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Abstract

Capacity expansion planning (CEP) of power systems determines the optimal

future generation mix and/or transmission lines. Due to the increasing pene-

tration of renewables, CEP has to capture the hourly variations of renewable

generator outputs and load demand. Since CEP problems typically involve plan-

ning horizons of several years, solving the fullspace models where the operating

decisions corresponding to all the days is intractable. Therefore, some “repre-

sentative days” are selected as a surrogate to the fullspace model. We present

an input-based and a cost-based approach in combination with the k-means

and the k-medoids clustering algorithms for representative day selection. The

mathematical properties of the proposed algorithms are analyzed, including an

approach to calculate the “optimality gap” of the investment decisions obtained

from the representative day model to the fullspace model, and the relationship

between the clustering error and the optimality gap. To capture the extreme

events, two novel approaches, i.e., a “load shedding cost” approach and a “high-

est cost” approach, are proposed to identify the “extreme days”. We conclude

with a case study based on the Electric Reliability Council of Texas (ERCOT)
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region, which compares the different approaches and the effects of adding the

extreme days.

Keywords: Power Systems, Capacity Expansion Planning, Renewable Units,

Representative Day Selection, Clustering Algorithm, Extreme Events

1. Introduction

Capacity expansion planning (CEP) models [1, 2, 3] that have been exten-

sively used by power system operators and planners aim to determine the loca-

tion, size, and type of the generating units and/or transmission lines that should

be installed in order to meet the electricity demand within a given geographical

region. These investment decisions in generating units and transmission lines

are long-term decisions usually made on a yearly basis. However, due to the

increase in the penetration of generation for renewable resources, CEP models

developed recently [4, 5] incorporate the hourly operating decisions in order to

capture the high variations of renewable generation. Operating decisions in-

cluding unit commitment and ramping decisions, and economic dispatch need

to be included in CEP models, which leads to large-scale mixed-integer linear

programming (MILP) problems.

One of the challenges in CEP models that include operating decisions is

the temporal complexity. Modeling each hour in a 10-30 year planning horizon

will lead to MILP problems with billions of variables, which is intractable with

the current commercial solvers. Different simplifications have been proposed to

make the CEP models tractable. Mallapragada et al. [6] proposes a time-slice

model where the authors average the load and the capacity factor data of each

of the four seasons (spring, summer, fall, winter) into time slices representing

morning (7 am-2 pm), afternoon (2-6 pm), evening (6-11 pm), and night (11

pm-7 am). This approach does not link consecutive periods and thus fails to

characterize the chronology of the operating decisions. In most of the literature,

a “representative days” approach is used [7, 8, 9, 10, 11, 6, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21]. A dataset is given that consists of the historical load data and
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capacity factor data for solar and wind generators. The historical data is then

scaled to account for load growth. Based on this scaled dataset, k representative

days are selected in each year of the planning problem to represent the whole

planning horizon where k � 365. A clustering algorithm, such as k-means

clustering or k-medoids clustering, is used to divide the whole historical dataset

into k clusters based on some of the characteristics of the historical days. The

centroid or the medoid of each cluster is selected as the representative day.

Several issues could arise in the representative day selection procedure. We

summarize these issues below and discuss how the existing literature addresses

them.

I What type of data should be used for clustering?

Most papers perform clustering based on the input parameters to the

CEP models [7, 8, 9, 10, 11, 6, 12, 13, 14, 15, 16, 18, 19, 20, 21], i.e.,

the load data and capacity factors corresponding to each historical day.

More specifically, each input data point to the clustering algorithm is a

concatenation of the load and the capacity factor time series corresponding

to a given historical day. As a result, the temporal correlations of different

time series and the hourly chronology of each time series can be preserved.

Since the numerical values of the load and the capacity factors can vary

significantly, several normalization approaches have been proposed [18].

Besides clustering based on input parameters, [22, 17] propose to perform

clustering based on the optimal objective value or the optimal solution of

each historical day. In these approaches, a CEP model has to be solved

to optimality for each historical day. The case study in [17] shows that

this cost-based approach has generally a superior performance than the

input-based approach.

II Which clustering algorithm should be used?

Different clustering algorithms have been used including k-means cluster-

ing [7, 8, 10, 13, 18, 19, 11, 6, 14], k-medoids clustering [8, 18, 9, 14],

hierarchical clustering [8, 12, 13, 17, 18, 11], DBA clustering [18], k-shape
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clustering [18], self-organizing map (SOM) clustering [20]. Most of the

papers that we surveyed conclude that there is no clear winner among all

the different clustering algorithms [8, 18].

III How to choose the appropriate number of clusters?

There is no standard method to choose the number of clusters a priori.

[8, 18, 6, 17, 10, 12] adopt a trial-and-error approach to choose the appro-

priate number of representative days by gradually increasing the number

of representative days and observe if the optimal objective value and the

optimal solution stabilize. Other methods are solely based on the metrics

on the input time series without solving any optimization problem. For

example, [7] use an “elbow method” that determines how well the k clus-

ters can characterize the variance of the input data. [23, 20] use metrics

like average normalized root mean square error (NRMSE) for the time

series data.

IV Should additional “extreme days” be included and how to find these “ex-

treme days”?

Including k representative days in the CEP model alone may not be enough

since the representative days are the centroids or the medoids of the clus-

ters, and therefore, fail to capture extreme events such as the day with the

peak load. To guarantee the feasibility of the investment decisions, several

works have been done on “extreme days” selection. Most of these works

select extreme days based on the values of the input data [8, 14, 13, 20].

[14, 13, 20] propose to select extreme days that have extreme values in

the input data such as the days with the peak load, the peak net load,

and/or the peak ramp-up and append these extreme days as additional

representative days. [8, 10] propose to modify the clustering process to

include the extreme values of the clusters. Besides identifying extreme

days based on input data, [19] proposes to select extreme days based on

the slack variables of the optimization problem itself.

4



V How to estimate a bound for the error of the considered approach?

A CEP model with representative days can be seen as a surrogate of the

CEP model with all the days. It is relevant to know how far away the

optimal solution of the surrogate is from the fullspace CEP model. [17]

assume that the “ground truth model”, i.e., the model with a sufficiently

large number of days, is solvable and compare the investment decisions ob-

tained from the representative day model with the solution of the “ground

truth model”. [15] proposes to use a sample average approximation ap-

proach [24] to calculate a statistical lower bound for the fullspace model.

[18] proves that for some linear programming energy system problem, the

surrogate problem is a relaxation of the fullspace problem under some as-

sumptions. However, the properties proved in [18] are restricted to LP

problems with uncertain data in the objective and right hand side coeffi-

cients, which does not apply to a general CEP model.

This paper aims to provide additional developments on the five issues dis-

cussed above. The works that are closest to this paper are [18, 17, 19]. The

contributions of this paper are outlined below.

• The procedures of the input-based approach and the cost-based approach

are presented with extensions to address general CEP problems.

• The theoretical properties of the cost-based approach and the input-based

approach are analyzed including a method to estimate the “optimality

gap” of the representative day approach with respect to the full day ap-

proach. Several relationships between the clustering error and the “opti-

mality gap” are provided.

• Two extreme day selection methods are proposed.

• A case study is used to compare the effectiveness of different algorithms.

The effects of adding extreme days are also analyzed.
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2. Background: clustering algorithms

As discussed in the previous section, different clustering algorithms have

been used for representative day selection. There is no clear winner among

all the clustering algorithms reported in the literature [8, 18]. In this paper,

k-means clustering and k medoids clustering are considered. In order to make

this paper self-contained, the necessary background for these two clustering

algorithms is provided in this section.

2.1. k-means clustering

Given a set of observations (x1, x2, . . . , xn), where each observation is a D-

dimensional real vector, k-means clustering aims to partition the n observations

into k (≤ n) sets so as to minimize the within-cluster variances. Suppose S =

{S1, S2, . . . , Sk}, denotes the partition of set {1, . . . , n} into k subsets, k-means

clustering is to solve the following optimization problem to find the optimal

partition S∗,

S∗ = arg min
S

k∑
i=1

∑
x∈Si

||x− µi||2 (1)

where µi is the mean of the points in Si. The k-means clustering is an NP-hard

problem. One approach to solve it is to use heuristics, such as the Lloyd–Forgy

algorithm [25]. Implementation of this heuristic method is available in the well-

known Python package scikit-learn [26].

Although the heuristics can provide good feasible solutions to Problem (1),

they cannot guarantee that the global optimal solution is found. An alternative

approach to solve (1) is to formulate the problem as a mixed-integer nonlin-

ear program (MINLP) shown in Problem (2). Binary variable yil represents

whether the ith data point xi belongs to the lth cluster for all i ∈ {1, . . . , n}, l ∈

{1, . . . , k}. Continuous variable clj denotes jth coordinate of the center of the

lth cluster. Continuous variable di denotes the square of the Euclidean distance

from the point xi to the center of the cluster it belongs to. In Equation (2b), di

is greater than or equal to the sum of the squared distances of each coordinate if

point i belongs to cluster l, i.e., yil = 1. The parameter Mi is a big-M parameter
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such that the inequality holds when yil = 0. Equation (2c) forces each point i

to be assigned to one of the clusters.

min
c,d,y

n∑
i=1

di (2a)

di ≥
( D∑

j=1

(xij − clj)2
)
−Mi(1− yil) ∀i ∈ {1, . . . , n}, l ∈ {1, . . . , k} (2b)

k∑
l=1

yil = 1 ∀i ∈ {1, . . . , n} (2c)

cl ∈ RD ∀l ∈ {1, . . . , k} (2d)

di ∈ R+ ∀i ∈ {1, . . . , n} (2e)

yil ∈ {0, 1} ∀i ∈ {1, . . . , n}, l ∈ {1, . . . , k} (2f)

It is easy to observe that the size of (2) increases with the increase in the

dimension of the data D, the number of data points n, and the number of

clusters k. As a result, Problem (1) is difficult to solve for real-world CEP

problems. In fact, we find that problem (2) is not solvable to global optimality

for our case study. Therefore, the heuristic algorithm implemented in scikit-

learn is used for k-means.

2.2. k-medoids clustering

The k-medoids problem is a clustering problem similar to k-means. Instead

of minimizing the sum of within-cluster variances, k-medoids clustering seeks

to minimize the distance from the “medoids” of each cluster. The difference

between the medoid and the mean of the cluster is that the medoid has to be
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one of the actual data points within that cluster. In general, the k-medoids

clustering problem is also NP-hard. There are heuristic algorithms for the k-

medoids clustering [27] whose implementations are available in scikit-learn.

Alternatively, k-medoids can be solved to global optimality using mixed-

integer linear programming (MILP). The MILP formulation is described in

Problem (3). Binary variable yi represents whether the ith data point is a

medoid of a cluster (yi=1) or not (yi=0). Binary variable zij denotes whether

the ith data point belongs to the cluster with the jth data point as its medoid.

The objective is to minimize the sum of the distances from each point to its

medoid. It is relevant to note that the distance between any two points i and

j can be calculated a priori. Equation (3b) denotes that each point has to

be assigned to exactly one point that is the medoid of the cluster it belongs

to. Equation (3c) forces zij be zero if point j is not a medoid. Equation (3d)

specify that the number of medoids is equal to k.

min
z,y

∑
ij

dijzij (3a)

n∑
j=1

zij = 1 ∀i = 1, 2, . . . , n (3b)

zij ≤ yj ∀i = 1, 2, . . . , n, j = 1, 2, . . . , n (3c)

n∑
i=1

yi = k (3d)

The number variables in (3) increases with the number of data points, but is

independent of the number of clusters and the dimension of the data. We have

found that (3) can be solved efficiently in CEP applications.
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3. Representative day selection algorithm

To guarantee the fidelity of the CEP model, an accurate forecast of the

hourly load and capacity factors of renewable generating units is needed. We

assume that some historical load and capacity factor data are available and that

those data are sufficient to characterize the possible capacity factor and load

variations. The historical loads are scaled to consider the future load growth,

i.e., some annual load growth rate is assumed. For the capacity factor data, no

scaling is needed since we assume that the weather condition change is negligible

across years. We further assume that the inter-day (not the intra-day) ramping

constraints can be neglected, i.e., there is no linking constraints between two

consecutive days. While this assumption may decrease the fidelity of the model,

it is necessary for our representative day approach. One can always increase

the length of the time block, e.g., using representative weeks [9] instead of

representative days.

With these assumptions, a fullspace CEP problem with all the historical

data used to represent each year of the planning horizon is defined in (4). Set

D represents the set of days in the historical dataset. Each day has a weight of

365
|D| in the objective function. Equation (4) is a succinct representation of the

CEP problem. A detailed MILP formulation can be found in [28].

(FD) OBJFD = min
∑
t∈T

(
c>t xt +

∑
d∈D

365

|D|
f>t yt,d

)
(4a)

s.t. At,dxt +Btyt,d ≤ bt,d ∀t ∈ T , d ∈ D (4b)

Ct−1xt−1 +Dtxt ≤ gt t = 2, 3, . . . , |T | (4c)

xt ∈ Xt, ∀t ∈ T , yt,d ∈ Yt, ∀t ∈ T , d ∈ D (4d)

Variable xt represents the investment decisions at year t. Variable yt,d represents
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the operating decisions corresponding to day d in year t. The objective (4a) is

to minimize the total cost. Equation (4b) describes the operational decisions of

each year t and each day d, such as power flow equations, unit commitment, and

economic dispatch. Equations (4c) are investment-related constraints, such as

the installation and retirement of generating units. Equations (4d) specify the

domain of the variables. We note that the days in our dataset differ in the load

and the capacity factors of the renewable generators. The parameters corre-

sponding to the load appear on the right hand side of equation (4b) represented

by bt,d. The parameters corresponding to the capacity factors are part of the

constraint matrices At,d. All the other parameters in the model, including ct,

ft, Bt, Ct, Dt, and gt, are only indexed by year t because they only change on

a yearly basis.

Since problem (FD) includes all the historical data, it is best to solve (FD)

directly to obtain planning decisions that are feasible for all the days in dataset

D. However, solving (FD) directly is prohibitive in practice since the number

of variables in (FD) can easily exceed one billion [28] if we consider one or more

years of historical data. Therefore, the model (RD) below is solved as a surro-

gate of the fullspace model where a set of representative days K is selected or

constructed to approximate problem (FD). The number of representative days

is denoted by the cardinality of set K, i.e., |K|. The weight of the kth repre-

sentative day is denoted by wk. Variable yt,k represents the operating decisions

corresponding to the kth representative day in year t. Set Ỹt represents the

LP relaxation of set Yt, i.e., set Ỹt is obtained from set Yt if all the integrality

constraints regarding the yt,k variables are relaxed. The reason for relaxing the

integrality constraints for yt,k is to make the model (RD) amenable to decom-

position algorithms, such as the Benders decomposition in [28] or the nested

Benders decomposition in [4]. Since all the integer variables are general integer

variables instead of binary variables, the relaxation provides a very tight bound

[28].

(RD) OBJRD = min
∑
t∈T

(
c>t xt +

∑
k∈K

wkf
>
t yt,k

)
(5a)
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s.t. At,kxt +Btyt,k ≤ bt,k ∀t ∈ T , k ∈ K (5b)

Ct−1xt−1 +Dtxt ≤ gt t = 2, 3, . . . , |T | (5c)

xt ∈ Xt, ∀t ∈ T , yt,k ∈ Ỹt, ∀t ∈ T , k ∈ K (5d)

The main challenge that we face is to find out how the representative days

should be selected in order to approximate problem (FD) as well as possible.

Before diving into the representative day selection approaches, we introduce a

quantitative metric to evaluate the solution quality of (RD). Suppose that the

optimal investment decision of (RD) is xRD, then the “actual cost” of xRD can

be obtained by fixing the investment decisions at xRD and solving the problem

corresponding to each day in the full dataset D individually, which is equivalent

to fixing the x variables in (FD) and solving the rest of the fullspace problem.

We denote this objective as OBJFD(xRD). It is easy to see that

OBJFD(xRD) ≥ OBJFD(xFD) = OBJFD (6)

where xFD represents the optimal investment decisions obtained with (FD).

3.1. Input-based approach

Most algorithms on representative day selection perform clustering directly

on the input data to problem (FD). Let us first define the notations for this

approach. Suppose we have a dataset that contains the historical loads and the

capacity factors of solar and wind for each node n ∈ N within the considered

geographical region. The set of historical days in this dataset is represented by

set D. The data corresponding to day d ∈ D is represented by vector Hd. Hd is

a concatenation of the hourly time series data for the load, capacity factors of all

the nodes n ∈ N in day d. This approach captures the correlations of the input

data because the data corresponding to each day are concatenated. Before
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Raw data

Normalized data

Normalization

k-medoids clustering

Cluster 1, w=149

Cluster 2, w=72

Cluster 3, w=144

Figure 1: Illustration of the input-based approach

applying a clustering algorithm on {Hd, d ∈ D}, the input data are usually

normalized because they can be in very different magnitudes. For example, the

capacity factors are from 0 to 1 while the load data are in GW. We normalize

each type of data, e.g., the load data in a given node, using its mean and
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standard deviation over the whole dataset D.

Hnorm
d,p =

Hd,p − µp

σp
∀p, d (7)

where Hd,p represents the entries in Hd corresponding to the data type p. For

example, Hd,p can correspond to the time series for the load in a given node in

day d. µp and σp are scalars that represent the mean and standard deviation of

{Hd,p, d ∈ D}.

Other normalization schemes have been proposed in [18], where instead of

normalizing by the mean and standard deviation of each data type p over the

whole dataset, normalization can be performed based on the mean and variance

of each day or each hour for a given data type p. In this paper, we only apply

the whole dataset normalization approach.

After the normalization, the clustering algorithms can be applied to {Hnorm
d , d ∈

D}. Then, the whole dataset is partitioned into k clusters and the mean or the

medoid of each cluster is selected as the input parameter corresponding to the

representative day.

An illustrative example of the input-based approach is shown in Figure 1.

The full dataset consists of 365 days of hourly load, hourly capacity factors of

PV and wind corresponding to a single node, which is denoted as “raw data”

in Figure 1. Each day is shown as a separate time series denoted by a gray line.

After the normalization step, the time series become dimensionless and is shown

as “normalized data”. The k-medoids clustering is performed on the normalized

data. For illustration, three clusters are shown in different colors with weights,

149, 72, and 144, respectively. The medoid of each cluster is shown as a bold

black line. The medoids will be used as the input data corresponding to the

representative days.

3.2. Cost-based approach

Besides clustering the days based on input data, another approach is based

on solving a CEP problem with operating decisions for only a single day d in
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Raw data

Investment cost breakdown
(million dollars)

Solve CEP for each day 
in the full dataset individually 

Dimension reduction

Investment cost breakdown
after reduction (million dollars)

k-medoids clustering

Cluster 1, w=141

Cluster 2, w=65

Cluster 3, w=159

Figure 2: Illustration of the cost-based approach
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D at a time. The CEP problem with one single day is small and can be solved

relatively fast. After solving the single-day CEP problem for each day d ∈ D,

the optimal investment decisions are obtained for all d ∈ D. The hypothesis is

that the days with similar optimal investment decisions, i.e., the days that need

similar generators, transmission lines, and storage units, are similar and should

be assigned to the same cluster. One option is to perform clustering based on

the optimal solutions themselves. However, normalization is needed because

the number of generators, transmission lines, and storage units are expressed

in different magnitudes. One natural way to perform the normalization is to

transform the number of units to the cost of different types of units as proposed

in [17] following the work reported in [22].

Our main contributions compared with [17] in the cost-based approach are

outlined below, which are discussed after an illustrative example is presented.

(i) We provide an approach that accommodate planning problems with a time

horizon longer than one year.

(ii) Both k-means and k-medoids clustering are adapted to the cost-based

approach, while [17] only considers a k-medoids approach.

(iii) A simple dimension reduction method is proposed, and the effects of such

method are analyzed combined with the two clustering algorithms.

To provide a conceptual overview of the proposed approach, an illustrative ex-

ample is shown in Figure 2. The available raw data are hourly load, and hourly

capacity factors of PV and wind for 365 days. A CEP problem that has a single

day is solved individually for each of the 365 days. The optimal investment costs

in the wind, PV, natural gas, and coal generating units, batteries, and transmis-

sion lines are shown in the “investment cost breakdown” charts for each of the

365 days. Note that in practice, investment costs can be associated with each

node of the CEP problem, i.e., each node has its associated costs in installing

generating units and batteries. The transmission line costs are associated with

any two nodes. For illustration purpose, we only show the investment costs
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of generating units and batteries corresponding to one selected node, and the

transmission line costs connecting two selected nodes. Dimensional reduction

is performed on the cost data by removing the units that are never installed in

any of the 365 days. Specifically, the battery and the coal generators are never

installed and therefore removed because they do not contribute to the cluster-

ing error. k-medoids clustering is performed on the investment costs breakdown

after dimension reduction. Three clusters are obtained shown in different col-

ors. The medoid of each cluster is highlighted using large black dots. The days

corresponding to the medoids are selected as the representative days.

Next, we present our contributions regarding (i)-(iii). For (i), the proposed

approach can be applied to solve a CEP model with T years by considering

the total discounted cost of each type of investment over the T years. For

(ii), it is not straightforward to apply k-means clustering because the mean of

the investment costs does not correspond to any days. However, it is possible

to transform the data back to the input domain and take the mean of the

input data for each cluster. For (iii), the dimension reduction technique that

removes the all-zero entries can reduce the sizes of the MINLP problem for k-

means clustering. On the other hand, the MILP formulation of the k-medoids

clustering is independent of the dimension of the problem. Heuristic algorithms

for clustering are generally computationally effective and do not suffer from the

“curse of dimensionality”. Since the MINLP formulation is too expensive to

solve and will not be used in CEP problems, we conclude that the dimension

reduction techniques have marginal effects on the clustering algorithms that are

used.

The detailed steps of the cost-based algorithm are described in Algorithm 1.

3.3. Extreme days selection

As discussed in the introduction section, including only |K| representative

days to solve the CEP model can lead to expansion decisions that are infeasible

under some extreme days. To examine whether the optimal investment decisions

16



Algorithm 1

Initialization: A dataset D includes the load, and wind and solar capacity
factor data. The data corresponding to the dth day in D is denoted as Hd.
for d = 1 to |D| do

Solve a T year CEP problem using Hd as the single representative day data.
Denote the optimal investment costs for each type of the generating and
storage units in each node, and the transmission lines that connect any two
nodes as a concatenated vector cd. Denote the total cost of the CEP model
as tcd

end for
Considering matrix C = [c1, c2, . . . , c|D|], delete the all-zero rows in C to

derive matrix C̃.
Perform a k-clustering algorithm on the columns of matrix C̃. Select the
representative days.

found by the reduced problem (RD) is feasible for the fullspace problem (FD),

the operating problem corresponding to each day d ∈ D is solved with the

optimal investment decisions fixed evaluate the objective OBJFD(xRD). If there

are no infeasible days in D, i.e., OBJFD(xRD) < +∞, the investment decisions

found by solving (FD) are sufficient to satisfy the “extreme” scenarios. If not,

suppose the set of infeasible days are represented by I. In this case, we select the

“extreme day” or “most infeasible day” in set I and add this extreme day to set

K as a new cluster with only 1 day. Then, the weights of the representative days

are adjusted accordingly. With the added extreme day, the reduced problem

(RD) is solved again to find the new investment decisions. We repeat this

procedure until all the days in the set D are feasible for our optimal investment

decisions.

We next focus on how to choose the “extreme day” from the set of infeasible

days I. We propose two approaches to select the extreme days.

3.3.1. Load shedding cost

The operating problems for the infeasible days are solved again with load

shedding variables added to energy balance constraints for each node at each

hour. The load shedding variables are used to balance the load when the power

generation is not enough to satisfy the load. The objective function is changed
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to minimizing the total load shedding cost over the planning horizon. The day

with the highest total load shedding cost is chosen as the extreme day.

This approach is similar to the one proposed in [19]. The difference is that

[19] proposes to choose the infeasible day with the highest load shedding cost

for a single hour.

3.3.2. Highest cost

Using the cost-based algorithm, the optimal total cost tcd (investment cost

+ operating cost) of each day in the dataset D is obtained by solving the opti-

mization problem described in Algorithm 1. We choose the infeasible day with

the highest total cost obtained in Algorithm 1 as the extreme day.

dselect = arg max
d,d∈I

tcd (8)

The rationale for this selection is that the day with the highest cost is likely

to include the extreme events that trigger installing additional units and result

in a high operating cost. The advantage of the highest cost approach is that it

exploits information calculated already in Algorithm 1 and therefore there is no

need to solve the infeasible CEP model again to find the extreme day.

3.4. Properties of the proposed algorithms

In this subsection, we analyze the proposed algorithms by characterizing

their properties.

3.4.1. Lower bound

An upper bound of the optimal objective value of the fullspace problem (FD)

is available by evaluating OBJFD(xRD) as shown in Equation (6). Additionally,

it is desirable to provide a lower bound of (FD) by solving (RD) to obtain an

estimate of the suboptimality of the investment decisions obtained from (RD).

The following theorem provides such a lower bound.

Theorem 1. For both cost-based and input-based approaches, if k-means clus-

tering in (1) is used, (RD) provides a lower bound for the optimal objective
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value of (FD), i.e., OBJRD ≤ OBJFD. This lower bound holds before and

after adding extreme days.

Proof. The proof is provided in Appendix A.1.

Since both the upper bound and the lower bound of problem (FD) are avail-

able, an optimality gap of the solution xRD can be estimated using

Gap =
OBJFD(xRD)−OBJRD

OBJFD(xRD)
× 100% (9)

3.4.2. Relationship between the clustering error and the optimality gap

The clustering error refers to the sum of deviations from the mean or the

medoids in the k-means or k-medoids clustering, respectively. The mathemat-

ical expressions for the clustering errors are given in Equations (1) and (3a)

for k-means and k-medoids, respectively. As the number of clusters increases,

the clustering error is guaranteed to decrease. Intuitively, one would expect the

optimality gap defined in Equation (9) to decrease as the clustering error dimin-

ishes, or at least, the upper bound, OBJFD(xRD), to improve as k increases.

Our computational results in section 4 show that this actually happens in most

cases. However, no formal characterization is available in the literature. Here,

we provide several mathematical properties.

A relatively simple question is whether the optimality gap is zero if the

clustering error is zero. For the input-based approach, the following theorem

holds.

Theorem 2. For the input-based approach, if the clustering error is zero and

the integrality constraints on variables yt,d are not relaxed in (RD), then the

optimality gap defined in (9) is zero, i,e., xRD is optimal for (FD).

Proof. The proof is provided in Appendix A.2.

For the cost-based approach, we can prove the following theorem.

Theorem 3. For the cost-based approach, if the k-medoids is used and the

clustering error is zero, |K| = 1, |T | = 1, and the integrality constraints on

19



variables yt,k are not relaxed in (RD), then the optimality gap defined in (9) is

zero, i,e., xRD is optimal for (FD).

Proof. The proof is provided in Appendix A.3.

It is easy to observe that additional assumptions are needed in Theorem

3 than in Theorem 2, such as the conditions that the number of clusters and

the number of years are both one. This is due to the fact that transforming

the data to the cost domain entails loss of information. In other words, any

two days d and d′ with the same input data have the same optimal costs but

not vice versa. When the assumptions in Theorem 3 are not satisfied, the

cost-based approach is not guaranteed to find the optimal investment decisions

and is, therefore, a rather empirical approach compared with the input-based

approach. However, computational results in section 4 indicate the cost-based

approach is empirically favorable under certain criteria.

An additional relevant question is whether the lower bound and the upper

bound improve as k increases. The following Theorem provides a sufficient

condition to improve the lower bound. A similar Theorem can be found in [18]

for LP problems.

Theorem 4. Suppose that (RD) is solved with cluster number |K1| and |K2|,

|K1| > |K2| that come from a k-means clustering algorithm. Denote the objective

value of (RD) as OBJK1

RD, OBJK2

RD for |K1| and |K2|, respectively. If each cluster

in the |K1| clusters is contained in one of the clusters of the |K2| clusters, then

OBJK1

RD ≥ OBJ
K2

RD.

Proof. The proof is provided in Appendix A.4.

This theorem provides a condition for lower-bound improvement in k-means

clustering. Following Theorem 4, it is easy to see that the lower bound provided

by (RD) improves after the extreme days are added when k-means clustering

are used because the added extreme days are contained in some of the original

clusters.
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4. Computational results

The case study of the Electric Reliability Council of Texas (ERCOT) re-

ported in [28] is used to test the representative day selection methods analyzed

in this paper. The problem is a generation transmission expansion planning

problem with a planning horizon of 5 years. The ERCOT region is modeled

using 5 nodes, South, Coast, Northeast, West, and Panhandle. The investment

decisions include the number of coal, natural gas, nuclear, solar, and wind gen-

erating units, the number of storage units that are installed in each node, and

the number of transmission lines that are installed connecting any two nodes

each year. The operating decisions involve unit commitment, and must comply

with the DC power flow equations. The historical dataset D consists of 365

days.

The data used for clustering can be the input data or cost data. Both

k-means and k-medoids clustering algorithms are used. For the input-based

approach, the extreme days are selected using the load shedding cost approach.

For the cost-based approach, both the load shedding cost and the highest cost

approach are used.

All the models and algorithms are implemented using Pyomo/Python [29].

k-means clustering is solved using the heuristic provided by scikit-learn [26].

k-medoids clustering is solved with the MILP formulation shown in (3) using

the solver CPLEX [30].

4.1. Comparison of different algorithms

To test the proposed representative day selection methods, the following six

algorithm options (shown in Table 1) are tested.

The computational results of the six algorithm options are shown in Table

2 where k represents the initial number of representative days for the problem

(RD). “#infeasible day” represents the number of infeasible days resulting from

∗ The values of OBJRD for algorithm option 2,3,4 are not valid lower bounds and are
shown in italics. Therefore, the gaps for these options are omitted.
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Table 1: The input data, clustering algorithm, and extreme day method used by the six cases.

Algorithm option Data Clustering algorithm Extreme day method

1 Input k-means load shedding cost
2 Input k-medoids load shedding cost
3 Cost k-medoids highest cost
4 Cost k-medoids load shedding cost
5 Cost k-means highest cost
6 Cost k-means load shedding cost

Table 2: Computational results of the six algorithm options

Option k #infeasible day X OBJFD(xRD) OBJRD
∗ Gap∗ Extreme days selected

1

5 70 3 79.16 76.09 4.0% 212,213,214
10 63 2 79.04 76.29 3.6% 212,213
15 42 2 78.81 76.58 2.9% 212,213

2

5 35 3 78.92 76.98 - 212,213,177
10 21 2 78.72 73.10 - 212,213
15 40 2 78.74 76.18 - 212,213

3

5 98 5 78.83 72.74 - 221,249,212,213,177
10 13 3 78.67 77.39 - 221,212,213
15 12 3 78.81 76.05 - 221,212,213

4

5 98 3 78.93 72.51 - 212,213,177
10 13 2 78.79 77.32 - 212,213
15 12 1 78.75 75.94 - 212

5

5 34 4 78.98 76.16 4.2% 221,249,212,213
10 30 6 79.09 76.64 3.7% 221,249,212,213,177,214
15 29 4 78.98 76.74 3.4% 221,249,212,213

6

5 34 3 79.12 76.15 3.9% 212,213,177
10 30 4 78.93 76.63 3.0% 212,214,213,177
15 29 3 78.81 76.73 2.7% 212,177,213
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the investment decisions of the k representative days problem. X is the number

of extreme days added in addition to the k representative days to make xRD

feasible for all d ∈ D, i.e., to attain OBJFD(xRD) < +∞. The objective

value of the (RD), OBJRD, after the X extreme days are added, are reported.

Note that OBJRD is only a valid lower bound when the k-means clustering is

used. The values of OBJRD for algorithm options 2,3,4 that use the k-medoids

clustering are shown in italics in Table 2 since they do not provide valid lower

bounds. OBJFD(xRD) is the “actual cost” when evaluating the investment

decision of (RD) on the full dataset and therefore provides an upper bound.

The “Gap” is calculated using Equation (9) for algorithm option 1,5,6, where

k-means clustering is used. The days in the historical dataset D are numbered

from 1 to 365. The “extreme days selected” column shows the indices of the

extreme days.

In most of the algorithm options, OBJFD(xRD) (upper bound) and OBJRD

(provided that it’s a valid lower bound) improve as k increases. If k-means clus-

tering is used, the optimality gap improves as k increases. However, the upper

bound is usually better when k-medoids clustering is used. We conclude that

there is no clear winner between the k-medoids and the k-means clustering.

When k-means clustering is used, the lowest optimality gap is achieved in al-

gorithm option 6 with k = 15. There is a trend of decrease in the optimality

gap as k increases in option 1,5, and 6 if the k-means is used. If one wishes to

achieve an even lower optimality gap, k has to be increased. For our analysis,

we consider that the optimality gap of 2.7% is sufficient to show the capability

of the algorithms. It should be noted that the suboptimality comes from both

the use of representative days instead of the full dataset and the relaxation of

the integer variables in the operating subproblems. The relaxation of the integer

variables result in an gap of around 1% in our computational experiments [28].

The number of infeasible days if using only the initial representative days

is a good indicator of the effectiveness of the algorithm. One would expect the

algorithms with better performance to have fewer infeasible days. Overall, as

expected, the number of infeasible days decreases as k increases. The cost-based
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approach with k-medoids clustering and 15 representative days has the smallest

number of initial infeasible days.

We note that X, the number of extreme days added to make xRD feasible

for the whole dataset D, is an indicator of whether the extreme day selection

approach is effective. The load shedding cost approach needs a smaller number

of extreme days to achieve feasibility than the highest cost approach. Among

all the algorithm options, there is an overlap in the extreme days selected.

Days number 212,214,221, 177, are most frequently selected. The two extreme

days selection approaches sometimes select the same days as extreme days. It

should be noted that day 177 happens to be the day with the peak load. The

highest ramp occurs in day 12, which is not selected by our proposed extreme

day selection algorithms. The results show that our methods select sometimes

different extreme days than just focusing on the input data, such as peak load

and peak ramp. Selecting extreme days solely based on peak load and peak

ramp does not guarantee feasibility.

Next, we analyze the computational time of different algorithm options. All

the problems are solved using CPLEX version 12.9.0.0 [30] using one processor

of an Intel Xeon (2.67GHz) machine with 64 GB RAM. For the cost-based ap-

proach, a CEP problem is solved for each day in the dataset D to obtain the

optimal investment costs. To save computational time, the LP relaxations of

these CEP models are solved. As a matter of fact, we also tested solving these

CEP models with the integrality constraints and find that the optimal invest-

ment costs vary very little with and without the integrality constraints. The

total computational time to solve the LP relaxations of these 365 CEP models

is 2,091 seconds. Additionally, the solution time of the Benders decomposition

algorithm for different algorithm options with and without extreme days are

shown in Table 3. All these CEP models can be solved within 10 hours. Al-

though the sizes of the CEP models does not depend on the algorithm option if

they have the same number of representative days, their solution time can vary

significantly.
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Table 3: Solution time of the Benders decomposition algorithm for different algorithm options
with and without adding X extreme days (secs)

Option 1 2 3 4 5 6

k=5 938 1,460 2,078 2,392 1,004 1,436
k=5+X 3,079 6,769 16,961 15,240 3,567 2,705
k=10 1,520 9,175 4,404 4,557 2,897 3,367

k=10+X 3,190 12,722 6,223 17,896 6,905 6,994
k=15 4,647 17,914 26,514 27,019 6,235 7,433

k=15+X 5,095 9,126 25,320 31,899 10,568 13,395
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Figure 3: Thermal generating unit cost, renewable generating unit cost, transmission line cost
and total investment cost change with and without the extreme days
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4.2. Comparison of the capacity expansion results with and without adding the

extreme days

Once the extreme days are added, the investment decisions xRD change com-

pared with the investment decisions that are optimal for the initial k represen-

tative days. We compare in Figure 3 the thermal generator cost, the renewable

generator cost, the transmission line cost, and the total investment cost in the

5 years of the planning horizon with and without adding the extreme days. In

this Figure, k = 5 denotes the costs associated with the 5 representative day

problem. k = 5 + X denotes the problems with the initial 5 days plus the X

extreme days. In all the algorithm options, the total investment cost increases

after adding the X extreme days. The majority of this increase comes from

the increase in the thermal generator costs while there is no consistent trend in

the change in the costs of the renewable generators and the transmission lines.

This can be explained by the fact that more dispatchable generating units are

needed after the extreme days are included.

To provide a more quantitative view of the change in the costs, we select

option 6, where we use cost-based k-means clustering, start with 15 represen-

tative days, and add extreme days according to the load shedding cost. After

adding 3 extreme days to make all the days feasible, the total investment cost

increases from 11.74 trillion dollars to 12.06 trillion dollars (2.7% increase). The

number of transmission lines increases from 15 to 16. There is a small increase

as well in the storage investment cost (0.2 million dollars). Additionally, there is

an increase in total thermal generator cost (346 million dollars) and a decrease

in renewable generator cost (-212 million dollars). In this case, the portfolio

of the dispatchable and nondispatchable generating units is adjusted after the

extreme days are included in order to make the planning decisions suitable for

the extreme events.
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5. Conclusion

In the context of power system expansion planning, we have presented an

input-based approach and an cost-based approach for the selection of repre-

sentative days. Two novel extreme day selection algorithms, known as load

shedding cost and highest cost, are proposed. The properties of the proposed

algorithms are theoretically analyzed. In particular, an upper bound and an

lower bound of the optimal objective value of the fullspace problem (FD) are

obtained. We also identify the conditions under which zero clustering error im-

plies zero optimality gap for both input-based and cost-based approaches. It

turns out that the conditions for the cost-based approach are more restrictive

than the input-based approach because there is an information loss in projecting

the data from the input space to the cost space.

A case study of the ERCOT region is used to compare the different proposed

algorithms. There is no clear winner between the k-means clustering and the

k-medoids clustering algorithms in terms of the upper bound. However, the

k-means clustering is recommended since it provides a valid lower bound. The

cost-based approach and the input-based approach have varying performances in

combination with different clustering and extreme day selection methods. The

load shedding cost approach outperforms the highest cost approach in extreme

day selection in the sense that it needs fewer extreme days to achieve feasibility.

We also compare the change in the investment decisions with and without adding

the extreme days. The major change is that additional dispatchable generating

units are added to make the planning decisions feasible under extreme events.
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Appendix A Proofs of the Theorems

A.1 Proof of Theorem 1

Proof. It suffices to prove that for any feasible solution to (FD) it is always pos-

sible to construct some feasible solution to (RD) that yields the same objective

value. Suppose (xt, yt,d, ∀t ∈ T , d ∈ D) is a feasible solution of (FD). Suppose

that by applying the k-means clustering algorithm, set D is partitioned into |K|

clusters, i.e., D = ∪k∈KDk where set Dk represents the days in the kth cluster.

Constraint (4b) can be rewritten as

At,dxt +Btyt,d ≤ bt,d ∀d ∈ Dk (A.1)

for all k ∈ K, t ∈ T . We aggregate all the constraints in (A.1) for a given cluster

k in year t and obtain

(
∑
d∈Dk

At,d)xt +Bt(
∑
d∈Dk

yt,d) ≤
∑
d∈Dk

bt,d (A.2)

Divide (A.3) by |Dk| on both sides we have

At,kxt +Bt(

∑
d∈Dk

yt,d

|Dk|
) ≤ bt,k (A.3)

because by definition of the k-means clustering algorithm, At,k, bt,k are the

mean values of {At,d,∀d ∈ Dk} and {bt,d,∀d ∈ Dk}, respectively.

It is easy to see that if we set yt,k =
∑

d∈Dk
yt,d

|Dk| for all k ∈ K, t ∈ T .

(xt, yt,k, k ∈ K, t ∈ T ) is a feasible solution of (RD) that yields the same ob-

jective value as (xt, yt,d, ∀t ∈ T , d ∈ D) for problem (FD). This completes the

proof.

A.2 Proof of Theorem 2

Proof. Since the clustering error is zero, the input parameters in each cluster

must be the same. Therefore, in the fullspace problem (RD), the optimal oper-

ating decisions for the days in each cluster k ∈ K are the same, i.e., yt,d = yt,d′
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for any d, d′ within the same cluster. The decisions within each cluster can be

aggregated without any sacrifice of optimality. The aggregated problem is ex-

actly the problem (RD) without relaxing the integrality constraints on yt,k.

A.3 Proof of Theorem 3

Proof. Since there is only one cluster and one year in the planning horizon, the

clustering error of the cost-based approach being zero implies that the optimal

investment decisions of all the days are the same if the CEP problem is solved

for each day in D individually. Denote this investment decision as xcommon.

Clearly, xcommon is optimal for (FD). Furthermore, (RD) is solved using the

medoid of the single cluster that corresponds to one of the days in D. By

definition, xcommon is also optimal for (RD).

A.4 Proof of Theorem 4

Proof. Using the same proof reasoning as in Theorem 1, the variables and con-

straints corresponding to K1 can be aggregated to produce the variables and

constraints corresponding to K2 and the inequality follows.
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