
Mario R. Eden, Marianthi Ierapetritou and Gavin P. Towler (Editors) Proceedings of the 13th

International Symposium on Process Systems Engineering – PSE 2018

July 1-5, 2018, San Diego, California, USA © 2018 Elsevier B.V. All rights reserved.

A Flexible Framework and Model Library for

Process Simulation, Optimization and Control

Andrew Lee
a*

, Jaffer H. Ghouse
b
, Qi Chen

c
, John C. Eslick

b
, John D. Siirola

d
,

Ignacio E. Grossman
c
, David C. Miller

b

a KeyLogic Systems, 626 Cochrans Mill Road, Pittsburgh, PA 15236, USA
b National Energy Technology Laboratory, 626 Cochrans Mill Road, Pittsburgh,, PA 15236, USA
c Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
d Sandia National Laboratories, Albuquerque, NM 87185, USA

andrew.lee@netl.doe.gov

Abstract

A new framework for optimizing process flowsheets has been developed, which enables

a greater degree of flexibility and automation to facilitate the development of

hierarchical models suitable for rigorous optimization and control problems under both

steady-state and dynamic operating conditions. A library of models for common process

unit operations has been developed along with the framework to allow rapid

development of flowsheets, with a focus on adaptability and extensibility to allow users

to extend and apply these models to novel processes and configurations. This paper

presents the development of the framework and model library which support conceptual

design, process design/integration, and dynamic optimization/control.

Keywords: Process modeling, simulation, optimization, control, Pyomo.

1. Introduction

Advances in computational power and numerical optimization routines have enabled the

possibility of applying rigorous simulation and optimization techniques to large scale

problems such as those associated with the design, optimization and control of

integrated chemical processes and energy systems. To facilitate the development of

process models, a number of chemical process simulation packages, such as Aspen

Plus®, gPROMS, ProSim, PRO/II®, have been developed which provide robust and

easy to use tools, including libraries of common process unit operations, thermo-

physical property models, and efficient algorithms to solve large, sparse systems of

nonlinear differential algebraic equations. These tools allow engineers to solve very

large process flowsheets under both steady-state and dynamic conditions. However,

most process simulation packages focus primarily on solving well defined simulation

problems, and often have only limited capabilities for advanced optimization, such as

conceptual design or optimization under uncertainty. In contrast, there exist several

platforms and modeling languages designed specifically for solving large scale

optimization problems; however, these platforms lack the specialized infrastructure and

model libraries necessary for easily simulating chemical processes and energy systems.

In these cases, models must be laboriously assembled for specific systems, often

requiring specialized initialization procedures. Developing and applying these models to

chemical processes also requires expert knowledge in modeling and optimization not

available to the typical process engineer. Thus, there exists a gap in the capabilities of

existing software for optimizing chemical process flowsheets.

2 A. Lee et al.

The U.S. Departm ent of Energy’s Institute for the Design of Advanced Energy System s

(IDAES) is addressing this need by developing a next-generation process systems

engineering framework (Miller at al., 2018) that is built for optimization from the

ground up, enabling the use of modern optimization solvers with a framework for

advanced process modeling. The IDAES framework utilizes the Pyomo (Hart et al.,

2017) algebraic modeling language (AML), an open source framework for formulating

large scale optimization problems based on the Python programming language, which

can interface with a wide range of optimization solvers. As part of the IDAES

framework, a library of models has been developed, along with a standard modular

framework for linking the models in a flowsheet and solving the resulting problem. The

goal of these tools and libraries is to reduce the amount of effort required to develop a

process model and facilitate rapid development and screening of process configurations.

2. Framework Development

Despite the wide variety of chemical engineering process unit models, they share a

number of common features, allowing for a standardized core modeling structure. The

process for developing a unit model can be summarized as follows:

1. Specify the operating mode (dynamic or steady state).

2. Define calculations for the thermophysical, transport and reaction kinetic

properties of the material(s) of interest.

3. Specify material and energy inlets and outlets, along with the information

(state variables) transferred in each (e.g., total flowrate, pressure, temperature,

and mole fractions).

4. Define material, energy, and pressure balances.

5. Define additional constraints describing the behavior of the unit (e.g., pressure-

flow relations, or heat transfer correlations).

Of these elements, the material, energy and pressure balances are central to the

formulation of the model, with the other elements serving mainly to inform aspects of

the balance equations. This would suggest that it is possible to write the balance

equations in a generic form, and to substitute expressions or variables for the generic

terms as the model needed. Terms which are not needed in a specific model can be

excluded by substituting a value of 0 into the balance equations, and the exact form of

the expressions can be adapted to the problem at hand to improve the tractability of the

problem. Doing this allows for a completely generic formulation of the balance

equations that can be reused between unit models, whilst allowing for formulation

which can adapt to the differing needs of each unit. Further, the generic form of the

balances equations is inherently unitless, which means that by changing the units of

measurement used in the individual terms, the units of the entire model can be changed.

2.1. Material, Energy and Pressure Balances

Mass, energy and pressure balances may contain many terms depending on the

operation type including: generation of species via chemical reactions, pressure

differentials and heat, work and mass transfer. A framework for modeling these systems

needs to accommodate all of the possible terms. At a more fundamental level, there are

many ways that material and energy balances can be expressed – whether by mass or

moles, by element or component, by component flows or total flow and composition,

etc. The preferred expression of the balance equations is situation dependent, and often

one form is more convenient or provides for a more tractable problem formulation.

Type the title of your paper 3

Further, the choice of units of measurement needs to be considered, and different

applications and industries may prefer different sets of units. Despite the variations that

may occur, the general form of the balance equations is constant, consisting of terms

that may or may not be present in each specific case. These can be summarized as

follows:

1. inlet and outlet terms,

2. accumulation terms, which are needed only in models which consider dynamic

behavior (it is generally assumed that pressure changes occur instantaneously,

so pressure accumulation terms are generally neglected as well),

3. generation of species due to kinetic and equilibrium based reactions (including

phase equilibria), which are primarily functions of the material state, and,

4. transfer terms which are dependent on the behavior of the unit as well as the

material state.

For unit models where consideration of spatial variations are not required (0-

dimensional models), this results in the following general forms for the material, energy

and pressure balance equations (Eqs. (1)–(3));

 (1)

∑ ∑ (2)

 (3)

Here is the accumulation of species in phase p within the unit, and

are the flows of species in phase p in and out, and are the generation of

species in phase p by kinetic and equilibrium controlled reactions respectively.

Similarly is the accumulation of energy in the unit, and are the flows in

and out of energy in phase p, and and are the pressure of the material at the

inlet and outlet respectively. , , and represent the mass, work, heat and

pressure transfer terms within the unit respectively.

The traditional approach to expressing these equations within an AML would be to

either write custom equations for each model which contain only the necessary terms, or

to write the balance equations using generic terms and to then provide additional

constraints to describe each term. The first alternative results in a more compact

problem with fewer variables and constraints, whilst the second alternative allows for

greater flexibility and the reuse of code for the balance equations. By exploiting the

object oriented nature of Python, it is possible to write the balance equations

dynamically, using procedural code to automatically substitute the terms of the balance

equations as they are constructed. This can be used to completely automate the

construction of the balance equations, using a small set of instructions to inform the

code which terms should be constructed for each unit model.

2.2. Property Calculations

Most available software packages and correlations use intensive forms for the property

calculations, as these are dependent only on the state variables of the system, and not

the flowrates of material. However, there are situations where using extensive forms

4 A. Lee et al.

yields a more tractable formulation for the overall problem (e.g. adjusting when and

where bilinear terms appear in the problem structure). Thus, the framework needs to

allow for both extensive and intensive formulations in order to provide the flexibility

necessary to achieve the most tractable problem structure. Further, in many cases the

developer of a process model is not the developer of thermophysical property models,

and may not know the details of the property model formulation. Thus, there needs to be

a way for the property calculations to integrate with the unit models without the need

for the modeler to be aware of the full details of the property models they are using.

In the IDAES modeling framework, the property module defines the extensive terms in

the balance so property models are specific to the application whilst the balance

equations are generic. Further, the property calculations become the only part of the

model structure where units of measurement are inherently present, which means that

the units of measurement for the entire model stem from the property calculations.

However, this requires that the units be internally consistent and that property model

contain information on the extensive flows of material, which has traditionally been

kept separate from the otherwise intensive property calculations.

2.3. Inlets and Outlets

The final consideration when developing a model for a unit operation is what

information needs to be passed between units within a flowsheet – i.e. state information

for the inlet and outlet streams. The necessary state information and its specific form it

may take, is dependent on the specific problem at hand is governed by the system at

hand. Considering that any two unit models connected together in a flowsheet are by

necessity using the same material, and in most cases the same set of property

calculations, it follows that the best form for the definition of the inlet and outlet

streams of each unit should be the same. Rather than defining a single standard to which

inlets and outlets must conform, the IDAES framework allows each property module to

define the best set of state variables to pass between units. In cases where the state

variables required by two connected units do not match (e.g. a change in property

modules between units), a translator block can be used.

2.4. Models with Spatial Variations

So far this discussion has focused on models where spatial variations can be neglected;

however, there are many cases where this is not possible (e.g. plug flow reactors). In

these cases it is necessary to include spatial domains and partial differential equations

describing these variations within the balance equations. The framework discussed

above can easily be expanded to include these derivative terms, and Pyomo includes

support for partial differential equations through the Pyomo DAE toolbox (Nicholson et

al., 2017), which allows for automatic discretization of domains and numerical

approximation of the derivatives for an arbitrary number of domains. All that is

necessary to extend the framework is to replace the extensive material, energy and

pressure terms in the balance equations with differential forms and to use the inlet

(and/or outlet) flows as boundary conditions for the differential equations. An example

for a 1-dimensional system is shown below, where is the spatial domain:

 (4)

Type the title of your paper 5

 (5)

 (6)

2.5. Model Library

Using the framework developed above, a library of models for the most common

process unit operations has been developed as part of the IDAES PSE Framework.

Models have been developed for operations such as mixers and splitters, compressors,

equilibrium separators, and ideal reactors. These models can be applied to a wide range

of problems with varying demands for rigor and tractability, all of these models have

been developed with the aim of providing a basic representation for these types of

operations that can be easily extended and adapted by users to suit their specific

applications. The models in the library have been developed to be the simplest

representations of these pieces of equipment possible, with the intent that users will

build upon these and add additional correlations as needed to obtain the necessary level

of detail and rigor for their particular application.

3. Framework Example

In order to demonstrate the application of the framework discussed above, consider the

workflow for generating a steady-state model for an isentropic compressor unit. When

creating the model, the user must specify a property package containing the necessary

property calculations and a set of instructions on how to build the balance equations.

For a compressor, it is clear that the pressure drop and work transfer terms will be

required, whilst reactions, heat and mass transfer are generally neglected. Each unit

model contains a default set of instructions for the terms most commonly used, however

the option is provided for the user to override these if their application demands it.

From there, the automatic framework first retrieves the time domain for the problem

from the flowsheet (due to limitation in specifying indexing domains, a time domain is

required for steady-state models, however it consists of s single point). Then, based on

the instructions provided, the framework automatically generates the mass, energy and

pressure balances. Taking the mass balances as an example, the framework first

eliminates all unneeded terms by substituting a value of zero (such as the accumulation

and reaction terms). The framework then checks with the provided property package to

determine the best form to use for the extensive flow terms in the equations. For this

example, assuming that the property package uses total flowrate, component mole

fractions, temperature and pressure as state variables, the expression would be

returned, where is the total flowrate of phase p and is the mole fraction of

component j in phase p. These are then substituted into the mass balance equation, and

an equation automatically written for each component and phase, as shown in Eq. (7).

 (7)

Similarly, the pressure and energy balances are written as shown in Eqs. (8) and (9),

where is the specific enthalpy for phase p, as calculated by the property package.

6 A. Lee et al.

∑() ∑() (8)

 (9)

The framework then checks the property package again to determine the state variables

to include in the inlet and outlet from the unit (in this case , , and temperature).

The user may then provide the constraints necessary to calculate the remaining terms in

the balance equation, notably the isentropic constraints relating and .

4. Conclusions

A flexible and hierarchical framework for developing and optimization process

flowsheet has been developed, which automates much of the development of the mass,

energy and pressure balances. The framework has been designed from the ground up to

be suitable for advanced optimization and control applications, under both dynamic and

steady-state operation. The framework was developed based on the Pyomo AML and

leverages the capabilities of modern optimization solvers, using an equation oriented

approach with access to complete first and second derivatives. A library of unit models

has been developed as part of the IDAES PSE Framework which includes models for

many of the common unit operations used in chemical processes. The model library was

developed to be adaptable and extensible, in order to allow users to customize the

models to suit the needs of their specific problem.

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government.

Neither the United States Government nor any agency thereof, nor any of their employees, makes any

warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

infringe privately owned rights. Reference herein to any specific commercial product, process, or service by

trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views and opinions

of authors expressed herein do not necessarily state or reflect those of the United States Government or any

agency thereof.
KeyLogic System s, Inc.’s contributions to this w ork w ere funded by the N ational Energy Technology

Laboratory under the Mission Execution and Strategic Analysis contract (DE-FE0025912) for support

services. Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International

In c . fo r th e U .S . D ep artm en t o f E n erg y ’s N atio n al N u clear S ecu rity A d m in istratio n u n d er co n tract D E-

NA0003525.

References

W.E. Hart, C.D. Laird, J.-P. Watson, D.L. Woodruff, G.A. Hackebeil, B.L. Nicholson, and J.D.

Siirola, 2017, Pyomo – Optimization Modeling in Python. Second Edition. Vol. 67. Springer.

W.E. Hart, J.-P. Watson, and D.L. Woodruff, 2011, Pyomo: modeling and solving mathematical

programs in Python, Mathematical Programming Computation 3, 3, 219-260.

D.C. Miller, J.D. Sirrola, D. Agarwal, A.P. Burgard, A. Lee, J.C. Eslick, B. Nicholson, C. Laird,

L.T. Biegler, D. Bhattacharyya, N.V. Sahinidis, I.E. Grossmann, C.E. Gounaris, and D.

Gunter, 2018, Next Generation Multi-Scale Process Systems Engineering Framework, PSE

2018, San Diego.

B.L. Nicholson, J.D. Siirola, J.-P. Watson, V.M. Zavala, L.T. Biegler. 2017, pyomo.dae: A

Modeling and Automatic Discretization Framework for Optimization with Differential and

Algebraic Equations, Accepted to Math Programming Computation.

