
Noname manuscript No.
(will be inserted by the editor)

A finite ε-convergence algorithm for two-stage
convex 0-1 mixed-integer nonlinear stochastic
programs with mixed-integer first and second stage
variables

Can Li · Ignacio E. Grossmann

Received: date / Accepted: date

Abstract In this paper, we propose a generalized Benders decomposition-
based branch and bound algorithm, GBDBAB, to solve two-stage convex 0-1
mixed-integer nonlinear stochastic programs with mixed-integer variables in
both first and second stage decisions. In order to construct the convex hull
of the MINLP subproblem for each scenario in closed-form, we first repre-
sent each MINLP subproblem as a generalized disjunctive program (GDP)
in conjunctive normal form (CNF). Second, we apply basic steps to convert
the CNF of the MINLP subproblem into disjunctive normal form (DNF) to
obtain the convex hull of the MINLP subproblem. We prove that GBD is
able to converge for the problems with pure binary variables given that the
convex hull of each subproblem is constructed in closed-form. However, for
problems with mixed-integer first and second stage variables, we propose an
algorithm, GBDBAB, where we may have to branch and bound on the con-
tinuous first stage variables to obtain the optimal solution. We prove that the
algorithm GBDBAB can converge to ε-optimality in a finite number of steps.
Since constructing the convex hull can be expensive, we propose a sequen-
tial convexification scheme that progressively applies basic steps to the CNF.
Computational results demonstrate the effectiveness of the algorithm.

Keywords Stochastic programming · Integer recourse · Generalized Benders
decomposition · Branch and bound

1 Introduction

Stochastic programming provides a mathematical framework to model decision-
making under uncertainty [4]. The uncertain parameters are usually repre-

Ignacio E. Grossmann
Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pitts-
burgh, PA 15213, USA
E-mail: grossmann@cmu.edu

2 Can Li, Ignacio E. Grossmann

sented by discrete probability distributions, which are assumed to be known
a priori. Different realizations of the uncertain parameters are represented by
the set of scenarios ω ∈ Ω, each of which has an associated probability τω.

Two-stage stochastic programming problem, a special case of stochastic
programming, can be computationally expensive when the number of sce-
narios becomes large. Therefore, decomposition algorithms, like (generalized)
Benders decomposition [15; 33] and Lagrangean decomposition [16], and pro-
gressive hedging [26] have been proposed to solve the two-stage stochastic pro-
grams by decomposing the fullspace problem into scenarios. However, for two-
stage mixed-integer stochastic programs with mixed-integer recourse, Benders
decomposition cannot be applied directly given the nonconvex nature of the
subproblems. Although Lagrangean decomposition [18] and progressive hedg-
ing [13; 36; 37] have been used to solve stochastic programs with mixed-integer
recourse, they are not guaranteed to obtain the optimal solution because of
the duality gap. Given that there are engineering applications that involve
mixed-integer second stage decisions, such as unit commitment problem [17]
and planning problems with discrete transportation costs [5], decomposition
algorithms that can deal with mixed-integer recourse are of interest.

In the past two decades, some advances have been made in the algorithms
to solve stochastic mixed-integer linear programs with (mixed) integer re-
course. Laporte and Louveaux [20] propose a Benders-like algorithm with opti-
mality cuts to solve two-stage stochastic programs with mixed-integer recourse
and pure binary first stage variables. Ahmed et al. [1] propose a branch-and-
bound algorithm for two-stage stochastic integer programs with mixed-integer
first stage variables and pure integer second stage variables. Carøe and Schultz
[8] propose a dual decomposition algorithm with branch-and-bound that is able
to close the duality gap of Lagrangean relaxation. In order to apply Benders
decomposition to solve the problems with mixed-integer recourse, decompo-
sition algorithms with convexification schemes, such as lift-and-project cuts
[1; 25; 29; 30], reformulation linearization technique (RLT) [31; 32], Gomory
cuts [14], have also been proposed. For a more comprehensive review of the
algorithmic advances in stochastic mixed-integer linear programs, we refer to
Küçükyavuz and Sen [19].

For mixed-integer nonlinear stochastic programs, relatively little work has
been done. Mijangos [24] proposes an algorithm based on Branch-and-Fix Co-
ordination method for convex problems with 0-1 mixed-integer variables in the
first stage and only continuous variables in the second stage. Atakan and Sen
[2] propose a progressive hedging-based branch-and-bound algorithm for con-
vex mixed-integer stochastic programs, which works well in the case of pure
binary first stage variables and continuous recourse. Li et al. [22] propose a
nonconvex generalized Benders decomposition (NGBD) algorithm for mixed-
integer nonlinear stochastic programs with pure binary first stage variables.

In this paper, we propose a GBD-based algorithm that can solve two-stage
convex 0-1 mixed-integer nonlinear stochastic programs with mixed-integer
first and second stage variables with finite ε-convergence. This work is inspired
by Sherali and Zhu [32] who propose a Benders decomposition algorithm to

Title Suppressed Due to Excessive Length 3

solve two-stage mixed-integer linear stochastic programs having mixed-integer
first and second stage variables. The authors use reformulation linearization
technique (RLT) to convexify the original MILP subproblems. In this paper,
we try to generalize the algorithm proposed by Sherali and Zhu [32] to convex
nonlinear problems. Due to recent advances in generalized disjunctive pro-
gramming (GDP), especially the work of Ruiz and Grossmann [27], we now
have a procedure to obtain the convex hull of the feasible region of a convex
MINLP. By applying the convexification scheme proposed in [27], we are able
to develop a GBD-based algorithm with finite ε-convergence.

2 Background

In this section, we provide some background on disjunctive convex program-
ming and basic steps [27], which are used to construct the convex hull of the
MINLP subproblem in closed-form.

A convex set C can be defined as C={x ∈ IRn|φ(x) ≤ 0}, where φ(x) :
IRn → IR1 is a convex function. Given a collection of sets such that Cj={x ∈
IRn|φj(x) ≤ 0}, j ∈ M , the union of the convex sets, which is an elementary
disjunctive set, is defined as:

H = ∪
j∈M

Cj = {x ∈ IRn| ∨
j∈M

φj(x) ≤ 0} (1)

and the intersection of convex sets can be expressed as:

P = ∩
j∈M

Cj = {x ∈ IRn| ∧
j∈M

φj(x) ≤ 0} (2)

A disjunctive set can be expressed in different forms. Two extreme cases are
the conjunctive normal form (CNF) and the disjunctive normal form (DNF).
The CNF is the intersection of some elementary disjunctive sets:

FCNF = ∩
i∈T

Hi (3)

where each Hi is an elementary disjunctive set. The DNF is the union of some
convex sets:

FDNF = ∪
i∈D

Pi (4)

where each set Pi is a convex set defined by convex functions φj , j ∈ Mi. Pi
can also be represented in a more succinct form Pi = {x ∈ IRn|gi(x) ≤ 0},
where gi(x): IRn → IRm.

A regular form (RF) between the CNF and DNF can be represented as:

FRF = ∩
k∈K

Sk (5)

where Sk = ∪i∈DkPi. Each Sk is called a conjunct, which is a disjunction over
some convex sets Pi, i ∈ Dk. Balas [3] proposes an operation called basic step,
which when applied to the regular form can reduce the number of conjuncts

4 Can Li, Ignacio E. Grossmann

by one in the linear case. The basic step is extended by Ruiz and Grossmann
[27] to convex nonlinear case. Here, we rewrite Theorem 2.1 in [27], which is an
extension of the theorem in Balas [3] to show how a CNF can be transformed
into a DNF.

Theorem 1 Let FRF be a disjunctive set in regular form. Then FRF can be
brought to DNF by |K| − 1 recursive applications of the following basic step
which preserves regularity:

For some r, s ∈ K, bring Sr ∩ Ss to DNF by replacing it with:
Srs =

⋃
i∈Dr,j∈Ds

(Pi ∩ Pj)

Theorem 1 will be used to construct the convex hull the MINLP subproblem
in our proposed algorithm.

3 Overview of basic ideas

The goal of this paper is to design a decomposition algorithm that has fi-
nite ε-convergence for two-stage convex 0-1 mixed-integer nonlinear stochastic
programs with mixed-integer first and second stage variables. While GBD can-
not be applied to problems with mixed-integer recourse directly, it has finite
ε-convergence for problems with convex constraints and continuous recourse
variables as proved by Geoffrion [15]. Therefore, we propose to construct the
convex hull for the integer-constrained subproblems by applying basic steps so
that GBD can be applied to solve the relaxed problem. However, the relaxed
problem is not equivalent to the original problem if we have mixed-integer first
stage variables. Therefore, we first prove that the relaxed problem is equiva-
lent to the original fullspace problem for the special case of pure binary first
stage variables. Based on the theoretical results of the problems with pure bi-
nary variables, we propose a GBD-based branch and bound algorithm for the
general problems with mixed-integer first and second stage variables where we
may branch on the continuous first stage variables. The details of the algorithm
are described in section 4.

However, constructing the convex hull by applying all the possible basic
steps for each subproblem can be expensive, especially when we have a large
number of binary variables in the second stage. Therefore, in section 5, we
describe a sequential convexification scheme, which is a more limited way for
convexifying the subproblem to avoid applying all the basic steps when certain
sufficient conditions are satisfied. Computational results of the proposed GB-
DBAB algorithm are shown in section 6 with one small illustrative example
and two process systems engineering applications.

4 GBD-based branch and bound algorithm

In this paper, we consider two-stage convex 0-1 mixed-integer nonlinear stochas-
tic programs with mixed-integer first and second stage variables. The problem

Title Suppressed Due to Excessive Length 5

is formally defined by (6)-(10).

(P) min cTx+
∑
ω∈Ω

τωd
T
ωyω (6)

A0x ≥ b0, g0(x) ≤ 0 (7)

A1,ωx+ g1,ω(yω) ≤ b1,ω ∀ω ∈ Ω (8)

x ∈ X, X =
{
x : xi ∈ {0, 1},∀i ∈ I1, 0 ≤ x ≤ xub

}
(9)

yω ∈ Y ∀ω ∈ Ω, Y =
{
y : yj ∈ {0, 1},∀j ∈ J1, 0 ≤ y ≤ yub

}
(10)

Here, x represents the first stage decisions. yω represents the second stage
decisions in scenario ω. g0, g1,ω, are smooth convex functions. Both the first
and the second stage decisions are mixed-integer. Let I = {1, 2, · · · , n} be the
index set of all the first stage variables. I1 ⊆ I is the subset for indices of
the binary first stage variables. Let J = {1, 2, · · · ,m} be the index set of all
the second stage variables. J1 ⊆ J is the subset for the indices of the binary
second stage variables. xub is a vector that represents the upper bound of all
the first stage variables. yub is a vector that represents the upper bound of all
the second stage variables. In this paper, we assume problem (P) has relatively
complete recourse, i.e., any solution x that satisfies the first stage constraints
has feasible recourse decisions in the second stage. The feasible region of (P)
is assumed to be compact.

As (P) has mixed-integer recourse, generalized Benders decomposition
(GBD) [15] cannot be applied to solve it directly as in the case of convex
continuous recourse. Therefore, we construct convex relaxations of (P) so that
GBD can be applied to solve the problem.

We first define the set,

Sω =
{

(x, yω|A1,ωx+ g1,ω(yω) ≤ b1,ω, yω ∈ Y, 0 ≤ x ≤ xub
}

(11)

where the second stage constraints and the upper and lower bound constraints
for the first stage decisions are included for each scenario ω. The fullspace
problem with (x, yω) in the convex hull of Sω for all ω ∈ Ω is defined as (PC):

(PC) min cTx+
∑
ω∈Ω

τωd
T
ωyω (12)

A0x ≥ b0, g0(x) ≤ 0 (13)

x ∈ X (14)

(x, yω) ∈ conv(Sω) ∀ω ∈ Ω (15)

Since the integrality constraints in the second stage are relaxed, (PC) is a
relaxation of (P). Specifically, conv(Sω) can be characterized by applying the
hierarchy of relaxations for nonlinear convex generalized disjunctive programs
proposed by Ruiz and Grossmann [27].

6 Can Li, Ignacio E. Grossmann

As a subset of the second stage variables yω are binary, i.e., (yω)j ∈ {0, 1},
∀j ∈ J1, the set Sω is equivalent to the disjunctions in (16).

A1,ωx+ g1,ω(yω) ≤ b1,ω
0 ≤ x ≤ xub
0 ≤ yω ≤ yub

(yω)j = 1

 ∨

A1,ωx+ g1,ω(yω) ≤ b1,ω

0 ≤ x ≤ xub
0 ≤ yω ≤ yub

(yω)j = 0

 ∀j ∈ J1 (16)

We represent (16) as S1
ωj ∪ S0

ωj , ∀j ∈ J1. (16) is a conjunctive normal form
(CNF) representation of Sω where Sω is represented as a conjunction over the
disjunctions, i.e., Sω = ∩j∈J1(S1

ωj ∪ S0
ωj). The hull relaxation of the CNF,

h− rel
(
∩j∈J1 (S1

ωj ∪ S0
ωj)
)
, is equivalent to ∩j∈J1conv(S1

ωj ∪ S0
ωj). We know

that ∩j∈J1conv(S1
ωj∪S0

ωj) ⊂ conv(∩j∈J1S1
ωj∪S0

ωj) = conv(Sω). Therefore, the
hull relaxation of the CNF is a relaxation of conv(Sω). In order to construct
conv(Sω), we apply the basic step proposed by Balas [3] to the CNF (16).
Based on the Theorem 1, the CNF can be converted to the following DNF
shown in (17),

∨r∈R

A1,ωx+ g1,ω(yω) ≤ b1,ω

0 ≤ x ≤ xub
0 ≤ yω ≤ yub

(yω)j = erj ∀j ∈ J1

 (17)

where R is the set that corresponds to all the possible combinations of the
binary variables (yω)j , ∀j ∈ J1. For each r ∈ R, erj can be either zero or one.
There are 2|J1| components in the set R. Ceria and Soares [9] proved that the
convex hull of the DNF (17) can be expressed as the projection of a higher
dimensional convex set where (x, yω) has to satisfy the following constraints:

x =
∑
r∈R

urω

yω =
∑
r∈R

vrω∑
r∈R

γrω = 1, 0 ≤ γrω ≤ 1, ∀r ∈ R

A1,ωu
r
ω + γrωg1,ω(vrω/γ

r
ω) ≤ b1,ωγrω, ∀r ∈ R

0 ≤ urω ≤ xubγrω, ∀r ∈ R
0 ≤ vrω ≤ yubγrω, ∀r ∈ R
(vω)j = erjγ

r
ω ∀j ∈ J1, r ∈ R

(18)

According to Ruiz and Grossmann [27], (x, yω) is in conv(Sω) if and only if
it satisfies the constraints in (18). Since the perspective function of g1,ω used
in (18) can give rise to numerical difficulties at γrω = 0, the approximation
proposed by Furman et al. [12] is used in our implementation,

γrωg1,ω(vrω/γ
r
ω) ≈

(
(1−κ)γrω+κ

)
g1,ω

(vrω
(1− κ)γrω + κ

)
−κg1,ω(0)(1−γrω) (19)

Title Suppressed Due to Excessive Length 7

where κ is a small number like 10−5. We should note that this approximation
is exact at γrω = 0 and γrω = 1. As we are able to construct conv(Sω) for all
ω ∈ Ω in closed-form, GBD can be applied to solve (PC) to ε-optimality.

We briefly describe how GBD can be used to solve (PC), the reader can
refer to Geoffrion [15] for details. The basic idea of GBD is to decompose (P)
into a Benders master problem which only contains first stage decisions and
Benders subproblems each of which only contains second stage decisions for a
given scenario.

We first define the Benders master problem (MBh) at iteration h of the
GBD algorithm. (22) are Benders cuts that are generated up until iteration h,
which are derived by solving the Benders subproblems (SBhω). Benders master
problem is a relaxation of (PC) projected on the x space. Therefore, a lower
bound of (PC) is obtained by solving the MINLP Benders master problem:

(MBh) : min zhMB =
∑
ω

ηω (20)

s.t. A0x ≥ b0, g0(x) ≤ 0 (21)

ηω ≥ z∗h
′

SB,ω + (λh
′

ω)T (x− x̃h
′
) + τωc

Tx ∀ω ∈ Ω, h′ ≤ h (22)

x ∈ X, ηω ∈ IR1, ∀ω ∈ Ω (23)

Assume that the solution to the Benders master problem at iteration h is x̃h,
x is fixed at x̃h in (PC). The rest of the problem can be decomposed into
Benders subproblems (SBhω).

(SBhω) : min zhSB,ω = τωd
T
ωyω (24)

s.t. x = x̃h (25)

(x, yω) ∈ conv(Sω) (26)

A Benders cut can be generated at iteration h:

ηω ≥ z∗hSB,ω + (λhω)T (x− x̃h) + τωc
Tx (27)

where λhω are the optimal dual multipliers for constraints (25), z∗hSB,ω is the

optimal objective value of (SBhω). A feasible solution to (PC) is obtained at
the optimal solution of the Benders subproblem. After solving the Benders
subproblems at iteration h, GBD will add the newly generated Benders cuts
to the Benders master problem and keep iterating between the Benders master
problem and the Benders subproblems until (PC) is solved to ε-optimality.

Although GBD can be applied to solve (PC), for the problem with both
binary and continuous first stage variables, Sherali and Zhu [32] showed that
in the MILP setting (PC) is not always equivalent to (P), since for fixed first
stage decision x̄, the extreme points of conv(Sω) ∩ {(x, y) : x = x̄} will not
always have binary values for yj , ∀j ∈ J1. As convex MINLP is a generalization
of MILP, it is straightforward to show that (PC) is not always equivalent to
(P).

8 Can Li, Ignacio E. Grossmann

However, it also shown in Sherali and Zhu [32] that in the MILP setting,
under the restriction of pure binary first stage variables, (PC) and (P) are
equivalent. Therefore, before we consider the proposed GBD-based algorithm
to solve problem (P) with both binary and continuous first stage variables, the
equivalence of (P) and the corresponding (PC) with pure binary first stage
variables is proved in Proposition 1. The convergence of the GBD-based algo-
rithm for the problem with mixed-integer first stage variables will be proved
later based on Proposition 1 and Corollary 1.

Proposition 1 Consider a special case of (P) where the first stage variables
are all binary. We assume that in the corresponding problem (PC), the convex
hull of Sω is expressed in the form of (18). Then (P) and (PC) are equivalent
in the sense that they have the same optimal objective value and the optimal
solution of (P) can always be obtained based on the optimal solution of (PC).

Proof Note that (PC) is a relaxation of (P). Hence the optimal objective
value of (PC) should be less than or equal to (P). Let (x∗, y∗ω1

, y∗ω2
, · · · , y∗ω|Ω|)

be the optimal solution of (PC). Now if we select any scenario ω, we have
(x∗, y∗ω) ∈ conv(Sω). For this scenario ω, we have x∗ =

∑
r∈R u

r∗
ω and y∗ω =∑

r∈R v
r∗
ω . As we have assumed that x are pure binary variables and we have

0 ≤ ur∗ω ≤ eγr∗ω , for any (x∗)i = 1, we must have (ur∗ω)i = γr∗ω , otherwise∑
r∈R(ur∗ω)i will not sum up to 1. For any (x∗)i = 0, (ur∗ω)i must be zero for

all r. Therefore, for all γr∗ω > 0, we have ur∗ω /γ
r∗
ω = x∗. Furthermore, for all

γr∗ω > 0, dT vr∗ω /γ
r∗
ω = dT y∗ω. Otherwise, there must exist r′ and r′′ such that

dT vr
′∗
ω /γr

′∗
ω > dT y∗ω and dT vr

′′∗
ω /γr

′′∗
ω < dT y∗ω. Then vr

′′∗
ω /γr

′′∗
ω satisfies all

the constraints of (PC) and leads to a lower objective value than y∗ω, which
contradicts with the fact that y∗ω is the optimal solution. Therefore, we can
select any γr∗ω > 0, and let yω = vr∗ω /γ

r∗
ω to construct a feasible solution that

yields the same cost in the objective as y∗ω. We can follow the same procedure
to construct the optimal solution of every scenario ω ∈ Ω. Note that the
solution that we construct satisfies all the constraints of (P) and yields the
same objective value as the optimal solution to (PC). In that sense, (PC) and
(P) are equivalent.

The following theorem can be proved based on Proposition 1.

Theorem 2 GBD can be applied to obtain the ε-optimal solution of problem
(P) with pure binary first stage variables by solving its relaxation (PC).

Proof As we have assumed that the feasible region of (P) is nonempty com-
pact and the problem has relatively complete recourse, conv(Sω) is nonempty
compact convex set for any fixed x, s.t. x ∈ X, A0x ≥ b0, g0(x) ≤ 0, for every
ω ∈ Ω. It follows directly from Theorem 2.5 of Geoffrion [15] that GBD has
finite ε-convergence when applied to solve (PC). It is proved in Proposition 1
that (P) and (PC) are equivalent for the problem with pure binary first stage
variables. Therefore, GBD can be applied to obtain the ε-optimal solution of
problem (P) with pure binary first stage variables by solving its relaxation
(PC).

Title Suppressed Due to Excessive Length 9

Now we go back to focus on the problem (P) with both binary and continuous
first stage variables. A corollary can be derived based on Proposition 1.

Corollary 1 For (PC) with both binary and continuous first stage variables,
if the optimal first stage variables x∗ to (PC) are all at their upper or lower
bound, i.e., (x∗)i = 0 or (x∗)i = (xub)i, ∀i ∈ I, then (PC) and its correspond-
ing (P) are equivalent in the sense that they have the same optimal objective
value.

Proof The proof is similar to the case where we have pure binary first stage
variables. As (x∗)i = 0 or (x∗)i = (xub)i, ∀i, we must have ur∗ω /γ

r
ω = x∗ for

all γr∗ω > 0. Therefore, we can construct a feasible solution to (P) by letting
yω = vr∗ω /γ

r∗
ω where γr∗ω > 0 for all ω ∈ Ω. The feasible solution yields the

same objective value as the optimal solution to (PC).

If the condition of Corollary 1 does not hold, the equivalence of (PC) and
(P) cannot be guaranteed as we have discussed. In order to understand why
(PC) and (P) are not equivalent in the general case, we can determine if the
proof of Proposition 1 still holds for the problem with mixed-integer first stage
variables. As we construct the convex hull of each scenario separately, if we
take ur∗ω /γ

r∗
ω for some γr∗ω > 0 for each scenario ω as we did in Proposition

1 and Corollary 1, it is possible that we fail to obtain a unique first stage
decisions for all the scenarios if some (x∗)i is not at its lower or upper bound.
The reason why this occurs is that for component i of x∗ such that (x)i does
not lie at its upper or lower bound, there may exist one scenario ω for which
we have (x∗)i =

∑
r∈R(ur∗ω)i but there exist r′, r′′ with γr

′∗
ω > 0, γr

′′∗
ω > 0,

(ur
′∗
ω /γr

′∗
ω)i < (x∗)i , (ur

′′∗
ω /γr

′′∗
ω)i > (x∗)i. As (ur∗ω /γ

r∗
ω)i, γ

r∗
ω > 0, is not

always equal to (x∗)i, the uniqueness of x obtained by taking ur∗ω /γ
r∗
ω for

some γr∗ω > 0 for each scenario ω cannot be guaranteed. However, if we branch
on the continuous first stage variables x, for example, by forcing (x)i ≥ x∗i at
a given branch-and-bound node and furthermore in the construction of convex
hull (urω)i ≥ (x)∗i γ

r
ω are added, the solution where (ur

′∗
ω /γr

′∗
ω)i < (x∗)i will be

cut off.
Inspired by the work of Sherali and Zhu [32], we propose a spatial branch-

and-bound algorithm where we branch on the continuous first stage vari-
ables. At each node q of the branch-and-bound tree. The following problem
(PCBABq) is solved,

(PCBABq) min cTx+
∑
ω∈Ω

τωd
T
ωyω (28)

A0x ≥ b0, g0(x) ≤ 0 (29)

xlbq ≤ x ≤ xubq (30)

x ∈ X (31)

(x, yω) ∈ conv(Sqω) (32)

Sqω =
{

(x, yω|A1,ωx+ g1,ω(yω) ≤ b1,ω, yω ∈ Y, xlbq ≤ x ≤ xubq
}

(33)

10 Can Li, Ignacio E. Grossmann

Note that the only difference between Sqω and Sω is that the first stage deci-
sions x is constrained in [xlbq , x

ub
q] in Sqω. As we assume that problem (P) has

relatively complete recourse, conv(Sqω) is a nonempty compact convex set for
any fixed x, s.t. x ∈ X, xlbq ≤ x ≤ xubq , A0x ≥ b0, g0(x) ≤ 0, for every ω ∈ Ω.
Therefore, at each node q of the branch-and-bound tree, GBD can be applied
to solve (PCBABq) to ε-optimality in the same way that we solve (PC). We
denote the optimal objective of (PCBABq) as v(PCBABq). The optimal so-
lution to (PCBABq) is (x∗q , y

∗
qω1

, y∗qω2
,· · · , y∗qω|Ω|). A heuristic algorithm can

be applied to find a feasible solution to problem (P), while x has to satisfy
the upper and lower bound constraints at node q.
Heuristic 1: Fix the first stage decisions at the optimal solution of (PCBABq),
x∗q . Solve the subproblems with integrality constraints in parallel with some
MINLP solvers, such as DICOPT [34], Pajarito [23], SBB [6], AlphaECP [38].
Note that we assume relatively complete recourse. Therefore, a feasible solution
to (P) can be obtained at node q, which is denoted as (xfq , yfqω1

,yfqω2
,· · · ,yfqω|Ω|).

We denote the objective of the feasible solution found at node q as V (PCBABq).
Note that v(PCBABq) and V (PCBABq) are valid lower and upper bounds
for the original problem (P), respectively, if the domain of x is restricted to
[xlbq , x

ub
q]. In the GBD-based branch and bound algorithm, if V (PCBABq) ≤

v(PCBABq) + ε, node q can be fathomed by optimality. We denote the global
lower bound as v, the global upper bound as V . If v(PCBABq) ≥ V , node q
is fathomed by bound. Otherwise, we select one component of the continuous
first stage variables to branch on. The following branching rule is used to select
one component of the continuous first stage variable to branch on.
Branching rule A:
At node q, calculate the distance of each component of the optimal continuous
first stage variables to its bounds at node q.

σi = min{(x∗q)i − (xlbq)i, (x
ub
q)i − (x∗q)i}, ∀i ∈ I\I1 (34)

The variable with maximum distance to its bounds is selected to branch on.

p = arg max
i∈I\I1

σi (35)

The node q is partitioned into two new nodes q1, q2. Constraints (xlbq)p ≤
(x)p ≤ (x∗q)p and (x∗q)p ≤ (x)p ≤ (xubq)p are added to node q1 and q2 respec-
tively.
The steps of the GBD-based branch-and-bound algorithm are outlined as fol-
lows.
Algorithm GBDBAB
Step 0: Initialization Step. Initialize the global upper bound V = +∞, the
global lower bound v = −∞, the iteration counter k = 1, the list of active
nodes Lk = {q0}. Set xlbq0 = 0, xubq0 = xub. Let ε ≥ 0 be a selected optimality

tolerance. Use GBD to solve the problem at the root node q0 to ε-optimality.
Let v = v(PCBABq0). Apply a heuristic algorithm like heuristic 1 to obtain

a feasible solution to (P) denoted as (xfq0 , y
f
q0). Let the objective value of the

Title Suppressed Due to Excessive Length 11

feasible solution at node q0 be Vq0 . Set V = Vq0 . If V ≤ v+ ε, stop. Otherwise,
go to step 1.
Step 1: Branching Step. Select the node q in the active node list with
the minimum lower bound v(PCBABq). Branch on first stage variable (x)p
according to the Branching rule A. Create two new nodes q1, q2 and add con-
straints (xlbq)p ≤ (x)p ≤ (x∗q)p and (x∗q)p ≤ (x)p ≤ (xubq)p to node q1 and q2
respectively. Let k = k + 1. Delete node q in Lk and add node q1, q2 to Lk.
Go to step 2.
Step 2: Bounding Step. Solve the two problems (PCBABq1) and (PCBABq2)
using generalized Benders decomposition to ε-optimality respectively. Update
the global lower bound v with v = minq∈Lkv(PCBABq). A heuristic algorithm
is applied to obtain feasible solutions at node q1 and q2 that yield objective
values of V (PCBABq1) and V (PCBABq2) respectively. Update the global
upper bound V if V (PCBABq1) ≤ V or V (PCBABq2) ≤ V . Go to Step 3.
Step 3: Fathoming Step. For the two new nodes qi, i = 1, 2, fathom the
node if V (PCBABqi) ≤ v(PCBABqi) + ε, i = 1, 2. Fathom any node q with
v(PCBABq) + ε ≥ V . If the node list Lk becomes empty, stop. Otherwise go
to step 1.

In order to prove the finite ε-convergence of our proposed GBDBAB algo-
rithm we make the following assumption.
Assumption 1
∀ε > 0, ∃δε > 0, such that for any node q with σi ≤ δε, ∀i ∈ I\I1, V (PCBABq)
≤ v(PCBABq) +ε, i.e., the node is fathomed by optimality if σi ≤ δε,
∀i ∈ I\I1. Here σi, ∀i ∈ I\I1, is defined in Branching rule A. V (PCBABq) is
obtained by heuristic 1.
As we have assumed that problem (P) is bounded, the change of the first stage
variables can only have finite change of value in the objective. As δε → 0, node
q can be fathomed by optimality based on Corollary 1. Therefore, Assumption
1 always holds for problems that are bounded.

Proposition 2 If Assumption 1 holds, the algorithm GBDBAB has finite ε-
convergence.

Proof First we prove that for a given node q and any continuous first stage
variables (x)i in node q that are constrained in the interval

[
(xlbq)i, (x

ub
q)i

]
where (xubq)i−(xlbq)i ≤ δε, variable i will not be branched on again if branching
rule A is used. Assuming that variable i is branched on again when branching
rule A is used, we have σi′ ≤ σi ≤ δε, ∀i′ ∈ I\{I1∪i}. However, by Assumption
1, any node q with σi ≤ δε, ∀i ∈ I\I1,is fathomed by optimality. We reach a
contradiction. Therefore, in the worst case, the domain of each continuous first
stage variable will be partitioned into intervals with length δε. There will be
a finite number of hyperrectangle partitions for the domain of the continuous
first stage variables [0, xub], i.e., a finite number of nodes in the branch-and-
bound tree. In each node, GBD can converge in a finite number of iterations

12 Can Li, Ignacio E. Grossmann

according to Geoffrion [15]. Thus, the algorithm GBDBAB is able to converge
to ε-optimum in a finite number of iterations.

Remark 1 Here, in order to prove the convergence of the algorithm, we as-
sume that the convex hull of Sqω is constructed by the hierarchy of relaxations
proposed by Ruiz and Grossmann [27]. If there are only a few binary vari-
ables in the second stage, the representation of the convex hull is tractable.
However, if the number of binary variables in the second stage is large, it
is computationally expensive to represent the convex hull since there can be
2|J1| disjuncts. Therefore, a more limited sequential convexification approach
should be applied, which will be discussed in section 5.

Remark 2 Note that at each branching step, the child nodes generated are
restrictions of their parent node. The Benders cuts in the master problem of
the parent node can by inherited by the child nodes, which will make the GBD
algorithm for the child node require fewer iterations to converge compared to
running it from scratch.

An illustrative example
The following problem is solved by GBDBAB as an illustrative example.

min x1+x2+3x3+3x4+
∑

ω=ω1,ω2

τω
(
y1ω−12y2ω+100y3ω+3y4ω−3y5ω

)
(36)

x1 ≤ 4x3, x2 ≤ 2x4, (37)

x1, x2 ≥ 0 x3, x4 ∈ {0, 1} (38)

y1ω ≤ x1, y2ω ≤ x2 ∀ω = ω1, ω2 (39)

(y1ω − 3)2 + (y2ω − 2)2 ≤ 1 + 16(1− y4ω) ∀ω = ω1, ω2 (40)

(y1ω − 1)2 + y22ω ≤ 1 + 16y4ω ∀ω = ω1, ω2 (41)

y21ω + (y2ω − 1)2 ≤ 1 + 16(1− y5ω) ∀ω = ω1, ω2 (42)

(y1ω − 4)2 + (y2ω − 1)2 ≤ 1 + 16y5ω ∀ω = ω1, ω2 (43)

y1ω + y2ω + y3ω ≥ dω ∀ω = ω1, ω2 (44)

y1ω, y2ω, y3ω ≥ 0, y4ω, y5ω ∈ {0, 1} ∀ω = ω1, ω2 (45)

where x1, x2, x3, x4 are the first stage variables, y1ω, y2ω, y3ω, y4ω, y5ω are the
second stage variables. Both the first and the second stage variables are mixed-
integer. τω1 = τω2 = 0.5. dω is the uncertain parameter. dω1 = 1.5, dω2 = 2.
Here we describe how this problem can be solved by GBDBAB. Recall that at
each node q of the branch and bound tree, GBD is applied to solve problem
(PCBABq).

For this problem, three nodes are visited in order to solve the problem to
a relative optimality gap within 0.1% (see Figure 1). At each node, the lower
bound v(PCBABq) is the lower bound obtained by the GBD algorithm, i.e.,
the objective value of the Benders master problem in the last iteration. The
upper bound V (PCBABq) is obtained by using Heuristic 1.

Title Suppressed Due to Excessive Length 13

v(PCBABq), V (PCBABq), the optimal solution at each node are shown
in Table 1. The Benders cuts that are generated at all the nodes are shown
in Tables 9-11 in Appendix 1. At the root node, 15 iterations are needed for
the GBD algorithm to converge. However, the relative optimality gap of the
global upper and lower bound that can be obtained at the root node is not
within 0.1%. Therefore, we select one continuous first stage variable to branch
on according to branching rule A. x1 is branched on and two new nodes 1
and 2 are created. GBD is applied to solve the problem at nodes 1 and 2,
respectively. Both nodes 1 and 2 inherit the Benders cuts of the root node
because the problems solved at this two nodes are restrictions of the root node
and the Benders cuts of the root node are still valid. As a result, only 3 and 2
iterations are needed for the GBD to converge at nodes 1 and 2, respectively
(see Tables 10, 11). The upper and the lower bounds of nodes 1 and 2 are
within 0.1% optimality gap. Nodes 1 and 2 can be fathomed by optimality
and GBDBAB terminates. An optimal value of -6.02080 is obtained.

However, if the hull relaxation of the CNF is used, which is a relaxation of
conv(Sqω), the lower bound that can be obtained at the root node is -12.5767.
The DNF yields a much tighter lower bound than the CNF at the root node,
which shows the impact of applying the basic step.

0

1 2

𝑥" ≥ 1.00000 𝑥" ≤ 1.00000

Fig. 1 Branch and bound tree for the illustrative example

Table 1 Optimal solution, upper and lower bound at each node of the BAB tree

Node v(PCBABq) V (PCBABq) x∗
1 x∗

2 x∗
3 x∗

4 Branching constraints

0 -6.04451 -5.98613 1.00000 1.03467 1 1 -
1 -6.02092 -6.02072 1.00005 1.00003 1 1 x1 ≥ 1.00000
2 -6.02082 -6.02080 1.00000 1.00000 1 1 x1 ≤ 1.00000

5 A sequential convexification scheme to solve (PCBABq)

In solving problem (PCBABq), we assume that the convex hulls of Sqω, ∀ω ∈ Ω
are constructed by applying the basic steps and converting each GDP from a
CNF to a DNF. However, the number of disjuncts can be large if we have a

14 Can Li, Ignacio E. Grossmann

large number of binary variables in the second stage decisions. The number
of variables that are needed to represent the convex hull grows exponentially
with the number of binary variables in the second stage decisions. Therefore,
we propose a sequential convexification scheme, which progressively applies
the basic steps to the CNF representation of Sqω. As we will see later, in some
cases, it is not necessary to convert the CNF to DNF by applying all the
basic steps. Namely, in some cases applying part of but not all the basic steps
is sufficient to solve (PCBABq). The partial application of all the possible
basic steps can be regarded as a sequential convexification scheme to solve
(PCBABq), which will be discussed next.

Similarly to (16), we define the disjunction that specifies the jth binary
variable as Sq1ωj ∪ S

q0
ωj , j ∈ J1. The CNF of Sqω can be denoted as ∩j∈J1(Sq1ωj ∪

Sq0ωj). In the sequential convexification scheme to solve (PCBABq), we start
with the hull relaxation of the CNF, and progressively apply basic steps to
construct tighter relaxations if the problem (PCBABq) is not solved.

Before we describe the details of the sequential convexification scheme, we
first define some notation. A partial application of basic steps to the CNF
∩j∈J1(Sq1ωj ∪ S

q0
ωj) can be represented as Sqω = ∩t∈T qω

(
∩j∈Dqωt (Sq1ωj ∪ S

q0
ωj)
)
,

where T qω is the set of conjuncts, Dq
ωt is the set of the indices of the binary

variables specified by conjunct t. Dq
ωt are disjoint sets and ∪t∈T qωD

q
ωt = J1, i.e.,

the value of each binary variable j ∈ J1 has to be specified in one and only
one of the conjuncts. For each t ∈ T qω, ∩j∈Dqωt(S

q1
ωj ∪ S

q0
ωj) can be represented

in DNF by applying the basic steps, ∩j∈Dqωt(S
q1
ωj ∪ S

q0
ωj) = ∪r∈RqωtS

q
ωtr. R

q
ωt is

the set of disjuncts for the DNF representation. In each Sqωtr, the values of all
(yω)j , j ∈ Dq

ωt, are specified to 0 or 1. Note that the dimension of Rqωt is 2|D
q
ωt|,

which corresponds to all possible combinations of the binary variables in Dq
ωt.

For the CNF, |T qω| = |J1| and |Dq
ωt| = 1. If we apply all the possible basic steps

to convert the CNF to the corresponding DNF, |T qω| = 1 and |Dq
ωt| = |J1|. The

hull relaxation of ∩t∈T qω (∪r∈RqωtS
q
ωtr) is given in (46)-(53),

x =
∑
r∈Rqωt

urωt, ∀t ∈ T qω (46)

yω =
∑
r∈Rqωt

vrωt, ∀t ∈ T qω (47)

∑
r∈Rqωt

γrωt = 1, ∀t ∈ T qω (48)

γrωt ≥ 0, ∀t ∈ T qω, r ∈ R
q
ωt (49)

A1,ωu
r
ωt + γrωtg1,ω(vrωt/γ

r
ωt) ≤ b1,ωγrωt, ∀t ∈ T qω, r ∈ R

q
ωt (50)

xlbq γ
r
ωt ≤ urωt ≤ xubq γrωt, ∀t ∈ T qω, r ∈ R

q
ωt (51)

0 ≤ vrωt ≤ yubγrωt, ∀t ∈ T qω, r ∈ R
q
ωt (52)

(vrωt)j = (erωt)jγ
r
ωt, ∀t ∈ T qω, r ∈ R

q
ωt, j ∈ D

q
ωt (53)

Title Suppressed Due to Excessive Length 15

Instead of solving (PCBABq) directly, we can solve a relaxation of (PCBABq)
where (x, yω) ∈ h−rel

(
∩t∈T qω (∪r∈RqωtS

q
ωtr)

)
. Problem (PCBABq) is solved in

iterations where the number of iteration is denoted by l. In the first iteration,
l = 1, the problem with (x, yω) ∈ h − rel(∩j∈J1(Sq1ωj ∪ S

q0
ωj), ∀ω ∈ Ω, is

solved. We denote the relaxation of (PCBABq) that is solved at iteration l
as (PCBABlq). The hull relaxation of ∩t∈T qω (∪r∈RqωtS

q
ωtr) at iteration l for

scenario ω is denoted as h− rel(Sqωl). (PCBABlq) is formally defined by (54)-
(57).

(PCBABlq) min cTx+
∑
ω∈Ω

τωd
T
ωyω (54)

A0x ≥ b0, g0(x) ≤ 0 (55)

xlbq ≤ x ≤ xubq (56)

(x, yω) ∈ h− rel(Sqωl), ∀ω ∈ Ω (57)

(PCBABlq) can be solved using GBD to ε-optimality in a finite number

of steps. The optimal value of (PCBABlq) is denoted as v(PCBABlq). The
optimal solution is denoted as (xq∗l , y

q∗
lω1
, yq∗lω2

, · · · , yq∗lω|Ω|). If we can prove

that (xq∗l , y
q∗
lω1
, yq∗lω2

, · · · , yq∗lω|Ω|) satisfies all the constraints of (PCBABq), then

(xq∗l , y
q∗
lω1
, yq∗lω2

, · · · , yq∗lω|Ω|) solves (PCBABq). More specifically, if (xq∗l , y
q∗
lω) ∈

conv(Sqω), ∀ω ∈ Ω, (xq∗l , y
q∗
lω1
, yq∗lω2

, · · · , yq∗lω|Ω|) solves (PCBABq).

However, deciding whether (xq∗l , y
q∗
lω) is in conv(Sqω) is not an easy problem

as we do not want to use the closed-form representation of conv(Sqω), since this
representation could be expensive when the number of second stage binary
variables is large. Here, we provide a quick way to prove (xq∗l , y

q∗
lω) ∈ conv(Sqω)

when some conditions are satisfied, which is only a sufficient condition for
(xq∗l , y

q∗
lω) to be in conv(Sqω). Note that it is easy to check if a point is in Sqω just

by checking if this point satisfies all the constraints that define Sqω. Therefore,
the basic idea of this procedure is that if we could find that (xq∗l , y

q∗
lω) can be

expressed as convex combination of some points that are in Sqω, then (xq∗l , y
q∗
lω)

is in conv(Sqω). More specifically, note that after we solve (PCBABlq), we also
obtain vr∗ωt, γ

r∗
ωt, ∀ω ∈ Ω, t ∈ T qω, r ∈ Rqωt, where yq∗lω =

∑
r∈Rqωt

vr∗ωt, ∀ω ∈ Ω,

t ∈ T qω. We can establish a sufficient condition on (xq∗l , y
q∗
lω) ∈ conv(Sqω) by

inspecting the values of vr∗ωt, γ
r∗
ωt in Proposition 3.

Proposition 3 For a given scenario ω, if ∃t′ ∈ T qω such that (vr∗ωt′/γ
r∗
ωt′)j,

∀r ∈ Rqωt′ , γ
r∗
ωt′ > 0, j ∈ J1, are 0 or 1, i.e., vr∗ωt′/γ

r∗
ωt′ satisfy the integrality

constraints in Sqω, we have (xq∗l , y
q∗
lω) ∈ conv(Sqω).

Proof By construction, (ur∗ωt′/γ
r∗
ωt′ ,v

r∗
ωt′/γ

r∗
ωt′), ∀r ∈ R

q
ωt′ , γ

r∗
ωt′ > 0 already satis-

fies the continuous constraints that define Sqω. Therefore, (ur∗ωt′/γ
r∗
ωt′ ,v

r∗
ωt′/γ

r∗
ωt′),

∀r ∈ Rqωt′ , γr∗ωt′ > 0 are in Sqω. (xq∗l , y
q∗
lω) can be expressed as convex combina-

tion of (ur∗ωt′/γ
r∗
ωt′ , v

r∗
ωt′/γ

r∗
ωt′), ∀r ∈ R

q
ωt′ , γ

r∗
ωt′ > 0, i.e., (xq∗l , y

q∗
lω) ∈ conv(Sqω).

16 Can Li, Ignacio E. Grossmann

Note that Proposition 3 is only a sufficient condition for (xq∗l , y
q∗
lω) ∈ conv(Sqω).

If we can prove that (xq∗l , y
q∗
lω) ∈ conv(Sqω), ∀ω ∈ Ω, (PCBABq) is solved. Oth-

erwise, for the scenarios where we cannot prove that (xq∗l , y
q∗
lω) ∈ conv(Sqω), we

apply basic steps by updating T qω, Dq
ωt to construct tighter relaxations until

we are able to prove (xq∗l , y
q∗
lω) ∈ conv(Sqω), ∀ω ∈ Ω. Here, we propose two

heuristics on how to apply the basic steps.
Heuristic A Note that in Proposition 3, in order to prove (xq∗l , y

q∗
lω) ∈ conv(Sqω)

we need to find one disjunction t′ such that (vr∗ωt′/γ
r∗
ωt′)j , ∀j ∈ J1, γr∗ωt′ > 0,

satisfy the integrality constraints. Therefore, in this heuristic, for a given sce-
nario ω and for each disjunction t ∈ T qω, we first identify the most fractional
(vr∗ωt/γ

r∗
ωt)j , ∀r ∈ R

q
ωt, γ

r∗
ωt > 0, j ∈ J1 and denote it as ft.

ft = max
r∈Rqωt,γr∗ωt>0,j∈J1

min{1− (vr∗ωt/γ
r∗
ωt)j , (v

r∗
ωt/γ

r∗
ωt)j} (58)

We also denote the index of the most fractional (vr∗ωt/γ
r∗
ωt)j as gt,

gt = arg max
j:r∈Rqωt,γr∗ωt>0,j∈J1

min{1− (vr∗ωt/γ
r∗
ωt)j , (v

r∗
ωt/γ

r∗
ωt)j} (59)

In the sufficient condition given by Proposition 3, we try to find disjunction t′

such that ft′ is close to zero, i.e., all the (vr∗ωt′/γ
r∗
ωt′)j , ∀j ∈ J1, γr∗ωt′ > 0 satisfy

the integrality constraints. Here, we slightly abuse notation and denote the
disjunction t with the least ft as t′,

t′ = arg min
t∈T qω

ft (60)

If ft′ is close to zero, we can prove (xq∗l , y
q∗
lω) ∈ conv(Sqω) by Proposition 3.

Otherwise, we apply a basic step between t′ and the disjunction that specifies
gt′ . The idea is to make the most fractional (vr∗ωt′/γ

r∗
ωt′)j in disjunction t′ satisfy

the integrality constraint in the next iteration.

Remark 3 For the problem with a large number of binary variables in the
second stage, the sequential convexification scheme could potentially reduce
the computational time by avoiding applying unnecessary basic steps. While
the sequential convexification scheme is less expensive than using the DNF
representation directly, solving (PCBABlq) in the first iteration with the CNF
representation can also be expensive. Therefore, one may start with the NLP
relaxation of Sq

0

ω and start using the CNF representation when the lower bound
cannot be improved by the NLP relaxation anymore. In fact, this strategy is
used when we solve the planning problem using GBDBAB with sequential
convexification scheme in section 6.

6 Computational results

In this section, computational results of three different problems are presented
to demonstrate the effectiveness of GBDBAB. The tolerance for the relative

Title Suppressed Due to Excessive Length 17

optimality gap for GBDBAB is set to 0.1%. The GBDBAB algorithm to solve
the three problems with increasing number of scenarios is implemented in
JuMP/Julia [11]. All the problems are solved on the 12 processors of an Intel
Xeon (2.67GHz) machine with 64 GB RAM. Depending on the computational
efficiency on different problems, different NLP solvers including Knitro [7], and
IPOPT [35] are used to solve the NLP subproblems in parallel. The choice of
NLP solvers for each problem are discussed in detail in the subsequent subsec-
tions. CPLEX [10] is used to solve the MILP master problems. The correspond-
ing deterministic equivalent formulations (DEFs) are implemented in GAMS
and solved using convex MINLP solvers including DICOPT, AlphaECP, and
SBB.

6.1 Computational results of the illustrative example with quadratic
constraints

In section 4, an illustrative example with 2 scenarios is solved using GBDBAB.
The convex nonlinear constraints in the model are all quadratic as shown in
(40)-(44). dω is the only uncertain parameter in the problem. In this section,
we generate stochastic convex MINLP problems with increasing number of
scenarios by uniformly sampling dω in the interval [0, 3]. We assume that all
the scenarios are of equal probability. The time limit for all DEFs of this
small problem is set to 10,000 secs. The sizes of the DEFs, the total running
time and the relative optimality gap of each solver are shown in Table 2.
Although AlphaECP and DICOPT are able to solve the 20-scenario problem
to optimality within 10 secs, the computational time increases dramatically
with the increase in the number of scenarios. For instance, for the DEF with
300 scenarios, neither SBB nor DICOPT is able to obtain the optimal solution
within the time limit. AlphaECP solves the problem in 917 secs.

Table 2 Computational statistics of the DEFs of the illustrative problem

Scenarios Linear Nonlinear Binary Continuous SBB AlphaECP DICOPT
Constr Constr Var Var sec(gap) sec(gap) sec(gap)

20 62 80 42 62 Timed out(7%) 9 2
60 182 240 122 182 Timed out(234%) 60 10
150 452 600 302 452 Timed out(245%) 254 685
300 902 1200 602 902 Timed out(247%) 917 Timed out(9%)

GBDBAB is also implemented to solve this illustrative problem. Since there
are only two binary variables in the second stage, conv(Sqω) can be constructed
easily with the DNF representation. The NLP subproblems are solved using
IPOPT in parallel. The upper bound at each node is obtained by applying
Heuristic 1 where the upper bound subproblems are solved using Pajarito.
The total wall time, the wall time corresponding to solving the master prob-
lems, subproblems and upper bound subproblems, and the number of nodes

18 Can Li, Ignacio E. Grossmann

visited are shown in Table 3. In all the cases, only three nodes are visited in
order to solve the problems to optimality due to the tight relaxations given
by the DNF representation. It is easy to observe that the wall time for solving
the subproblems is the most significant part of the total wall time. For the
problems with 150 and 300 scenarios, GBDBAB performs better than using
the solvers to solve the DEFs.

Table 3 Computational statistics of solving the illustrative problem using GBDBAB

Scenarios Time (s) Master (s) Subproblem (s) UB subproblem (s) Nodes

20 80 3 59 10 3
60 76 3 58 5 3
150 111 10 81 9 3
300 121 11 81 11 3

6.2 Computational results of the constrained layout problem

The constrained layout problem under price uncertainty described in Appendix
2 is tested with 3 rectangles and 2 areas. Since the model is formulated as a
GDP, the DEFs of the model are converted to MINLP with the big-M and the
hull reformulation respectively. The time limit is set to 10,000 secs. The sizes
of the DEFs with the big-M and the hull reformulation are shown in Table
4 and Table 5 respectively. Although all the solvers can solve the DEFs with
3 and 9 scenarios within the time limit, they all fail to obtain the optimal
solution for the problems with 36 and 100 scenarios.

Table 4 Computational statistics of the big-M reformulation of the constrained layout
problem

Scenarios Linear Nonlinear Binary Continuous SBB AlphaECP DICOPT
Constr Constr Var Var sec(gap) sec(gap) sec(gap)

3 54 72 30 36 14 120 3
9 108 216 66 84 4142 1478 43
36 351 864 228 300 Timed out(94%) Timed out∗ Timed out(84%)
100 927 2400 612 812 Timed out(98%) Timed out∗ Timed out(97%)

GBDBAB is also implemented to solve the constrained layout problems
with increasing number of scenarios. In order to obtain conv(Sqω), constraint
(64) and the constraints setting the upper and lower bound of all the variables
are added to each disjunct shown in (65). We further apply basic steps to
convert the CNF to DNF and reformulate the DNF with hull relaxation, which
gives us conv(Sqω). The NLP subproblems are solved using IPOPT in parallel.

∗No feasible solution found in 10,000 secs time limit.

Title Suppressed Due to Excessive Length 19

Table 5 Computational statistics of the hull reformulation of the constrained layout prob-
lem

Scenarios Linear Nonlinear Binary Continuous SBB AlphaECP DICOPT
Constr Constr Var Var sec(gap) sec(gap) sec(gap)

3 360 72 30 180 38 32 6
9 702 216 66 372 5626 638 49
36 2241 864 228 1236 Timed out(52%) Timed out (46%) Timed out∗

100 5889 2400 612 3284 Timed out(82%) Timed out (67%) Timed out∗

The statistics of GBDBAB to solve these problems are shown in Table 6.
For the problems with 3, 36, and 100 scenarios, optimality is proved at the
root node. For the problem with 9 scenarios, 3 nodes are visited in order to
prove optimality. Most of the computational time is still in solving the NLP
subproblems.

Table 6 Computational statistics of solving the constrained layout problem with GBDBAB

Scenarios Time (s) Master (s) Subproblem (s) UB subproblem (s) Nodes

3 137 40 63 8 1
9 276 65 17 17 3
36 444 117 277 20 1
100 537 85 363 39 1

6.3 Computational results of the planning problem

The planning problem reported in Li and Grossmann [21] is tested with 2
suppliers, 2 plants, 2 customers, and the number of scenarios from 3 to 81.
The time limit for solving the DEFs is set to 50,000 secs. For the 81-scenario
problem, none of the solvers is able to obtain the optimal solution within the
time limit.

Table 7 Computational statistics of the DEFs of the planning problem

Scenarios Linear Nonlinear Binary Continuous AlphaECP SBB DICOPT
Constr Constr Var Var sec(gap) sec(gap) sec(gap)

3 332 12 32 338 6 49 3
9 980 36 80 998 81 Timed out(2%) 9
27 2,924 108 224 2,978 3530 Timed out(19%) 96
81 8,756 324 656 8,918 Timed out(2%) Timed out(40%) Timed out(0.2%)

GBDBAB is also applied to solve the planning problem. The NLP sub-
problems are solved with Knitro in this case since it behaves best for this
problem among the NLP solvers available in JuMP. GBDBAB is able to solve
all the planning problems at the root node. Sequential convexification scheme

20 Can Li, Ignacio E. Grossmann

with Heuristic A is applied and the maximum and the minimum number of
basic steps that are applied in all the scenarios are shown in the last column
of Table 8. In each of the four cases, the number of basic steps needed varies
for different scenarios. For some of the scenarios, we are able to prove the
solution (x, yω) is in conv(Sq

0

ω) by Proposition 3 and therefore no more basic
steps need to be applied. The computational statistics of GBDBAB are shown
in Table 8. The problems with increasing number of scenarios can all be solved
to optimality by GBDBAB within 10,000 secs.

Table 8 Computational statistics of solving the planning problem using GBDBAB

Scenarios Time (s) Master (s) Subproblem (s) UB subproblem (s) Basic step (max, min)

3 705 59 491 16 (7,2)
9 1,221 92 861 23 (5,1)
27 1,859 216 1,403 17 (0,0)
81 7,994 1,534 5,091 83 (1,0)

Remark 4 The computational results in this section demonstrate that GB-
DBAB can outperform the convex MINLP solvers in solving the DEFs with a
large number of scenarios. However, for the first small problem and the plan-
ning problem, some of the solvers can obtain solutions to the DEFs with small
optimality gaps. The effect of using GBDBAB is most significant for the con-
strained layout problem. First of all, it is relatively easy to construct the convex
hull of each subproblem as there are only 3 disjunctions in each subproblem.
Second, since this problem is highly nonlinear, it would take solvers that use
linearization strategies like DICOPT and AlphaECP many iterations to con-
verge. Third, the constrained layout problem also has poor NLP relaxation.
Solvers that are sensitive to the quality of NLP relaxation of the original prob-
lem like SBB would need more iterations to converge. Therefore, GBDBAB is
most effective in solving highly nonlinear problems with poor relaxations but
with small number of binary variables in the second stage decisions.

7 Conclusion

In this paper, a generalized Benders decomposition-based branch-and-bound
algorithm, GBDBAB, is proposed to solve two-stage convex mixed integer
nonlinear stochastic programs with mixed-integer variables in both first and
second stage decisions. In order to obtain the convex hull of the mixed-integer
nonlinear subproblems in closed-form, each subproblem is first represented
in conjunctive normal form (CNF), and we apply basic steps to transform
CNF to disjunctive normal form (DNF). The convex hull of each subproblem
can be represented by the hull relaxation of the DNF. For the problems with
pure binary first stage variables, we are able to prove that GBD has finite

Title Suppressed Due to Excessive Length 21

ε-convergence if the convex hull of each subproblem is constructed in closed-
form. For the problems with mixed-integer first stage variables, we also prove
that in order to have finite ε-convergence, we may need to branch on the first
stage continuous variables. A sequential convexification scheme is proposed
to adaptively apply basic steps for the subproblems with a large number of
binary variables.

Three problems with increasing number of scenarios are solved with GB-
DBAB to within 0.1% optimality gap. Convex MINLP solvers including SBB,
AlphaECP, and DICOPT are used to solve the corresponding DEFs to bench-
mark the proposed algorithm. It is shown that the proposed algorithm outper-
forms the solvers for the problems with a large number of scenarios. Especially,
the algorithm is preferable for highly nonlinear problems with poor relaxations
but with small number of binary variables in the second stage decisions like
the constrained layout problem.

Acknowledgements The authors gratefully acknowledge financial support from the Cen-
ter of Advanced Process Decion-making at Carnegie Mellon University and from the De-
partment of Energy as part of the IDAES Project.

8 Appendix 1: Benders cuts for the illustrative example

The Benders cuts that are generated in each node of the branch-and-bound
tree for the illustrative example in section 4 are shown in Tables 9-11.

9 Appendix 2: Constrained layout problem under price uncertainty

The constrained layout problem is adapted from the PhD thesis of Sawaya [28].
In this problem, we need to decide the layout of some units represented by
rectangles with known lengths and widths. The units have to be manufactured
before we install them at certain locations. In the manufacturing process, we
need to provide the relative position of the units in order to produce the pipes
that connect those units. The first stage decisions include the designed relative
position of the units. After the units are manufactured, they can be installed
at several locations. In order to install some unit(s) at a given location, we
need to purchase a circled area around the center of that location. The rect-
angle(s) installed at that location has to be constrained within the circle that
is purchased. The price of each area is uncertain and the designed units are
installed according to the prices.

The sets, parameters, and variables that are used in the model is defined
as follows:
Sets
i ∈ N = rectangles (units)
q ∈ Q = areas
ω ∈ Ω = scenarios

22 Can Li, Ignacio E. Grossmann
T
a
b
le

9
B

en
d

er
s

cu
ts

th
a
t

a
re

g
en

er
a
te

d
a
t

th
e

ro
o
t

n
o
d

e

It
e
ra

ti
o
n

B
e
n
d
e
rs

c
u
ts

fo
r
ω

1
B
e
n
d
e
rs

c
u
ts

fo
r
ω

2

1
η
ω
1
≥
−
2
1
8
.5
3
6
x
1
−

1
.4
4
E

+
0
2
x
2
−

1
6
.1
1
3
5
x
3
−

1
6
.1
1
3
5
x
4
+

7
3
.5

η
ω
2
≥
−
2
4
4
.5
x
1
−

1
.6
0
E

+
0
2
x
2
−

1
8
.0
1
7
9
x
3
−

1
8
.0
1
7
9
x
4
+

9
8
.5

2
η
ω
1
≥

4
.9
7
E
−

0
1
x
1
−

3
.6
7
E

+
0
4
x
2
+

3
7
9
0
.0
8
x
3
−

3
7
8
2
.6
x
4
−

3
7
1
5
.1
6

η
ω
2
≥

0
.4
9
6
4
6
4
x
1
−

3
.1
5
E

+
0
4
x
2
+

3
2
4
5
.5
9
x
3
−

3
2
3
7
.4
8
x
4
−

3
1
4
5
.6
9

3
η
ω
1
≥
−
7
.0
1
E

+
0
4
x
1
+

0
.4
9
6
0
4
x
2
−

1
4
3
2
6
.1
x
3
+

1
4
6
7
2
.1
x
4
−

1
4
5
9
7
.2

η
ω
2
≥
−
1
.3
1
E

+
0
5
x
1
+

0
.4
9
5
9
7
7
x
2
−

1
4
5
5
4
.5
x
3
+

1
3
9
9
5
.4
x
4
−

1
3
8
9
5
.5

4
η
ω
1
≥

4
.9
6
E
−

0
1
x
1
−

3
3
7
3
8
.8
x
2
+

3
5
2
6
.1
5
x
3
+

3
5
2
5
.6
2
x
4
−

6
9
7
5
.3
7

η
ω
2
≥

4
.9
9
E
−

0
1
x
1
−

4
2
3
9
0
.2
x
2
+

9
5
3
8
.8
7
x
3
+

9
5
3
7
.9
8
x
4
−

1
8
9
7
5
.4

5
η
ω
1
≥

0
.4
9
9
9
9
2
x
1
−

5
4
1
.8
3
7
x
2
+

6
2
.1
8
3
8
x
3
+

6
2
.2
3
2
4
x
4
−

5
0
.4
2
9
3

η
ω
2
≥

0
.4
9
9
9
9
9
x
1
−

5
4
1
.8
4
3
x
2
+

1
0
5
.1
7
8
x
3
+

1
1
1
.6
0
3
x
4
−

1
1
7
.7
9
4

6
η
ω
1
≥
−
4
9
x
1
−

5
5
.5
x
2
+

9
.5
2
5
2
9
x
3
+

9
.5
1
9
6
2
x
4
+

5
7
.4
5
5
1

η
ω
2
≥
−
4
9
x
1
−

5
5
.5
x
2
+

8
.3
3
9
6
8
x
3
+

1
2
.4
3
3
1
x
4
+

8
0
.7
2
7
3

7
η
ω
1
≥

1
.7
2
E
−

0
5
x
1
+

7
.7
9
8
3
3
x
2
+

1
0
.0
5
9
2
x
3
+

1
0
.0
9
0
2
x
4
−

3
8
.3
2
8
9

η
ω
2
≥
−
0
.0
2
9
1
9
3
5
x
1
+

2
.3
7
2
1
3
x
2
+

4
.4
2
7
8
2
x
3
+

4
.4
7
5
1
6
x
4
−

1
6
.1
1
8
1

8
η
ω
1
≥

0
.5
x
1
−

1
2
2
.1
7
3
x
2
+

2
7
.6
6
3
1
x
3
+

2
2
.5
4
8
1
x
4
+

9
.9
2
2
0
4

η
ω
2
≥

0
.5
x
1
−

1
2
2
.1
7
3
x
2
+

2
2
.0
6
8
1
x
3
+

1
3
.3
0
5
5
x
4
+

4
9
.7
5
9
4

9
η
ω
1
≥

0
.5
x
1
−

6
x
2
+

3
.0
0
2
5
9
x
3
+

2
.9
9
2
4
5
x
4
−

3
.7
4
5
0
5

η
ω
2
≥

0
.5
x
1
−

6
8
.4
3
5
3
x
2
+

1
5
.7
2
3
6
x
3
+

1
5
.6
9
3
2
x
4
+

3
1
.8
5
5
9

1
0

η
ω
1
≥
−
8
.5
8
E

+
0
1
x
1
+

0
.5
x
2
+

1
1
.6
4
9
9
x
3
+

1
1
.8
3
5
6
x
4
+

2
2
.7
9
8
1

η
ω
2
≥
−
8
5
.7
8
4
2
x
1
+

0
.5
x
2
+

1
1
.6
1
7
7
x
3
+

1
4
.9
9
3
9
x
4
+

4
4
.6
7
2

1
1

η
ω
1
≥

1
.6
9
E
−

0
5
x
1
+

0
.5
x
2
+

3
.9
4
8
0
7
x
3
+

3
.9
5
0
6
3
x
4
−

1
1
.4
8
1
5

η
ω
2
≥
−
5
5
.6
3
3
7
x
1
+

0
.5
x
2
+

1
0
.0
3
7
4
x
3
+

8
.6
4
2
3
6
x
4
+

3
3
.0
6
2
4

1
2

η
ω
1
≥

0
.5
x
1
−

0
.9
9
9
9
6
3
x
2
+

3
.6
1
1
4
6
x
3
+

3
.5
8
6
0
4
x
4
−

9
.7
2
5
2
7

η
ω
2
≥

0
.5
x
1
−

1
.0
2
8
0
8
x
2
+

3
.4
2
6
4
6
x
3
+

3
.4
2
6
6
x
4
−

9
.3
2
5
0
3

1
3

η
ω
1
≥

1
.7
1
E
−

0
5
x
1
+

0
.5
x
2
+

3
.8
6
1
4
6
x
3
+

4
.9
8
6
0
8
x
4
−

1
2
.4
3
0
4

η
ω
2
≥
−
0
.0
2
9
2
1
5
7
x
1
+

0
.5
x
2
+

4
.0
1
6
1
5
x
3
+

4
.1
5
6
9
5
x
4
−

1
1
.6
4
4

1
4

η
ω
1
≥

0
.2
6
8
4
3
2
x
1
−

0
.3
0
5
2
5
1
x
2
+

3
.7
3
1
0
7
x
3
+

3
.7
2
8
6
1
x
4
−

1
0
.4
7
4
2

η
ω
2
≥
−
4
9
.3
9
4
3
x
1
+

0
.5
x
2
+

1
1
.4
7
1
x
3
+

1
8
.4
4
7
3
x
4
+

1
5
.9
7
4
6

1
5

η
ω
1
≥

0
.3
8
8
4
8
x
1
−

0
.6
6
5
3
9
9
x
2
+

3
.6
9
9
0
8
x
3
+

3
.6
9
8
1
5
x
4
−

1
0
.1
5
8
9

η
ω
2
≥
−
4
9
.0
0
1
x
1
+

0
.5
x
2
+

1
2
.1
3
1
7
x
3
+

1
3
.1
5
4
8
x
4
+

2
0
.2
1
4
5

T
a
b
le

1
0

B
en

d
er

s
cu

ts
th

a
t

a
re

g
en

er
a
te

d
a
t

n
o
d

e
1

It
e
ra

ti
o
n

B
e
n
d
e
rs

c
u
ts

fo
r
ω

1
B
e
n
d
e
rs

c
u
ts

fo
r
ω

2

1
η
ω
1
≥
−
2
3
.8
8
9
3
x
1
+

0
.5
x
2
+

1
.9
6
2
4
4
x
3
+

3
.6
7
5
9
3
x
4
+

1
4
.7
3
0
2

η
ω
2
≥
−
3
0
.2
5
2
3
x
1
+

0
.4
9
9
9
9
6
x
2
+

4
.9
2
9
4
x
3
+

4
.9
3
2
4
1
x
4
+

1
6
.8
9
0
5

2
η
ω
1
≥
−
0
.0
2
2
1
6
3
3
x
1
+

0
.5
x
2
+

3
.1
9
1
9
x
3
+

3
.1
9
3
5
6
x
4
−

9
.8
8
4
1
6

η
ω
2
≥
−
0
.0
3
0
2
0
1
x
1
+

0
.4
9
9
9
9
8
x
2
+

3
.2
8
5
2
9
x
3
+

3
.2
8
5
3
3
x
4
−

1
0
.0
4
0
5

3
η
ω
1
≥
−
1
.2
5
6
4
x
1
+

0
.4
9
9
9
9
9
x
2
+

3
.0
2
7
6
4
x
3
+

3
.0
3
3
2
9
x
4
−

8
.3
2
5
3
4

η
ω
2
≥
−
1
.6
1
6
7
2
x
1
+

0
.4
9
1
2
1
8
x
2
+

3
.4
6
6
1
5
x
3
+

3
.5
2
4
6
2
x
4
−

8
.8
6
5
2
7

T
a
b
le

1
1

B
en

d
er

s
cu

ts
th

a
t

a
re

g
en

er
a
te

d
a
t

n
o
d

e
2

It
e
ra

ti
o
n

B
e
n
d
e
rs

c
u
ts

fo
r
ω

1
B
e
n
d
e
rs

c
u
ts

fo
r
ω

2

1
η
ω
1
≥

6
.4
1
6
3
6
x
1
+

0
.4
9
9
9
9
7
x
2
+

5
.1
6
8
3
1
x
3
+

5
.1
7
4
1
6
x
4
−

2
0
.2
7
9
6

η
ω
2
≥

5
.9
2
5
9
x
1
+

0
.4
9
9
9
9
3
x
2
+

5
.1
6
1
4
5
x
3
+

5
.1
6
2
3
x
4
−

1
9
.7
4
9
7

2
η
ω
1
≥

0
.6
3
1
3
9
9
x
1
+

0
.4
9
9
9
7
6
x
2
+

5
.0
6
9
5
3
x
3
+

5
.1
2
0
2
3
x
4
−

1
4
.3
4
1
9

η
ω
2
≥
−
0
.2
9
9
4
5
7
x
1
−

9
.4
3
4
0
8
x
2
+

4
.1
1
6
4
6
x
3
+

4
.1
1
7
5
3
x
4
−

1
.5
0
0
4
5

Title Suppressed Due to Excessive Length 23

Parameters
Li = length of rectangle i
Hi = width of rectangle i
xbarq = the x coordinate of area q
ybarq = the y coordinate of area q
τω = probability of scenario ω
dqω = unit price of area q in scenario ω
First stage decisions
xi = the designed x coordinate of the center of rectangle i
yi = the designed y coordinate of the center of rectangle i
delxij = the designed distance of the center of rectangle i and the center of
rectangle j along the x axis
delyij = the designed distance of the center of rectangle i and the center of
rectangle j along the y axis
Z1
ij , Z

2
ij , Z

3
ij , Z

4
ij ∈ {True, False} decides the relative position of rectangle i

and rectangle j
Second stage decisions
xsiω = the installed x coordinate of the center of rectangle i in scenario ω
ysiω = the installed y coordinate of the center of rectangle i in scenario ω
Wqiω = {True, False} whether to position rectangle i in area q or not
Sqω = the size of area q that is purchased in scenario ω

Constraint (62) relates the designed relative distance of rectangle i and rectan-
gle j in both x and y direction to the designed x and y coordinate of rectangle i
and rectangle j. There are variable costs associated with the relative designed
distances, which corresponds to the pipes that connect those units. Constraint
(63) prevents rectangle i and rectangle j from overlapping with each other.
After the design decisions are made, the actual position to install each unit
i ∈ N are decided. Constraint (64) enforces that the actual installed positions
of rectangle i and rectangle j in each scenario ω ∈ Ω have to coincide with
the designed relative position. Moreover, in each scenario, each rectangle i has
to be constrained in exactly one circle q ∈ Q that is purchased, which is en-
forced by constraint (65). The objective also includes the expected cost of the
purchase of circles. Note that the problem is expressed as a GDP and can be
reformulated with big-M or hull reformulation as a convex MINLP, which is
a two-stage stochastic program with mixed integer variables in both first and
second stage.

min
∑
i

∑
j,j>i

cij(delxij + delyij) +
∑
ω∈Ω

τω
∑
q∈Q

(dqωSqω) (61)

s.t.

delxij ≥ xi − xj ∀i, j ∈ N, i < j

delxij ≥ xj − xi ∀i, j ∈ N, i < j

delyij ≥ yi − yj ∀i, j ∈ N, i < j

delyij ≥ yj − yi ∀i, j ∈ N, i < j

(62)

24 Can Li, Ignacio E. Grossmann[
Z1
ij

xi + Li/2 ≤ xj − Lj/2

]
∨
[

Z2
ij

xj + Lj/2 ≤ xi − Li/2

]
∨
[

Z3
ij

yi +Hi/2 ≤ yj −Hj/2

]
∨
[

Z4
ij

yj +Hj/2 ≤ yi −Hi/2

]
∀i, j ∈ N, i < j

(63)

xsiω − xsjω = xi − xj ∀i, j ∈ N, i < j, ω ∈ Ω
ysiω − ysjω = yi − yj ∀i, j ∈ N, i < j, ω ∈ Ω

(64)

∨q∈Q

Wqiω

(xsiω − Li/2− xbarq)2 + (ysiω +Hi/2− ybarq)2 ≤ Sqω
(xsiω − Li/2− xbarq)2 + (ysiω −Hi/2− ybarq)2 ≤ Sqω
(xsiω + Li/2− xbarq)2 + (ysiω +Hi/2− ybarq)2 ≤ Sqω
(xsiω + Li/2− xbarq)2 + (ysiω −Hi/2− ybarq)2 ≤ Sqω

 ∀i ∈ N,ω ∈ Ω

(65)

delxij , delyij , Sqω ∈ IR1
+, Z

1
ij , Z

2
ij , Z

3
ij , Z

4
ij ,Wqiω ∈ {True, False} ∀i, j ∈ N, i < j, q ∈ Q,ω ∈ Ω

(66)

References

1. Angulo, G., Ahmed, S., Dey, S.S.: Improving the integer L-shaped method.
INFORMS Journal on Computing 28(3), 483–499 (2016)

2. Atakan, S., Sen, S.: A progressive hedging based branch-and-
bound algorithm for stochastic mixed-integer programs. Op-
timization Online (2017). URL http://www.optimization-
online.org/DB HTML/2017/05/6008.html

3. Balas, E.: Disjunctive programming and a hierarchy of relaxations for dis-
crete optimization problems. SIAM Journal on Algebraic Discrete Meth-
ods 6(3), 466–486 (1985)

4. Birge, J.R., Louveaux, F.: Introduction to stochastic programming.
Springer Science & Business Media (2011)

5. Brunaud, B., Bassett, M.H., Agarwal, A., Wassick, J.M., Grossmann,
I.E.: Efficient formulations for dynamic warehouse location under discrete
transportation costs. Computers & Chemical Engineering (2017). DOI
https://doi.org/10.1016/j.compchemeng.2017.05.011

6. Bussieck, M.R., Drud, A.: SBB: A new solver for mixed in-
teger nonlinear programming. Talk, OR (2001). URL
http://ftp.gamsworld.org/presentations/present sbb.pdf

7. Byrd, R.H., Nocedal, J., Waltz, R.A.: Knitro: An integrated package for
nonlinear optimization. In: Large-scale Nonlinear Optimization, pp. 35–
59. Springer (2006)

8. Carøe, C.C., Schultz, R.: Dual decomposition in stochastic integer pro-
gramming. Operations Research Letters 24(1), 37–45 (1999)

9. Ceria, S., Soares, J.: Convex programming for disjunctive convex opti-
mization. Mathematical Programming 86(3), 595–614 (1999)

Title Suppressed Due to Excessive Length 25

10. CPLEX, I.I.: V12. 1: User’s manual for CPLEX. International Business
Machines Corporation 46(53), 157 (2009)

11. Dunning, I., Huchette, J., Lubin, M.: JuMP: A modeling language for
mathematical optimization. SIAM Review 59(2), 295–320 (2017)

12. Furman, K.C., Sawaya, N., Grossmann, I.: A computationally use-
ful algebraic representation of nonlinear disjunctive convex sets us-
ing the perspective function. Optimization Online (2016). URL
http://www.optimization-online.org/DB FILE/2016/07/5544.pdf

13. Gade, D., Hackebeil, G., Ryan, S.M., Watson, J.P., Wets, R.J.B.,
Woodruff, D.L.: Obtaining lower bounds from the progressive hedging al-
gorithm for stochastic mixed-integer programs. Mathematical Program-
ming 157(1), 47–67 (2016)

14. Gade, D., Küçükyavuz, S., Sen, S.: Decomposition algorithms with para-
metric Gomory cuts for two-stage stochastic integer programs. Mathe-
matical Programming 144(1-2), 39–64 (2014)

15. Geoffrion, A.M.: Generalized Benders decomposition. Journal of Opti-
mization Theory and Applications 10(4), 237–260 (1972)

16. Guignard, M.: Lagrangean relaxation. Top 11(2), 151–200 (2003)
17. Jiang, R., Guan, Y., Watson, J.P.: Cutting planes for the multi-

stage stochastic unit commitment problem. Mathematical Programming
157(1), 121–151 (2016)

18. Kim, K., Zavala, V.M.: Algorithmic innovations and software for the
dual decomposition method applied to stochastic mixed-integer programs.
Mathematical Programming Computation pp. 1–42 (2017)

19. Küçükyavuz, S., Sen, S.: An introduction to two-stage stochastic mixed-
integer programming. In: Leading Developments from INFORMS Com-
munities, pp. 1–27. INFORMS (2017)

20. Laporte, G., Louveaux, F.V.: The integer L-shaped method for stochastic
integer programs with complete recourse. Operations Research Letters
13(3), 133–142 (1993)

21. Li, C., Grossmann, I.E.: An improved L-shaped method for two-stage con-
vex 0-1 mixed integer nonlinear stochastic programs. Computers & Chem-
ical Engineering 112, 165 – 179 (2018)

22. Li, X., Tomasgard, A., Barton, P.I.: Nonconvex generalized Benders de-
composition for stochastic separable mixed-integer nonlinear programs.
Journal of Optimization Theory and Applications 151(3), 425 (2011)

23. Lubin, M., Yamangil, E., Bent, R., Vielma, J.P.: Extended Formulations in
Mixed-Integer Convex Programming, pp. 102–113. Springer International
Publishing, Cham (2016)

24. Mijangos, E.: An algorithm for two-stage stochastic mixed-integer non-
linear convex problems. Annals of Operations Research 235(1), 581–598
(2015)

25. Qi, Y., Sen, S.: The ancestral Benders cutting plane algorithm with multi-
term disjunctions for mixed-integer recourse decisions in stochastic pro-
gramming. Mathematical Programming 161(1-2), 193–235 (2017)

26 Can Li, Ignacio E. Grossmann

26. Rockafellar, R.T., Wets, R.J.B.: Scenarios and policy aggregation in opti-
mization under uncertainty. Mathematics of Operations Research 16(1),
119–147 (1991)

27. Ruiz, J.P., Grossmann, I.E.: A hierarchy of relaxations for nonlinear con-
vex generalized disjunctive programming. European Journal of Opera-
tional Research 218(1), 38–47 (2012)

28. Sawaya, N.: Reformulations, relaxations and cutting planes for generalized
disjunctive programming. Ph.D. thesis, Carnegie Mellon University (2006)

29. Sen, S., Higle, J.L.: The C-3 theorem and a D-2 algorithm for large scale
stochastic mixed-integer programming: set convexification. Mathematical
Programming 104(1), 1–20 (2005)

30. Sen, S., Sherali, H.D.: Decomposition with branch-and-cut approaches for
two-stage stochastic mixed-integer programming. Mathematical Program-
ming 106(2), 203–223 (2006)

31. Sherali, H.D., Fraticelli, B.M.: A modification of Benders decomposition
algorithm for discrete subproblems: An approach for stochastic programs
with integer recourse. Journal of Global Optimization 22(1-4), 319–342
(2002)

32. Sherali, H.D., Zhu, X.: On solving discrete two-stage stochastic programs
having mixed-integer first-and second-stage variables. Mathematical Pro-
gramming 108(2), 597–616 (2006)

33. Van Slyke, R.M., Wets, R.: L-shaped linear programs with applications to
optimal control and stochastic programming. SIAM Journal on Applied
Mathematics 17(4), 638–663 (1969)

34. Viswanathan, J., Grossmann, I.E.: A combined penalty function and
outer-approximation method for MINLP optimization. Computers &
Chemical Engineering 14(7), 769–782 (1990)

35. Wächter, A., Biegler, L.T.: On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Math-
ematical Programming 106(1), 25–57 (2006)

36. Watson, J.P., Woodruff, D.L.: Progressive hedging innovations for a class
of stochastic mixed-integer resource allocation problems. Computational
Management Science 8(4), 355–370 (2011)

37. Watson, J.P., Woodruff, D.L., Hart, W.E.: PySP: modeling and solving
stochastic programs in Python. Mathematical Programming Computation
4(2), 109–149 (2012)

38. Westerlund, T., Lundqvist, K.: Alpha-ECP, version 5.01: An interactive
MINLP-solver based on the extended cutting plane method. Åbo Akademi
(2001)

