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1 Introduction

Two-stage stochastic mixed-integer programs (SMIPs) is a framework to model decision-making
uncertainty that involves discrete decisions. Traditional L-shaped method [41] can only be applied
to linear SMIPs with continuous recourse, but cannot be applied to solve SMIPs with (mixed)-
integer recourse. Applications for SMIPs with integer recourse include stochastic server location
problem [28], dynamic capacity acquisition and allocation [3], stochastic unit commitment problem
[35], etc. In the past two decades, there have been algorithmic developments in solving linear SMIPs
with integer recourse. The pioneering work is done by Laporte and Louveaux [18] who propose
integer cuts for two-stage SMIPs with pure binary first stage variables. Benders decomposition-
based parametric cutting plane algorithms have also been proposed where the parametric cuts,
such as disjunctive cuts [5, 33, 27, 29, 36], RLT [39, 38], Gomory mixed-integer cuts [12, 43],
are used to convexify the (mixed)-integer subproblems. Carøe and Schultz [11] propose a dual
decomposition-based branch and bound algorithm. For a review of recent advances in SMIPs, we
refer to the tutorial by Küçükyavuz and Sen [17].

Although there have been algorithmic advances in linear SMIPs, the decomposition algorithms
to address the nonlinear counterpart, stochastic mixed-integer nonlinear programs (SMINLPs),
are few. For convex SMINLPs (the nonlinear functions in SMINLPs are all convex), Mijangos [25]
proposes an algorithm based on Branch-and-Fix Coordination method [4] for convex problems with
0-1 mixed-integer variables in the first stage and only continuous variables in the second stage.
Atakan and Sen [7] propose a progressive hedging-based branch-and-bound algorithm for convex
SMINLP, which works well in the case of pure binary first stage variables and continuous recourse.
Li and Grossmann [20] propose an improved L-shaped method where the Benders subproblems
are convexified by rank-one lift-and-project and Lagrangean cuts are added to tighten the Ben-
ders master problem. Since the improved L-shaped method does not guarantee zero gap, Li and
Grossmann propose a generalized Benders decomposition-based branch and bound (GBDBAB)
algorithm [19] with finite ε-convergence for convex SMINLPs with mixed-binary first and second
stage variables.

For nonconvex SMINLPs (the nonlinear functions in SMINLPs can be nonconvex), the non-
convexities in stage 2 are two-fold: first, we have nonlinear nonconvex functions in stage 2; second,
some of the stage 2 variables need to satisfy integrality constraints. Li et al. [23] propose a non-
convex generalized Benders decomposition (NGBD) algorithm for problems with pure binary first
stage variables where they relax the nonconvex functions in stage 2 by their convex relaxations in
order to derive valid Benders-like cuts. The convergence of NGBD relies on using the integer cuts
similar to the one proposed by Laporte and Louveaux [18]. NGBD and its variations have been
applied to stochastic pooling problems [21, 24], integrated process design and operation problems
[22], etc.

However, if the first stage variables are mixed-integer, the integer cuts used in Li et al. [23] are
no longer applicable. For the more general case where the first stage variables can be mixed-integer,
Ogbe and Li [30] propose a joint decomposition algorithm where they reformulate the two-stage
problem so that all the nonconvexities are in the first stage. Therefore, the Benders subproblems
in [30] are continuous and convex. The authors also add Lagrangean cuts to the Benders master
problem to tighten the master problem. The advantage of [30] is that explicit spatial branch and
bound can be avoided. However, a large-scale master problem may need to be solved by global
solvers when the number of scenarios is large. Cao and Zavala [10] propose a perfect information-
based branch and bound algorithm that solves nonconvex SMINLPs to global optimality. The
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authors relax the nonanticipativity constraints (NACs) of the two stage problem to derive a valid
bound at each node of the spatial branch and bound process where they only need to branch
on the first stage variables. Kannan and Barton [15] propose a modified Lagrangean relaxation-
based (MLR) branch and bound algorithm, which is similar to the algorithm proposed by Carøe
and Schultz [11] except that MLR only dualizes the NACs corresponding to the continuous first
stage variables. Therefore, the Lagrangean subproblems still have NACs corresponding to integer
variables, which are solved by NGBD proposed by Li et al. [23]. The authors prove that MLR has
finite ε-convergence.

This paper follows the lines of the work of Cao and Zavala [10] and Kannan and Barton [15].
We propose a new algorithm to solve nonconvex SMINLPs with mixed-binary variables in both
first and second stage.

2 Problem Statement

We first define the two-stage stochastic programming problem (P ) that we address in this
paper,

(P ) min z = cTx+
∑
ω∈Ω

τωd
T
ωyω (1a)

A0x ≥ b0, g0(x) ≤ 0 (1b)

A1,ωx+ g1,ω(yω) ≤ b1,ω ∀ω ∈ Ω (1c)

x ∈ X, X =
{
x : xi ∈ {0, 1},∀i ∈ I1, 0 ≤ x ≤ xub

}
(1d)

yω ∈ Y ∀ω ∈ Ω, Y =
{
y : yj ∈ {0, 1},∀j ∈ J1, 0 ≤ y ≤ yub

}
(1e)

Here, x represents the first stage decisions. yω represents the second stage decisions in scenario ω.
τω represents the probability of scenario ω. g0, g1,ω, can be smooth nonconvex functions. Both the
first and the second stage decisions are mixed-binary. Let I = {1, 2, · · · , n} be the index set of all
the first stage variables. I1 ⊆ I is the subset for indices of the binary first stage variables. Let
J = {1, 2, · · · ,m} be the index set of all the second stage variables. J1 ⊆ J is the subset for the
indices of the binary second stage variables. xub is a vector that represents the upper bound of all
the first stage variables. yub is a vector that represents the upper bound of all the second stage
variables. We make the following assumptions about problem (P).

Assumption 1. Problem (P ) has relatively complete recourse, i.e., any solution x that satisfies
the first stage constraints has feasible recourse decisions in the second stage.

Assumption 2. The feasible region of (P ) is compact.

Assumption 3. xub and yub are finite, i.e., both the first and the second stage decisions are
bounded.

3 Motivation for a New Algorithm

In this paper, we address the problem of solving problem (P ), i.e., nonconvex SMINLPs with
mixed-binary first and second stage variables. Up untill now, the decomposition algorithms that
explicitly consider the nonconvex subproblems are the branch and bound algorithms proposed
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by Cao and Zavala [10] and Kannan and Barton [15] where the authors branch on the first stage
variables and derive a valid bound at each node of the branch and bound process. The valid bound
can come from Lagrangean relaxation or perfect information, which can be considered as a special
case of Lagrangean relaxation with zero dual multipliers. The authors in [10] and [15] prove finite
convergence of their algorithms. However, the branch and bound algorithms tend to have slow
convergence computationally, especially when the number of first stage variables is large, i.e., a
large number of nodes need to be solved in order to prove global optimality. In this paper, we
explore the possibility of doing branch and cut instead of branch and bound.

The main challenge for doing branch and cut is how we can integrate cutting planes in the
algorithm while still guaranteeing convergence. In the introduction section, we have reviewed
the literature for using Benders-like decomposition to solve linear SMIPs where parametric cuts
are used to convexify the subproblems. For nonconvex SMINLPs, cutting planes cannot be used
directly to convexify the subproblems. However, if we replace the nonconvex functions in stage
2 by their convex relaxations or MILP relaxations, for example, we can relax a bilinear term by
its McCormick envelope or piecewise McCormick envelope, the subproblems will become MILPs
or convex MINLPs, which can be convexified by cutting planes. In principle, if the convexified
subproblems are MILPs, parametric cuttting planes such as Gomory mixed-integer cut [9], lift-
and-project cut [8], RLT [37] can be used. If the convexified subproblems become convex MINLPs,
rank-one lift-and-project cuts can be used in the same way as in Li and Grossmann [20]. In this
paper, only rank-one lift-and-project cuts for MILP subproblems are implemented. The framework
can be easily extended to other types of cutting planes. Therefore, in order to integrate the cutting
planes into the decomposition algorithm, the idea is to have a generalized Benders decomposition
algorithm where the nonconvex subproblems are first relaxed to MILP problems and the MILP
problems are convexified by cutting planes to derive valid Benders cuts. However, this will not
guarantee global optimality.

In order to solve the problem to global optimality, we add Lagrangean cuts to the Benders
master problem as well. Lagrangean cuts are proved to be valid for the Benders master problem
[30, 20]. If we add Lagrangean cuts to the Benders master problem, the lower bound obtained by
the Benders master problem is at least as tight as using Lagrangean decomposition (see Proposition
2 in [20]). Therefore, we propose a generalized Benders decomposition (GBD) based branch and cut
algorithm where we have both Benders cuts and Lagrangean cuts in the Benders master problem
and branch on the first stage variables similar to Kannan and Barton [15]. We are able to prove
that the proposed algorithm has convergence in the limit.

The paper is organized as follows: In section 4, we describe the decomposition algorithm.
In section 5, we prove the convergence of the proposed algorithm. In section 6, we describe the
implementation details. The computational results are shown in section 7. We draw the conclusion
in section 8.

4 The Proposed Algorithm

4.1 Overview of the Proposed Algorithm

The major steps of the proposed algorithm are shown in Figure 1. There are two major
components in the proposed algorithm: (1) spatial branch and bound (described by the rounded
rectangles in Figure 1). (2) the generalized Benders decomposition-based algorithm to solve a
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single node in the branch and bound process (described by the regular rectangles in Figure 1).
At a high level, the algorithm performs spatial branch and bound search on the first stage

variables. We need to specify the node selection rule and branching rule for the spatial branch and
bound algorithm. The details are discussed in subsection 4.3.

Initialization

Select node & branch

Check
convergence

Fathom node & 
Update bounds

End

No

Yes

Lagrangean subproblems Update multipliers

Benders master problem

Benders subproblems
Convexify with cuts

Add Lagrangean cuts

Add Benders cuts

Upper bound procedure

Check termination criteria

Yes

No

Figure 1. Flowchart of the proposed algorithm

Note that we only branch on the first stage variables. Therefore, each node in the branch
and bound process has a decomposable structure. We solve each node by the generalized Benders
decomposition-based algorithm described by the regular rectangles in Figure 1. We have two types
of valid inequalities including Benders cuts and Lagrangean cuts in the Benders master problem.
The Lagrangean cuts come from solving the Lagrangean subproblems iteratively. We update the
Lagrangean multipliers after each Lagrangean iteration. Then we add all the Lagrangean cuts to
the Benders master problem and start the Benders iterations. Note that the Benders iterations are
independent of the Lagrangean iterations. In the Benders iterations, we solve the Benders master
problem and the Benders subproblems iteratively. The Benders subproblems are convexified by
cutting planes. An upper bound can be obtained at each Benders iteration using some heuristics.
We check some termination criteria in each Benders iteration. The details of the decomposition
algorithm to solve a single node will be described in subsection 4.2.

4.2 Decomposition Algorithm to Solve a Single Node

Before we go to the branch and bound process, we first describe the decomposition algorithm
to solve a single node since the branching rules of branch and bound process depend the solutions
of the decomposition algorithm.

At a given node q of the branch-and-bound tree, we solve the following problem (Pq) using
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generalized-Benders decomposition with Benders cuts and Lagrangean cuts.

(Pq) min cTx+
∑
ω∈Ω

τωd
T
ωyω (2a)

A0x ≥ b0, g0(x) ≤ 0 (2b)

A1,ωx+ g1,ω(yω) ≤ b1,ω ∀ω ∈ Ω (2c)

x ∈ Xq, Xq =
{
x : xi ∈ {0, 1},∀i ∈ I1, x

lb
q ≤ x ≤ xubq

}
(2d)

yω ∈ Y ∀ω ∈ Ω, Y =
{
y : yj ∈ {0, 1},∀j ∈ J1, 0 ≤ y ≤ yub

}
(2e)

where xubq and xlbq are the upper and lower bounds for the first-stage decisions at node q, respectively.
The only difference between problem (Pq) and problem (P ) is that we have branched on the first
stage variables x. The domain of x at node q is represented by set Xq.

Before we go to the steps of the proposed decomposition algorithm, we define the subproblems
that are used in the proposed decomposition algorithm, i.e., the regular rectangles in Figure 1.
We have both Benders iterations and Lagrangean iterations, which are solved separately. We use
letter k to denote the Benders iteration number. We use letter l to denote the Lagrangean iteration
number. Note that the Benders iteration number is independent of the Lagrangean iteration
number, which will become clear when we describe the steps of the decomposition algorithm in
Algorithm 1.

Lagrangean subproblems
In order to define the Lagrangean subproblems, problem (Pq) is first reformulated as (PNACq)

by adding nonanticipativity constraints (NACs) in equation (3d).

(PNACq) min cTx+
∑
ω∈Ω

τωd
T
ωyω (3a)

A0xω ≥ b0, g0(xω) ≤ 0 (3b)

A1,ωxω + g1,ω(yω) ≤ b1,ω ∀ω ∈ Ω (3c)

xω1 = xω2, xω1 = xω3, · · · , xω1 = xω|Ω| (3d)

xω ∈ Xq, yω ∈ Y ∀ω ∈ Ω (3e)

TheNACs can be dualized by multiplying πl
ω to the constraints, xω1 = xω+1, ω = ω1, ω2, · · · , ω|Ω|−1.

The Lagrangean subproblem at iteration l of Lagrangean decomposition at node q is defined as
follows:

(SLl
ω)q : min zl,qSL,ω = τω(cTxω + dTωyω) + µl

ωxω (4a)

s.t. A0xω ≥ b0, g0(xω) ≤ 0 (4b)

A1,ωxω + g1,ω(yω) ≤ b1,ω (4c)

xω ∈ Xq (4d)

yω ∈ Y (4e)

where µl
ω1 =

ω|Ω|−1∑
ω=ω1

πl
ω, µl

ω+1 = −πl
ω, ω = ω1, ω2, · · · , ω|Ω|−1. In this paper, the Lagrangean multi-

pliers are updated using the subgradient method [31].
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Let z∗l,qSL,ω be the optimal objective value of the Lagrangean subproblem (SLl
ω)q.

∑
ω z
∗l,q
SL,ω yields

a lower bound of problem (Pq). Lagrangean cuts ηω ≥ z∗l,qSL,ω − µl
ωx can be added to the Benders

master problem after each Lagrangean iteration as proved by Ogbe and Li [30], Li and Grossmann
[20].

Let set L be the set of Lagrangean iteration numbers, i.e., we solve the Lagrangean subproblems
for |L| iterations. Note that the Lagrangean iterations are separate from the Benders iterations.
The only interaction between Lagrangean and Benders is that Lagrangean cuts are added to the
Benders master problem. We will not start the Benders iterations until the Lagrangean subprob-
lems are solved for |L| iterations.

Benders master problem
The Benders master problem at the kth Benders iteration at node q is defined as follows,

(MBk)q : min zk,qMB =
∑
ω

ηω (5a)

s.t. A0x ≥ b0, g0(x) ≤ 0 (5b)

ηω ≥ z∗l,qSL,ω − µ
l
ωx ∀ω ∈ Ω, l ∈ L (5c)

ηω ≥ z∗k
′,q

SB,ω + (λk
′

ω )T (x− x̃k′) + τωc
Tx ∀ω ∈ Ω, k′ < k (5d)

x ∈ Xq, ηω ∈ IR ∀ω ∈ Ω (5e)

where (5c) are Lagrangean cuts, (5d) are Benders cuts. Note that in each Benders iteration k, the
Lagrangean cuts are added for all Lagrangean iterations l ∈ L for all scenario ω. The Lagrangean
cuts are derived by solving the Lagrangean subproblems as described before. The Benders cuts
are added for all Benders iterations k′ < k all scenario ω ∈ Ω. The Benders cuts are derived by
solving the Benders subproblems, which will be described next.

Let z∗k,qMB be the optimal objective value of the Benders master problem. z∗k,qMB is a valid lower
bound of problem (Pq). Let x̃k be the optimal solution of problem (MBk)q.

Benders subproblems
As we have discussed in the introduction section, a valid Benders cut cannot be derived by

simply fixing x at x̃k and solve the rest of the subproblems because of the nonconvexities in stage
2. The nonconvexities in the second stage lies in the nonconvex functions g1,ω and the integrality
constraints on some of the yω variables. In order to derive Benders cuts, we need to have convex
relaxations for the second stage constraints. g1,ω(yω) can be relaxed by some convex function
g̃1,ω(yω, tω) where tω are the additional variables that are introduced for the convex relaxations.
Note that the variables tω can be mixed-binary. For example, we may relax a blinear term by its
piecewise McCormick envelope where both continuous and binary variables need to be introduced.
Without loss of generality, we assume that J2 is the index set where (tω)j, j ∈ J2 are the binary
variables in (tω). If (tω) are all continuous, set J2 is an empty set.

After g1,ω is convexified with g̃1,ω, the rest of the problem may still have integrality constraints,
i.e., a convex MINLP or an MILP. In order to have a continuous convex relaxation, one alternative is
to simply relax the integrality constraints. Another alternative is to use the convexification schemes
for convex MINLP/MILP subproblems. MILP subproblems can be convexified by parametric
cuttting planes such as Gomory mixed-integer cut [9], lift-and-project cut [8], RLT [37]. Convex
MINLP subproblems can be convexified by rank-one lift-and-project cuts [16, 20].

In this paper, only rank-one lift-and-project cuts for MILP subproblems are implemented.
Here, we assume that constraints g̃1,ω are linear. For lift-and-project cuts for convex nonlinear
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constraints, we refer the readers to [20]. To simplify notation, we denote the constraints A1,ωx +

g̃1,ω(yω, tω) ≤ b1,ω, 0 ≤ y ≤ yub, xlbq ≤ x ≤ xubq as Ãq

 x
yω
tω

 ≥ b̃q. Suppose x̃k is the optimal

solution of the Benders master problem at iteration k. ỹkω, t̃kω is the optimal solution of Benders
subproblem before adding the lift-and-project cuts generated at iteration k. If (ỹkω)j, j ∈ J1 is
fractional, rank-one lift-and-project cuts are generated by solving the following cut generating
linear program (CGLPj)

q [8].

(CGLPj)
q min αxx̃k + αyỹkω + αtt̃kω − β (6a)

α = uT Ãq − u0ej+n, α = vT Ãq + v0ej+n (6b)

β = uT b̃q, β = vT b̃q + v0 (6c)

uT e+ vT e+ u0 + v0 = 1 (6d)

u, v, u0, v0 ≥ 0 (6e)

Note that we can also generate lift-and-project cuts corresponding to the binary variables in tω.
We only need to change equation (6b) to

α = uT Ãq − u0ej+n+m, α = vT Ãq + v0ej+n+m (7)

to generate the rank-one cut corresponding to (tω)j, j ∈ J2. The newly generated cuts are then
added to the Benders subproblem (SBk

ω)q at iteration k for scenario ω defined as follows,

(SBk
ω)q : min zkSB,ω = τωd

Tyω (8a)

x = x̃k (8b)

A1,ωx+ g̃1,ω(yω, tω) ≤ b1,ω (8c)

αx
k′cx+ αy

k′cyω + αt
k′ctω ≥ βk′c ∀k′ ≤ k, c ∈ Ck′ (8d)

0 ≤ y ≤ yub (8e)

where (8d) are the cutting planes that are generated to convexify the subproblem. Set Ck′ repre-
sents the set of cuts that are generated at iteration k′. Note that we accumulate the cuts generated
in all iterations k′ ≤ k.

Upper bound procedure
There are multiple ways to obtain a feasible solution to the original problem. A simple way

would be fixing the first stage decisions and solve the upper bound subproblem (UBω) for each
scenario ω separately,

(UBω) : min zUB,ω = τωd
T
ωyω (9a)

s.t. g1,ω(yω) ≤ b1,ω − A1,ωx̃ (9b)

g2,ω(yω) ≤ b2,ω (9c)

yω ∈ Y (9d)

where the value of the first stage decisions is fixed at x̃. The choice of x̃ decides the upper bound
that is obtained from (UBω). Here we propose three heuristics to obtain a “good” x̃.
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• Let x̃ = x̃k, i.e., be the optimal solution that is obtained in the Benders master problem
(MBk)q at iteration k.

• Let x∗l,qω1 , x
∗l,q
ω2 , · · · , x

∗l,q
ω|Ω| be the optimal solution for the Lagrangean subproblems (SLl

ω)q at
iteration l. We define

x∗l,qavg =
∑

ω∈Ω τωx
∗l,q
ω

as the probability weighted average of the optimal first stage solutions over all scenarios.
Then we select scenario ω∗, such that

ω∗ = arg min
ω∈Ω

∑
i∈I

(
(x∗l,qavg )i−(x∗l,qω )i

(xub)i

)2

ω∗ is the scenario where the optimal solution x∗l,qω has the smallest distance with the weighted
average x∗lavg. Note that in calculating the distances all the first stage variables are scaled
by the distances of their original upper and lower bounds (the original lower bounds are
assumed to be zero in problem (P )). We can fix x̃ at x∗l,qω∗ and solve (UBω) to obtain a
feasible solution.

• Randomly select one scenario ω and fix the first stage decisions at the optimal value of the
Lagrangean subproblem corresponding to this scenario, i.e., x∗l,qω .

The steps of the decomposition algorithm to solve a single node
With the definitions of the subproblems, we outline the steps of the decomposition algorithm

to solve a single node q in Algorithm 1. The decomposition algorithm is defined as a solvenode(q)
function. First, Lagrangean subproblems (SLl

ω)q are solved for all Lagrangean iterations l ∈ L.
We add all the Lagrangaen cuts (5c) to the Benders master problem (MB1)q (the Benders master
problem in the first iteration at node q). Then we iteratively solve the Benders master problem
(MBk)q and the Benders subproblems (SBk

ω)q with cutting planes. After each Benders iteration, we
add Benders cuts (5d) to the Benders master problem. The proposed upper bound procedure can
be used to obtain feasible solutions based on the optimal solutions of the Lagrangean subproblems
or the Benders master problem. We can terminate if the node is solved to optimality. Otherwise,
the algorithm terminates by setting the maximum Lagrangean and Benders iterations to |L| and
|K|, respectively. The decomposition algorithm always returns an upper bound UBq and a lower
LBq at node q.

4.3 Branch and bound

If we apply the function solvenode(q) described in Algorithm 1 to the rootnode (problem (P )),
we cannot guarantee to solve it to global optimality because of the duality gap. That is why we
need to branch and bound on the first stage decisions as in Caroe and Schultz[11], Cao and Zavala
[10], Kannan and Barton [15]. The spatial branch and bound corresponds to the rounded rectangles
in Figure 1. Most importantly, we need to define the node selection rule and the branching rule
used in the branch and bound process. Let Γ be the set of active nodes.

Node selection rule
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Algorithm 1: Algorithm to solve a single node

1 Function solvenode(q)
/* Lagrangean iterations */

2 for l = 1, 2, · · · , L do
3 for ω = ω1, ω2, · · · , ω|Ω| do

4 Solve Lagrangean subproblems (SLl
ω)q. Let z∗l,qSL,ω be the optimal objective value

5 end

6 Update LBq = max(LBq,
∑

ω z
∗l,q
SL,ω).

7 Update UBq using the upper bound procedure.
8 if UBq − LBq ≤ ε then
9 return q

10 end
11 Update Lagrangean multipliers µl

ω with the subgradient method

12 end
13 Add Lagrangean cuts (5c) to Benders master problem (MB1)q.

/* Benders iterations */

14 for k = 1, 2, · · · , K do

15 Solve (MBk)q. Let z∗k,qMB be the optimal objective value of (MBk)q. Set LBq = z∗k,qMB

16 for ω = ω1, ω2, · · · , ω|Ω| do
17 Solve Benders subproblems (SBk

ω)q. Let y∗ω, t∗ω be the optimal value.
18 if there is fractional (y∗ω)j for j ∈ J1, (t∗ω)j for j ∈ J2 then
19 Generate cutting planes (8d) by solving (CGLPj)

q and add to (SBk
ω)q.

20 Solve (SBk
ω)q again with the newly generated cutting planes.

21 end
22 Generate Benders cuts (5d) and add to Benders master problem (MBk)q.

23 end
24 Update UBq with the upper bound procedure.
25 if UBq − LBq ≤ ε then
26 return q
27 end

28 end
29 return q.

30 end

9



Select node q such that q = arg min
q∈Γ

LBq.

After a node is selected, we branch on one of the first stage variables of this node. The branching
rules are defined according to the bounds of the first stage variables and the solutions obtained by
the proposed decomposition algorithm (Algorithm 1) at this node.

Branching rules
1. Select the first stage variable with the largest normalized relative diameter,

i∗ = arg max
i∈I

(xubq )i − (xlbq )i

(xubq0
)i − (xlbq0

)i
δi

q0 represent the root node. δi is a normalization factor for variable i. Two new nodes q1 and q2

are then created.

(xubqj )i = (xubq )i, (xlbqj)i = (xlbq )i j ∈ {1, 2}, i 6= i∗

(xlbq1
)i∗ = (xlbq )i∗ , (xubq1

)i∗ =
1

2

(
(xlbq )i∗ + (xubq )i∗

)

(xlbq2
)i∗ =

1

2

(
(xlbq )i∗ + (xubq )i∗

)
, (xubq2

)i∗ = (xubq )i∗ ,

where the domain of variable i∗ is bisected.
2. Let (x∗q, y

∗
qω1, y

∗
qω2, · · · , y∗qω|Ω|) be the best feasible solution found at node q. Then we select

variable i∗ where best feasible first stage variable has the largest normalized distance to its bounds,

i∗ = arg max
i∈I

min
{

(xubq )i − (x∗q)i, (x
∗
q)i − (xlbq )i

}
(xubq0

)i − (xlbq0
)i

δi

Two new nodes q1 and q2 are then created.

(xubqj )i = (xubq )i, (xlbqj)i = (xlbq )i j ∈ {1, 2}, i 6= i∗

(xlbq1
)i∗ = (xlbq )i∗ , (xubq1

)i∗ = (x∗q)i∗

(xlbq2
)i∗ = (x∗q)i∗ , (xubq2

)i∗ = (xubq )i∗ ,

where the domain of (x)i∗ is divided based on the best feasible solution found on node q.

3. Let xavgq be the weighted average of first stage decisions obtained from Lagrangean subproblems
in the iteration where the tightest lower bound can be found. Then we select variable i∗ such that

i∗ = arg max
i∈I

min
{

(xubq )i − (xavgq )i, (x
avg
q )i − (xlbq )i

}
(xubq0

)i − (xlbq0
)i

δi
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Similarly, two new nodes q1 and q2 are then created.

(xubqj )i = (xubq )i, (xlbqj)i = (xlbq )i j ∈ {1, 2}, i 6= i∗

(xlbq1
)i∗ = (xlbq )i∗ , (xubq1

)i∗ = (xavgq )i∗

(xlbq2
)i∗ = (xavgq )i∗ , (xubq2

)i∗ = (xubq )i∗ ,

With the node selection rule and the branching rules, we outline the steps of the proposed

Algorithm 2: Generalized-Benders decomposition-based branch and cut algorithm

/* Initialization */

1 Initialize UB = +∞, LB = −∞ Create root node q0. Set Xq0 = X. Set all the Lagrangean
multipliers µω to zero. solvenode(q0). Create a node list Γ = {q0}.

2 while Γ 6= ∅ do
3 Select node q such that q = arg min

q∈Γ
LBq.

4 Apply one of the proposed branching rules and create two child node of q, denoted as q1,
q2. Branching rule 1 should be applied at least once after a finite number of iterations.
Let Γ = Γ\{q}

5 solvenode(q1); solvenode(q2).
6 Let UB = minq∈Γ UBq, LB = minq∈Γ LBq.
7 for q ∈ Γ do
8 if UBq − LBq ≤ ε then
9 Γ = Γ\{q} /* Fathom by optimality */

10 end
11 if LBq − UB ≥ ε then
12 Γ = Γ\{q} /* Fathom by bound */

13 end

14 end

15 end

generalized-Benders decomposition-based branch and cut algorithm in Algorithm 2.
The steps of generalized-Benders decomposition-based branch and cut algorithm
At a high level, the proposed algorithm is performing spatial branch and bound search that

includes node selection and branching, node fathom. The steps of the spatial branch and bound
are described in Algorithm 2. The branch and bound algorithm selects node with the tightest
lower bound. Different branching rules described above can be applied. However, branching rule 1
must be applied at least once after a finite number of iterations to have the theoretical guarantee
of convergence, which will be discussed in detail in section 5. Each node in the branch and
bound process is solved with the generalized Benders decomposition-based algorithm described in
Algorithm 1. The flowchart of the algorithm is shown in Figure 1 where the rounded rectangles
describe the high-level spatial branch-and-bound algorithm (Algorithm 2); the regular rectangles
describe the decomposition algorithm that solves a single node (Algorithm 1).
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Remark 1. The Benders cuts and Lagrangean cuts in a parent node can be inherited by its child
nodes. The parametric cutting planes in the Benders subproblems of a parent node can also be
inherited by its child nodes. Therefore, the solution process of the child nodes can be warm-started
by inheriting those cuts.

Remark 2. After branching, the Lagrangean multipliers of a child node can be either initialized
to zero or initialized to the multipliers that give the tightest lower bound for its parent node.

5 Convergence of the proposed algorithm

Cao and Zavala [10] and Kannan and Barton [15] have proved the convergence of their algo-
rithms, both of which are Lagrangean decomposition-based branch and bound algorithm. Both
proofs rely on Chapter IV of Horst and Tuy [13]. Since we also have Lagrangean cuts in the Ben-
ders master problem, the lower bound that we can obtain at each node would be at least as tight
as Lagrangean decomposition as proved by Li and Grossmann (Proposition 2 of [20]). Therefore,
it would be straightforward to prove convergence based on previous work.

In order to make this paper self-contained, we briefly describe the convergence proof for our
proposed algorithm. We first define some notations for the branch and bound algorithm. D
represents the feasible region of the first stage decisions. D = {x|∃(x, yω1, yω2, · · · , yω|Ω|) feasible
for problem (P )}. Since we have assumed that the problem has relatively complete recourse, we
can let D = {x|A0x ≥ b0, g0(x) ≤ 0, x ∈ X}. The domain of the first stage decisions at node q is
defined as Xq in equation (2d). Xq0 is the domain of x at the root node. Xqp denotes the domain
of x of a node at level p of the tree. A path in the branch and bound tree from the rootnode to
one leaf node has one node in each level p of the tree, which can be represented as {Xqp}. qp+1 is a
child of qp and Xqp+1 ⊂ Xqp . δ(Xq) represents the diameter of Xq. δ(Xq) = ||xubq −xlbq ||∞. UBq and
LBq are upper and lower bound obtained at node q, respectively. In order to prove convergence,
we need to prove lim

q→∞
UBq = lim

q→∞
LBq = z∗.

Definition 1. A subdivision is called exhaustive if lim
p→∞

δ(Xqp) = 0, for all decreasing subsequences

Xqp generated by the subdivision (Definition IV.10 in [13]).

Lemma 1. The subdivision process of the proposed algorithm is exhaustive.

Proof. Since branching rule 1 is applied at least once after a finite number of iterations and the
bounds for each variable at the rootnode and the normalization factors δi are all finite, the variable
i with the largest diameter is divided by half once after a finite number of iterations. Therefore,
δ(Xqp) = ||xubqp − x

lb
qp||∞ is divided by half once after a finite number of iterations. lim

p→∞
δ(Xqp) = 0

(see Lemma 3.5.1 in [15]).

Definition 2. A selection operation is said to be bound improving if, after a finite number of steps,
at least one partition element where the actual lower bounding is attained is selected for further
partition. (Definition IV.6 in [13])

Lemma 2. The selection operation of the proposed algorithm is bound improving.

Proof. This is obvious from the node selection rule used by the proposed algorithm.
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Definition 3. The “deletion by infeasibility” rule throughout a branch and bound procedure is
called certain in the limit if, for every infinite decreasing sequence {Xqp} of successively refined
partition elements with limit X̄, we have X̄ ∩D 6= ∅. (Definition IV.8. in [13])

Lemma 3. Deletion by infeasibility is certain in the limit in the proposed algorithm.

Proof. Since branching rule 1 is applied at least once after a finite number of iterations in the
proposed branch and bound algorithm, any infinite decreasing sequence {Xqp} would converge to
a point x̄. We prove this by contradiction. Suppose x̄ 6∈ D. Since D is compact, there exist
r > 0, such that {x| ||x − x̄||2 ≤ r} ∩ D = ∅. Therefore, ∃p0, such that ∀p ≥ p0, Xqp ∩ D = ∅.
Xqp0

∩D = ∅, which means the sequence {Xqp} should have been fathomed at Xqp0
. We complete

the proof by contradiction. (Similar proof in Lemma 2 of [10])

Definition 4. A lower bounding operation is called strongly consistent if, at every iteration,
any undeleted partition set can be further refined and if any infinite decreasing sequence {Xqp}
successively refined partition elements contains a sub-sequence {Xqp′

} satisfying X̄ ∩ D 6= ∅,
lim
p→∞

LBqp = z∗(X̄ ∩D), where X̄ = ∩pXqp. (Definition IV.7. in [13])

Lemma 4. The proposed algorithm is strongly consistent.

Proof. Since the division is exhaustive, the sequence {Xqp} would converge to a singleton x̄. From

Lemma 3, x̄ ∈ D. Note that the lower bound LBqp is at least as tight as
∑

ω z
∗l,qp
SL,ω.

lim
p→∞

LBqp ≥ lim
p→∞

∑
ω∈Ω

z
∗l,qp
SL,ω =

∑
ω∈Ω

min τω(cT x̄ω + dTωyω) + µl
ωx̄ω

s.t. A1,ωx̄ω + g1,ω(yω) ≤ b1,ω, yω ∈ Y ∀ω ∈ Ω

= z∗(X̄ ∩D)

The last equality holds because the NACs are satisfied. Therefore, lim
p→∞

LBqp = z∗(X̄ ∩D)

Now we are ready to prove the convergence of the proposed algorithm.

Theorem 1. The propose algorithm is convergent, i.e., lim
q→∞

LBq = lim
q→∞

UBq = z∗.

Proof. Since we have proved that the subdivision process is exhaustive (Lemma 1), “deletion
by infeasibility” is certain in the limit (Lemma 3), and the lower bounding operation is strongly
consistent (Lemma 4), we have that the lower bounding operation is consistent according to Lemma
IV.5 in [13]. Since we have proved that the selection operation is bound improving, the branch
and bound procedure is convergent according to Theorem IV.3 in [13].

6 Implementation

The proposed algorithm is implemented as part of the PlasmoAlgorithms package in Julia
programming language. PlasmoAlgorithms is package for decomposition algorithms that use Plas-
moGraph [14] as input. PlasmoGraph is a graph based data structure based on JuMP/Julia. Each
node in a PlasmoGraph contains an optimization model written in JuMP. In this case, in order
to access our algorithm, the user only needs write the first and second stage problems in different
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nodes in PlasmoGraph and connect the first and second stage nodes with linking constraints. A
brief tutorial is provided in [1].

The default solver for the Lagrangean subproblems, upper bound subproblems, which are
MINLPs or NLPs, is BARON. The default solver for the MILP Benders master problem and the
LP Benders subproblems are CPLEX.

Rank-one lift-and-project cuts are implemented as the routine to convexify the MILP subprob-
lems after the nonconvex functions in stage 2 are replaced by their convex relaxations. Numerical
issues can occur if the rank-one cuts are not implemented properly especially for the problems that
are not scaled well. To avoid the numerical instability, we do not generate all the theoretically
valid cuts. We only generate a rank-one cut when the optimal solution of the binary variables in
solving the subproblems are between 0.01 and 0.99. A cut will not be added if the absolute value
of any coefficient in the optimal solution of α in (CGLPj)

q is nonzero but less than 10−6. A cut
will not be added if the any of the dual variables correspond to equation (6c) is less than 0.01.

7 Computational results

The proposed algorithm is tested with three problems of this category. A brief description and
the computational results for the three problems are described in the subsections below. In all
the three problems, we solve the deterministic equivalent of the stochastic programs with three
different global solvers, BARON [40], ANTIGONE [26], and SCIP [2]. All the problems are solved
using one processor of an Intel Xeon (2.67GHz) machine with 64 GB RAM. The computational
results of solving the deterministic equivalent are shown in Tables 1, 3, 5. We also use three
different decomposition algorithms to solve each problem shown in Tables 2, 4, and 6. GBD(with
cuts) + L represents the proposed algorithm where each node of the branch and bound tree is
solved by generalized Benders decomposition with Lagrangean cuts and Benders cuts coming from
the subproblems convexified by cutting planes. GBD+L is similar to the proposed algorithm but
cutting planes are not used to convexified the Benders subproblems. LD represents the Lagragean
decomposition-based branch and bound algorithm proposed by Carøe and Schultz [11]. The toler-
ance of the relative optimality gap is set to 0.1%. The walltime limit is set to 10, 000 seconds.

7.1 Stochastic pooling problem with contract selection

The stochastic pooling problem with contract selection is an extension of the stochastic pooling
problem studied by Li et al [21]. The first stage decisions are design decisions, which include the
selection and capacity of feeds and pools. Note that a binary variable is used to model whether
a feed or pool is selected or not. Continuous variables are used to represent the capacity of the
feeds and pools. The second stage decisions are mainly operating decisions including the mass
flow rates that are subject to product quality specifications. Moreover, we consider purchasing the
feeds with three different types of contracts, i.e., fixed price, discount after a certain amount, and
bulk discount [32]. A binary variable is used to model which contract to select for each feed. The
details of the mathematical formulation are described in Appendix 1.

The uncertainties in this problem include demands of the products, prices of the feeds, and
selling prices of the products. We assume that all the three uncertain parameters can have high,
medium, or low realizations. We create instances of stochastic programs with 3, 9, and 27, sce-
narios. In the 3-scenario problem, only the demands of the products are uncertain. In the 9
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scenario-problem, we consider the Cartesian product of the demands of the feeds and the prices of
the feeds. In the 27-scenario problem, the Cartesian product of all the three uncertain parameters
are considered.

This problem has 9 binary variables, 9 continuous variables, and 18 linear constraints in stage
1. There are 35 binary variables, 112 continuous variables, 116 linear constraints, 22 nonlinear
constraints in stage 2 per scenario. The nonlinear constraints correspond to the bilinear terms in
the pooling problem.

The computational results of the deterministic deterministic equivalent are shown in Table
1. While BARON and ANTIGONE can solve the problems with 3 and 9 scenarios to optimality
within the time limit, all the solvers fail to solve the problem with 27 scenarios to optimality within
the time limit.

Table 1. Walltime and relative optimality gap of solving the deterministic equivalent of the
stochastic pooling problem with 3, 9, 27, scenarios

#Scenarios 3 9 27

BARON 18.5.8 5/0.1% 3005/0.1% 104/8.7%
ANTIGONE 1.1 16/0.1% 251/0.1% 104/1.4%

SCIP 5.0 104/54.4% 104/100.0% 104/100.0%

Table 2. Walltime, relative optimality gap, and number of nodes by using different decomposition
algorithms to solve the stochastic pooling problem with 3, 9, 27, scenarios

#Scenarios 3 9 27

GBD(with cuts)+L 152/0.1%/1 502/0.1%/1 2113/0.1%/1
GBD+L 104/0.1%/381 104/0.8%/39 104/1.3%/7

LD 104/0.2%/363 104/7.1%/43 104/12.2%/9

We also apply the three decomposition algorithms, GBD(with cuts)+L, GBD+L, LD, to solve
this problem. The walltime, the relative optimality gap, and the number of nodes in the branch and
bound tree are shown in Table 2 separated by “/”. The proposed algorithm, GBD(with cuts)+L,
can solve all the problems to optimality at the root node within the time limit. GBD+L can
solve the 3 scenario problem with 381 nodes. However, for the problems with 9 and 27 scenarios,
GBD+L cannot close the gap but can provide solutions with reasonably good optimality gap,
namely 0.8% and 1.3%, respectively. LD runs out of time for all the problems. For the 3 scenario
problem, LD provides 0.2% gap by solving 363 nodes. For the 9 and 27 scenario problem, LD is
only able to solve 43 and 9 nodes, respectively, within the time limit. Therefore, the gaps are quite
large for LD in large problems.

7.2 Crude selection and refinery optimization under uncertainty

The crude selection and refinery optimization problem comes from the stochastic programming
library in GOSSIP (decomposition software for the Global Optimization of nonconvex two-Stage
Stochastic mixed-Integer nonlinear Programs) [15]. The problem was first proposed by Yang and
Barton [42]. In their model, crudes are purchased in certain predefined discrete amounts in the
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first stage. Kannan and Barton [15] extend this work by considering the purchased crudes as
‘semi-continuous’ variables i.e., the crude purchase quantity can either be zero if the decision
maker decides not to purchase that particular crude, or it must lie between some prespecified
lower and upper bounds. The second stage decisions correspond to the operating conditions of the
refinery, such as the mass flow rates and the split fractions. The decisions need to be subject to
mass balances, quality specifications, market demands, and capacity and supply restriction. The
uncertainties are in the crude oil qualities and yields. The nonlinearities in the model come from
the bilinear terms in the quality specifications in stage 2, which is similar to the formulation in a
pooling problem.

This problem has 10 binary variables, 10 continuous variables, and 21 linear constraints, in
stage 1. There are 142 continuous variables, 85 linear constraints, 26 nonlinear constraints in stage
2 per scenario.

The two-stage stochastic program for this problem is solved with 5, 10, 20, 40, and 120 scenarios.
The computational results of the deterministic equivalent are shown in Table 3. The deterministic
equivalent with less than 40 scenarios can be solved to optimality within the time limit with all the
solvers where ANTIGONE has the best performance. For the largest instance, the 120 scenario
problem, the solvers can obtain good gaps, i.e., 0.4% for SCIP.

Table 3. Walltime and relative optimality gap of solving the deterministic equivalent of the crude
selection and refinery optimization under uncertainty with 5,10,20,40,120 scenarios

#Scenarios 5 10 20 40 120

BARON 18.5.8 24/0.1% 5092/0.1% 104/0.4% 104/0.1% 104/0.9%
ANTIGONE 1.1 5/0.1% 26/0.1% 322/0.1% 104/0.1% 104/0.9%

SCIP 5.0 4/0.1% 60/0.1% 104/0.2% 104/0.1% 104/0.4%

Table 4. Walltime, relative optimality gap, and number of nodes by using different decomposition
algorithms to solve the crude selection and refinery optimization under uncertainty with 5, 10,
20, 40, 120 scenarios

#Scenarios 5 10 20 40 120

GBD(with cuts)+L 104/1.1%/13 104/0.9%/9 104/1.0%/5 104/0.9%/3 104/0.9%/1
GBD+L 104/1.8%/155 104/0.8%/85 104/1.1%/37 104/0.9%/17 104/0.9%/7

LD 104/11.7%/165 104/7.8%/81 104/16.2%/33 104/80.7%/17 104/145.3%/7

We also use the three decomposition algorithms to solve this problem. For GBD(with cuts)+L,
piecewise McCormick relaxations are used for the bilinear terms in stage 2. Binary variables are
introduced to describe piecewise McCormick relaxations, which are convexified by rank-one lift-
and-project cuts in the convexifed subproblems. The results are shown in Table 4. It turns out
that the decomposition algorithms are not competitive compared with solving the deterministic
equivalent directly with the solvers. The gaps remain to be around 1.0% for GBD(with cuts)+L
and GBD+L at the time limit. However, from this computational experiment, we can observe that
the gap of the proposed algorithm is smaller than LD, especially for the large instances where LD
can only solve relatively few nodes.
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7.3 Storage design for a multi-product plant under uncertainty

The storage design for a multi-product plant under uncertainty problem also comes from the
library in GOSSIP. The case study considers a chemical plant that uses a single reactor to produce
products and stores them in storage tanks. The stage 1 decisions are design decisions, i.e., the
product tank sizes. In stage 2, binary variables are used to represent the assignment of products to
campaigns. Continuous decisions include the production amount in each campaign, the duration
of the campaigns, etc. The uncertainties considered are the demands of the products. The details
can be found in Rebennack et al [34].

This problem has 3 continuous variables, and 1 nonlinear constraint, in stage 1. The nonlin-
earity corresponds to a univariate signomial term, which is used to calculate the tank investment
cost. There are 9 binary variables, 41 continuous variables, 85 linear constraints, 26 nonlinear
constraints in stage 2 per scenario. These nonlinear constraints come from the bilinear terms that
are used to calculate the variable inventory costs.

The deterministic equivalent of the stochastic programs is solved with 2, 3, 4, 5, 9, and 27
scenarios. From the results in Table 5, one can observe that BARON and SCIP can solve the small
problems to optimality within the time limit but fail to solve the problem to optimality with more
than 4 scenarios. On the other hand, ANTIGONE can solve the 9 and 27 scenario problem, but
fails to solve the small problems to optimality within the time limit.

Table 5. Walltime and relative optimality gap of solving the deterministic equivalent of the
storage design for a multi-product plant under uncertainty with 2,3,4,5,9,27 scenarios

#Scenarios 2 3 4 5 9 27

BARON 18.5.8 1117/0.1% 104/2.2% 104/7.0% 104/11.0% 104/13.0% 104/13.0%
ANTIGONE 1.1 104/2.8% 104/8.0% 104/11.0% 104/13.5% 3/0.1% 87/0.1%

SCIP 5.0 404/0.1% 7960/0.1% 104/1.0% 104/2.4% 104/4.6% 104/12.2%

Table 6. Walltime, relative optimality gap, and number of nodes by using different decomposition
algorithms to solve the storage design for a multi-product plant under uncertainty with
2,3,4,5,9,27 scenarios

#Scenarios 2 3 4 5 9 27

GBD(with cuts)+L 127/0.1%/47 239/0.1%/63 761/0.1%/141 365/0.1%/59 1250/0.1%/99 8681/0.1%/159
GBD+L 74/0.1%/47 277/0.1%/149 353/0.1%/141 188/0.1%/59 549/0.1%/99 4108/0.1%/159

LD 61/0.1%/47 214/0.1%/149 270/0.1%/141 152/0.1%/59 436/0.1%/99 3219/0.1%/165

Similarly, the three decomposition algorithms are used to solve this problem. The results are
shown in Table 6. All the decomposition algorithms can solve this problem to optimality within
the time limit. However, in this case LD performs better than GBD(with cuts)+L and GBD+L.
The results indicate that the Benders cuts are dominated by the Lagrangean cuts since in most
of the instances all the three algorithms have to solve same number of nodes in order to prove
optimality. Only in the case of 3 and 27 scenarios, GBD(with cuts)+L requires fewer nodes than
LD, which means that the Benders cuts with cutting planes can help to solve the problems.
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8 Conclusion

In this paper, we have proposed a generalized-Benders decomposition-based branch and cut
algorithm for two stage stochastic programs with nonconvex constraints and mixed-binary first
and second stage variables. We include both Lagrangean cuts and Benders cuts in the Benders
master problem. The convergence of the proposed algorithm relies on adding Lagrangean cuts to
the Benders master problem and performing a branch-and-bound search on the first stage variables,
which follows from the convergence proof of general branch and bound by Horst and Tuy [13]. The
Benders cuts are derived from the convexified subproblems where cutting planes can be added. Our
computational results show that adding cutting planes can potentially accelerate the convergence
of the branch-and-bound procedure, especially in the stochastic pooling problem with contract
selection. However, in the storage design for a multi-product plant under uncertainty problem,
adding rank-one lift-project-cut does not help the branch-and-bound procedure.

For the problems with tight Lagrangean relaxation, the corresponding Benders cuts derived
from the Benders subproblem convexified by cutting planes would be dominated by the Lagrangean
cuts (storage design problem in subsection 7.3). On the other hand, for the problems with weak
Lagrangean relaxation (stochastic pooling problem in subsection 7.1 , and crude selection problem
in subsection 7.2), adding Benders cuts may be able to close the duality gap significantly. Therefore,
in order to predict whether it is preferable to add cutting planes, heuristics need to be proposed
to decide cut generation.

While the proposed algorithm can solve the test cases to small optimality gaps, sovling stochas-
tic nonconvex MINLPs is still challenging. It would be desirable to come up with tighter convex
relaxations for the nonconvex terms in stage 2 in order to generate tight Benders cuts. Tighter
convex relaxations are in general more difficult to solve. For example, SDP+RLT relaxations [6] are
reported to be tight for problems with nonconvex quadratic constraints but are computationally
expensive. Therefore, there is a tradeoff between using tight convex relaxations and doing more
branching. We propose to have more computational studies in the future to learn the appropriate
convex relaxations based on the features of each problem to make the proposed algorithm more
efficient.

9 Appendix 1: Mathematical Formulation of Stochastic

Pooling Problem with Contract Selection

Sets
i=feeds
j=products
l=pools
p=qualities
c=contracts
ω=scenarios
TX=(i, l) pairs for which input to pool connection allowed
TY = (l, j) pairs for which pool to output connection allowed
TZ=(i, j) pairs for which input to output connection allowed

Parameters
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AU
i =maximum available flow

AL
i =minimum available flow

SU
l =maximum pool size
SL
l =minimum pool size
DU

j =maximum product demand
Cik=feed concentration
PU
jk=maximum allowable product concentration
PL
jk=minimum allowable product concentration
αl=fixed cost parameter for pools
βl=variable cost parameter for pools
δi=fixed cost for feed storage
ξi=variable cost for feed storage
τω=probability of scenario ω
ψc
iω=unit price for feed i under contract c in scenario ω
djω=product unit price in scenario ω
σc
i=minimum purchasable amount of feed i under contract c

First stage variables
binary variables:
λi=whether feed i exists
θl=whether pool l exists
continuous variables:
Sl=capacity of pool l
Ai=capacity of pool i
Second stage variables
binary variables:
uciω=whether contract c is selected in purchasing feed i in scenario ω
continuous variables:
yljω=flow from pool l to product j in scenario ω
zijω=flow of feed i to product j in scenario ω
qilω=proportion of flow from input i to pool l in scenario ω
CTiω=cost of purchasing feed i in scenario ω
CT c

iω=cost of purchasing feed i under contract c in scenario ω
Bc

iω=the amount of feed i purchased under contract c in scenario ω

We study pooling problem with purchase contracts under price uncertainty. The first stage
decisions include whether to install the feeds and pools, the capacity of the feeds and pools,
whether the feeds exist.

AL
i λi ≤ Ai ≤ AU

i λi ∀i (10)

SL
l θl ≤ Sl ≤ SU

l θl ∀l (11)

After the pools are installed, the uncertainties in the prices of the feeds and products are realized.
We need to decide the material flows just as in a standard pooling problem. Equations (12)-(20)
are the equations in the pq-formulation of the pooling problem.∑

l:(i,l)∈TX

∑
j:(l,j)∈TY

qilωyljω +
∑

j:(i,j)∈TZ

zijω ≤ Ai ∀i, ω (12)
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∑
j:(l,j)∈TY

yljω ≤ Sl ∀l, ω (13)

∑
l:(l,j)∈TY

yljω +
∑

i:(i,j)∈TZ

zijω ≤ DU
jω ∀j, ω (14)

∑
i:(i,l)∈TX

qilω = θl ∀i, ω (15)

PL
jk

( ∑
l:(l,j)∈TY

yljω +
∑

i:(i,j)∈TZ

zijω
)
≤

∑
l:(l,j)∈TY

∑
i:(i,l)∈TX

Cikqilωyljω +
∑

i:(i,j)∈TZ

Cikzijω

≤ PU
jk

( ∑
l:(l,j)∈TY

yljω +
∑

i:(i,j)∈TZ

zijω
)
∀j, k, ω

(16)

0 ≤ qilω ≤ λi ∀(i, l) ∈ TX , ω (17)

0 ≤ yljω ≤ min{Sl, D
U
j ,

∑
i:(i,l)∈TX

AU
i } ∀(l, j) ∈ TY (18)

0 ≤ zijω ≤ min{AU
i , D

U
j } ∀(i, j) ∈ TZ , ω (19)∑

i:(i,l)∈TX

qilωyljω = yljω ∀l, j, ω (20)

In this case study, we also consider different types of purchase contracts when the prices are
realized. The formulation of contracts is based Park et al. [32]. (21)-(24) decides that the total
amount of feed i purchased can come from exactly one contract.∑

l:(i,l)∈TX

∑
j:(l,j)∈TY

qilωyljω +
∑

j:(i,j)∈TZ

zijω =
∑
c

Bc
iω ∀i, ω (21)

AL
i u

c
iω ≤ Bc

iω ≤ AU
i u

c
iω ∀i, ω, c (22)

∑
c

uciω ≤ λi ∀i, ω (23)

CTiω =
∑
c

CT c
iω ∀i, ω (24)

(25) describes fixed price contract.

CT f
iω = ψf

iωB
f
iω ∀i, ω (25)

(26)-(31) describe discount after a certain amount contract.

CT d
iω = ψd1

iωB
d1
iω + ψd2

iωB
d2
iω ∀i, ω (26)

Bd
iω = Bd1

iω +Bd2
iω ∀i, ω (27)
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Bd1
iω = Bd11

iω +Bd12
iω ∀i, ω (28)

0 ≤ Bd11
iω ≤ σd

iωu
d1
iω ∀i, ω (29)

Bd12
iω = σd

iωu
d2
iω ∀i, ω (30)

0 ≤ Bd2
iω ≤ AU

i u
d2
iω ∀i, ω (31)

(32)-(37) describe bulk discount contract.

CT b
iω = ψb1

iωB
b1
iω + ψb2

iωB
b2
iω ∀i, ω (32)

Bb
iω = Bb1

iω +Bb2
iω ∀i, ω (33)

0 ≤ Bb1
iω ≤ σb

iωu
b1
iω ∀i, ω (34)

σb
iωu

b2
iω ≤ Bb2

iω ≤ AU
i u

b2
iω ∀i, ω (35)

ub1iω + ub2iω = ubiω ∀i, ω (36)

Because of the decisions on purchase contracts, there are binary variables in the second stage
decisions.

uciω, u
d1
iω, u

d2
iω, u

b1
iω, u

b2
iω ∈ {0, 1} (37)

The objective includes the fixed and variable cost of installing the pools and fixed cost of the
feeds, purchase of feeds, and sales of final products.

min
∑
l

(
αlθl+βlSl

)
+
∑
i

(
δiλi+ξiAi

)
+
∑
ω

τω

(∑
i

CTiω−
∑
j

dj
( ∑
l:(l,j)∈TY

yljω+
∑

i:(i,j)∈TZ

zijω
))

(38)
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