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Abstract 

This paper presents a review of advances in the mathematical programming approach to 

discrete/continuous optimization problems. We first present a brief review of MILP and MINLP for the 

case when these problems are modeled with algebraic equations and inequalities. Since algebraic 

representations have some limitations such as difficulty of formulation and numerical singularities for the 

nonlinear case, we consider logic -based modeling as an alternative approach, particularly Generalized 

Disjunctive Programming (GDP), which the authors have extensively investigated over the last few years. 

Solution strategies for GDP models are reviewed, including the continuous relaxation of the disjunctive 

constraints. Also, we briefly review a hybrid model that integrates disjunctive programming and mixed-

integer programming. Finally, the global optimization of nonconvex GDP problems is discussed through 

a two-level branch and bound procedure.  

 

Keywords : mixed-integer programming, generalized dis junctive programming, global optimization, 
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1. Introduction  

The mathematical programming approach to discrete/continuous optimization problems has been 

widely used in operations research and engineering. For example, the applications are in process design 

and synthesis, planning and scheduling, process control, and recently, in bioinformatics. Over the last 

decades, there has been a significant progress in the development of the discrete/continuous optimization 

models and their solution algorithms. For a recent review in the applications to the process systems 

engineering, see Grossmann et al. (1999). It is the objective of this paper to present an overview of the 

major advances in the mathematical programming techniques for the modeling and solution of 
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discrete/continuous optimization problems. This paper is organized as follows. First, the modeling 

formulations and their solution strategies are presented. We then briefly review the continuous relaxation 

of discrete/continuous models. Finally, a global optimization method of nonconvex problems will be 

presented. Also, the possibilities of the hybrid model of mixed-integer program and disjunctive program 

are discussed.   

 

2. Review of Mixed Integer Optimization 

The conventional way of modeling discrete/continuous optimization problems has been through the use of 

0-1 and continuous variables, and algebraic equations and inequalities. For the case of linear functions 

this model corresponds to a mixed-integer linear programming (MILP) model, which has the following 

general form,  
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In problem (MILP) the variables x are continuous, and y are discrete variables, which generally are 

binary variables. As is well known, problem (MILP) is NP-hard. Nevertheless, an interesting theoretical 

result is that it is possible to transform it into an LP with the convexification procedures proposed by 

Lovacz and Schrijver (1991), Sherali and Adams (1990), and Balas et al (1993). These procedures consist 

in sequentially lifting the original relaxed x-y space into higher dimension and projecting it back to the 

original space so as to yield after a finite number of steps the integer convex hull. Since the number of 

operations required is exponential, these procedures are only of theoretical interest, although they can be 

used as a basis for deriving cutting planes (e.g. lift and project method by Balas et al, 1993).  

As for the solution of problem (MILP), it should be noted that this problem becomes an LP problem 

when the binary variables are relaxed as continuous variables, 0 ≤ y ≤ 1. The most common solution 

algorithms for problem (MILP) are LP-based branch and bound methods, which are enumeration methods 

that solve LP subproblems at each node of the search tree. This technique was initially conceived by Land 

and Doig (1960), Balas (1965), and later formalized by Dakin, (1965). Cutting plane techniques, which 

were initially proposed by Gomory (1958), and consist of successively generating valid inequalities that 

are added to the relaxed LP, have received renewed interest through the works of Crowder et al (1983), 

Van Roy and Wolsey (1986), and especially the lift and project method of Balas et al (1993). A recent 

review of branch and cut methods can be found in Johnson et al. (2000). Finally, Benders decomposition 

(Benders, 1962) is another technique for solving MILPs in which the problem is successively 

decomposed into LP subproblems for fixed 0-1 and a master problem for updating the binary variables. 
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The software for MILP solver includes, for example, OSL, CPLEX and XPRESS which use the LP-

based branch and bound algorithm combined with cutting plane techniques. Mixed-integer linear 

programming (MILP) models and solution algorithms have been developed and applied to many 

industrial problems successfully (Nemhauser and Wolsey, 1988; Kallrath, 2000). 

For the case of nonlinear functions the discrete/continuous optimization problem is given by Mixed-

integer nonlinear programming (MINLP) model: 
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where f(x,y) and g(x,y) are assumed to be convex, differentiable and bounded over X and Y. The set X is 

generally assumed to be a compact convex set, and the discrete set Y is a polyhedral of integer points. 

Usually, in most applications it is assumed that f(x,y) and g(x,y) are linear in the binary variables y.  

A recent review of MINLP solution algorithms can be found in Grossmann (2002). Algorithms for the 

solution of problem (MINLP) include the Branch and Bound (BB) method, which is a direct extension of 

the linear case of MILPs (Gupta and Ravindran, 1985; Borchers and Mitchell, 1994; Leyffer, 2001). The 

Branch-and-cut method by Stubbs and Mehrotra (1999), which corresponds to a generalization of the lift 

and project cuts by Balas et al (1993), adds cutting planes to the NLP subproblems in the search tree. 

Generalized Benders Decomposition (GBD) (Geoffrion, 1972) is an extension of Benders decomposition 

and consists of solving an alternating sequence of NLP (fixed binary variables) and aggregated MILP 

master problems that yield lower bounds. The Outer-Approximation (OA) method (Duran and 

Grossmann, 1986; Yuan et al., 1988; Fletcher and Leyffer, 1994) also consists of solving NLP 

subproblems and MILP master problems. However, OA uses accumulated function linearizations which 

act as linear supports for convex functions, and yield stronger lower bounds than GBD that uses 

accumulated Lagrangian functions that are parametric in the binary variables. The LP/NLP based branch 

and bound method by Quesada and Grossmann (1992) integrates LP and NLP subproblems of the OA 

method in one search tree, where the NLP subproblem is solved if a new integer solution is found and the 

linearization is added to the all the open nodes. Finally the Extended Cutting Plane (ECP) method by 

Westerlund and Pettersson (1995) is based on an extension of Kelley’s cutting plane (1960) method for 

convex NLPs. The ECP method also solves successively an MILP master problem but it does not solve 

NLP subproblems as it simply adds successive linearizations at each iteration.  
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3. Generalized Disjunctive Programming 

In recent years the following major approaches have emerged for solving discrete/continuous 

optimization problems with logic -based techniques: Generalized Disjunctive Programming (GDP) 

(Raman and Grossmann, 1994), Mixed Logic Linear Programming (MLLP) (Hooker and Osorio, 1999), 

and Constraint Programming (CP) (Hentenryck, 1989) The motivations for these logic -based modeling 

has been to facilitate the modeling, reduce the combinatorial search effort, and improve the handling the 

nonlinearities. In this paper we will concentrate on Generalized Disjunctive Programming. A general 

review of logic-based optimization can be found in Hooker (1999). 

Generalized Disjunctive Programming (GDP) (Raman and Grossmann, 1994) is an extension of 

disjunctive programming (Balas, 1979) that provides an alternate way of modeling (MILP) and (MINLP) 

problems. The general formulation of a (GDP) is as follows: 
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where Yjk are the Boolean variables that decide whether a given term j in a disjunction k  ∈ K is true or 

false, and x are the continuous variables. The objective function involves the term f(x) for the continuous 

variables and the charges ck that depend on the discrete choices in each disjunction k  ∈ K. The constraints 

g(x) ≤ 0 must hold regardless of the discrete choice, and hjk(x) ≤ 0 are conditional constraints that must 

hold when Yjk is true in the j-th term of the k-th disjunction. The cost variables ck correspond to the fixed 

charges, and their value equals to γjk if the Boolean variable Yjk is true. Ω(Y) are logical relations for the 

Boolean variables expressed as propositional logic.  

It should be noted that problem (GDP) can be reformulated as an MINLP problem by replacing the 

Boolean variables by binary variables yjk, 
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where the disjunctions are replaced by “Big-M” constraints which involve a parameter Mjk and binary 

variables yjk. The propositional logic statements Ω(Y) = True are replaced by the linear constraints Ay ≤ a 

as described by Williams (1985) and Raman and Grossmann (1991). Here we assume that x is a non-

negative variable  with finite upper bound xU. An important issue in model (BM) is how to specify a valid 

value for the Big-M parameter Mjk. If  the value is too small, then feasible points may be cut off. If Mjk is 

too large, then the continuous relaxation might be too loose yielding poor lower bounds. Therefore, 

finding the smallest valid value for  Mjk is the desired selection.  For linear constraints, one can use the 

upper and lower bound of the variable x to calculate the maximum value of each constraint, which then 

can be used to calculate a valid value of Mjk. For nonlinear constraints one can in principle maximize each 

constraint over the feasible region, which is a non-trivial calculation. 

 

4. Convex Hull Relaxation of Disjunction 

Lee and Grossmann (2000) have derived the convex hull relaxation of problem (GDP). The basic idea is 

as follows. Consider a disjunction k  ∈ K that has convex constraints,   
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where hjk(x) are assumed to be convex and bounded over x. The convex hull relaxation of disjunction 

(DP), which is an extension of the work by Stubbs and Mehrotra (1999), is given as follows:  
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where vjk are disaggregated variables that are assigned to each term of the disjunction k  ∈ K, and λjk are 

the weight factors that determine the feasibility of the disjunctive term. Note that when λjk is 1, then the 

j’th term in the k’th disjunction is enforced and the other terms are ignored. The constraints 

)/( jk
jk

jkjk vh λλ  are convex if hjk(x) is convex as discussed on p. 160 in Hiriart-Urruty and 

Lemaréchal (1993). A formal proof can be found in Stubbs and Mehrotra (1999). Note that the convex 

hull (CH) reduces to the result by Balas (1985) if the constraints are linear. Based on the convex hull 

relaxation (CH), Lee and Grossmann (2000) proposed the following convex relaxation program of (GDP). 
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where U is a valid upper bound for x and v. For computational reasons, the nonlinear inequality is written 

as 0=))+/(()+( ελελ jk
jk

jkjk vh  where ε is a small tolerance. This inequality remains convex if 

hjk(x) is a convex function. Note that the number of constraints and variables increases in (CRP) 

compared with problem (GDP). Problem (CRP) has a unique optimal solution and it yields a valid lower 

bound to the optimal solution of problem (GDP) (Lee and Grossmann, 2000). Problem (CRP) can also be 

regarded as a generalization of the relaxation proposed by Ceria and Soares (1999) for a special form of 

problem (GDP). 

As proved by Lee and Grossmann (2000) problem (CRP) has the useful property that the lower bound 

is greater than or equal to the lower bound predicted from the relaxation of problem (BM). The relaxation 
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problem (CRP) can be used as a subproblem to construct a disjunctive branch and bound method to solve 

problem (GDP) (Lee and Grossmann, 2000), which exploits the tight lower bound of the convex hull 

relaxation program when compared with the Big-M MINLP formulation.  

 

5. Solution Algorithms for GDP 

For the linear case of problem (GDP) Beaumont (1991) proposed a branch and bound method which 

directly branches on the constraints of the disjunctions where no logic constraints are involved. Also for 

the linear case Raman and Grossmann (1994) developed a branch and bound method which solves GDP 

problem in hybrid form, by exploiting the tight relaxation of the disjunctions and the tightness of the well-

behaved mixed-integer constraints. Another approach for solving a linear GDP is to replace the 

disjunctions either by Big-M constraints or by the convex hull of each disjunction (Balas, 1985; Raman 

and Grossmann, 1994)   

For the nonlinear case a similar way for solving the problem (GDP) is to reformulate it into the 

MINLP by restricting the variables λjk in problem (CRP) to 0-1 values. Alternatively, to avoid introducing 

a potentially large number of variables and constraints, the GDP might also be reformulated as the 

MINLP problem (BM) by using Big-M parameters. One can then apply standard MINLP solution 

algorithms (i.e., branch and bound, OA, GBD, and ECP). In order to strengthen the lower bounds one can 

derive cutting planes using the convex hull relaxation (CRP). To generate a cutting plane, the following 

separation problem (SP), which is a convex NLP, is solved: 
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where xR
BM,n is the solution of problem (BM) with relaxed 0 ≤ yik ≤ 1. Problem (SP) yields a solution point 

x* which belongs to the convex hull of the disjunction and is closest to the relaxation solution xR
BM,n. The 

most violated cutting plane is then given by, 

)1(0*)()*( , ≥−− xxxx TnBM
R  

The cutting plane in (1) is a facet of the linearized convex hull and thus, a valid inequality for problem 

(GDP). Problem (BM) is modified by adding the cutting plane (1) as follows:  
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where bxT ≤β  is the cutting plane (1). Since we add a valid inequality to problem (BM), the lower 

bound obtained from problem (CP) is generally tighter than before adding the cutting plane.   

This procedure for generating the cutting plane can be used either in a Branch and Cut enumeration 

method where a special case is to solve the separation problem (SP) only at the root node, or else it can be 

used to strengthen the MINLP problem (BM) before applying methods such as OA, GBD, and ECP. It is 

also interesting to note that cutting planes can be derived in the (x,y) space, especially when the objective 

function has binary variables y. 

Another application of the cutting plane is for a decision if it is advantageous to use the convex hull 

formulation for a relaxation of disjunction. If the value of || x* - xR
BM,n || is large, then it is an indication 

that this is the case. A small difference between x* and xR
BM,n would indicate that it might be better to 

simply use the Big-M relaxation. 

There are also direct approaches for solving problem (GDP).  In particular, a disjunctive branch and 

bound method can be developed which directly branches on the term in a disjunction using the convex 

hull relaxation (CRP) as a basic subproblem (Lee and Grossmann, 2000). Problem (CRP) is solved at the 

root node of the search tree. The branching rule is to select the least infeasible term in a disjunction first. 

We can then consider a dichotomy where we fix the value λjk = 1 for the disjunctive term that is closest to 

being satisfied, and consider on the other hand the convex hull of the remaining terms (λjk = 0). 

When all the decision variables λjk are fixed, problem (CRP) yields an upper bound to problem (GDP). 

The optimal solution is the best upper bound after closing the gap between the lower and the upper bound. 

The proposed algorithm has obviously finite convergence since the number of the terms in the disjunction 

is finite. Also, since the nonlinear functions are convex, each subproblem has a unique optimal solution. 

Therefore, the rigorous validity of the bounds is guaranteed. 

6. Disjunctive Branch and Bound Example  

For the illustration of the disjunctive branch and bound algorithm described at the end of Section 5, we 

present the following GDP problem with one disjunction:  
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There are three terms in the disjunction, and exactly one of them must hold. The feasible set of 

disjunction (2) and its convex hull are given by three disconnected circles as seen in Figure 1. The convex 

hull of the feasible set is shown in gray area. The optimal solution of is 1.172, Y* = (false,true,false) and 

x* = (3.293,1.707). By using 0-1 variables yj, GDP problem (2) can be reformulated as an MINLP 

problem (BM) with Big-M constraints: 
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If y1 = 1, then the first inequality constraint is enforced and if y1 = 0, it becomes redundant assuming that 

M is a sufficiently large number. If the binary variables yj are treated as continuous variables in the 

MINLP problem (3), then for M = 30 the relaxed MINLP problem of (3) has the optimal solution of 1.031 

and y* = (0.029, 0.97, 1,0). The (CRP) model of the GDP problem (2) is as follows: 
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To avoid division by zero in the nonlinear constraints, ε  is introduced as a small tolerance (ε = 
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0.0001). The optimal solution of problem (4) is 1.154 and xL = (3.195,1.797). Notice that the lower bound 

(1.154) is tighter than the relaxed solution of MINLP problem (3) (1.031). It should be noted that the 

convex hull NLP (4) has more variables and constraints than Big-M problem (3). Therefore, the tighter 

lower bound comes with the price of increased model size and possibly longer CPU time.   

 

In the disjunctive branch and bound method, λj will be used in deciding which Boolean variable 

should be selected at the next node in the search tree. Figure 2 and 3 shows the feasible sets of the 

subproblems in the search tree. At the root node, problem (4) yields a lower bound ZL = 1.154. This 

solution point xL lies outside the feasible region of GDP problem (2) since xL does not satisfy any term in 

the disjunction. In the solution λ2   has the largest value, so we set Y2 as true. At the first node, the GDP 

problem is solved with fixed Y = (false,true,false). It means that we fix λ2 as 1 and other λj as 0 in 

problem (4). Therefore, the feasible region is restricted to S2 only as shown in Figure 2. Solving GDP 

problem (2) with Y2 = true yields an upper bound ZU = 1.172. Since S2 has been examined, it is removed 

from the convex hull. At the second node, we consider the convex hull of S1 and S3. By solving problem 

(4) with λ2 = 0, a lower bound ZL = 3.327 is obtained (see Figure 3). Since this lower bound 3.327 is 

greater than the upper bound ZU = 1.172, the feasible solution of S1 and S3 will be greater than ZL = 3.327 

> ZU = 1.172. Hence, the optimal solution is ZU = 1.172 and the search ends after 3 nodes.  

 

7. Decomposition of GDP 

Türkay and Grossmann (1996) have proposed logic -based OA and GBD algorithms for problem (GDP) 

by decomposition into NLP and MILP subproblems.  For fixed values of the Boolean variables, Yjk = true 

and Yik = false for j ≠ i, the corresponding NLP subproblem is derived from (GDP) as follows: 
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For every disjunction k  only the constraints corresponding to the Boolean variable  Yjk that is true are 

enforced.  Also, fixed charges γjk are applied to these terms. After K subproblems (NLPD) are solved sets 
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of linearizations l =1,...,K are generated for subsets of terms Ljk = { l  |  Yl
 jk = true }, then one can define 

the following disjunctive OA master problem: 
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Before solving the MILP master problem it is necessary to solve various subproblems (NLPD) in 

order to produce at least one linear approximation of each of the terms in the disjunctions.  As shown by 

Türkay and Grossmann (1996) selecting the smallest number of subproblems amounts to the solution of a 

set covering problem. In the context of flowsheet synthesis problems, another way of generating the 

linearizations in (MGDP) is by starting with an initial flowsheet and optimizing the remaining subsystems 

as in the modeling/decomposition strategy (Kocis and Grossmann, 1987).  

Problem (MGDP) can be solved by the methods described by Beaumont (1991), Raman and 

Grossmann (1994), and Hooker and Osorio (1999). For the case of process networks, Türkay and 

Grossmann (1996) have shown that if the convex hull representation of the disjunctions in (MGDP) is 

used, then assuming Bk = I and converting the logic relations Ω(Y) into the inequalities Ay = a, leads to 

the MILP reformulation of (NLPD) which can be solved with OA. Türkay and Grossmann (1996) have 

also shown that while a logic-based Generalized Benders method (Geoffrion, 1972) cannot be derived as 

in the case of the OA algorithm, one can exploit the property for MINLP problems that performing one 

Benders iteration (Türkay and Grossmann, 1996) on the MILP master problem of the OA algorithm, is 

equivalent to generating a Generalized Benders cut. Therefore, a logic -based version of the Generalized 

Benders method performs one Benders iteration on the MILP master problem. Also, slack variables can 

be introduced to problem (MGDP) to reduce the effect of nonconvexity as in the augmented-penalty 

MILP master problem (Viswanathan and Grossmann, 1990). 

 

8. Hybrid GDP/MINLP 

Vecchietti and Grossmann (1999) have proposed a hybrid formulation of the GDP and algebraic MINLP 

models. It involves disjunctions and mixed-integer constraints as follows: 
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where x and c are continuous variables and Y and y are discrete variables. Note that problem (PH) can 

reduce to a GDP problem or to an MINLP problem, depending on the absence and presence of the mixed-

integer constraints and disjunctions and logic propositions. Thus, problem (PH) provides the flexibility of 

modeling an optimization problem as a GDP, MINLP or a hybrid model, making it possible to exploit the 

advantage of each model.    

An extension of the logic -based OA algorithm for solving problem (PH) has been implemented in 

LOGMIP, a computer code based on GAMS (Vecchietti and Grossmann, 1999). This algorithm 

decomposes problem (PH) into two subproblems, the NLP and the MILP master problems. With fixed 

discrete variables, the NLP subproblem is solved. Then at the solution point of the NLP subproblem, the 

nonlinear constraints are linearized and the disjunction is relaxed by convex hull to build a master MILP 

subproblem which will yield a new discrete choice of (y,Y) for the next iteration. 

 

9. Process Network Example  

This example was originally proposed by Duran and Grossmann (1986) as an MINLP problem, and later 

Türkay and Grossmann (1996) formulated it as a GDP problem. Figure 4 shows the superstructure which 

has 8 possible processes. The optimal solution is 68.01 and it consists of processes 2,4,6, and 8 as shown 

in Figure 5. The GDP model has eight disjunctions for the processes, mass balances, and prepositional 

logic for the relationship of these units. For the GDP model formulation, see Türkay and Grossmann 

(1996). 

As seen in Figure 6, the disjunctive branch and bound (BB) algorithm by Lee and Grossmann (2000) 

finds the optimal solution in only 5 nodes compared with 17 nodes of standard branch and bound method 

when applied to the relaxed MINLP formulation (BM). A major difference in these two methods is the 

lower bound predicted by the relaxed NLP. Clearly the bound at the root node in the disjunctive BB 

method, which is given by problem (CRP), is much stronger than the relaxed solution of problem (BM) 
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(62.48 vs. 15.08). This shows that the logic -based formulation (GDP) yields a tight relaxation that can be 

exploited by a disjunctive branch and bound method. On the other hand it is clear that there exists a trade -

off between problems (BM) and (CRP) in terms of problem size and tightness of the lower bound. As in 

this example the tight lower bound of (CRP) helped to reduce the number of nodes in the branch and 

bound tree, although (BM) is smaller in size and likely to be solved faster.    

 

10. Global Optimization Algorithm 

In the previous sections of the paper we have assumed convexity in the nonlinear functions. However, in 

many applications nonlinearites give rise to nonconvex functions. Nonlinear programs which involve 

nonconvex functions may yield local solutions, not guaranteeing the global optimality. Global 

optimization of nonconvex programs has received increased attention due to the practical importance of 

solving nonlinear optimization problems. Most of the deterministic global optimization algorithms are 

based on spatial branch and bound algorithm (Horst and Tuy, 1996). The spatial branch and bound 

method divides the feasible region of continuous variables and compares lower bound and upper bound 

for fathoming each subregion. The subregion that contains the optimal solution is found by eliminating 

subregions that are proved not to contain the optimal solution.  

For nonconvex NLP problems, Quesada and Grossmann (1995) proposed a spatial branch and bound 

algorithm for concave separable, linear fractional and bilinear programs using of linear and nonlinear 

underestimating functions (McCormick, 1976). For nonconvex MINLP, Ryoo and Sahinidis (1995) and 

later Tawarmalani and Sahinidis (2000a) have developed BARON, which branches on the continuous and 

discrete variables with bounds reduction method. Adjiman et al. (1997; 2000) proposed the SMIN-αBB 

and GMIN-αBB algorithms for twice-differentiable nonconvex MINLPs. By using a valid convex 

underestimation of general functions as well as for special functions, Adjiman et al. (1996) developed the 

αBB method which branches on both the continuous and discrete variables according to specific options. 

The branch-and-contract method (Zamora and Grossmann, 1999) has bilinear, linear fractional, and 

concave separable functions in the continuous variables and binary variables, uses bound contraction and 

applies the outer-approximation (OA) algorithm at each node of the tree. Kesavan and Barton (2000) 

developed a generalized branch-and-cut (GBC) algorithm, and showed that their earlier decomposition 

algorithm (Kesavan and Barton, 1999) is a specific instance of the GBC algorithm with a set of heuristics. 

Also, Smith and Pantelides (1997) proposed a reformulation method combined with a spatial branch and 

bound algorithm for nonconvex MINLP and NLP, which is implemented in the gPROMS modeling 

system. 
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11. Nonconvex GDP 

We briefly describe a global optimization algorithm proposed by Lee and Grossmann (2001) for the case 

when the problem (GDP) involves bilinear, linear fractional and concave separable functions. First, these 

nonconvex functions of continuous variables are relaxed by replacing them with underestimating convex 

functions (McCormick, 1976; Quesada and Grossmann, 1995). Next, the convex hull of each nonlinear 

disjunction is constructed to build a convex NLP problem (CRP). Figure 7 shows the proposed global 

optimization procedure. At the first step, an upper bound is obtained by solving the nonconvex MINLP 

reformulation (BM) with the OA algorithm. This upper bound is then used for the bound contraction (step 

2). The feasible region of continuous variables is contracted with an optimization subproblem that 

incorporates the valid underestimators and the upper bound value and that minimizes or maximizes each 

variable in turn. The tightened convex GDP problem is then solved in the first level of a two-level branch 

and bound algorithm, in which a discrete branch and bound search (see Section 6) is performed on the 

disjunctions to predict lower bounds. In the second level, a spatial branch and bound method is used to 

solve nonconvex NLP problems for updating the upper bound. The proposed algorithm exploits the 

convex hull relaxation for the discrete search, and the fact that the spatial branch and bound is restricted 

to fixed discrete variables in order to predict tight lower bounds.  

We present an illustrative nonconvex GDP example which was originally proposed as a nonconvex 

MINLP by Kocis and Grossmann (1989) for optimizing a small superstructure consisting of two reactors. 

Lee and Grossmann (2001) reformulated this problem as the following nonconvex GDP problem: 
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The optimal solution is 99.2 with Y* = (true, false), x* = 13.4 and v* = 3.5. Problem (5) has 

nonconvex constraints in the disjunction. The global optimization algorithm by Lee and Grossmann 

(2001) is applied to problem (5) and its solution results are shown in Table 1. In step 1, a nonconvex 

MINLP reformulation (BM) is solved with the OA method. An initial upper bound of 99.2 is obtained 

after 3 major iterations. To derive the convex relaxation we first substitute [1-exp(-0.5v)] in the first term 

with the continuous variable α, resulting in bilinear terms. The nonlinear equality α =  [1-exp(-0.5v)] is 

replaced by two nonlinear inequalities.  
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The bilinear term αx is replaced by linear under and overestimators (McCormick, 1976). In the first 

term of the disjunction, the inequality α ≤  [1-exp(-0.5v)] is convex while the inequality α ≥ [1-exp(-

0.5v)] is concave. We underestimate the concave term by a secant line which matches the concave term at 

the lower and upper bound of v. The convex underestimating problem of (6) is then as follows: 
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where ).4.0exp(1),4.0exp(1),5.0exp(1),5.0exp(1 2211
UULLUULL vvvv −−=−−=−−=−−= αααα  

The convex hull relaxation of problem (7) results in problem (CRP). In step 1, we solve the bound 

contraction problem of the continuous variable x and v. Initially, the bounds are 0 ≤ x ≤ 20 and 0 ≤ v ≤ 10.  

After solving 4 NLPs, the new bounds are 11.1 ≤ x ≤ 18.7 and 1.6 ≤ v ≤ 5.1. With the new bounds, the 

discrete branch and bound is performed in step 3. Figure 8 shows the two-level branch and bound tree. 

The first lower bound at the root node is 97.5. We relax λ in problem (CRP) as continuous variables 

between 0 and 1. λj corresponds to the Boolean variable Y j in problem (GDP) and λ j = 1 in the solution 
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means Y j = true. Solving problem (CRP) yields a discrete feasible solution of λ = (1,0). For convenience, 

we denote this value of λ as YL. This integer value is fixed as YF = (1,0) and the upper bound (99.2) is 

given to the spatial branch and bound step (node S1 in Figure 8). In step 4, the branching variables are x 

and v. The variable with the largest difference in the variable bounds is selected first. The branching 

variable and its branching point are shown on each node. At node S1, x is selected first and the branching 

point is the middle point of the variable bounds. At node S3, the objective value 99.3 is higher than the 

upper bound, so it is fathomed. Node S4 is infeasible and node S5 yields the optimal solu tion. 5 NLPs are 

solved with a relative tolerance of 0.1 % and the optimality of the upper bound 99.2 is verified for fixed 

YF = (1,0). A logic cut is added to node 1 of step 2 and problem (CRP) is resolved since the gap between 

upper and lower bounds is not closed yet at the node 1. Node 2 yields a solution YL = (0.5,0.5) and ZL = 

101.6, and hence it is fathomed by the upper bound and the search is finished.  

 

 

12. Computational results  

A number of GDP problems have been solved by Lee and Grossmann (2000, 2001) and their numerical 

results are shown in Table 2. These problems were solved with GAMS on a Pentium III PC. The first 

column and the second column show the problem number and type. The third column shows the number 

of continuous variables, the fourth column shows the number of Boolean variables, and the fifth column 

shows the number of constraints, respectively. Problems 1-3 are convex GDP problems and were solved 

with the disjunctive branch and bound method described in Section 5. Problems 4-7 are nonconvex GDPs 

and they were solved with the two-level branch and bound algorithm. In all cases, the optimal solution is 

found in reasonable CPU time as shown in the last column.  

 

13. Conclusion 

In this paper, we have presented some of the recent advances in the discrete/continuous optimization 

models and solution algorithms. Algebraic models such as MILP and MINLP have been widely used in 

operations research and engineering. An emerging approach relies on logic -based models which involve 

logic constraints and disjunctions. The strategy for the relaxation of disjunctions and its properties have 

been used to develop a disjunctive branch and bound algorithm for GDP problems. Also, the 

reformulation to MINLP procedure has been presented, as well as a Cutting Plane method for tightening 

the lower bound in the corresponding Big-M formulation. Global optimization algorithms of nonconvex 

MINLP/GDP have been also briefly discussed and illustrated with a small example. It is hoped that this 

review has shown that the logic -based approach to mathematical programming has made substantial 

progress and offers significant promise in the future. 
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Table 1. Numerical results of illustrative example  
 

Step 
Method 

Step 1 
Outer 

Approximation 

Step 2 
Bound 

Contraction 

Step 3 
Discrete  

Branch and Bound 

Step 4 
Spatial  

Branch and Bound 
Result 

Iter. / Nodes 
First UB = 99.2 

3 Iter. 
63.5 % reduction 

4 Iter. (NLPs) 
First LB = 97.5 
2 Nodes (NLPs) 

1 SBB / UB = 99.2 
5 Nodes (NLPs) 

 

 
Table 2. Numerical results of GDP problems 

Problem  
Number 

Problem 
Type 

No. of  
continuous 
variables 

No. of 
Boolean 
variable  

No. of 
constraints 

Optimal 
solution 

CPU 
sec 

1 Convex 30 25 105 -8.064 2.86 
2 Convex 33 8 67 68.01 1.09 
3 Convex 184 41 376 261,883 40.91 
4 Nonconvex 51 33 102 264,887 47.1 
5 Nonconvex 105 53 271 726,205 163.7 
6 Nonconvex 312 59 1231 662,590 521.3 
7 Nonconvex 52 16 124 74,710 420.6 
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Figure 1. Feasible set and convex hull of example 1 

First Node : S2 
Optimal solution : ZU = 1.172

x1

x2
S3

S1

Optimal Solution
(3.293,1.707)

Z* = 1.172

S2

 
Figure 2. Feasible set at the first node 
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Second Node : conv(S1 ∨ S3)
Optimal solution : ZL = 3.327
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Figure 3. Feasible set at the second node 
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Figure 4. Superstructure for process network example  
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Figure 5. The Optimal plant structure 
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Figure 6. Comparison of branch and bound methods 
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Figure 7. Global optimization algorithm for nonconvex GDP 
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Figure 8. Branch and bound tree for nonconvex GDP example  


