ᵀ
m,k′(x̂n,k′ − xn)

)
∀ k′ ∈K |k′ < k

}
(4)

3.1 Forward Step

The Forward Step for the SDDiP is very similar to the Forward step presented by
[39], but now applied to the scenario tree with incorporated scenario sampling.

As mentioned before, the purpose of the Forward Pass in SDDiP is to generate
a statistical upper bound to the solution of the MSIP for the entire scenario tree T .
It accomplishes this by randomly sampling a subset of the scenarios in the tree T -
SCspl

k , and for each stage γ ∈ {1, ...,Γ } solving the nodes n in S(γ) if they are also part
of the sampled scenarios. By solving node n, the algorithm implements the optimal
decisions for this node considering its uncertainty realization and previous Path(n),
and passes the current state of the system forward to its children node m ∈ C(n) if
m is also part of the sampled scenarios. This process is repeated up until all sampled
scenarios are fully solved (until last stage Γ ) and we have a total minimum cost for
each of those scenarios.

The Forward Pass with scenario sampling is shown in Figure 4 for both the stan-
dard representation and the recombining scenario tree representation. For our case in
which we assume stage-wise independence, both representations are equivalent.

The problem is assumed to have complete continuous recourse, which means that
for any value of state variable (i.e., linking variable) and local integer variables, there
are values for the continuous local variables such that the solution is feasible. This
assumption is valid since feasibility can be achieved by adding nonnegative slack
variables and penalizing them in the objective function.

The statistical upper bound, UBk, is calculated in the Forward Pass as in (5).

UBk = µ̄k + zα/2 ·
σk√
Nspl

∀ k (5)

where µ̄k is the mean total cost over the sampled scenarios in iteration k, σk is its
standard deviation, Nspl is the number of scenarios sampled in each iteration, and
zα/2 is the z-score to assure a certain confidence interval (for example, for a 95%
confidence interval, zα/2 = 1.96).

The total cost of a scenario sc is as follows.

Φ
tot
sc,k = ∑

γ∈{1,...,Γ }
∑

n∈Sγ ∩ n∈Ssc

(
Φ̂n,k− α̂n

)
∀sc ∈ SCspl

k (6)
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Fig. 4 Forward Pass with scenario sampling for both the standard and the recombining scenario tree rep-
resentations. The nodes highlighted are the ones that are part of the sampled scenarios, and the continuous
arrows show the paths of the sampled scenarios.

and µ̄k and σk are defined in (7) and (8), respectively.

µ̄k =
1

Nspl ∑
sc∈SCspl

k

Φsc,k ∀k ∈K (7)

(σk)
2 =

1
Nspl−1 ∑

sc∈SCspl
k

(
Φsc,k− µ̄k

)2 ∀k ∈K (8)

It is important to note that the upper bound, UBk, obtained by the SDDiP is only
a statistical upper bound. Its validity is guaranteed with certain probability provided
that Nspl is not too small. However, regardless of the size of Nspl, it is possible that the
upper bound is smaller than the valid lower bound evaluated in the backward step. To
avoid this issue, alternative stopping criteria are reported in the literature [55,79,8].
We, however, are using

:::
use the standard stopping criteria of UBk−LBk ≤ ε , where ε

is the allowed optimality tolerance.
:::
This

::
is

:::
the

::::
same

::::::::
stopping

::::::
criteria

::
as

:::
the

:::
one

:::::
used

::
by

::::
[89],

:::
but

:::
we

:::::::::::
acknowledge

::
it

::::
may

::::
lead

::
to

::
an

:::::
early

:::::::::
termination

::
of

:::
the

:::::::::
algorithm.

:

3.2 Backward Step

After solving the Forward Pass, the next step is the Backward Pass, and its purpose is
to generate cuts that outer approximate the cost-to-go function. The Backward Pass
consists of solving the subproblems from the last to the first stage, so the solutions of
future stages can be used to generate cuts and provide approximations to the cost-to-
go functions within the planning horizon.

Since our MSIP has mixed-integer recourse (i.e., the state variables xn are mixed-
integer), instead of solving the original subproblems we have to solve a relaxation that
is convex in the subspace of the state variables in order to generate a valid cut. This
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relaxation can be the linear programming relaxation or the Lagrangean relaxation
of the subproblem Pn,k given by (3). Depending on the type of relaxation solved,
a different type of cut is added in the Backward Pass to approximate the cost-to-go
function.

In this step, instead of only having to solve the nodes that are part of the scenarios
sampled in iteration k, SCspl

k , we have to solve the subproblem of all the children
nodes C(n) of the nodes n that are part of the sampled scenarios n ∈ Ssc,sc ∈ SCspl

k .
Consequently, we solve a total of (Nspl ·Ξ s ·Ξ o) subproblems, as can be seen in
Figure 5. The solution of this extra set of nodes is necessary to be able to generate
the cuts that approximate the cost-to-go function, which takes an weighted average
of the coefficients coming from the solution of the subproblem of the children nodes
based on the probabilities of the uncertainty realizations.

Fig. 5 Backward Pass with scenario sampling and stage-wise independence for the standard (left) and
recombining (right) scenario tree representations. The nodes in dark color are the ones that are part of the
sampled scenarios, and the nodes in lighter color are the nodes that are not part of the sampled scenarios
but were solved because they are children nodes of the sampled nodes.

The lower bound, LBk, is calculated in the Backward Pass as in (9). It is easy to
see that the relaxed solution of the root node n = 1 is a lower bound to the total cost
since it only has a subset of the original constraints of the original problem.

LBk = Φ̂1,k ∀ k ∈K (9)

3.2.1 Possible cuts to approximate the cost-to-go function

The choice of cuts directly impacts the performance of the algorithm as some cuts
are tighter and more/less computationally expensive to generate than the others. The
Benders cut, Strengthened Benders cut and Lagrangean cut were first proposed by
Zou et al. [89] for MSIP with binary recourse, and Lara et al. [39] proved their validity
for models with mixed-integer recourse. However, it is important to highlight that the
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SDDiP algorithm does not have guaranteed finite convergence if the formulation has
mixed-integer recourse and the Backward Pass uses any of the following cuts, which
means that there can be a duality gap.

Benders cut The first option trivially comes from SDDP Benders cut. The Benders
cut’s coefficients are obtained from the solution of the linear relaxation (LP) of Pn,k
in (3), and is formulated as follows.

αn ≥ ∑
m∈C(n)

qnm ·
(

Φ̂
LP
m,k′ +µ

LP
m,k′

ᵀ
(x̂n,k′ − xn)

)
∀ k′ ∈K |k′ < k (10)

This is the weakest of the possible cuts, but it has the advantage of being easily and
quickly computed. As shown by [39], the Benders cut performs very well for this
GEP problem, since it has a tight linear relaxation. For certain multistage capacity
planning problems with integer recourse, there is evidence that Benders cuts alone
are sufficient for reducing the optimality gap to zero as the number of stages increases
(see, e.g., [29], Corollaries 1 and 2).

Lagrangean cut The subproblem Pn,k can also be convexified by considering its La-
grangean relaxation, which yields the convex hull of the nonlinking constraints [19].
In our case this is done by dualizing the linking equalities in (3) and penalizing their
violation in the objective function by the vector of Lagrange multipliers, µn,k. The
closer the Lagrange multipliers are to their optimal value, the tighter the approxima-
tion is, and the stronger the cuts generated by theses multipliers are. Therefore, the
Lagrangean cut uses the coefficients obtained by the Lagrangean Dual (LD) problem
and is formulated as follows.

αn ≥ ∑
m∈C(n)

qnm ·
(

Φ̂
LD
m,k′ +µ

LD
m,k′

ᵀ
(x̂n,k′ − xn)

)
∀ k′ ∈K |k′ < k (11)

For more details on the Lagrangean cut, see [89,39].

Strengthened Benders cut In order to mitigate potential performance issues, Zou et
al. [89] proposed the Strengthened Benders cut, which is a compromise between Ben-
ders and Lagrangean cuts. Its generation is similar to the Lagrangean cut, but it does
not use the subgradient method to improve the multipliers. Instead, it uses the coeffi-
cients from the first Lagrangean relaxation (LR) solved after the initialization of the
multipliers using LP relaxation and is formulated as follows.

αn ≥ ∑
m∈C(n)

qnm ·
(

Φ̂
LR
m,k′ +µ

LP
m,k′

ᵀ
(x̂n,k′ − xn)

)
∀ k′ ∈K |k′ < k (12)

For more details on the Strengthened Benders cut, see [89,39].
Due to the computational expense of computing the Lagrangean and the Strength-

ened Benders cuts, and the computational evidence in [39] that the Benders cuts are
likely sufficinet for this GEP problem, we select the Benders cuts to be used in our
computational experiments shown in Section 4.
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3.2.2 Stage-wise independence and Cut Sharing

In multistage problems, if the stochastic process and the constructed scenario tree is
stage-wise independent, i.e., for any two nodes n and n′ in St the set of children nodes
C(n) and C(n′) are defined by identical data and conditional probabilities, then the
cost-to-go functions do not depend on the current scenario. This means that the value
functions and expected cost-to-go functions depend only on the stage rather than the
nodes, Φn(·) ≡ Φγ(·) ∀ n ∈ Sγ , and the cuts generated for a particular scenario are
also valid for any other scenario at the same stage [31].

The SDDiP relies on the stage-wise independence assumption and the ability to
share cuts among different nodes in the same stage to avoid the combinatorial explo-
sion and the ”curse of dimensionality” [66]. Therefore, it provides a practical solution
for solving real-world applications of MSIP on very large scenario trees without the
need for scenario reduction methods.

The Backward Pass in the SDDiP algorithm works similarly as the one in a
Stochastic Nested Benders decomposition with sampling. The only difference is that
because we have stage-wise independence, the cuts generated are added to all the
nodes in the previous stage instead of only to the parent node. The Backward Pass
with stage-wise independence assumption is shown is Figure 5.

The stagewise independence assumption is reasonable for the operating uncer-
tainties considered in our GEP problem (i.e., different profiles for representative
days) since the realization of the solar incidence, wind speed and load profile in one
day

::::
stage

:
t
:::::
(year

::
t) has little influence in the next day

:::::::::
realizations

:::
of

:::
the

::::
next

:::::
stage

::::
(year

:::::
t +1), especially if we are only including a few representative days a year.

:::::
These

::::::::::::
representative

::::
days

:::
are

:::
not

::::::::::
sequential,

::
so

:::::
there

:::
are

:::
no

:::::::::
operational

:::::::::
decisions

:::
that

:::::::
connect

:::
the

::::
days,

::::::
which

::
is

:
a
:::::::::
reasonable

::::::::::
assumption

::::::::::
considering

:::
that

::::::::
midnight

::
is

::
far

:::::
away

::::
from

:::
the

:::::::
extreme

::::::
ramps

::
of

:::
the

::::
duck

:::::
curve

::::
[13].

:

Regarding the strategic uncertainties, the stage-wise independence assumption is
adequate for natural gas price uncertainty as the prices can go up and down without
a clear influence of the realization in the year before. In the case of carbon tax un-
certainty, this assumption may be a stretch as it is unlikely that the carbon tax would
wildly vary between two consecutive years. However, even though carbon tax stage-
wise independence generates an exceptionally uncertain mode, we still believe that in
face of the the political uncertainty and changes in administration over the planning
horizon this is a case worth examining.

Additionally, there has been some work on how to extend the use of SDDP/SDDiP
for certain types of interstage dependency [31,79,72,45], which would be useful to
capture GEP uncertainties that are not well-captured by the stage-wise independence
assumptions (e.g., learning rate of new generation and storage technologies and peak
load). For the case of strategic uncertainty with stage-wise dependence and operating
uncertainty with stage-wise independence, one can use the framework proposed by
Rebennack [75], which combines SDDP with the sampling-based stochastic nested
Benders decomposition approach. These extensions are left for future investigation.
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3.3 Parallelization Scheme

In the SDDiP framework the subproblems of the nodes n within the stage γ , n ∈ Sγ ,
are independent from each other. Hence, SDDiP is well suited for parallel processing.
The algorithm is not, however, trivially parallel since synchronization is required
to share the Benders cuts generated with all the nodes in the previous stage γ − 1.
Therefore, a well-thought parallelization strategy is required in order to obtain an
efficient parallel solution.

There has been some effort in the literature to propose the optimal parallelization
scheme for SDDP in order to avoid synchronization steps as much as possible [69,
27]. We do not claim that our parallelization scheme is optimal, but based on the
results that we obtained it seems to be adequate for our problem.

Fig. 6 Parallelization scheme used for the SDDiP algorithm. The dashed lines show which process is in
charge of which node, and the highlighted areas show the synchronization points both in the Forward and
Backward Passes.

We use PyMP [41] for the parallelization, which is a Python package based on
OpenMP [11]. We first equally divide the nodes in the tree among the processes, and
then enter the parallel context and have each process generate the subproblems for
those nodes assigned to it. After that, we start the Forward Pass and randomly select
the sampled scenarios to be solved for each of those processes, sc∈ SCspl,pid

k , such that
the number of processes Npids times the number of sampled scenarios by processes
Nspl.pid equals the total number of sampled scenarios per iteration k: Npids ·Nspl,pid =
Nspl. We then solve the subproblems of all the nodes that are part of the sampled
scenarios, storing the results of the state variables as shared dictionaries among the
processes. Note that as the nodes are statistically assigned to processes there is the
potential for load imbalance due to both the random sample of scenarios and because
of variance in the time to solve each MILP subproblem. Addressing this potential
scaling issue is left for future work.
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When all processes reach the end of the Forward Step, there is a synchronization
step to gather all the optimal values before the the first process calculates the upper
bound UBk and distributes it to the other processes. In the Backward Pass there are
synchronization steps after every stage to distribute cuts generated at that stage to
all nodes in the previous stage. In the end only the first process calculates the lower
bound LBk and check if the optimality tolerance ε is satisfied. The parallelization
scheme and the synchronization points for both the Forward and Backward Passes
are shown in Figure 6.

Our implementation of the parallel SDDiP algorithm for this GEP problem can
be found in [38].

4 Case study: ERCOT region

We test the proposed MSIP formulation and SDDiP algorithm for a case study ap-
proximating the Texas Interconnection, a power grid that covers most of the state of
Texas and is managed by the Electric Reliability Council of Texas (ERCOT). This
case study is based on the deterministic case study presented by [39], with the addi-
tion of operational and strategic uncertainties, and the option of adding storage units.

Within the ERCOT covered area, we consider four geographical regions: North-
east, West, Coastal and South. We also include a fifth region, Panhandle, which is
technically outside the ERCOT limits but due to its renewable generation potential, it
supplies electricity to the ERCOT regions. Thus, Panhandle is considered a zone with
zero load demand, i.e., it is only a supplier, not a consumer. The regions are shown in
Figure 7. For more details on the sources of the data used, see [39].

Fig. 7 Model representation of regions and clusters [39]

We consider 3 types of utility batteries: lithium-ion, lead-acid and flow batteries,
for which we use the capital cost forecast provided by Schmidt et al. [78] and the
technical information provided by Luo et al. [50], the same sources used by [40].
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4.1 Reference case: all energy sources included

For each of the regions, we use load and capacity factor profiles with an hourly res-
olution. Representative days are constructed using a k-means clustering algorithm
and 2004-2010 zonal load and renewables profiles, as explained in [39]. 8 clusters
are constructed to find the 8 most representative days, and these days are split in 2
scenarios which correspond to 2 realizations of the operational uncertainty per stage,
with 4 representative days each. We can assume that the operational uncertainty sat-
isfies the stage-wise independence assumption discussed in Section 3.2.2 and follows
a uniform distribution.

Additionally, we consider that the natural gas fuel price is uncertain and has 3
realizations per stage. We assume that this fuel price is stage-wise independent and
follows a uniform distribution. The realizations were built using the minimum, me-
dian and maximum value corresponding to the scenarios presented in the EIA Annual
Energy Outlook 2019 [17]. We assume that the coal and uranium prices are determin-
istic since they exhibit considerably less variation compared to the natural gas price.

Our computational tests are performed on a MacBook Pro with 2.3GHz quad-core
8th-generation Intel Core i5 processor, with 8GB of RAM, running on macOS 10.14
Mojave. We implement the SDDiP algorithm in Python 3.6.6 and Pyomo 5.6.1, and
solve the LPs and MILPs of each node of the the scenario tree using Gurobi version
8.0.1 [26]. We allow a total number of 3 parallel processes, sample 15 scenarios per
iteration, impose a 95% confidence interval in the statistical upper bound (zα/2 =
1.96), and consider that the algorithm converges if it reaches an optimality gap of
less than or equal to 1%.

We first test the parallel efficiency of our algorithm by solving the same 5-stage
problem both sequentially and in parallel (we fix the random seed to avoid the stochas-
ticity in the solution by the random sampling of scenarios per iteration). The solution
time for the serial implementation is ts = 13,950 seconds and for the parallel imple-
mentation with 3 processes is tp = 6,131. Therefore, our parallel SDDiP algorithm
has 76% efficiency.

To test the capabilities of our algorithm, we solve the problem for: (i) 5 stages (5
years, 1 year per stage); (ii) 10 stages (10 years, 1 year per stage); and (iii) 15 stages
(15 years, 1 year per stage). In all of them, the subproblem (node) size before cuts
is 50,042 constraints, 13,746 integer variables, and 22,755 continuous variables. The
size of the extensive form (deterministic equivalent) and performance of the SDDiP
algorithm for all cases are reported in Table 1.

The extensive forms of all three cases are massive, with up to quadrillions of
variables and constraints in the 15-stage case. Considering the size of the models,
all cases were solved in a reasonable amounts of time: 1.7 hours, 2.3 hours and 23.9
hours, respectively. Due to memory limitations, it is fair to say that at least the 10-
stage and 15-stage cases would not be solvable in a personal laptop or desktop without
decomposing the model, or if the model is decomposed by a scenario-based approach
without scenario reduction techniques. Additionally, the convergence time is consid-
erably less than similar sized GEP problems with multistage stochastic programming
formulations reported in the literature that use scenario-based decomposition (see
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Table 1 Size of the problem and SDDiP performance for scenario trees with different numbers of stages

5 stages 10 stages 15 stages

Number of scenarios 1,296 1.01×107 7.84×1010

Number of nodes in the scenario tree 1,555 1.21×107 9.40×1010

Number of constraints (extensive form) 7.78×107 6.05×1011 4.71×1015

Number of integer variables (extensive form) 2.14×107 1.66×1011 1.29×1015

Number of continuous variables (extensive form) 3.54×107 2.75×1011 2.14×1015

Wall-clock time [s] 6,131 8,146 86,049
Upper bound [$ billion] 51.69 91.87 122.40
Lower bound [$ billion] 51.69 91.27 121.72
Optimality gap [%] 8.57×10−4 0.66 0.56

[44]). These results show how powerful and useful SDDiP can be for practical large-
scale MSIP models.

An important question that can now be explored is how impactful the length of
the planning horizon and the number of stages are in the optimal ”here-and-now” first
stage investment decisions. For this reference case, even though there are marginal
differences between the optimal first-stage decisions depending on the number of
stages (e.g. in the 15-stage solution the optimization adds 2 PV solar units in the first
year while the 5-stage and 10-stage solutions do not), the results are extremely similar
(2.27 GW, 2.21 GW, 2.40 GW of natural gas generation capacity are added in year
one, respectively), indicating that solving a 5-stage problem would be sufficient.

This result is not surprising considering that the ERCOT system is mature and
stable, and therefore we would not expect to see drastic changes without a corre-
sponding drastic impulse on the system. Accordingly, the optimization chooses to
install as few generators as possible in this first year, and wait until some of the un-
certainty is realized to make future decisions.

4.2 No nuclear case

The value of stochastic programming with multiple decision stages becomes more
accentuated in power systems where there is a need for quick and significant expan-
sion, which is the case in some developing countries (e.g., India’s electricity demand
is expected to double over the coming decade [30]).

Therefore, we solve a hypothetical case in which ERCOT decides to immediately
retire nuclear power. This is an interesting analysis considering the declining profits
and scheduled retirements of nuclear plants in the United States [83]. The nuclear
reactors represent 5% of the initial ERCOT generation capacity in the original data
set. Thus, by imposing their immediate retirement, the optimization is forced to make
significant expansion decisions in the first stage (first year).

We first solve the no nuclear case study with the same scenario tree as before, i.e.
2 realizations of operational uncertainty per stage, 3 realizations of natural gas price
per stage, and 15 stages. The optimal ERCOT generation capacity by source in the
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first year (first stage) for the reference case (all sources included and natural gas price
uncertainty) and the no nuclear case with natural gas price uncertainty are shown in
Figure 8. The results show that the nuclear plants were fully replaced by natural gas
combined-cycle plants.

Fig. 8 ERCOT generation capacity by source in the first year (origin node) for the reference case (all
sources included and natural gas price uncertainty) and the no nuclear case with natural gas price uncer-
tainty, carbon tax uncertainty, and high carbon tax uncertainty.

A potential issue that would arise if all nuclear reactors are replaced by natural
gas turbines is the increase of CO2 emissions [83]. Therefore, we also solve the no
nuclear case study with carbon tax uncertainty. We consider 2 realizations of opera-
tional uncertainty per stage (same as before), and 3 realizations of carbon tax price
per stage such that the no realization of carbon tax equals $0.0/tonne CO2 for all
stages, the high realization starts at $10/tonne CO2 at year 2 (stage 2) and increases
linearly to $150/tonne CO2 at year 15 (stage 15), and the medium realization is the
average between low and high realizations. We assume that the carbon tax prices are
stage-wise independent and follow a uniform distribution. As mentioned in Section
3.2.2, the carbon tax stage-wise independence assumption generates an ”exception-
ally uncertain” model. The optimal ERCOT generation capacity by source in the first
year (first stage) for the no nuclear case with carbon tax uncertainty is also shown on
the right of Figure 8. The results show that even with the risk of having carbon tax
fees in the future, the optimal ”here-and-now” decision is to invest on new natural
gas combined-cycle plants.

Additionally, we solve the no nuclear case study with a scenario tree that con-
siders more extreme realizations of carbon tax: the low realization of carbon tax
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equals $0.0/tonne CO2 for all stages (same as before), the high realization starts at
$100/tonne CO2 at year 2 (stage 2) and increases linearly to $500/tonne CO2 at year
15 (stage 15), and the medium realization is the average between low and high real-
izations. We assume again that the carbon tax prices are stage-wise independent and
follow a uniform distribution.

The reasoning behind solving the no nuclear case study for this more extreme
scenario tree is to find out if natural gas will stop being the most attractive source if
the variability between the realizations of carbon tax is higher. The optimal ERCOT
generation capacity by source in the first year (first stage) for the no nuclear case with
high carbon tax uncertainty is also shown on the right of Figure 8. The results show
that the risk of having steep carbon tax fees in the future makes the optimization invest
less in natural gas technologies in the first year (reduction of 0.58 GW in natural gas
generation capacity), and more in renewable sources (increase of 0.74 GW and 0.04
GW in solar and wind generation capacity, respectively).

4.3 The value of stochastic solution

In order to evaluate the potential gain of solving this GEP as a MSIP model instead of
a deterministic model, we solve a deterministic version of the no nuclear case study
with high carbon tax uncertainty using the average of the carbon tax realizations.
The comparison between the generation capacity by generation technology in the
first year (first stage) for the MSIP formulation and the deterministic formulation is
shown in Figure 9.

Fig. 9 ERCOT generation capacity by generation technology in the first year (origin node) for the no
nuclear case with high carbon tax uncertainty and the deterministic solution using the carbon tax averages.
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The results show that by assuming that carbon tax is a deterministic parameter,
the optimization makes more conservative decisions and replaces some of the natural
gas combined-cycle (ng-cc) and gas-fired combustion turbine (ng-ct) by natural gas
combined-cycle with carbon capture (ng-cc-ccs) to avoid having to pay carbon tax for
their emissions later. It also installs more wind turbines in the deterministic case than
in the stochastic case. These results make sense because in the deterministic case the
optimization is sure that there will be carbon tax in the future, while in the stochastic
case there may be no carbon tax, a high carbon tax or a medium carbon tax, therefore
it is better to wait and get more information about the carbon tax realization before
investing in more expensive low-emission options.

To evaluate how well the deterministic first-stage solution would perform in our
high carbon tax uncertainty scenario tree, we re-solve the MSIP formulation for the
no nuclear case study with high carbon tax uncertainty fixing the investment de-
cisions in the first stage to be the ones given by the deterministic solution. While
the original stochastic solution gives an optimal expected value of $ 232.47 billion
(0.28% optimality gap) the stochastic solution using the first-stage solution of the
deterministic model gives an expected value of $ 234.65 billion (0.20% optimality
gap), showing that by considering carbon tax an uncertain parameter the value of the
stochastic solution is $2.18 billions, which is the savings one can achieve in the long
term.

5 Conclusion

In this paper, we have proposed a multistage stochastic mixed-integer programming
formulation to address the long-term generation expansion planning
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::
of

:::
the

:::::::
scenario

::::
tree),

::::::
which

:::
had

:
a
:::::
great

:::::
impact

:::
on

:::
its

:::::::
solution

::::::::
efficiency

::
as

:::
the

:::::::::::::
single-scenario

::::::::::
formulation

:::
for

:::
this

::::::::
problem

:
is
:::::::

already
::::::::::::::
computationally

::::::::::
demanding.

:::::::::::
Additionally,

:::
the

::::::::::
assumption

::
of

::::::::::
stage-wise

:::::::::::
independence

:::
and

:::
the

:::::::
parallel

:::::::::
processing

::::
were

::::
key

:::
for

:::::::
speeding

:::
up

::::::::::
convergence

::::
and

allowing the solution of models with
:::::::
instances

::
of

::::::
which

:::
the

::::::::
extensive

:::::
form

:::
has

:::
up

::
to quadrillions of variables and constraints in a personal computer.

:::
This

::::::
shows

::::
how

:::::::
powerful

:::
the

::::::::::
parallelized

::::::
SDDiP

::::::::::
framework

:::
can

:::
be

::
for

:::::::
solving

:::::::
practical

::::::::::
large-scale

:::::
MSIP

::::::
models.

::::
The

:::::::::
stage-wise

:::::::::::
independence

::::::::::
uncertainty,

::::::::
however,

:::::
limits

::
its

::::::::
usability

:::
and,

:::::::::
depending

:::
on

:::
the

:::::
case

:::::
study,

::::
can

:::::::
generate

::
a
:::::
overly

:::::::::
uncertain

:::
and

::::::::::
potentially

::::::::
unrealistic

:::::::
scenario

::::
tree.

:::::::::
Therefore,

:::
an

::::::::
important

::::
next

:::
step

:::
for

::::
this

:::::::
research

:::::
would

:::
be

::
to

:::::::::
incorporate

:::::
some

::
of

:::
the

::::
work

:::::
done

::
in

:::::
SDDP

::::
with

:::::
stage

::::::::::
dependency

:::
for

::
the

:::::::
SDDiP

:::::::::
framework.

:

We solved a hypothetical case study for the ERCOT region and show that for
most of the scenario trees tested (with natural gas price and carbon tax uncertainty)
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the first-stage decisions consist of investing in new natural gas plants, indicating the
competitiveness of this source for this case study. We also ran a case study in which
all nuclear reactors are immediately retired, and unless we consider steep values for
the high realization of carbon tax the optimization still decides to invest in natural
gas turbines in the first stage. Finally, we show the value of stochastic solution for the
scenario tree with high carbon tax uncertainty, with a potential $ 2 billion reduction
in cost in the long run.

As future work it would
::
we

::::::
would

:::
like

::
to

:::::
focus

::
on

:::
the

::::
data

:::
and

:::::::
scenario

:::::::::
generation,

:::
and

:::::::
perform

:
a
:::::::
detailed

::::::::::::
out-of-sample

:::::::::
simulation

::
as

:
a
::::
way

::
to

:::::::
validate

:::
the

::::::::::
importance

::
of

::::::::::
representing

:::
this

::::::
model

::
as

:::::::::
multistage

::::::::
stochastic

::::::::::::
programming.

:::
We

:::::
would

::::
also

::::
like

::
to

:::::::
compare

:::
the

::::::
result

::::
with

:::::
those

:::::::
obtained

:::::
from

:::::::::::::
simplifications

:::::::::
commonly

::::
used

:::
in

::
the

::::::::
literature

::::
(e.g.

:::::::::::
representing

:::
this

::
as

::
a
::::::::
two-stage

::::::::
problem,

::
or

::
as

:::::::
multiple

:::::::::
two-stage

:::::::
problems

::::
with

::::::
rolling

:::::::
horizon)

::
to

:::::::
evaluate

:::
the

:::::::
potential

::::::::::::
improvements

::
of

:::
our

::::::::
proposed

:::::::::
framework.

:

::::::::::
Additionally,

::
it
:::::
would

::::
also

:
be interesting to consider the lead time of construction

of the power plants as both a deterministic and an uncertain parameter to evaluate how
this would impact in the planning strategy. Another addition to this work would be to
evaluate and improve the parallel scalability of the proposed algorithm.
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Appendix A Detailed MSIP Formulation

The detailed Multistage Stochastic Integer Programming formulation is presented
below by equations (13)-(47). As mentioned before, this is an extension of the MILP
model by Lara et al. [39], now including uncertain parameters:
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– for the operational uncertainty we have load demand Lr,t,d,s,n and renewable ca-
pacity factor C fi,r,t,d,s,n and uncertain parameters drawn from the 2 operational
profiles;

– for the strategic uncertainty we have the fuel price Pfuel
i,t,n and the carbon tax T xCO2

t,n ,
which are considered separately i.e. when fuel price is assumed to be uncertain
then carbon tax is assumed to be deterministic, and vice versa.

Note that if an index appears in a summation or next to a ∀ symbol without a corre-
sponding set, all elements in that set are assumed.

A.1 Energy balance

Constraint (13) ensures that in each sub-period s of representative day d in year t of
node n, the sum of instantaneous power pi,r,t,d,s,n generated by generator clusters i in
region r plus the difference between the power flow going from regions r′ to region
r, pflow

r′,r,t,d,s,n, and the power flowing from region r to regions r′, pflow
r,r′,t,d,s,n, plus the

power discharged from all the storage clusters j in region r, pdischarge
j,r,t,d,s,n, equals the load

demand Lr,t,d,s,n at that region r, plus the power being charged to the storage clusters
j in region r, pcharge

j,r,t,d,s,n, plus a slack for curtailment of renewable generation cur,t,d,s,n.
The distance between regions Dr,r′ assumes the midpoint for each region, and the
transmission loss T loss

r,r′ is approximated by a fraction loss per mile.

∑
i

(
pi,r,t,d,s,n

)
+ ∑

r′ 6=r

(
pflow

r′,r,t,d,s,n · (1−T loss
r,r′ ·Dr,r′)− p f low

r,r′,t,d,s,n

)
+∑

j
pdischarge

j,r,t,d,s,n

= Lr,t,d,s,n +∑
j

pcharge
j,r,t,d,s,n + cur,t,d,s,n ∀ r, t ∈ Tn,n,d,s

(13)

A.2 Capacity factor

Constraint (14) limits the power outlet pi,r,t,d,s,n of renewable generators to be equal
to a fraction C fi,r,t,d,s,n of the nameplate capacity Qgnp

i,r in each sub-period s of repre-
sentative day d in year t of node n, where ngorn

i,r,t,n represents the number of renewable
generators that are operational in year t of node n. Due to the flexibility in sizes for
renewable generators, ngorn

i,r,t,n is relaxed to be continuous.

pi,r,t,d,s,n = Qgnp
i,r ·C fi,r,t,d,s,n ·ngorn

i,r,t,n ∀ i ∈I RN
r ,r, t ∈ Tn,n,d,s (14)

A.3 Unit commitment

Constraint (15) computes the number of generators that are ON, ui,r,t,d,s,n, or in startup,
sui,r,t,d,s,n, and shutdown, sdi,r,t,d,s,n, modes in cluster i in sub-period s of representa-
tive day d of year t of node n, and treated as integer variables.

ui,r,t,d,s,n = ui,r,t,d,s−1,n + sui,r,t,d,s,n− sdi,r,t,d,s,n ∀ i ∈I TH
r ,r, t ∈ Tn,n,d,s (15)
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A.4 Ramping limits

Constraints (16)-(17) capture the limitation on how fast thermal units can adjust their
output power, pi,r,t,d,s,n, where Rumax

i is the maximum ramp-up rate, Rdmax
i is the

maximum ramp-down rate, and Pgmin
i is the minimum operating limit [63].

pi,r,t,d,s,n− pi,r,t,d,s−1,n ≤ Rumax
i ·Hs ·Qgnp

i,r · (ui,r,t,d,s,n− sui,r,t,d,s,n)

+max
(

Pgmin
i ,Rumax

i ·Hs
)
·Qgnp

i,r · sui,r,t,d,s,n

∀ i ∈I TH
r ,r, t ∈ Tn,n,d,s

(16)

pi,r,t,d,s−1,n− pi,r,t,d,s,n ≤ Rdmax
i ·Hs ·Qgnp

i,r · (ui,r,t,d,s,n− sui,r,t,d,s,n)

+max
(

Pgmin
i ,Rdmax

i ·Hs
)
·Qgnp

i,r · sdi,r,t,d,s,n

∀ i ∈I TH
r ,r, t ∈ Tn,n,d,s

(17)

A.5 Operating limits

Constraints (18)-(19) specify that each thermal generator is either OFF and outputting
zero power, or ON and running within the operating limits Pgmin

i ·Qgnp
i,r and Qgnp

i,r . The
variable ui,r,t,d,s,n (integer variable) represents the number of generators that are ON
in cluster i∈I TH

r at the time period t of node n, representative day d, and sub-period
s. Note that onstraint (19) is modified in order to capture the need for generators to
run below the maximum considering operating reserves, where qspin

i,r,t,d,s is a variable
representing the spinning reserve capacity.

ui,r,t,d,s,n ·Pgmin
i ·Qgnp

i,r ≤ pi,r,t,d,s,n ∀ i ∈I TH
r ,r, t ∈ Tn,n,d,s (18)

pi,r,t,d,s,n +qspin
i,r,t,d,s,n ≤ ui,r,t,d,s,n ·Qgnp

i,r ∀ i ∈I TH
r ,r, t ∈ Tn,n,d,s (19)

A.6 Total operating reserve

Constraint (20) dictates that the total spinning reserve, qspin
i,r,t,d,s,n, plus quick-start re-

serve, qQstart
i,r,t,d,s,n, must exceed the minimum operating reserve, Opmin, which is a per-

centage of the load Lr,t,d,s,n in a reserve sharing region r at each sub-period s.

∑
i∈I TH

r

(
qspin

i,r,t,d,s,n +qQstart
i,r,t,d,s,n

)
≥ Opmin ·Lr,t,d,s,n ∀ r, t ∈ Tn,n,d,s (20)

A.7 Total spinning reserve

Constraint (21) specifies that the total spinning reserve qspin
i,r,t,d,s,n must exceed the min-

imum spinning reserve, Spinmin, which is a percentage of the load Lr,t,d,s,n in a reserve
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sharing region r at each sub-period s.

∑
i∈I TH

r

qspin
i,r,t,d,s,n ≥ Spinmin ·Lr,t,d,s,n ∀ r, t ∈ Tn,n,d,s (21)

A.8 Maximum spinning reserve

Constraint (22) states that the maximum fraction of capacity of each generator cluster
that can contribute to spinning reserves is given by Fracspin

i , which is a fraction of the
nameplate capacity Qgnp

i,r .

qspin
i,r,t,d,s,n ≤ ui,r,t,d,s,n ·Qgnp

i,r ·Fracspin
i ∀ i ∈I TH

r ,r, t ∈ Tn,n,d,s (22)

A.9 Maximum quick-start reserve

Constraint (23) dictates that the maximum fraction of the capacity of each generator
cluster that can contribute to quick-start reserves is given by FracQstart

i (fraction of the
nameplate capacity Qgnp

i,r), and that quick-start reserves can only be provided by the
generators that are OFF, i.e., not active. Here the integer variable ngoth

i,r,t,n represents
the number of thermal generators that are operational (i.e., installed and ready to
operate) at year t of node n.

qQstart
i,r,t,d,s,n ≤ (ngoth

i,r,t,n−ui,r,t,d,s,n) ·Qgnp
i,r ·FracQstart

i ∀ i ∈I TH
r ,r, t ∈ Tn,n,d,s

(23)

A.10 Planning reserve requirement

Constraint (24) ensures that the operating capacity is greater than or equal to the
annual peak load Lmax

t , plus a predefined fraction of reserve margin Rmin
t of the annual

peak load Lmax
t . Due to the due to the renewables inability to control dispatch and the

uncertainty of the output, only a fraction of their nameplate capacity, referred to as
the capacity value Qv

i counts towards the planning reserve requirement.

∑
i∈I RN

r

∑
r

(
Qgnp

i,r ·Q
v
i ·ngorn

i,r,t,n

)
+ ∑

i∈I TH
r

∑
r

(
Qgnp

i,r ·ngoth
i,r,t,n

)
≥ (1+Rmin

t ) ·Lmax
t ∀ t ∈ Tn,n

(24)

A.11 Minimum annual renewable generation requirement

Constraint (25) ensures that, in case of policy mandates, the renewable generation
quota target, RNmin

t , which is a fraction of the energy demand EDt,n, is satisfied. If
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not, i.e, if there is a deficit de f rn
t,n from the quota, this is subjected to a penalty that is

included later in the objective function.

∑
d

∑
s

Wd ·Hs ·

 ∑
i∈I RN

r

∑
r

pi,r,t,d,s,n− cur,t,d,s,n

+de f rn
,n t

≥ RNmin
t ·EDt ∀ t ∈ Tn,n

(25)

Here Wd represents the weight of the representative day d, Hs is the length of the
sub-period, cur,t,d,s,n is the curtailment of renewable generation, and EDt,n represent
the energy demand in year t of node n:

EDt,n = ∑
r

∑
d

∑
s

(
Wd ·Hs ·Lr,t,d,s,n

)

A.12 Maximum yearly installation

Constraints (26)-(27) limit the yearly installation per generation type in each region
r to an upper bound Qinst,UB

i,t in MW/year. Here ngbrn
i,r,t,n and ngbth

i,r,t,n represent the
number of renewable and thermal generators built in region r in year t of node n,
respectively. Note that due to the flexibility in sizes for renewable generators, ngbrn

i,r,t,n
is relaxed to be continuous.

∑
r

ngbrn
i,r,t,n ≤ Qinst,UB

i,t /Qgnp
i,r ∀ i ∈I Rnew

r , t ∈ Tn,n (26)

∑
r

ngbth
i,r,t,n ≤ Qinst,UB

i,t /Qgnp
i,r ∀ i ∈I Tnew

r , t ∈ Tn,n (27)

A.13 Balance of generators

Concerning renewable generator clusters, we define a set of constraints (28)-(29) to
compute the number of generators in cluster i that are ready to operate ngorn

i,r,t,n, taking
into account the generators that were already existing at the beginning of the planning
horizon NgRold

i,r , the generators built ngbrn
i,r,t,n, and the generators retired ngrrn

i,r,t,n at
year t of node n. It is important to highlight that we assume no lead time between the
decision to build/install a generator and the moment it can begin producing electricity.

ngorn
i,r,t,n = NgRold

i,r +ngbrn
i,r,t,n−ngrrn

i,r,t,n ∀ i ∈I RN
r ,r, t = 1,n = 1 (28)

ngorn
i,r,t,n = ngorn

i,r,t−1,P(n)+ngbrn
i,r,t,n−ngrrn

i,r,t,n ∀ i ∈I RN
r ,r, t ∈ Tn,n > 1 (29)

As aforementioned, due to the flexibility in sizes for renewable generators, ngorn
i,r,t,n,

ngbrn
i,r,t,n, and ngrrn

i,r,t,n are relaxed to be continuous. Note that ngbrn
i,r,t,n for i ∈ I Rold

r
is fixed to zero in all time periods, i.e., the clusters of existing renewable generators
cannot have any new additions during the time horizon considered.

We also define constraint (30) to enforce the renewable generators that reached
the end of their lifetime to either retire, ngrrn

i,r,t,n, or have their life extended, ngern
i,r,t,n.
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Ngr
i,r,t is a parameter that represents the number of old generators (i.e., i ∈I old

r ) that
reached the end of their lifetime, LTi, at year t.

Ngr
i,r,t = ngrrn

i,r,t,n +ngern
i,r,t,n ∀ i ∈I Rold

r ,r, t ∈ Tn,n (30)

Concerning thermal generator clusters, we define a set of constraints (31)-(32) to
compute the number of generators in cluster i that are ready to operate ngoth

i,r,t,n, taking
into account the generators that were already existing at the beginning of the planning
horizon NgTold

i,r , the generators built ngbth
i,r,t,n, and the generators retired ngrth

i,r,t,n at
year t of node n.

ngoth
i,r,t,n = NgTold

i,r +ngbth
i,r,t,n−ngrth

i,r,t,n ∀ i ∈I TH
r ,r, t = 1,n = 1 (31)

ngoth
i,r,t,n = ngoth

i,r,t−1,P(n)+ngbth
i,r,t,n−ngrth

i,r,t,n ∀ i ∈I TH
r ,r, t ∈ Tn,n > 1 (32)

Note that ngbth
i,r,t,n for i∈I Told

r is fixed to zero in all time periods, i.e., the clusters
of existing thermal generators cannot have any new additions during the time horizon
considered.

We also define constraint (33) to enforce the thermal generators that reached the
end of their lifetime to either retire, ngrth

i,r,t,n, or have their life extended ngeth
i,r,t,n.

Ngr
i,r,t = ngrth

i,r,t,n +ngeth
i,r,t,n ∀ i ∈I Told

r ,r, t ∈ Tn,n (33)

Finally, we have constraint (34) that ensures that only installed generators can be
in operation:

ui,r,t,d,s,n ≤ ngoth
i,r,t,n ∀ i ∈I Tnew

r ,r, t ∈ Tn,n,d,s (34)

A.14 Storage

The energy storage devices are assumed to be ideal and generic [71]. Constraints
(35)-(36) compute the number of storage units that are ready to operate nso j,r,t,n,
taking into account the storage units already existing at the beginning of the planning
horizon Ns j,r and the ones built nsb j,r,t,n at year t of node n. Due to the flexibility in
sizes for storage units, nso j,r,t,n and nsb j,r,t,n are relaxed to be continuous.

nso j,r,t,n = Ns j,r +nsb j,r,t,n ∀ j,r, t = 1,n = 1 (35)
nso j,r,t,n = nso j,r,t−1,P(n)+nsb j,r,t,n ∀ j,r, t ∈ Tn,n > 1 (36)

Constraints (37) and (38) establish that the power charge, pcharge
j,r,t,d,s,n, and discharge,

pdischarge
j,r,t,d,s,n, of the storage units in cluster j, nso j,r,t,n, has to be within the operating

limits: Chargemin
j and Chargemax

j , and Dischargemin
j and Dischargemin

j , respectively.

Chargemin
j ·nso j,r,t,n ≤ pcharge

j,r,t,d,s,n ≤Chargemax
j ·nso j,r,t,n ∀ j,r, t ∈ Tn,n,d,s

(37)

Dischargemin
j ·nso j,r,t,n ≤ pdischarge

j,r,t,d,s,n ≤ Dischargemax
j ·nso j,r,t,n ∀ j,r, t ∈ Tn,n,d,s

(38)
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Constraint (39) specifies that the energy storage level, plevel
j,r,t,d,s,n, for the storage

units in cluster j, nso j,r,t,n has to be within the storage capacity limits Storagemin
j and

Storagemax
j .

Storagemin
j ·nso j,r,t,n ≤ plevel

j,r,t,d,s ≤ Storagemax
j ·nso j,r,t,n ∀ j,r, t ∈ Tn,n,d,s (39)

Constraints (40) and (41) show the power balance in the storage units. The state
of charge plevel

j,r,t,d,s,n at the end of sub-period s depends on the previous state of charge

plevel
j,r,t,d,s−1,n, and the power charged pcharge

j,r,t,d,s,n and discharged pdischarge
j,r,t,d,s,n at sub-period s.

The symbols η
charge
j and η

discharge
j represent the charging and discharging efficiencies,

respectively. For the first hour of the day d in year t of node n, the previous state of
charge (i.e., s = 0) is the variable plevel,0

j,r,t,d,n.

plevel
j,r,t,d,s,n = plevel

j,r,t,d,s−1,n +η
charge
j · pcharge

j,r,t,d,s + pdischarge
j,r,t,d,s,n/η

discharge
j

∀ j,r, t ∈ Tn,n,d,s > 1 (40)

plevel
j,r,t,d,s,n = plevel,0

j,r,t,d,n +η
charge
j · pcharge

j,r,t,d,s,n + pdischarge
j,r,t,d,s,n/η

discharge
j

∀ j,r, t ∈ Tn,n,d,s = 1 (41)

Constraints (42) and (43) force the storage units to begin plevel,0
j,r,t,d,s and end plevel

j,r,t,d,s=S,n
each day d of year t with 50% of their maximum storage Storagemax

j . This is a heuris-
tic to attach carryover storage level form one representative day to the next [44].

plevel,0
j,r,t,d,n = 0.5 ·Storagemax

j ·nso j,r,t,n ∀ j,r, t ∈ Tn,n,d (42)

plevel
j,r,t,d,s,n = 0.5 ·Storagemax

j ·nso j,r,t,n ∀ j,r, t ∈ Tn,n,d,s = S (43)

A.15 Objective function

The objective of this model is to minimize the expected net present cost, Φ , over the
planning horizon, which includes operating costs Φopex, investment costs Φcapex, and
potential penalties ΦPEN for not meeting the the targets on renewables.

min Φ = ∑
n∈T

probn · ∑
t∈Tn

(
Φ

opex
t,n +Φ

capex
t,n +Φ

PEN
t,n
)

(44)

The operating expenditure, Φ
opex
t,n , comprises the variable VOCi,t and fixed FOCi,t

operating costs, as well as fuel cost Pfuel
i,t,n per heat rate HRi, carbon tax T xCO2

t,n for CO2

emissions EFCO2
i , and start-up cost (variable cost Pfuel

i,t,n that depends on the amount of

fuel burned for startup Fstart
i , and fixed cost Cstart

i ). Both Pfuel
i,t,n and T xCO2

t,n are potential
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strategic uncertain parameters, hence are indexed by node n.

Φ
opex
t,n = If t ·

[
∑
d

∑
s

Wd ·hs·(
∑

i
∑
r
(VOCi,t +Pfuel

i,t,n ·HRi +T xCO2
t,n ·EFCO2

i ·HRi) · pi,r,t,d,s,n

)

+

 ∑
i∈I RN

r

∑
r

FOCi,t ·Qgnp
i,r ·ngorn

i,r,t,n


+

 ∑
i∈I TH

r

∑
r

FOCi,t ·Qgnp
i,r ·ngoth

i,r,t,n


+ ∑

i∈I TH
r

∑
r

∑
d

∑
s

Wd ·Hs · sui,r,t,d,s,n ·Qgnp
i,r

·
(

Fstart
i ·Pfuel

i,t,n +Fstart
i ·EFCO2 ·T xCO2

t,n +Cstart
i

)]
(45)

The capital expenditure, Φ
capex
t,n , includes the amortized cost of acquiring new

generators, DICi,t , new storage devices, SIC j,t , and the amortized cost of extending
the life of generators that reached their expected lifetime. The latter is assumed to
be a fraction LEi of the investment cost, DICi,t , in a new generator with the same
or equivalent generation technology. In this framework, the investment cost takes
into account the remaining value at the end of the time horizon by considering the
annualized capital cost and multiplying it by the number of years remaining in the
planning horizon at the time of installation to calculate the DICi,t .

Φ
capex
t,n = If t ·

[
∑

i∈I Rnew
r

∑
r

DICi,t ·CCm
i ·Qgnp

i,r ·ngbrn
i,r,t,n

+ ∑
i∈I Tnew

r

∑
r

DICi,t ·CCm
i ·Qgnp

i,r ·ngbth
i,r,t,n

+∑
j
∑
r

SIC j,t ·Storagemax
j ·nsb j,r,t,n

+ ∑
i∈I RN

r

∑
r

DICi,t ·LEi ·Qgnp
i,r ·ngern

i,r,t,n

+ ∑
i∈I TH

r

∑
r

DICi,t ·LEi ·Qgnp
i,r ·ngeth

i,r,t,n

]
(46)

The capital multiplier CCm
i associated with new generator clusters is meant to

account for differences in depreciation schedules applicable to each technology, with
higher values being indicative of slower depreciating schedule and vice versa.
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Lastly, the penalty cost, ΦPEN
t,n , includes the potential fines for not meeting the

renewable energy quota, PENrn
t , and curtailing the renewable generation.

Φ
PEN
t,n = If t ·

(
PENrn

t ·de f rn
t,n +PENc ·∑

r
∑
d

∑
s

cur,t,d,s,n

)
(47)

Appendix B
::::::::::::
Nomenclature

B.1
::::::
Indices

:::
and

::::
Sets

::::
r ∈ R

: ::
set

::
of

:::::::
regions

:::::
within

:::
the

::::
area

:::::::::
considered

:

::::
i ∈ I

::
set

::
of

::::::::
generator

:::::::
clusters

::::
i ∈ Ir: ::

set
::
of

::::::::
generator

:::::::
clusters

::
in

::::::
region

:
r

::::::
i ∈ Iold

r ::
set

::
of

:::::::
existing

::::::::
generator

:::::::
clusters

::
in

::::::
region

:
r
::
at

:::
the

:::::::::
beginning

::
of

:::
the

::::
time

:::::::
horizon,

:::::::
Iold
r ⊆ Ir

::::::
i ∈ Inew

r : ::
set

::
of

::::::::
potential

::::::::
generator

:::::::
clusters

::
in

:::::
region

::
r,

::::::::
Inew
r ⊆ Ir

::::::
i ∈ ITH

r ::
set

::
of

:::::::
thermal

::::::::
generator

:::::::
clusters

::
in

:::::
region

::
r,

:::::::
ITH
r ⊆ Ir

::::::
i ∈ IRN

r ::
set

::
of

:::::::::
renewable

::::::::
generator

:::::::
clusters

::
in

:::::
region

::
r,
:::::::
IRN
r ⊆ Ir:

::::::
i ∈ ITold

r : ::
set

::
of

:::::::
existing

:::::::
thermal

::::::::
generator

::::::
clusters

:::
in

:::::
region

::
r,

:::::::::
ITold
r ⊆ ITH

r :

:::::::
i ∈ ITnew

r ::
set

::
of

::::::::
potential

::::::
thermal

:::::::::
generator

::::::
clusters

::
in

::::::
region

::
r,

::::::::::
ITnew
r ⊆ ITH

r

:::::::
i ∈ IRold

r ::
set

::
of

:::::::
existing

:::::::::
renewable

::::::::
generator

::::::
clusters

:::
in

:::::
region

::
r,

::::::::::
IRold
r ⊆ IRN

r

:::::::
i ∈ IRnew

r : ::
set

::
of

::::::::
potential

::::::::
renewable

::::::::
generator

:::::::
clusters

::
in

:::::
region

::
r,

::::::::::
IRnew
r ⊆ IRN

r

::::
j ∈ J

: ::
set

::
of

:::::::
storage

:::
unit

:::::::
clusters

:::::
n ∈T

: ::
set

::
of

::::::
nodes

::
in

:::
the

:::::::
scenario

:::
tree

:::
T

:::::
t ∈ Tn ::

set
::
of

::::
time

:::::::
periods

::::::
(years)

:::::
within

:::::
each

::::
node

::
of

:::
the

:::::::
scenario

::::
tree

::
T

:::::
d ∈ D

::
set

::
of

::::::::::::
representative

::::
days

::
in

::::
each

::::
year

:
t
:

::::
s ∈ S

: ::
set

::
of

::::::::::
sub-periods

::
of

::::
time

:::
per

::::::::::::
representative

::::
day

:
d
::
in

::::
year

:
t
:

:::::
k ∈ K

::
set

::
of

::::::::
iterations

::
in
:::
the

::::::
Nested

:::::::::::::
Decomposition

::::::::
algorithm

:

B.2
:::::::::
Parameters

::::::
Lr,t,d,s,n :::

load
:::::::

demand
:::

in
:::::
region

::
r
::
in

:::::::::
sub-period

:
s
:::

of
:::::::::::
representative

::::
day

::
d

::
of

:::
year

::
t
::
of

::::
node

::
n

:::::
(MW)

:

::::
Lmax

t ::::
peak

::::
load

::
in

::::
year

:
t
:::::
(MW)

::
Wd: :::::

weight
:::
of

:::
the

:::::::::::
representative

::::
day

:
d

::
Hs

: :::::::
duration

::
of

:::::::::
sub-period

:
s
::::::
(hours)

:

::::
Qgnp

i,r: ::::::::
nameplate

:::::::::
(nominal)

:::::::
capacity

::
of

::
a

::::::::
generator

::
in

::::::
cluster

:
i
::
in

::::::
region

:
r

:::::
(MW )

::::
Ngold

i,r: ::::::
number

::
of

:::::::
existing

:::::::::
generators

::
in

::::
each

::::::
cluster,

::::::::
i ∈I old

r ,
:::
per

::::::
region

:
r

:
at
:::
the

:::::::::
beginning

::
of

:::
the

::::
time

:::::::
horizon

:::::
Ngmax

i : ::::::::
maximum

:::::::
number

::
of

:::::::::
generators

::
in

:::
the

:::::::
potential

:::::::
clusters

::::::::
i ∈I new

r

::::::
Qinst,UB

i,t : :::::
upper

:::::
bound

:::
on

::::::
yearly

:::::::
capacity

:::::::::::
installations

:::::
based

:::
on

:::::::::
generation

:::::::::
technology

:
(MW/year)

:
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::::
Rmin

t :::::::
system’s

::::::::
minimum

:::::::
reserve

::::::
margin

:::
for

::::
year

::
t
:::::::
(fraction

::
of

::::
the

::::
peak

::::
load)

:::
EDt: :::::

energy
:::::::
demand

::::::
during

::::
year

:
t
:::::::
(MWh)

:::
LTi :::::::

expected
:::::::
lifetime

::
of

:::::::::
generation

::::::
cluster

:
i
::::::
(years)

::::::
T remain

t ::::::::
remaining

::::
time

::::
until

:::
the

::::
end

::
of

:::
the

::::
time

::::::
horizon

::
at
::::
year

:
t
:::::::
(years)

:::::
Ngr

i,r,t ::::::
number

:::
of

:::::::::
generators

::
in

::::::
cluster

::
i
::
of

::::::
region

::
r
::::
that

:::::::
achieved

:::::
their

:::::::
expected

:::::::
lifetime

::
Qv

i: :::::::
capacity

:::::
value

::
of

::::::::::
generation

::::::
cluster

:
i
::::::::

(fraction
:::
of

:::
the

:::::::::
nameplate

:::::::
capacity)

::::::::
C fi,r,t,d,s,n :::::::

capacity
::::::
factor

:::
of

:::::::::
generation

:::::::
cluster

::::::::
i ∈I RN

r :::
in

::::::
region

::
r
:::

at

:::::::::
sub-period

::
s,

::
of

::::::::::::
representative

:::
day

::
d
::
of

:::::
year

:
t
::
of

:::::
node

:
n
::::::::

(fraction

::
of

:::
the

::::::::
nameplate

::::::::
capacity)

:

:::::
Pgmin

i ::::::::
minimum

:::::::::
operating

::::::
output

:::
of

::
a
:::::::::

generator
::
in
:::::::

cluster
::::::::

i ∈I TH
r

:::::::
(fraction

::
of

:::
the

:::::::::
nameplate

::::::::
capacity)

:::::
Rumax

i ::::::::
maximum

:::::::
ramp-up

::::
rate

:::
for

::::::
cluster

:::::::
i ∈I TH

r ::::::::
(fraction

::
of

:::::::::
nameplate

:::::::
capacity)

:

:::::
Rdmax

i ::::::::
maximum

:::::::::::
ramp-down

::::
rate

::::
for

:::::::
cluster

::::::::
i ∈I TH

r :::::::::
(fraction

:::
of

::::::::
nameplate

::::::::
capacity)

:

::::
Fstart

i : :::
fuel

:::::
usage

::
at

::::::
startup

::::::::::::
(MMbtu/MW)

:

:::::::
Fracspin

i ::::::::
maximum

:::::::
fraction

::
of

:::::::::
nameplate

:::::::
capacity

::
of

::::
each

::::::::
generator

::::
that

:::
can

::::::::
contribute

::
to

::::::::
spinning

:::::::
reserves

:::::::
(fraction

::
of

:::::::::
nameplate

::::::::
capacity)

::::::::
FracQstart

i ::::::::
maximum

:::::::
fraction

::
of

:::::::::
nameplate

:::::::
capacity

::
of

::::
each

::::::::
generator

::::
that

:::
can

::::::::
contribute

::
to

:::::::::
quick-start

:::::::
reserves

::::::::
(fraction

::
of

::::::::
nameplate

::::::::
capacity)

:::::
Opmin

::::::::
minimum

::::
total

::::::::
operating

::::::
reserve

::::::::
(fraction

::
of

:::
the

::::
load

:::::::
demand)

::::::
Spinmin

: ::::::::
minimum

:::::::
spinning

::::::::
operating

::::::
reserve

::::::::
(fraction

::
of

:::
the

::::
load

:::::::
demand)

::::::::
Qstartmin

::::::::
minimum

::::::::::
quick-start

:::::::::
operating

:::::::
reserve

::::::::
(fraction

:::
of

::::
the

:::::
load

:::::::
demand)

::::
αRN

::::::
fraction

:::
of

:::
the

::::::::
renewable

:::::::::
generation

::::::
output

:::::::
covered

:::
by

:::::::::
quick-start

::::::
reserve

:::::::
(fraction

::
of

::::
total

:::::::::
renewable

:::::
power

:::::::
output)

::::
T loss

r,r′ ::::::::::
transmission

::::
loss

:::::
factor

:::::::
between

::::::
region

:
r
:::
and

::::::
region

:::::
r′ 6= r

:
(%/miles)

:

:::
Dr,r′: :::::::

distance
:::::::
between

:::::
region

::
r

:::
and

::::::
region

:::::
r′ 6= r

::::::
(miles)

::::
Ns j,r: ::::::

number
::
of

:::::::
existing

::::::
storage

:::::
units

::
in

::::
each

::::::
cluster

:
j
:::
per

::::::
region

:
r
::
at

:::
the

::::::::
beginning

::
of

:::
the

::::
time

:::::::
horizon

::::::::
Chargemin

j : ::::::::
minimum

::::::::
operating

::::::
charge

::
for

:::::::
storage

:::
unit

::
in
::::::
cluster

::
j
:::::
(MW)

:::::::::
Chargemax

j ::::::::
maximum

::::::::
operating

::::::
charge

:::
for

::::::
storage

::::
unit

::
in

::::::
cluster

:
j
:::::
(MW)

:::::::::::
Dischargemin

j ::::::::
minimum

::::::::
operating

::::::::
discharge

:::
for

::::::
storage

::::
unit

::
in

::::::
cluster

:
j
:::::
(MW)

:::::::::::
Dischargemax

j ::::::::
maximum

::::::::
operating

::::::::
discharge

:::
for

::::::
storage

::::
unit

::
in

::::::
cluster

:
j
::::::
(MW)

:::::::::
Storagemin

j ::::::::
minimum

::::::
storage

:::::::
capacity

:::
for

::::::
storage

::::
unit

::
in

::::::
cluster

:
j
:::::::
(MWh)

:::::::::
Storagemax

j ::::::::
maximum

::::::
storage

:::::::
capacity

::::
(i.e.

:::::::::
nameplate

:::::::
capacity)

:::
for

::::::
storage

::::
unit

::
in

:::::
cluster

::
j
::::::
(MWh)

:::::
η

charge
j : :::::::

charging
::::::::
efficiency

::
of

:::::::
storage

:::
unit

::
in
::::::
cluster

::
j
::::::::
(fraction)

:::::::
η

discharge
j : :::::::::

discharging
:::::::::
efficiency

::
of

::::::
storage

::::
unit

::
in

::::::
cluster

:
j
::::::::
(fraction)
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:::
LT s

j : ::::::
lifetime

::
of

:::::::
storage

:::
unit

::
in

::::::
cluster

::
j
::::::
(years)

::
Ir

:::::::
nominal

::::::
interest

:::
rate

:

::
If t: :::::::

discount
:::::
factor

:::
for

::::
year

:
t

:::::
OCCi,t: ::::::::

overnight
:::::
capital

::::
cost

::
of

::::::::
generator

::::::
cluster

:
i
::
in

::::
year

:
t
::
($/

:::
MW

:
)

:::::
ACCi,t: :::::::::

annualized
:::::
capital

::::
cost

::
of

::::::::
generator

::::::
cluster

:
i
::
in
::::
year

:
t
::
($/

:::
MW

:
)

:::::
DICi,t :::::::::

discounted
:::::::::
investment

::::
cost

::
of

::::::::
generator

::::::
cluster

:
i
::
in

::::
year

:
t
:
($/

:::
MW)

:

2

:::::
SIC j,t :::::::::

investment
:::
cost

:::
of

::::::
storage

::::::
cluster

:
j
::
in

::::
year

:
t
:
($/

:::
MW

:
)

::::
CCm

i :::::
capital

::::
cost

::::::::
multiplier

:::
of

::::::::
generator

:::::
cluster

::
i
:::::::
(unitless)

:

:::
LEi :::

life
::::::::
extension

::::
cost

::
for

::::::::
generator

::::::
cluster

:
i
::::::::
(fraction

::
of

:::
the

:::::::::
investment

:::
cost

::
of

::::::::::::
corresponding

::::
new

:::::::::
generator)

:::::
FOCi,t: ::::

fixed
::::::::
operating

::::
cost

::
of

::::::::
generator

::::::
cluster

:
i
:
($/

:::
MW)

:

::::
Pfuel

i,t,n ::::
price

::
of

::::
fuel

:::
for

::::::::
generator

:::::
cluster

::
i
::
in

::::
year

:
t
::
of

::::
node

::
n

:
($/

:::::
MMBtu)

:

:::
HRi: :::

heat
::::
rate

::
of

::::::::
generator

::::::
cluster

:
i
:
(MMBtu/MWh)

:

:::::
T xCO2

t,n : :::::
carbon

:::
tax

::
in
::::
year

::
t
::
of

::::
node

::
n

:
($/

:
kg
::::

CO2:
)

::::::
EFCO2

i :::
full

::::::::
lifecycle

::::::
CO2 ::::::::

emission
:::::::

factor
::::

for
:::::::::

generator
:::::::

cluster
::

i

:
(kgCO2/

:::::
MMBtu

:
)

:::::
VOCi,t: ::::::

variable
::::::
O&M

:::
cost

:::
of

::::::::
generator

:::::
cluster

:
i
::
($/

:::
MWh

:
)

:::::
RNmin

t : ::::::::
minimum

:::::::::
renewable

::::::
energy

:::::::::
production

:::::::::::
requirement

:::::
during

:::::
year

:
t

:::::::
(fraction

::
of

::::::
annual

::::::
energy

:::::::
demand)

:

:::::
PENrn

t : ::::::
penalty

:::
for

:::
not

:::::::
meeting

::::::::
renewable

::::::
energy

:::::
quota

:::::
target

::::::
during

::::
year

:
t

:
($/

:::
MWh

:
)

:::::
PENc

t ::::::
penalty

:::
for

:::::::::
curtailment

::::::
during

::::
year

:
t
:
($/

:::
MWh)

:

::::
Cstart

i ::::
fixed

::::::
startup

::::
cost

::
for

:::::::::
generator

:::::
cluster

:
i
::
($/MW

:
)

B.3
:::::::::
Continuous

::::::::
variables

::
Φ

::
net

:::::::
present

::::
cost3

:::::::::
throughout

:::
the

::::
time

:::::::
horizon,

::::::::
including

:::::::::
amortized

:::::::::
investment

::::
cost,

:::::::::
operational

::::
and

::::::::::::
environmental

:::
cost

:::
($)

:

:::::
Φ

opex
t,n ::::::::

amortized
::::::::
operating

:::::
costs

::
in

::::
year

:
t
::
of

::::
node

::
n

:::
($)

:::::
Φ

capex
t,n : ::::::::

amortized
:::::::::
investment

:::::
costs

::
in

::::
year

:
t
::
of

::::
node

::
n
:::
($)

:::::
ΦPEN

t,n ::::::::
amortized

::::::
penalty

:::::
costs

::
in

::::
year

:
t
::
of

:::::
node

:
n
:::
($)

:::::::
pi,r,t,d,s,n :::::

power
::::::
output

::
of

:::::::::
generation

::::::
cluster

:
i
::
in

:::::
region

::
r
::::::
during

:::::::::
sub-period

:
s

::
of

:::::::::::
representative

::::
day

:
d
::
of

::::
year

::
t
::
of

::::
node

::
n

:::::
(MW)

:

:::::
de f rn

t,n :::::
deficit

:::::
from

::::::::
renewable

::::::
energy

:::::
quota

:::::
target

::::::
during

::::
year

::
t
::
of

::::
node

::
n

::::::
(MWh)

:::::::
cur,t,ss,s,n: :::::::::

curtailment
:::::

slack
::::::::::

generation
::
in

::::::
region

::
r
::::::
during

::::::::::
sub-period

:
s
:::

of

:::::::::::
representative

::::
day

:
d
::
of

::::
year

:
t
:::
of

::::
node

:
n
::::::
(MW)

:::::::
pflow

r,r′,t,d,s,n: :::::
power

:::::::
transfer

::::
from

::::::
region

:
r
::
to

::::::
region

:::::
r′ 6= r

:::::
during

::::::::::
sub-period

:
s
::
of

:::::::::::
representative

::::
day

:
d
::
of

::::
year

:
t
:::
of

::::
node

:
n
::::::
(MW)

:::::::
qspin

i,r,t,d,s,n :::::::
spinning

::::::
reserve

::::::::
capacity

::
of

:::::::::
generation

::::::
cluster

:
i
::
in

::::::
region

:
r
::::::
during

:::::::::
sub-period

:
s
::
of

::::::::::::
representative

:::
day

::
d

::
of

::::
year

:
t
::
of

::::
node

::
n
:::::
(MW)

:

2
::::
DICi,t :is::::

used
:
in
:::

the
:::::::
calculation

:::
for

::
the

::
life

:::::::
extension

:::::::
investment

::::
cost,

::::
which

::
is

:
in
::::
terms

::
of

:
a
::::::
fraction

::
LEi::

of
::
the

:::::
capital

::::
cost.

::::::
Therefore

:::
the

:::::::
investment

:::
cost

::
for

:::
the

:::::
existing

:::::
cluster

:
is
:::::::::
approximated

::
as
::::
being

:::
the

:::
same

::
as

::
for

:::
the

::::::
potential

:::::
clusters

:::
that

:::
have

::
the

::::
same

::
or

:::::
similar

:::::::
generation

::::::::
technology.

3
::
All

::
the

::::
costs

::
are

::
in

::::
2015

::::
USD.
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:::::::
qQstart

i,r,t,d,s,n :::::::::
quick-start

:::::::
capacity

::::::
reserve

::
of

:::::::::
generation

::::::
cluster

:
i
::
in

:::::
region

:
r
::::::
during

:::::::::
sub-period

:
s
::
of

::::::::::::
representative

:::
day

::
d

::
of

::::
year

:
t
::
of

::::
node

::
n
:::::
(MW)

:

::::::
ngorn

i,r,t,n: ::::::
number

:::
of

:::::::::
generators

::::
that

:::
are

::::::::::
operational

::
in
:::::::

cluster
:::::::
i ∈I RN

r :::
of

:::::
region

:
r
::
in
::::
year

::
t
::
of

::::
node

::
n

::::::::::
(continuous

:::::::::
relaxation)

::::::
ngbrn

i,r,t,n: ::::::
number

::
of

:::::::::
generators

::::
that

:::
are

::::
built

::
in

:::::
cluster

::::::::
i ∈I RN

r ::
of

::::::
region

:
r
::
in

:::
year

::
t
::
of

::::
node

::
n

::::::::::
(continuous

:::::::::
relaxation)

::::::
ngrrn

i,r,t,n: ::::::
number

::
of
::::::::::

generators
:::
that

:::::
retire

::
in
::::::

cluster
::::::::

i ∈I RN
r ::

of
::::::

region
::
r
::
in

:::
year

::
t
::
of

::::
node

::
n

::::::::::
(continuous

:::::::::
relaxation)

::::::
ngern

i,r,t,n: ::::::
number

::
of

:::::::::
generators

::::
that

:::
had

::::
their

:::
life

::::::::
extended

::
in

::::::
cluster

:::::::
i ∈I RN

r

::
of

:::::
region

::
r

::
in

::::
year

:
t
::
of

::::
node

::
n

::::::::::
(continuous

:::::::::
relaxation)

:::::::
pcharge

j,r,t,d,s,n: :::::
power

::::::
being

:::::::
charged

:::
to

:::::::
storage

::::::
cluster

::
j
:::

is
::::::

region
:::

r,
::::::
during

:::::::::
sub-period

:
s
::
of

::::::::::::
representative

:::
day

::
d

::
of

::::
year

:
t
::
of

::::
node

::
n
:::::
(MW)

:::::::
pdischarge

j,r,t,d,s,n: :::::
power

:::::
being

::::::::::
discharged

::
to
:::::::

storage
::::::

cluster
::

j
:::

is
::::::
region

::
r,

::::::
during

:::::::::
sub-period

:
s
::
of

::::::::::::
representative

:::
day

::
d

::
of

::::
year

:
t
::
of

::::
node

::
n
:::::
(MW)

:::::::
plevel

j,r,t,d,s,n: ::::
state

::
of

::::::
charge

::
of

:::::::
storage

:::::
cluster

::
j
::
is

::::::
region

::
r,

:::::
during

::::::::::
sub-period

:
s

::
of

:::::::::::
representative

::::
day

:
d
::
of

::::
year

::
t
::
of

::::
node

::
n

::::::
(MWh)

::::::
plevel,0

j,r,t,d,n: ::::
state

::
of

:::::::
charge

::
of

:::::::
storage

::::::
cluster

::
j
::
is
::::::

region
::

r
::
at
:::::

hour
::::
zero

:::
of

:::::::::::
representative

::::
day

:
d
::
of

::::
year

:
t
:::
of

::::
node

:
n
:::::::
(MWh)

::::::
nso j,r,t,n: ::::::

number
::
of

:::::::
storage

::::
units

::::
that

:::
are

:::::::::
operational

::
in
::::::
cluster

::
j
::
of

::::::
region

:
r

::
in

:::
year

::
t
::
of

::::
node

::
n

::::::::::
(continuous

:::::::::
relaxation)

::::::
nsb j,r,t,n: ::::::

number
::
of

:::::::
storage

::::
units

:::
that

:::
are

:::::
built

::
in

:::::
cluster

::
j
::
of

::::::
region

:
r
::
in

::::
year

:
t
::
of

::::
node

::
n

::::::::::
(continuous

:::::::::
relaxation)

::::::
nsr j,r,t,n: ::::::

number
::
of

:::::::
storage

::::
units

::::
that

:::::
retire

::
in

::::::
cluster

:
j
::
of
::::::

region
::
r

::
in

::::
year

:
t

::
of

::::
node

::
n

:::::::::
(continuous

::::::::::
relaxation)

B.4
::::::
Discrete

::::::::
variables

::::::
ngoth

i,r,t,n: ::::::
number

:::
of

:::::::::
generators

::::
that

:::
are

::::::::::
operational

::
in
:::::::

cluster
:::::::
i ∈I TH

r :::
of

:::::
region

:
r
::
in
::::
year

::
t
::
of

::::
node

::
n

::::::
(integer

::::::::
variable)

::::::
ngbth

i,r,t,n: ::::::
number

::
of

:::::::::
generators

::::
that

:::
are

::::
built

::
in

::::::
cluster

:::::::
i ∈I TH

r ::
of

::::::
region

:
r
::
in

:::
year

::
t
::
of

::::
node

::
n

::::::
(integer

::::::::
variable)

::::::
ngrth

i,r,t,n: ::::::
number

::
of
::::::::::

generators
:::
that

:::::
retire

::
in
::::::

cluster
::::::::

i ∈I TH
r ::

of
::::::

region
::
r
::
in

:::
year

::
t
::
of

::::
node

::
n

::::::
(integer

::::::::
variable)

::::::
ngeth

i,r,t,n: ::::::
number

::
of

:::::::::
generators

::::
that

:::
had

::::
their

:::
life

::::::::
extended

::
in

::::::
cluster

:::::::
i ∈I TH

r

::
of

:::::
region

::
r

::
in

::::
year

:
t
::
of

::::
node

::
n

::::::
(integer

::::::::
variable)

:::::::
ui,r,t,d,s,n ::::::

number
:::

of
:::::::
thermal

:::::::::
generators

::::
ON

::
in

:::::::
cluster

::::::
i ∈Ir ::

of
::::::

region
::

r

:::::
during

::::::::::
sub-period

:
s
:::

of
::::::::::::
representative

::::
day

::
d

::
of

::::
year

::
t
::
of

:::::
node

::
n

::::::
(integer

::::::::
variable)

:::::::
sui,r,t,d,s,n: ::::::

number
::
of

:::::::::
generators

:::::::
starting

::
up

::
in
::::::

cluster
::
i
:::::
during

:::::::::
sub-period

::
s
::
of

:::::::::::
representative

::::
day

:
d
::
in

::::
year

:
t
::
of

:::::
node

:
n
:::::::
(integer

::::::::
variable)

:::::::
sdi,r,t,d,s,n: ::::::

number
::
of

:::::::::
generators

:::::::
shutting

:::::
down

::
in

::::::
cluster

:
i
::::::
during

:::::::::
sub-period

:
s

::
of

:::::::::::
representative

::::
day

:
d
::
in

::::
year

:
t
:::
of

::::
node

:
n
:::::::
(integer

::::::::
variable)




