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Abstract 

A new framework for optimizing process flowsheets has been developed, which enables 

a greater degree of flexibility and automation to facilitate the development of 

hierarchical models suitable for rigorous optimization and control problems under both 

steady-state and dynamic operating conditions. A library of models for common process 

unit operations has been developed along with the framework to allow rapid 

development of flowsheets, with a focus on adaptability and extensibility to allow users 

to extend and apply these models to novel processes and configurations. This paper 

presents the development of the framework and model library which support conceptual 

design, process design/integration, and dynamic optimization/control. 
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1. Introduction 

Advances in computational power and numerical optimization routines have enabled the 

possibility of applying rigorous simulation and optimization techniques to large scale 

problems such as those associated with the design, optimization and control of 

integrated chemical processes and energy systems. To facilitate the development of 

process models, a number of chemical process simulation packages, such as Aspen 

Plus®, gPROMS, ProSim, PRO/II®, have been developed which provide robust and 

easy to use tools, including libraries of common process unit operations, thermo-

physical property models, and efficient algorithms to solve large, sparse systems of 

nonlinear differential algebraic equations. These tools allow engineers to solve very 

large process flowsheets under both steady-state and dynamic conditions. However, 

most process simulation packages focus primarily on solving well defined simulation 

problems, and often have only limited capabilities for advanced optimization, such as 

conceptual design or optimization under uncertainty. In contrast, there exist several 

platforms and modeling languages designed specifically for solving large scale 

optimization problems; however, these platforms lack the specialized infrastructure and 

model libraries necessary for easily simulating chemical processes and energy systems. 

In these cases, models must be laboriously assembled for specific systems, often 

requiring specialized initialization procedures. Developing and applying these models to 

chemical processes also requires expert knowledge in modeling and optimization not 

available to the typical process engineer. Thus, there exists a gap in the capabilities of 

existing software for optimizing chemical process flowsheets. 
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The U.S. Departm ent of Energy’s Institute for the Design of Advanced Energy System s 

(IDAES) is addressing this need by developing a next-generation process systems 

engineering framework (Miller at al., 2018) that is built for optimization from the 

ground up, enabling the use of modern optimization solvers with a framework for 

advanced process modeling. The IDAES framework utilizes the Pyomo (Hart et al., 

2017) algebraic modeling language (AML), an open source framework for formulating 

large scale optimization problems based on the Python programming language, which 

can interface with a wide range of optimization solvers. As part of the IDAES 

framework, a library of models has been developed, along with a standard modular 

framework for linking the models in a flowsheet and solving the resulting problem. The 

goal of these tools and libraries is to reduce the amount of effort required to develop a 

process model and facilitate rapid development and screening of process configurations. 

2. Framework Development 

Despite the wide variety of chemical engineering process unit models, they share a 

number of common features, allowing for a standardized core modeling structure. The 

process for developing a unit model can be summarized as follows: 

1. Specify the operating mode (dynamic or steady state). 

2. Define calculations for the thermophysical, transport and reaction kinetic 

properties of the material(s) of interest. 

3. Specify material and energy inlets and outlets, along with the information 

(state variables) transferred in each (e.g., total flowrate, pressure, temperature, 

and mole fractions). 

4. Define material, energy, and pressure balances. 

5. Define additional constraints describing the behavior of the unit (e.g., pressure-

flow relations, or heat transfer correlations). 

Of these elements, the material, energy and pressure balances are central to the 

formulation of the model, with the other elements serving mainly to inform aspects of 

the balance equations. This would suggest that it is possible to write the balance 

equations in a generic form, and to substitute expressions or variables for the generic 

terms as the model needed. Terms which are not needed in a specific model can be 

excluded by substituting a value of 0 into the balance equations, and the exact form of 

the expressions can be adapted to the problem at hand to improve the tractability of the 

problem. Doing this allows for a completely generic formulation of the balance 

equations that can be reused between unit models, whilst allowing for formulation 

which can adapt to the differing needs of each unit. Further, the generic form of the 

balances equations is inherently unitless, which means that by changing the units of 

measurement used in the individual terms, the units of the entire model can be changed. 

2.1. Material, Energy and Pressure Balances 

Mass, energy and pressure balances may contain many terms depending on the 

operation type including: generation of species via chemical reactions, pressure 

differentials and heat, work and mass transfer. A framework for modeling these systems 

needs to accommodate all of the possible terms. At a more fundamental level, there are 

many ways that material and energy balances can be expressed – whether by mass or 

moles, by element or component, by component flows or total flow and composition, 

etc. The preferred expression of the balance equations is situation dependent, and often 

one form is more convenient or provides for a more tractable problem formulation. 
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Further, the choice of units of measurement needs to be considered, and different 

applications and industries may prefer different sets of units. Despite the variations that 

may occur, the general form of the balance equations is constant, consisting of terms 

that may or may not be present in each specific case. These can be summarized as 

follows: 

1. inlet and outlet terms,  

2. accumulation terms, which are needed only in models which consider dynamic 

behavior (it is generally assumed that pressure changes occur instantaneously, 

so pressure accumulation terms are generally neglected as well), 

3. generation of species due to kinetic and equilibrium based reactions (including 

phase equilibria), which are primarily functions of the material state, and, 

4. transfer terms which are dependent on the behavior of the unit as well as the 

material state. 

For unit models where consideration of spatial variations are not required (0-

dimensional models), this results in the following general forms for the material, energy 

and pressure balance equations (Eqs. (1)–(3)); 

 (1) 

∑ ∑  (2) 

 (3) 

Here  is the accumulation of species  in phase p within the unit,  and  

are the flows of species  in phase p in and out,  and  are the generation of 

species  in phase p by kinetic and equilibrium controlled reactions respectively. 

Similarly  is the accumulation of energy in the unit,  and  are the flows in 

and out of energy in phase p, and  and  are the pressure of the material at the 

inlet and outlet respectively. , ,  and  represent the mass, work, heat and 

pressure transfer terms within the unit respectively. 

The traditional approach to expressing these equations within an AML would be to 

either write custom equations for each model which contain only the necessary terms, or 

to write the balance equations using generic terms and to then provide additional 

constraints to describe each term. The first alternative results in a more compact 

problem with fewer variables and constraints, whilst the second alternative allows for 

greater flexibility and the reuse of code for the balance equations. By exploiting the 

object oriented nature of Python, it is possible to write the balance equations 

dynamically, using procedural code to automatically substitute the terms of the balance 

equations as they are constructed. This can be used to completely automate the 

construction of the balance equations, using a small set of instructions to inform the 

code which terms should be constructed for each unit model. 

2.2. Property Calculations 

Most available software packages and correlations use intensive forms for the property 

calculations, as these are dependent only on the state variables of the system, and not 

the flowrates of material. However, there are situations where using extensive forms 
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yields a more tractable formulation for the overall problem (e.g. adjusting when and 

where bilinear terms appear in the problem structure). Thus, the framework needs to 

allow for both extensive and intensive formulations in order to provide the flexibility 

necessary to achieve the most tractable problem structure. Further, in many cases the 

developer of a process model is not the developer of thermophysical property models, 

and may not know the details of the property model formulation. Thus, there needs to be 

a way for the property calculations to integrate with the unit models without the need 

for the modeler to be aware of the full details of the property models they are using. 

In the IDAES modeling framework, the property module defines the extensive terms in 

the balance so property models are specific to the application whilst the balance 

equations are generic. Further, the property calculations become the only part of the 

model structure where units of measurement are inherently present, which means that 

the units of measurement for the entire model stem from the property calculations. 

However, this requires that the units be internally consistent and that property model 

contain information on the extensive flows of material, which has traditionally been 

kept separate from the otherwise intensive property calculations. 

2.3. Inlets and Outlets 

The final consideration when developing a model for a unit operation is what 

information needs to be passed between units within a flowsheet – i.e. state information 

for the inlet and outlet streams. The necessary state information and its specific form it 

may take, is dependent on the specific problem at hand is governed by the system at 

hand. Considering that any two unit models connected together in a flowsheet are by 

necessity using the same material, and in most cases the same set of property 

calculations, it follows that the best form for the definition of the inlet and outlet 

streams of each unit should be the same. Rather than defining a single standard to which 

inlets and outlets must conform, the IDAES framework allows each property module to 

define the best set of state variables to pass between units. In cases where the state 

variables required by two connected units do not match (e.g. a change in property 

modules between units), a translator block can be used. 

2.4. Models with Spatial Variations 

So far this discussion has focused on models where spatial variations can be neglected; 

however, there are many cases where this is not possible (e.g. plug flow reactors). In 

these cases it is necessary to include spatial domains and partial differential equations 

describing these variations within the balance equations. The framework discussed 

above can easily be expanded to include these derivative terms, and Pyomo includes 

support for partial differential equations through the Pyomo DAE toolbox (Nicholson et 

al., 2017), which allows for automatic discretization of domains and numerical 

approximation of the derivatives for an arbitrary number of domains. All that is 

necessary to extend the framework is to replace the extensive material, energy and 

pressure terms in the balance equations with differential forms and to use the inlet 

(and/or outlet) flows as boundary conditions for the differential equations. An example 

for a 1-dimensional system is shown below, where  is the spatial domain: 

 (4) 
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 (5) 

 (6) 

2.5. Model Library 

Using the framework developed above, a library of models for the most common 

process unit operations has been developed as part of the IDAES PSE Framework. 

Models have been developed for operations such as mixers and splitters, compressors, 

equilibrium separators, and ideal reactors. These models can be applied to a wide range 

of problems with varying demands for rigor and tractability, all of these models have 

been developed with the aim of providing a basic representation for these types of 

operations that can be easily extended and adapted by users to suit their specific 

applications. The models in the library have been developed to be the simplest 

representations of these pieces of equipment possible, with the intent that users will 

build upon these and add additional correlations as needed to obtain the necessary level 

of detail and rigor for their particular application. 

3. Framework Example 

In order to demonstrate the application of the framework discussed above, consider the 

workflow for generating a steady-state model for an isentropic compressor unit. When 

creating the model, the user must specify a property package containing the necessary 

property calculations and a set of instructions on how to build the balance equations. 

For a compressor, it is clear that the pressure drop and work transfer terms will be 

required, whilst reactions, heat and mass transfer are generally neglected. Each unit 

model contains a default set of instructions for the terms most commonly used, however 

the option is provided for the user to override these if their application demands it. 

From there, the automatic framework first retrieves the time domain for the problem 

from the flowsheet (due to limitation in specifying indexing domains, a time domain is 

required for steady-state models, however it consists of s single point). Then, based on 

the instructions provided, the framework automatically generates the mass, energy and 

pressure balances. Taking the mass balances as an example, the framework first 

eliminates all unneeded terms by substituting a value of zero (such as the accumulation 

and reaction terms).  The framework then checks with the provided property package to 

determine the best form to use for the extensive flow terms in the equations. For this 

example, assuming that the property package uses total flowrate, component mole 

fractions, temperature and pressure as state variables, the expression  would be 

returned, where  is the total flowrate of phase p and  is the mole fraction of 

component j in phase p. These are then substituted into the mass balance equation, and 

an equation automatically written for each component and phase, as shown in Eq. (7). 

 (7) 

Similarly, the pressure and energy balances are written as shown in Eqs. (8) and (9), 

where  is the specific enthalpy for phase p, as calculated by the property package. 
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∑( ) ∑( )  (8) 

 (9) 

The framework then checks the property package again to determine the state variables 

to include in the inlet and outlet from the unit (in this case , ,  and temperature). 

The user may then provide the constraints necessary to calculate the remaining terms in 

the balance equation, notably the isentropic constraints relating  and . 

4. Conclusions 

A flexible and hierarchical framework for developing and optimization process 

flowsheet has been developed, which automates much of the development of the mass, 

energy and pressure balances. The framework has been designed from the ground up to 

be suitable for advanced optimization and control applications, under both dynamic and 

steady-state operation. The framework was developed based on the Pyomo AML and 

leverages the capabilities of modern optimization solvers, using an equation oriented 

approach with access to complete first and second derivatives. A library of unit models 

has been developed as part of the IDAES PSE Framework which includes models for 

many of the common unit operations used in chemical processes. The model library was 

developed to be adaptable and extensible, in order to allow users to customize the 

models to suit the needs of their specific problem. 
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