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ABSTRACT
Uncertainties are widespread in the optimization of process systems, such as uncertainties in

process technologies, prices, and customer demands. In this paper, we review the basic concepts
and recent advances of a risk-neutral mathematical framework called “stochastic programming”
and its applications in solving process systems engineering problems under uncertainty. This
review intends to provide both a tutorial for beginners without prior experience and a high-level
overview of the current state-of-the-art developments for experts in process systems engineering
and stochastic programming. The mathematical formulations and algorithms for two-stage and
multistage stochastic programming are reviewed with illustrative examples from process industries.
The differences between stochastic programming under exogenous uncertainty and endogenous
uncertainties are discussed. The concepts and several data-driven methods for generating
scenario trees are also reviewed.
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1 INTRODUCTION
Stochastic programming, also known as stochastic optimization (Birge and Louveaux, 2011), is
a mathematical framework to model decision-making under uncertainty. The origin of stochastic
programming dates back to the 1950s when George B. Dantzig, commonly recognized as the father
of linear programming, wrote the pioneer paper “Linear Programming under Uncertainty” (Dantzig,
1955). In this pioneering paper, Dantzig described one of the motivations of developing the stochastic
programming modeling framework as “to include the case of uncertain demands for the problem of optimal
allocation of a carrier fleet to airline routes to meet an anticipated demand distribution”. Another early
work on stochastic programming can be found in Beale (1955). From then on, stochastic programming
has evolved into a major area of research for the mathematical programming and operations research
community. A significant number of theoretical and algorithmic developments have been made by the
mathematicians, which are summarized in the classical textbooks (Birge and Louveaux, 2011; Shapiro
et al., 2014). With the increase in the maturity of algorithmic and computational methods, stochastic
programming has been applied to a broad spectrum of problems (Wallace and Ziemba, 2005) including
financial planning, electricity generation, supply chain management, mitigation of climate change, and
pollution control, among many others.

Process systems engineering (PSE) is an area of chemical engineering that focuses on the development and
application of modeling and computational methods to simulate, design, control, and optimize processes
(Sargent, 2005). Uncertainties are prevalent in the optimization of process systems, such as prices and purity
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of raw materials, customer demands, yields of pilot reactors, etc. The marriage of stochastic programming
with PSE seems to be a natural alliance. However, the first application of stochastic programming in
PSE took place a decade after Dantzig wrote his first paper. The earliest paper that we can find is the
paper by Kittrell and Watson (1966) where the authors applied stochastic programming to the optimal
design of proces equipment under uncertain parameters. The reason that prohibited researchers in PSE to
apply stochastic programming is that computational resources are limited in the early days and stochastic
programming models are much more difficult to solve than their deterministic counterparts. After the
1990s, with the improvement of commercial mathematical programming software, e.g, solvers like CPLEX
(Lima, 2010), and computer hardware, there is an increasing interest to apply stochastic programming to
process systems applications. In Figure 1, we survey the number of papers with stochastic programming
as the main topic published in four mainstream PSE journals and conferences, Computers & Chemical
Engineering, Computer Aided Chemical Engineering, Industrial & Engineering Chemistry Research, and
AIChE Journal, from 1990 to September 1st, 2020. There is a significant growth in the number of papers in
this surveyed time horizon, with around 30 papers per year after the 2010s.

Figure 1. The number of papers published in journals including Computers & Chemical Engineering,
Computer Aided Chemical Engineering, Industrial & Engineering Chemistry Research, and AIChE Journal
from 1990 to September 1st 2020. (Data obtained from Web of Science)

The applications of stochastic programming are also widespread in the PSE community. In Table 1, some
highly-cited papers from the four PSE-related journals that apply stochastic programming are reported.
The applications have a very broad temporal scale, ranging from long-term design and planning problems
to short-term scheduling and control problems. In terms of industrial sectors, the listed papers in Table
1 have both traditional industrial sectors, such as petroleum, natural gas, pharmaceutical, chemical, etc.,
and new sectors, such as biofuels, carbon capture, etc. The uncertainties that are considered in those
applications include prices, supply, and concentration of raw materials, demands of final productions,
process technologies, clinical trial outcomes.

Given the increasing popularity of stochastic programming in the PSE community, this paper aims to
give an overview of basic modeling techniques and algorithms for stochastic programming as well as a
high-level description of the recent contributions made by the PSE community to a non-expert audience.

This is a provisional file, not the final typeset article 2
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For readers interested in the recent mathematical developments in stochastic programming, we refer to the
review papers by Sahinidis (2004); Küçükyavuz and Sen (2017); Torres et al. (2019).

This paper is organized as follows. In section 2, we provide an overview of mathematical programming
and optimization under uncertainty. In section 3, we introduce the concepts, mathematical formulations,
and algorithms of two-stage stochastic programming. In section 4, we introduce an extension of two-stage
stochastic programming, multistage stochastic programming. In section 5, the techniques for multistage
stochastic programming under endogenous uncertainty are reviewed. In section 6, we review data-driven
methods for generating scenario trees. We draw the conclusion in section 7.

2 OPTIMIZATION UNDER UNCERTAINTY
The decision-making process is normally modeled as an optimization problem. A generic optimization
problem is represented in the following succinct form in equation(1) where we have some continuous
variablesx, to represent the decisions being made (e.g., sizing decision of a reactor),0 � 1 variablesy to
represent the discrete choices (e.g., select a given reactor or not), an objective functionf to minimize or
maximize (e.g., to minimize the total cost), and some constraintsg, h, that the variables have to satisfy
(e.g., the mass balance).

min
x;y

f (x; y; � )

s.t. g(x; y; � ) � 0

h(x; y; � ) = 0

x 2 Rnx
; y 2 f 0; 1gny

(1)

Variablesx are continuous variables with dimensionnx , which can take real values. Variablesy are
binary variables with dimensionny, which can only take values 0 or 1. Binary variables are usually used to
represent logic relations or choices, e.g., whether to install a given chemical plant or not. Vector� represents
parameters involved in the optimization problem, such as product demand, unit costs of some processes. If
we assume that those parameters are known with certainty, the problem(1) is a deterministic optimization
problem. A deterministic optimization problem can be classi�ed into several categories depending on the
forms off , g, h, x, y.

� some off , g, h, are nonlinear functions. Problem(1) is a mixed-integer nonlinear program (MINLP).
� f , g, h are all linear functions. Problem (1) becomes a mixed-integer linear program (MILP).
� some off , g, h, are nonlinear functions and there is noy variable, i.e.,ny = 0. Problem(1) becomes a

nonlinear program (NLP).
� f , g, h, are linear functions and there is noy variable, i.e.,ny = 0. Problem(1) becomes a linear

program (LP).

The four different mathematical programs, MINLP, MILP, NLP, LP, are chosen depending on the nature
of the problem. For problems in chemical engineering, nonlinear equations are often used to describe
thermodynamic or kinetic behavior. Integer variables can be used to describe process synthesis problems,
e.g., a binary variable can describe whether a given distillation column exists or not in a chemical �owsheet.
For a detailed treatment of deterministic optimization methods, we refer to the textbook by Grossmann
(2021).

In deterministic optimization models, parameters� are assumed to be known. However, in practice,
uncertainties are prevalent in process systems due to inaccurate measurement, forecast error, or lack of
information. For example, uncertainties in supply chain management can arise from future customer
demand, potential network disruption, or even the spread of a pandemic. Failing to consider uncertainties in
the decision-making process may lead to suboptimal or even infeasible solutions. To hedge against
the uncertainties in process systems, several mathematical frameworks have been used by the PSE
community including stochastic programming, chance-constrained programming (Li et al., 2008), and
robust optimization. (Lappas and Gounaris, 2016). The three approaches are different in their degrees of risk
aversion and ways of characterizing uncertainties. Stochastic programming (SP) is a risk-neutral approach,
which seeks to optimize the expected outcome over a known probability distribution. Chance-constrained
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programming can be seen as solving a stochastic program with some probabilistic constraints, which
specify that some constraints with uncertain parameters are satis�ed with a given level of probability. For
example, a chance constraint can specify that a budget/cost that should not pass a certain threshold. Chance
constrained programming offers modeling �exibility to deal with reliability issues and have important
connections with risk management. Robust optimization is another risk-averse approach, which seeks
to optimize the “worst-case” over a pre-de�ned uncertainty set. Robust optimization problems typically
involve min-max type of operators. A summary of the three approaches is shown in Table 2.

Table 2. Summary of stochastic programming, chance-constrained programming, and robust optimization
method degree of risk aversion characterization of uncertainty

stochastic programming risk neutral probability distribution
chance-constrained programming risk averse probability distribution, risk level

robust optimization worst case scenario uncertainty set

Besides these three approaches, there are a number of mathematical frameworks to model decision-
making under uncertainty, such as Markov Decision Process (MDP). Powell (2019) uni�es 15 communities
in optimization under uncertainty in a single framework. Reviewing all the 15 approaches is not within the
scope of this paper. Interested readers can refer to the relevant papers (Powell, 2019, 2016).

3 TWO-STAGE STOCHASTIC PROGRAMMING
Two-stage stochastic programming is a special case of stochastic programming. In this section, we describe
the mathematical formulations, algorithms and illustrative examples for two-stage stochastic programming.

3.1 Two-stage stochastic mixed integer linear programs
For simplicity of presentation, we �st consider stochastic MILP problems.

3.1.1 Mathematical formulation
In stochastic programming, it is assumed that the probability distributions of the uncertain parameters are

knowna priori. The uncertainties are usually characterized by some discrete realizations of the uncertain
parameters as an approximation to the real probability distribution. For example, the realizations of the
demand for a product can have three different values which represent high, medium, and low demand,
respectively. Each realization is de�ned as a scenario. The objective of stochastic programming is to
optimize the expected value of an objective function (e.g., the expected cost) over all the scenarios.

Figure 2. Two-stage problem: conceptual representation (left); scenario tree (right) wherex represents the
�rst stage decisions,y! represents the stage two decisions for scenario! . � ! , h! represent the probability
and the uncertain right hand side of scenario! , respectively.

A special case of stochastic programming is two-stage stochastic programming (Figure 2). Speci�cally,
stage one decisions are made `here and now' at the beginning of the period, and are then followed by the

Frontiers 5
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resolution of uncertainty. Stage two decisions, or recourse decisions, are taken `wait and see' as corrective
action at the end of the period. One common type of two-stage stochastic program is mixed-integer linear
program presented in (2).
 is the set of scenarios.� ! is the probability of scenario! . x represent the
�rst-stage decisions.y! represent the second-stage decisions in scenario! . The uncertainties are re�ected
in the matrices (vectors),W! , h! , T! shown in Equation(2). In the literature,W! is called the “recourse
matrix”; T! is called the “technology matrix”. On the right of Figure 2, an example of a “scenario tree”
that has three scenarios with uncertainh! is used to represent the realizations of uncertainties on the right
hand side.

For problem(2), both the �rst and the second stage decisions are mixed-binary. LetI = f 1; 2; � � � ; ng
be the index set of all the �rst stage variables.I 1 � I is the subset for indices of the binary �rst stage
variables. LetJ = f 1; 2; � � � ; mg be the index set of all the second stage variables.J1 � J is the subset for
the indices of the binary second stage variables.xub is a vector that represents the upper bound of all the
�rst stage variables.yub

! is a vector that represents the upper bound of all the second stage variables. The
problem described by(2) is a two-stage stochastic mixed-integer linear program (TS-MILP). If bothJ1
andI 1 are empty sets,(2) reduces to a two-stage stochastic linear programming problem (TS-LP). (2) is
often referred to as thedeterministic equivalentor theextensive formof the two-stage stochastic program
since (2) can be solved in the same way as if we were solving a deterministic optimization problem.

min c> x +
X

! 2 


� ! d>
! y!

s.t. Ax � b
W! y! � h! � T! x 8! 2 


x 2 X; X =
�

x : x i 2 f 0; 1g; 8i 2 I 1; 0 � x � xub	

y! 2 Y! 8! 2 
 ; Y! =
�

y! : y!j 2 f 0; 1g; 8j 2 J1; 0 � y! � yub
!

	

(2)

3.1.2 Process network problem
To show how two-stage stochastic programming can be applied to a process systems engineering problem,

we provide a process network design problem under demand uncertainty. Through this example, we
also aim to show that the solutions obtained from a stochastic program can be different from solving a
deterministic problem where the uncertain parameters are �xed at their expected value.

Consider producing a chemical C which can be manufactured with either process 2 or process 3, both of
which use chemical B as raw material. B can be purchased from another company and/or manufactured
with process 1 which uses A as a raw material. The demand for chemical C, denoted asd, is the source of
uncertainty. The superstructure of the process network is shown in Figure 3, which outlines all the possible
alternatives to install this chemical plant. The alternatives include (1) All three processes are selected. (2)
A true subset of the three processes are selected. (3) None of the three processes are selected.

Figure 3. Superstructure for the process network problem.

This is a provisional �le, not the �nal typeset article 6
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Following the time realization framework described in Figure 2, the problem is formulated as a two-stage
stochastic program. The chemical plant has to be �rst installed before the demand for the product is
realized and the plant starts production. Therefore, the �rst-stage decisions are investment decisions on the
three processes, which include binary variablesYi to denote whether processi is selected and continuous
variablesCAPi to denote the capacity of processi for i = 1; 2; 3. We assume that after the plant is installed,
the demand for the product is realized. Based on the realizations of the demand, different recourse actions
on how to operate the installed plant can be taken, i.e., the second-stage decisions are the material �ows.
We denote the scenarios as! and explicitly state the dependency of the second-stage decision on them by
presenting them as functions of! .

VariablesPA(! ), PB(! ) represent the purchase amount of chemical A and B, respectively. Other
material �ows for chemical B and C are shown in the superstructure in Figure 3. The MILP formulation is
shown as follows.

max �
�
10Y1 + 15Y2 + 20Y3 + CAP1 + 1:5CAP2 + 2CAP3

�

+ E
d(! )� P

h
� 4:5PA(! ) � 9:5PB(! ) � 0:5PA(! ) � 0:5B2(! ) � 0:5B3(! ) + 25C2(! ) + 25C3(! )

i

(3a)

s.t. CAP1 � U � Y1; CAP2 � U � Y2; CAP3 � U � Y3; Y2 + Y3 � 1 (3b)

PA(! ) � CAP1; B2(! ) � CAP2; B3(! ) � CAP3 8! (3c)

B1(! ) = 0 :9PA(! ); C2(! ) = 0 :82B2(! ); C3(! ) = 0 :95B3(! ) 8! (3d)

B1(! ) + PB(! ) = B2(! ) + B3(! ) 8! (3e)

C2(! ) + C3(! ) � d(! ) 8! (3f)

Yi 2 f 0; 1g 8i 2 f 1; 2; 3g (3g)

The objective is maximizing the expected pro�t, which includes the expected income obtained from
selling the �nal product (25C2(! ) + 25C3(! )), minus the total cost that includes the �xed (10Y1 + 15Y2 +
20Y3) and variable (CAP1 + 1:5CAP2 + 2CAP3) investment costs in stage one, the expected cost to
purchase chemical A and B in different scenarios (4:5PA(! ) + 9 :5PB(! )), the expected operating cost
(0:5PA(! )+0 :5B2(! )+0 :5B3), which is proportional to the amount of input to each process, i.e.,PA(! ),
B2(! ), B3(! ).

Suppose we have a 3-scenario problem where the the demandsd(! ) take valuesd(! 1) = 8 , d(! 2) = 10,
d(! 3) = 12, with probabilities� (! 1) = 0 :25, � (! 2) = 0 :5, � (! 3) = 0 :25, respectively. The optimal
�rst-stage decisions are to select processes 1 and 3 with capacities 11.70 and 12.63, respectively, which is
shown in Figure 4(I). Note that the �rst-stage decisions are made “here-and-now” and thus are the same for
all three scenarios. However, different second-stage decisions are taken for different scenarios as shown in
Figure 4(II). When the demand is lowd(! 1) = 8 , processes 1 and 3 are not operating at their full capacity.
For d(! 2) = 10, process 1 is operating at full capacity but process 3 is not. Ford(! 3) = 12, both installed
processes are operating at full capacity. The chemical A produced by process 1 is not able to satisfy the
requirement of process 3. Therefore, additional chemical B needs to be purchased from other vendors when
the demand is high. The expected pro�t of the stochastic program is 117.22. This optimal value of the
stochastic program is called the value of the recourse problem (RP) in the literature (Birge and Louveaux,
2011) (RP=117.22).

Other than using stochastic programming, an alternative approach is to solve the deterministic model
where the demand is �xed at its mean value, i.e., setd = 10. The optimal solution for this deterministic
model is selecting processes 1 and 3 with capacities being 11.70, and 10.52, respectively as shown in
Figure 4(III). The only difference from the stochastic solution is that the capacity of process 3 becomes
lower. The reason is that the deterministic model is “unaware” of the high demand scenario and therefore
makes the capacity of process 3 to be just enough to satisfyd = 10. However, if we use the deterministic
solution ford = 12, it will result in lost sales. We can �x the �rst stage solutions to the optimal solutions

Frontiers 7
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Figure 4. (I) represents the optimal �rst stage decisions of the two stage stochastic program.(II) describes
the optimal stage one decisions and the stage two decisions under scenarios! 1, ! 2, ! 3. (III) represents the
optimal design decisions of the deterministic model.

and evaluate how it performs in the three scenarios by solving each stage two problem separately. An
expected pro�t of 114.20 is obtained. This value is called the expected result of using the expected solution
(EEV).

One quantitative metric to evaluate the additional value created by stochastic programming compared
with solving the deterministic model at mean value is a concept calledthe value of the stochastic solution
(VSS)(Birge and Louveaux, 2011). If the problem is a maximization problem, VSS is de�ned as,

V SS= RP � EEV (4)

Therefore, the value of the stochastic solution is117:22� 114:20 = 3:02for the process network problem.
3.1.3 Classical decomposition algorithms

One option to solve the stochastic MILP problems described by(2) is to solve the deterministic equivalent
problem(2) directly using commercial solvers like CPLEX , GUROBI. However, solving(2) directly can be

This is a provisional �le, not the �nal typeset article 8
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