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Abstract 
This paper addresses long-term generation expansion planning considering a high 
penetration of renewables and the possibility of investing in advanced fossil fuel energy 
systems and multiple energy storage technologies. We propose a deterministic multi-scale 
mixed-integer linear programming (MILP) formulation that includes annual investment 
decisions and hourly unit commitment. We adopt time sampling and clustering techniques 
to reduce the size of the model and improve its tractability. Additionally, we use the 
Nested Decomposition algorithm for mixed-integer multi-period problems proposed by 
Lara et al. (2017) to solve the problem more efficiently. We apply the proposed 
formulation to a case study in the ERCOT region, and show that for this case study it 
makes sense to invest in small capacities of lithium-ion utility batteries in systems with 
increasing share of renewables.  
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1. Introduction 
Generation expansion planning models consist of finding the optimal investment strategy 
for building new generation capacity while meeting load demand and satisfying technical 
and economic requirements. Such models are used to support decision making in power 
systems, study the impact of new technology developments, identify resource cost trends, 
and evaluate the impact of policy shifts on the projected generation mix to meet future 
demand. The increasing penetration of renewable generation in the grid brought new 
challenges for the long-term planning models. Due to their intermittent and non-
dispatchable nature, it becomes crucial to include operating details at the hourly level to 
ensure flexibility in the system. Therefore, recent publications such as Flores-Quiroz et 
al. (2016), Heuberger et al. (2017), and Lara et al. (2017) have focused on integrating unit 
commitment, ramping limits and operating reserves into long-term planning models. 

A number of flexible, environmentally sustainable fossil energy systems are under 
development which can help maintain grid stability by providing baseload power as well 
as help manage fluctuations that occur with high penetrations of renewables. Such new 
systems are expected to have increasing flexibility and achieve lower costs over the next 
several years. In addition, energy storage can play a pivotal role in the future of renewable 
generation to smooth out the variability of wind and solar power output. Several 
stationary, large-scale energy storage technologies are under development and are 
projected (Schmidt et al., 2017) to significantly decrease in capital cost over the next few 
decades. Liu et al. (2017) considers a generic energy storage technology in their capacity 
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expansion model, which was represented as a multistage stochastic linear programming 
model, and applied to a case-study in the ERCOT region. 

In this paper, we extend the work by Lara et al. (2017) to address long-term planning of 
electric power infrastructure considering an increasing share of power generation from 
renewables and the possibility of having new, advanced fossil energy systems and/or 
electricity storage units incorporated to the grid.  The modeling framework, which is 
based on mixed-integer linear programming (MILP), takes the viewpoint of a central 
planning entity whose goal is to optimize the generation expansion planning. This model 
is very comprehensive in terms of alternatives considered, identifying the source, 
generation technology, electricity storage technology, location, and capacity of future 
generation and storage units that can meet the projected electricity demand while taking 
into account detailed operational constraints (i.e., unit commitment), the variability and 
intermittency of renewable generation sources, and the power flow between regions. The 
major goal of this model is to help understanding the characteristics needed to develop 
new advanced energy generation and storage technologies that can be competitive in the 
anticipated future market considering all sources of competition. 

In addition to the challenge of comprehensive grid modeling and solving the resulting 
MILP, another challenge lies in the multi-scale integration of detailed operating decisions 
at the hourly level with investment planning decisions over a few decades, significantly 
exacerbating the computational burden. Therefore, we adopt judicious approximations 
and aggregations, such as time sampling and generator clustering (Palmintier and 
Webster, 2014) to reduce the size of the model. In the algorithmic front, we use the Nested 
Decomposition algorithm for mixed-integer multi-period problems proposed by Lara et 
al. (2017) to solve the problem efficiently. 

2. Problem Statement  
For the proposed planning model, an area with a set of existing and potential generators 
is given. Regarding these generators, their source (nuclear, coal, natural gas, wind, and 
solar), generation technology (e.g., steam, combustion and wind turbines, photo-voltaic, 
concentrated solar panels, solid oxide fuel cells) are known. Also known are: their 
nameplate capacity; expected lifetime; capital cost; fixed and variable operating cost; 
maximum yearly installation limit; start-up costs (fixed and variable); cost for extending 
their lifetimes; CO2 emission factor; age in the beginning of the planning horizon; location 
(regions); and operating characteristics such as ramp rates, operating limits, maximum 
contribution to spinning and quick-start fraction for thermal generators, and capacity 
factor in an hourly basis for the renewable generators.  

Also given is a set of potential storage units, with specified technology (e.g., lithium-ion, 
lead-acid, and flow batteries), capital cost, power rating, rated energy capacity, charge 
and discharge efficiency, and storage lifetime. Additionally, the projected load demand 
is given for each location on an hourly basis, as well as the distance between locations, 
transmission loss factor per mile, and transmission line capacity between locations. 

The objective is to find the location, year, type and number of generators and storage units 
to install; when to retire the generators, and whether or not to extend their lifetime; the 
approximate power flow between locations; and the approximate operating schedule in 
order to meet the projected load demand while minimizing the overall operating, 
investment and environmental costs. 
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Modeling strategies are adopted to handle the problem size and its multi-scale nature. 
Regarding the time scale, we use k-means clustering approach to select representative 
days from historical data that best represent the load demand and renewable capacity 
factor for each region (Lara et al, 2017). This reduced set of representative days with 
hourly resolution is multiplied by a weight to account for the entire year. For the spatial 
representation, the area considered is divided into regions that have similar climate and 
load demand profiles, and it is assumed that the potential locations are the midpoints in 
each region. Additionally, generators and storage units that have the same status (existing 
or potential) and the same technologies are grouped in clusters per region (Palmintier and 
Webster, 2014), such that the discrete decisions associated with generators and storage 
units are integer instead of binary variables, representing the number of units under a 
specific status in each cluster at each time period. To simplify even further the model, the 
transmission is determined by an energy balance between nodes, as in the “truck-route” 
model representation. This approximation ignores Kirchhoff’s voltage law, but it is 
commonly used in long-term planning models that consider a large area. 

3. MILP formulation and solution strategy 
This section presents the proposed deterministic MILP formulation. For the sake of space, 
we only include in this paper the constraints that were modified or added to the original 
model by Lara et al. (2017). In addition to the set of regions 𝑟𝑟 ∈ 𝑅𝑅, generator clusters 𝑖𝑖 ∈
𝐼𝐼, time periods (years) 𝑡𝑡 ∈ 𝑇𝑇, representative days 𝑑𝑑 ∈ 𝐷𝐷, and sub-periods of time (hours) 
𝑠𝑠 ∈ 𝑆𝑆, we also have a set of energy storage clusters 𝑗𝑗 ∈ 𝐽𝐽. 

The first modified constraint is the energy balance (1), which was Equation (1) in Lara et 
al. (2017). This constraint ensures that the sum of the instantaneous power 𝑝𝑝𝑖𝑖 ,𝑟𝑟,𝑡𝑡,𝑑𝑑,𝑠𝑠 by the 
generators in cluster i, regions r, plus the difference between the power flow from regions 
r’ to region r, 𝑝𝑝𝑟𝑟′,𝑟𝑟,𝑡𝑡,𝑑𝑑,𝑠𝑠

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , and the power flow from region r to regions r’, 𝑝𝑝𝑟𝑟,𝑟𝑟′,𝑡𝑡,𝑑𝑑,𝑠𝑠
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , plus the 

power discharged from all the storage clusters j in region r 𝑝𝑝𝑗𝑗,𝑟𝑟,𝑡𝑡,𝑑𝑑,𝑠𝑠
𝑑𝑑𝑖𝑖𝑠𝑠𝑑𝑑ℎ𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎 , equals the load 

demand 𝐿𝐿𝑟𝑟,𝑡𝑡,𝑑𝑑,𝑠𝑠 at region r, plus the power being charged to the storage clusters j in region 
r 𝑝𝑝𝑗𝑗,𝑟𝑟,𝑡𝑡,𝑑𝑑,𝑠𝑠

𝑑𝑑ℎ𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎 , plus a slack for curtailment of renewable generation 𝑐𝑐𝑢𝑢𝑟𝑟,𝑡𝑡,𝑑𝑑,𝑠𝑠 at all times. 

  

(1) 

Constraints (2)-(24) from Lara et al. (2017) are also included in this formulation. The 
objective function (25) is modified to include a term for storage cost, 

 (25) 

where the operating Φ𝑡𝑡
𝑓𝑓𝑜𝑜𝑎𝑎𝑜𝑜 and investment cost Φ𝑡𝑡

𝑑𝑑𝑎𝑎𝑜𝑜𝑎𝑎𝑜𝑜 of generators, and the penalties 
Φ𝑡𝑡
𝑃𝑃𝑃𝑃𝑃𝑃 are defined in equations (26)-(28) of Lara et al. (2017), respectively. The new term 

Φ𝑡𝑡
𝑠𝑠𝑡𝑡𝑓𝑓𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎  accounts for the costs associated with storage and is defined in (29). 

 
(29) 

Additionally, there are constraints related to the energy storage devices, which are 
assumed to be ideal and generic (Pozo et al., 2014). Constraints (30)-(31) compute the 
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number of storage units that are ready to operate 𝑛𝑛𝑠𝑠𝑜𝑜𝑗𝑗,𝑟𝑟,𝑡𝑡, taking into account the storage 
units already existing at the beginning of the planning horizon 𝑁𝑁𝑠𝑠𝑗𝑗,𝑟𝑟, and the ones built 
𝑛𝑛𝑠𝑠𝑏𝑏𝑗𝑗,𝑟𝑟,𝑡𝑡 and retired 𝑛𝑛𝑠𝑠𝑟𝑟𝑗𝑗,𝑟𝑟,𝑡𝑡 at year t. Due to the flexibility in sizes for storage units, 𝑛𝑛𝑠𝑠𝑜𝑜𝑗𝑗,𝑟𝑟,𝑡𝑡, 
𝑛𝑛𝑠𝑠𝑏𝑏𝑗𝑗,𝑟𝑟,𝑡𝑡, and 𝑛𝑛𝑠𝑠𝑟𝑟𝑗𝑗,𝑟𝑟,𝑡𝑡 are relaxed to be continuous. 

 (30) 

 (31) 

Constraint (32) enforces the retirement of storage units that have reached the end of their 
lifetime 𝐿𝐿𝑇𝑇𝑗𝑗. 

  
(32) 

Constraints (33) and (34) establish that the power charge 𝑝𝑝𝑗𝑗,𝑟𝑟,𝑡𝑡,𝑑𝑑,𝑠𝑠
𝑑𝑑ℎ𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎  and discharge 𝑝𝑝𝑗𝑗,𝑟𝑟,𝑡𝑡,𝑑𝑑,𝑠𝑠

𝑑𝑑𝑖𝑖𝑠𝑠𝑑𝑑ℎ𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎  
of the storage units in cluster j 𝑛𝑛𝑠𝑠𝑜𝑜𝑗𝑗,𝑟𝑟,𝑡𝑡 has to be within the operating limits 
𝐶𝐶ℎ𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑗𝑗𝑚𝑚𝑖𝑖𝑚𝑚 and 𝐶𝐶ℎ𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑗𝑗𝑚𝑚𝑎𝑎𝑜𝑜 , and 𝐷𝐷𝑖𝑖𝑠𝑠𝑐𝑐ℎ𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑗𝑗𝑚𝑚𝑖𝑖𝑚𝑚  and 𝐷𝐷𝑖𝑖𝑠𝑠𝑐𝑐ℎ𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑗𝑗𝑚𝑚𝑎𝑎𝑜𝑜 , respectively. 

 (33) 

 (34) 

Constraint (35) specifies that the energy storage level for the storage units in cluster j 
𝑛𝑛𝑠𝑠𝑜𝑜𝑗𝑗,𝑟𝑟,𝑡𝑡 has to be within the storage capacity limits 𝑆𝑆𝑡𝑡𝑜𝑜𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑗𝑗𝑚𝑚𝑖𝑖𝑚𝑚 and 𝑆𝑆𝑡𝑡𝑜𝑜𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑗𝑗𝑚𝑚𝑎𝑎𝑜𝑜 . 

 (35) 

Constraints (36) and (37) show the power balance in the storage units. The state of charge 
𝑝𝑝𝑗𝑗,𝑟𝑟,𝑡𝑡,𝑑𝑑,𝑠𝑠
𝑓𝑓𝑎𝑎𝑙𝑙𝑎𝑎𝑓𝑓  at the end of hour s depends on the previous state of charge 𝑝𝑝𝑗𝑗,𝑟𝑟,𝑡𝑡,𝑑𝑑,𝑠𝑠−1

𝑓𝑓𝑎𝑎𝑙𝑙𝑎𝑎𝑓𝑓 , and the 
power charged 𝑝𝑝𝑗𝑗,𝑟𝑟,𝑡𝑡,𝑑𝑑,𝑠𝑠

𝑑𝑑ℎ𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎  and discharged 𝑝𝑝𝑗𝑗,𝑟𝑟,𝑡𝑡,𝑑𝑑,𝑠𝑠
𝑑𝑑𝑖𝑖𝑠𝑠𝑑𝑑ℎ𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎  at hour s. The symbols 𝜂𝜂𝑗𝑗𝑑𝑑 and 𝜂𝜂𝑗𝑗𝑑𝑑 

represent the charging and discharging efficiencies, respectively. For the first hour of the 
day, the previous state of charge (i.e., s=0) is the variable 𝑝𝑝𝑗𝑗,𝑟𝑟,𝑡𝑡,𝑑𝑑

𝑓𝑓𝑎𝑎𝑙𝑙𝑎𝑎𝑓𝑓,0. 

 

(36) 

 
(37) 

Constraints (38) and (39) force the storage units to begin 𝑝𝑝𝑗𝑗,𝑟𝑟,𝑡𝑡,𝑑𝑑
𝑓𝑓𝑎𝑎𝑙𝑙𝑎𝑎𝑓𝑓,0 and end 𝑝𝑝𝑗𝑗,𝑟𝑟,𝑡𝑡,𝑑𝑑,𝑠𝑠=𝑆𝑆

𝑓𝑓𝑎𝑎𝑙𝑙𝑎𝑎𝑓𝑓  each 
day with 50% of their maximum storage 𝑆𝑆𝑡𝑡𝑜𝑜𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑗𝑗𝑚𝑚𝑎𝑎𝑜𝑜 . This is a heuristic to attach 
carryover storage level form one representative day to the next (Liu et al., 2017). 
 

 (38) 

 (39) 

The integrated planning and operations model for the generation expansion planning is 
then given by the multi-period MILP model defined by equations (1)-(39).  

Even though this formulation incorporates the modelling strategies aforementioned, it can 
still be very computationally expensive to solve it depending on the size of the area, the 
length of the planning horizon, and the time resolution of the representative days. 
Therefore, we use the Nested Decomposition algorithm for deterministic multi-period 
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problems proposed by Lara et al. (2017). This algorithm consists of decomposing the 
problem per time period (year) and solving Forward and Backward Passes iteratively. The 
Forward Pass solves the problem for each time period sequentially, in a myopic fashion, 
and yields a feasible solution (upper bound).  The Backward Pass solves a relaxed version 
of the subproblems from the last to the first time period, projecting the problem onto the 
subspace of the linking variables by adding cuts. These cuts provide approximations to 
predict the cost-to-go functions within the planning horizon, yielding a lower bound to 
the problem. The only difference between the algorithm framework presented by Lara et 
al. (2017) and the one used in this paper is that there are two additional state (i.e., linking) 
variables,  𝑛𝑛𝑠𝑠𝑜𝑜𝑗𝑗,𝑟𝑟,𝑡𝑡 and 𝑛𝑛𝑠𝑠𝑏𝑏𝑗𝑗,𝑟𝑟,𝑡𝑡. For a detailed description of the algorithm, please refer to 
Lara et al. (2017). 

4. Case study 
We applied this formulation to a case study approximating the Texas Interconnection, 
managed by the Electric Reliability Council of Texas (ERCOT). Within the ERCOT 
covered area, we considered four geographical regions: Northeast, West, Coastal, and 
South, and also include a fifth region, Panhandle, which is outside the ERCOT limits but 
supplies electricity to ERCOT due to its renewable generation potential.  Most of the data 
source information can be found in Lara et al. (2017), Section 6. In this case study we 
consider 3 types of utility batteries: lithium-ion, lead-acid and flow batteries, for which 
we use the capital cost forecast provided by Schmidt et al. (2017) and the technical 
information provided by Luo et al. (2015). We also consider two types of advanced fossil 
fuel energy systems: integrated gasification fuel cell (IGFC) (Iyengar et al. 2014) and 
natural gas fuel cell (NGFC) (Newby and Keairns, 2013). We assumed a carbon tax 
starting at $10/tonne in year 5, and increasing linearly to $100/tonne in year 14. The 
problem is solved for a 30-year planning horizon and 4 representative days per year. We 
implemented the monolithic formulation and the Nested Decomposition algorithm with 
Benders cut in Pyomo, and solved the LPs and MILPs using Gurobi version 7.0.1. 

The full-space MILP model has 1,730,491 constraints, and 1,310,681 variables (810,181 
continuous, and 500,500 integer variables). It takes 4.0 hours for Gurobi to solve the full-
space MILP within 1% gap, while it takes 2.8 hours to solve the same problem within 1% 
gap using the Nested Decomposition algorithm with Benders cuts, which is a reduction 
of 30% in solution time. 

 
Figure 1: Generation and Storage Capacity: total ERCOT 

The results displayed in Figure 1 show that most of the demand growth will be met by an 
increase in nuclear, solar photo-voltaic and wind capacity. It also shows that in the last 
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year of the planning horizon there are 34.3 GW of lithium-ion batteries, and 22.0 GW of 
NGFC in the ERCOT region.  

5. Conclusions 
In this paper we propose an MILP model to solve power systems planning models 
considering increasing share of renewables and possibility of adding energy storage units. 
This deterministic formulation is applied to a case study in the ERCOT region. We show 
that by using the Nested Decomposition algorithm proposed by Lara et. al (2017) we are 
able to solve the problem more efficiently and predict which technologies show the 
highest likelihood of deployment and retirement under a variety of scenarios.  
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