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Abstract

In this paper the long-term scheduling of a real world multi-product single stage continuous

process for manufacturing glass is studied. This process features long minimum run lengths,

and sequence dependent changeovers of the order of days, with high transition costs. The

long-term scheduling involves extended time horizons thatlead to large scale mixed integer

linear programming (MILP) scheduling models. In order to address the difficulties posed by

the size of the models, three different rolling horizon algorithms based on different models

and time aggregation techniques are studied. The models used are based on the continuous

time slot MILP model, and on the traveling salesman model proposed by Erdirik-Dogan and

Grossmann (2008). Due to the particular characteristics ofthe process under study, several

new features are proposed, which include: a) carry-over changeovers across the due dates; b)

minimum run lengths across the due dates; c) a rigorous aggregation of the products based

on the type of changeovers; d) definition of minimum inventory levels at the end of the time

horizon. Several case studies are formulated in order to compare different scenarios, and assess

the proposed rolling horizon algorithms.

Keywords:Planning; Scheduling; Multi-product continuous plants; MILP; Glass production

1 Introduction

This paper addresses the long-term scheduling of a real world multi-product continuous process

for manufacturing value added glass products. The long-term scheduling is embedded in a simul-
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taneous planning and scheduling framework motivated by strategic business goals, and by specific

features of the process, such as long sequence-dependent changeovers, and relatively large mini-

mum run lengths. The simultaneous planning and scheduling is approached through the formula-

tion of a mixed-integer linear programming (MILP) model, using exact methods based on linear

programming (LP) based Branch & Bound (B&B) to solve the problem. In addition, time decom-

position strategies and rolling horizon algorithms are applied to solve the scheduling over a long

time horizon.

The simultaneous planning and scheduling aims to integratethe planning decisions with the

scheduling details into one model, where the planning economic objectives are merged with the

scheduling of the production over the time horizon of the planning. This approach has the ad-

vantage of generating feasible planning decisions for the scheduling in one step. However, this

integration may lead to large scale MILP models that requireefficient models and solution ap-

proaches as discussed by several authors in the literature (Maravelias and Sung, 2009).

In this work two formulations are used and integrated into a solution approach to be described

later: a) a slot-based continuous time formulation; and b) atraveling salesman problem (TSP) se-

quence based model. These two models are based on the models proposed by Erdirik-Dogan and

Grossmann (2006) and Erdirik-Dogan and Grossmann (2008). These authors proposed a bi-level

decomposition algorithm where in the upper level a relaxation of the scheduling model is used to

define the products to be produced in the lower level. At the lower level a slot-based continuous

time formulation model is used to determine the detailed timing operations. The relaxation model

proposed in the first work is based on the underestimation of the sequence dependent-changeovers,

while in the latter work the relaxed model is based on using TSP sequence based constraints. Liu

et al. (2008) have also proposed a TSP-based model for multi-product continuous process, with

different sequence constraints and sub-tour elimination constraints. In their studies, their model

compared favorable with a modified model of Erdirik-Dogan and Grossmann (2008). In other re-

lated work, Sung and Maravelias (2007) have proposed a novelapproach, whereby feasible regions

for the production and cost are derived in off-line from the scheduling model, and then integrated

within the planning model resulting in only one planning model. Jia and Ierapetritou (2003) de-

veloped a continuous time MILP model for the simultaneous planning for gasoline blending and

short-term scheduling of the distribution, where small andefficient models are used for real case

problems.

Optimal short term scheduling of continuous processes has been motivated by the economic

pressures to increase the efficiency of continuous processes that produce multiple products. Four

types of optimization models have been used for the short term scheduling of continuous processes:

a) Resource-Task Network (RTN) models (Castro et al., 2004,2009; Schilling and Pantelides,

1996; Ierapetritou and Floudas, 1998; Zhang and Sargent, 1998); b) State-Task Network with unit-
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specific event-based continuous time representation (Ierapetritou and Floudas, 1998); c) slot-based

continuous time models (Karimi and McDonald, 1997; Lamba and Karimi, 2002; Lim and Karimi,

2003; Erdirik-Dogan and Grossmann, 2006; Lee et al., 2002);and d) TSP-based models (Alle and

Pinto, 2002); e) proportional lot-sizing and scheduling problem (PLSP) (Suerie, 2005).

Recently, medium term scheduling models have been proposedin the literature (Shaik et al.,

2009; Erdirik-Dogan and Grossmann, 2008; Liu et al., 2008, 2009; Chen et al., 2008), using addi-

tional solution strategies to cope with the increased size of the MILP models to solve.

The concept of long-term scheduling is not common in the literature because of two main

reasons: 1) scheduling is usually associated with batch operations over a one or two weeks horizon;

and 2) there is no clear distinction between long-term scheduling and planning. However, the

process under consideration in this work has specific features that lead us to use the idea of long-

term scheduling.

In order to address the computational burden that may prevent exact methods to be used in

real world applications, some of the approaches that have been devised include: a) heuristics to

reduce the size of the models; b) decomposition and aggregation techniques; and c) improvement

optimization-based strategies. A review of these approaches can be found elsewhereMendez et al.

(2006).

Regarding decomposition approaches, Bassett et al. (1996)proposed time-based decomposi-

tions concepts for scheduling of batch processes that are also valid for continuous processes. Their

decompositions rely on the aggregation of time at the planning level with time periods of one

month, and disaggregation of the time at the scheduling level with time periods of one week. Dim-

itriadis et al. (1997) presented two rolling horizon algorithms that are characterized by using at

each level a detailed and an aggregate model in order to reduce the dimensionality of the prob-

lem by solving smaller subproblems. Their algorithms will be further analyzed later in this paper.

Recent works have used rolling horizon algorithms to reducethe dimensionality of the problems

to solve. Liu et al. (2009) extended their previous model to multiple continuous production lines,

and applied a rolling horizon algorithm where in each subproblem the time horizon is extended

and some binary variables are fixed. Shaik et al. (2009) proposed a bi-level decomposition scheme

where in each subproblem a different model is solved. This decomposition is integrated into a

rolling horizon algorithm that they have applied to a real case study.

In addition, algorithmic advances involving the integration of heuristics methods within B&B

solvers, while maintaining the logic inherent to the upper and lower bounds, may contribute to

tackle larger MILP problems. Examples of these heuristics are Local Branching (LB) (Fischetti

and Lodi, 2003), Relaxation Induced Neighborhood Search (RINS) (Danna et al., 2005), and evo-

lutionary algorithms for polishing MILP solutions (Rothberg, 2007).

In this work we address the long-term scheduling of continuous manufacturing of high perfor-
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mance glass using extensions of the models proposed by Erdirik-Dogan and Grossmann (2008) in

order to cope with the specific features of the glass production line, and to improve their applicabil-

ity. The main extensions are the following: a) implementation of minimum run lengths across due

dates; b) changeovers across due dates; c) an aggregation strategy for the products; and d) terminal

constraints for inventory levels. Three rolling horizons algorithms are proposed based on time de-

composition strategies, and based on different models. These strategies are featured with terminal

constraints for inventory levels at the end of the time horizon to provide feedback to earlier time

periods of the demand after the time horizon.

2 Process description

The industrial process under consideration is a multi-product continuous process used to manufac-

ture high performance glass products, with high levels of transmitted daylight, and reduced heat

losses. From the point of view of production scheduling, thefurnace and an online coater are the

only relevant units.

In the furnace raw materials are melted with specific compositions that define the color of

the substrate of the product, which defines the product type.The changeover from one product

with a given substrate to another product with a different substrate is made through a continuous

operation, where the new raw materials are added to the furnace in order to dilute or remove some

of the previous raw materials from the furnace. This is a complex operation that may take several

days in order to reach the desired composition. After the changeover from one substrate to other

substrate, the process must produce the same substrate for aminimum run length.

The online coater is used to apply a coating to the surface of the glass that changes its color,

defining a new product. This task involves a changeover without a significant transition time.

The complex features of this process in terms of long changeovers between some products

with high transition costs, and no changeovers between someof them, associated with minimum

run lengths of several days in order to ensure process stability, motivated the development of a

mathematical programming approach to optimize the scheduling of the production.

3 Problem statement

Given is a time horizon of 18 months over which the following items are specified: deterministic

product demands; initial, minimum, and maximum inventory levels of products; production rates

for each product; sequence dependent transitions, operating, inventory, and transition costs, and

selling prices. The due dates are set at the end of each month.Products with a coating have different

processing rates and costs, and selling prices. The scheduling problem consists in determining the
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production time for each product, sequence of production, and inventory levels that maximize the

profit given by the difference between revenues and inventory holding costs, operating costs, and

transition costs.

The sales are assumed to be equal to the forecasted demand. This means that if the capacity of

the process is greater than the demand for a given time horizon, the extra production is added to the

inventory. However, if the capacity of the process is not enough to satisfy the forecasted demand,

inventories are used for meeting demands. The model includes slack variables and penalties for

the violation of safety stocks, and the violation of the maximum storage capacity.

4 Solution approaches

The dynamics involved in this process in terms of the length of the transitions and minimum run

lengths require that horizons of the order of 18 to 24 months be considered. This has led us to

adopt the definition of long-term scheduling for this problem. The time horizon is divided into

two parts: a time horizon of 18 months which is of interest fordetermining the production, and

an additional time horizon of six months to provide feedbackon the future demand to avoid a

"myopic" inventory policy at the end of the scheduling period of 18 months.

Time decompositions integrated into a rolling horizon framework are used in order to address

two issues. The first one is the size of the MILP model that is generated when long time horizons

are specified, and the associated difficulties posed to commercial MILP solvers. Using a rolling

horizon strategy smaller subproblems are solved in sequence in order to cover the specified time

horizon. The second issue is related to the "myopic" solution from a model that does not take into

consideration the demand pattern after the time horizon of interest, and consequently drives the

inventory levels of each product to the safety stock level atthe end of the time horizon. This as-

pect is particularly important in this process due to the combination of minimum run lengths, long

transition times and number of products that may result in one product not being produced for to

several months. As a first approach the rolling horizon algorithm was applied over a time horizon

longer than the time horizon of interest with the objective of providing feedback information about

the demand after the time horizon of interest. However, our results showed that this is not enough

for the model to avoid dropping significantly the inventory levels during the time horizon of inter-

est. In order to overcome this issue, terminal constraints for the inventory levels at the end of an

extended time horizon are proposed in this work to avoid the depletion of inventory. This situation

will be clear with one of the case studies presented later. Figure 1 shows the extended time horizon

that includes the time horizon of interest, 1.5T (i.e. 18 months), and the additional time of 0.5T

(i.e. 6 months) at the end to provide feedback to the initial horizon. In addition, imposing the

constraints beyond the time 1.5T smooths the response over the time horizon of interest.
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Figure 1: Total inventory profile for two different models, regarding inventory terminal constraints.

Figure 1 illustrates the trend of total inventory profiles that may result from the optimization

of two models, one with terminal constraints for the inventory, and the other without terminal

constraints at the end of the time horizon. The difference between the two profile trends in Figure

1 is explained by the trade-offs of the transition costs, inventory holding costs, and production cost

in each case. The solution of the bottom curve leads to a larger number of transitions, reducing the

production cost, and with the demand satisfied by depleting inventory, decreasing it to significantly

low values.

In this work three rolling horizon algorithms are implemented: 1) a hybrid rolling horizon

involving a planning model and a scheduling model; 2) an asynchronous rolling horizon, where

the time periods in the planning level are aggregated into 28days, and the scheduling models are

disaggregated into time periods of one week; and 3) a detailed rolling horizon strategy based only

on the scheduling model.

4.1 Hybrid rolling horizon

The hybrid rolling horizon strategy integrates a planning and a scheduling model with expansions

and shrinking of the time intervals where the models are applied, see Figure 2. The planning model

is a simplified representation of the scheduling model, which does not consider the detailed timing

of the operations and uses the sequencing constraints proposed by Erdirik-Dogan and Grossmann

(2007). The scheduling model is a slot based continuous timerepresentation with a detailed timing

for the operations. The advantage of the planning model is that it does not require specifying the
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number of slots per time period which is required by the scheduling model.

This rolling horizon strategy involves three steps, where two subproblems are solved in each

step (see Figure 2). The subproblems are solved for the same time horizon, and between the steps

the time horizon is expanded. In step number one, in the first subproblem the planning model is

applied over the time horizon of one year, while in the secondsubproblem the scheduling model

is applied over the first half of the year and the planning model shrinks to half of the time horizon.

The solution of the planning model from the first subproblem is used to restrict the set of products

that can be assigned in each time period of the scheduling model, and consequently the number

of slots defined for each time period. From the solution of thescheduling model in the second

subproblem the binary variables associated with the assignments of products to the time periods

and changeovers are fixed, while the continuous variables remain free variables.

In the second step, the time horizon is expanded to 18 months,and in the first subproblem

the planning model is solved again over the time period of oneyear. In the second subproblem,

the scheduling model is applied over the time period of one year, and the planning model over

six months. In the scheduling model, in the second half of thetime horizon all variables are free

and the products and slots are restricted by the solution of the planning model from the previous

subproblem.

In the last step, the time horizon is expanded to 24 months, where the scheduling model with

the binary variables fixed is applied over the first year and the planning model is applied over the

second year. In the second subproblem, the scheduling modelis expanded to more six months with

the products and slots restricted from the planning model from the previous subproblem.

4.2 Asynchronous rolling horizon

The asynchronous rolling horizon strategy uses the same structure of the previous strategy, see

Figure 3, but with time periods aggregated in the planning model that are then disaggregated in

the scheduling model. The objective of this approach is to improve the accuracy of the balances

to the inventory levels by increasing the time resolution inthe scheduling models down to weeks,

while keeping the lower time resolution in the planning models. Like in the previous approach, the

solution of the planning model is used to restrict the products and slots that are assigned to each

time period in the scheduling model. Here, the products thatare not assigned in a given time period

of time in the planning model, are not considered in the scheduling model in the time periods that

cover the same time of the period of the planning model. In theplanning model the length of the

time periods is 28 days, while in the scheduling model the length is 7 days. These lengths allow a

simple definition of the products that are not assigned in thetime periods of the scheduling model,

which would not be possible with time periods of 31 days in theplanning model and 7 days in the

scheduling model. It should be noted that due dates are at theend of every 7 days in the scheduling
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Figure 2: Hybrid rolling horizon strategy, steps, sub-problems and models used. SC - scheduling model
with time periods of one month, PL - planning model with time periods of one month
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Figure 3: Asynchronous rolling horizon, steps, sub-problems and models used. SC - scheduling model with
time periods TPS equal to 7 days, PL - planning model with timeperiods TPP equal to 28 days, and TPPE
equal to one month.
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model.

4.3 Detailed rolling horizon

The objective of the detailed rolling horizon is to evaluatethe performance of the scheduling model

when applied to large time horizons, and compare it with the planning model. The detailed rolling

horizon uses the scheduling model with time periods of one month for each subproblem as illus-

trated in Figure 4. This strategy involves the solution of three subproblems. In the first subproblem,

the scheduling model is applied over the time horizon of one year, and the solution for the first six

months is used to restrict the products and number of slots assigned to the first six months of

the next step. In the second step the time horizon is expandedto one year and half with a reduced

model in the first half year. In the third step the time horizonis expanded to two years, where in the

first six months the binary variables are fixed, and in the second semester the products and number

of slots are restricted according to the solution of the previous subproblem. Terminal constraints

for the inventory levels are used at the end of the time horizon on each subproblem.

The rolling horizon algorithms described have some conceptual similarities with the forward

rolling horizon proposed by Dimitriadis et al. (1997): a) aggregated and detailed models are used;

b) the detailed model is applied over a period of time in the beginning of the time horizon, and the

aggregated model over the remaining time; c) the period of time over which the detailed model is

applied increases and the period of time over which the aggregated model is applied shrinks; d)

after solving the detailed model the binary variables are fixed. However, in this work the following

additional features are considered: a) the time horizon moves forward between each step in order

to cover an extended time horizon; b) in the asynchronous rolling horizon algorithm, the planning

model represents a simplification of the scheduling model, and also uses aggregated time periods

in order to decrease the dimensionality of the problem; c) terminal constraints are added at the

end of the time horizon, in order to prevent the depletion of the inventory. In the proposed rolling

horizon algorithms the binary variables of the detailed models are also fixed, but the continuous

variables are free. This allows the algorithms not only to correct part of the decisions made by the

planning models (Dimitriadis et al., 1997), but work also torevise the continuous variables when

moving forward the terminal constraints for the inventory levels at the end of the time horizon.

5 Mathematical formulation

5.1 Detailed MILP model

The detailed MILP model used in this work is an extension of the continuous time slot-based

scheduling model proposed by Erdirik-Dogan and Grossmann (2006). In this model the represen-
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Figure 4: Detailed rolling horizon, sub-problems and models used. SC - scheduling model with time periods
of 1 month.
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tation of the time is divided into time periods, with the demand due at the end of the time period,

i.e. one month. The time periods have fixed length, each one isdivided in slots with the following

features (see Figure 5):

1. all slots except the last slot of the time period involve both a production time and a transition

time;

2. the last slot of each time period is only composed by the processing time;

3. the slots have variable length;

4. only one product is assigned per slot;

5. products may be assigned to more than one slot per time period;

6. there is a fixed number of slots per time period.

The problem under study in this work has some significant differences when compared with

the case studies solved by Erdirik-Dogan and Grossmann (2006). First, in this process there are

changeovers with transition times that can have the same duration of a time period, or take a

significant part of the time period. Second, there is a minimum run length for a subset of products

that can be similar to the length of the time periods. In this case the model of Erdirik-Dogan

and Grossmann (2006) may lead to infeasible solutions. Another characteristic of our problem is

the presence of changeovers between some products with transition time equal to zero, which can

introduce degeneracy in the solutions. Erdirik-Dogan and Grossmann (2006) have assumed in their

case studies that the sales could be greater or equal than theforecasted demand, considering that

the production surplus after the demand is fulfilled can be sold. However, if the sales are assumed

to be equal to the forecasted demand, the surplus capacity ofthe process is stored as inventory,

since the process does not stop. Nevertheless, this is only relevant whenever the capacity of the

process exceeds the total forecasted demand. When this is not the case, the trade-offs between the

inventory holding cost, production cost, and transition cost dictate the amount of inventory that is

depleted and the capacity of the process, which depends on the products to manufacture, number

of transitions, and production runs duration. In addition,because of the minimum run lengths and

long transition times, the model cannot drive all the inventory levels to the safety stock values at

the end of the time horizon. Otherwise, at the beginning of the next time horizon the inventory

levels of some of the products would go below the safety stocklevels.

In order to address these issues the following extensions tothe model of Erdirik-Dogan and

Grossmann (2006) are proposed: a) aggregate the products toeliminate the products without

changeovers from the scheduling part of the model; b) allow minimum run lengths across due

dates; c) allow changeovers across due dates; d) terminal inventory constraints at the end of the
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time horizon. As will be shown these extensions are non-trivial. The MILP model is described in

detail in the next subsections.

5.1.1 Aggregation of the products

In the process under study the products are distinguished mainly by color. Their color depends

on the substrate, which depends on the composition of the rawmaterials fed to the furnace, and

depends on the online application of a coating. Therefore, one product with a given substrate has

a different color from another product with the same substrate plus a coating. In this process there

are two types of changeovers: 1) sequence-dependent changeovers with long transition times; and

2) changeovers with no transition time. The first type of changeovers correspond to change in the

composition of the melt in the furnace in order to change fromone substrate to other substrate. A

(a) Slot structure with processing
time and transition time. Defined
for all slots except the last slot of
each time period.

(b) Slot structure with only pro-
cessing time. Defined for the last
slot of each time period.

(c) Relation between time periods, due dates, and slots.

Figure 5: Slot based continuous time representation.
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changeover without transition time occurs when the thickness is changed or a coating is applied

to a given substrate. Figure 6 illustrates the relation between the different products in terms of

changeovers. In each row, the products with the same substrate are presented, and in each column

the products that derive from the product in the same column by application of a coating. The

last column corresponds to products with the same substratebut with a different thickness. In

order to produce the product C1S1 (substrate 1 plus coating 1), due to process constraints the

process must produce first the product S1 (only with substrate 1) and then make a changeover with

zero length to the product C1S1. Based on the fact that in the production sequence the products

with no changeovers always appear together, we aggregate them into one pseudo-product, and the

production sequence is only determined using the pseudo-products. Therefore, the processing time

assigned to one pseudo-product in the schedule must be disaggregated into the processing times

of the products aggregated into it. The processing time for each pseudo-product,̃θi,t, ∀i ∈ IM , is

equal to the production time for the product defined by only the substrate,̃θ2i′,t, ∀i′ ∈ IS, plus the

processing time of the productk that has coating 1,̃θ2k,t, plus processing time of the productj that

has coating 2,̃θ2j,t, plus the processing time of the productn with a different thickness,̃θ2n,t,

θ̃i,t = θ̃2i′,t+θ̃2k,t+θ̃2j,t+θ̃2n,t ∀i ∈ IM, i′ ∈ ISp,i′, k ∈ CT1i,k, j ∈ CT2i,j, n ∈ THKi,n, t ∈ TS

(1)

Figure 6: Changeover matrix between products. Each box represents a product, and products in the same
row have the same substrate.
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The set of pseudo-products is defined asIM , IS is the set of products with only the substrate, and

the sets of products with coatings 1, coatings 2, and a different thickness are represented byCT1i,k,

CT1i,j, THKi,n, respectively. The set of all products isP := {IS ∪ CT1 ∪ CT2 ∪ THK}. Note

that the products aggregated into one pseudo-product have different production rates, production

costs, demand and selling prices. Therefore, the processing times denoted bỹθ2i′,t, θ̃2k,t, θ̃2j,t,

θ̃2n,t are then used in the inventory balances, and objective function to account for the inventory

levels, and processing costs, respectively, for each product.

The binary variables associated with the assignments areYOPi,t, Wi,l,t, Zi,k,l,t andTRTi,k,t are

defined below, where the indexi is used for pseudo-products in the assignment equations andthe

indexp for the disaggregated products in the inventory balances.

YOPi,t =

{

1 if product i is assigned to the time periodt

0 otherwise

Wi,l,t =

{

1 if product i is assigned to slotl during time periodt

0 otherwise

Zi,k,l,t =











1 if producti assigned to slotl is followed by productk assigned to slotl + 1

during time periodt

0 otherwise

TRTi,k,t =











1 if producti assigned to the last slot ofl during time periodt is followed

by productk assigned to slot the first slot of time periodt + 1

0 otherwise

The sets of products, slots, and time periods used in each scheduling model are defined as:

LMt := set of slots active for the time periodt

TS := set of time periods active for the scheduling model

These are subsets of the setsP , L, andT that are defined over all products, slots, and time periods.

5.1.2 Assignment and processing times

Equation 2 enforces that only one product be assigned to eachslot, and Equation 3 sets the pro-

cessing time,θi,l,t, to zero if producti is not assigned to slotl during the time periodt.
∑

i∈IM

Wi,l,t = 1 ∀l ∈ LMt, t ∈ TS (2)

θi,l,t ≤ HtWi,l,t ∀i,∈ IM, l ∈ LMt, t ∈ TS (3)

15



The processing time of each product during the time periodt is given by the sum of the processing

times of producti in all slots during the time period,

θ̃i,t =
∑

l∈LMt

θi,l,t ∀i ∈ IM, t ∈ TS (4)

Note thatθ̃i,t is not equal to the length of the total production run of product i, because the produc-

tion of a given producti can take place across several time periods.

5.1.3 Transitions within time periods

The changeover from producti to productk within a time periodt is formulated through the

following equations (Erdirik-Dogan and Grossmann, 2008):
∑

k∈IM

Zi,k,l,t = Wi,l,t ∀i ∈ IM, l ∈ LMt \ LML, t ∈ T (5)

∑

i∈IM

Zi,k,l,t = Wk,l+1,t ∀i ∈ IM, l ∈ LMt \ LML, t ∈ T (6)

Equations 5 and 6 state that if producti is assigned to slotl during time periodt than there is one

changeover from producti to productk, and if productk is assigned to slotl+1 during time period

t then there is a changeover from producti in slot l to productk in slot t + 1. Notice that if only

one product is assigned to periodt theni = k.

5.1.4 Transitions between adjacent periods

The changeovers across the due dates are modeled using Equations 7 and 8.
∑

k∈IM

TRTi,k,t = Wi,l,t ∀i ∈ IM, l ∈ LML, t ∈ TS \ TL (7)

∑

i∈IM

TRTi,k,t = Wk,l,t+1 ∀k ∈ IM, l ∈ LMF, t ∈ TS \ TL (8)

As an extension of the model proposed by Erdirik-Dogan and Grossmann (2006), the changeovers

in this model can occur before, across, and after the due date, see Figure 7. In order to model the

changeover across the due date, the transition time,τi,k, is disaggregated into two variables,τei,k,t

andτsi,k,t+1,

τi,kTRTi,k,t = τei,k,t + τsi,k,t+1 ∀i, k ∈ IM, t ∈ TS \ TL (9)

whereTRTi,k,t is a 0-1 variable to denote if producti is followed by productk at the end of period

t. τei,k,t is assigned at the end of the time period, andτsi,k,t+1 is the part of the transition time that

is assigned at the beginning of the next time period. See the time balances in Equations 12 and 13.

16



5.1.5 Timing balances

Within a time periodt, each slot except the last slot, includes a processing time and a transition

time. Thus, the end time of a slot,Tel,t is equal to the start time of the slot,Tsl,t, plus the processing

time plus the transition time:

Tel,t = Tsl,t +
∑

i

θi,l,t +
∑

i∈IM

∑

k 6=i∈IM

τi,kZi,k,l,t ∀l ∈ LMt \ LML, t ∈ TS (10)

In the last slot of each time period the transition time is notincluded within the time period.

Therefore, the end time of these slots is given by,

Tel,t = Tsl,t +
∑

i∈IM

θi,l,t ∀l ∈ LML, t ∈ TS (11)

The end time of the last slot of each time period plus the potential transition time across time

periods is equal to the time at the end of time period,HTt,

Tel,t +
∑

i∈IM

∑

k 6=i∈IM

τei,k,t = HTt ∀l ∈ LML, t ∈ TS (12)

The starting time of the first slot of each time period is equalto the potential transition time from

the product of the last slot of the previous time period plus the time of the end of the previous time

period.

Tsl,t =
∑

i∈IM

∑

k∈IM

τsi,k,t + HTt−1 ∀l ∈ LMF, t ∈ TS \ TF (13)

The end time of each slot, except the last slot of each time period, is equal to the starting time of

the next slot:

Tel,t = Tsl+1,t ∀l ∈ LMt \ LML, t ∈ TS (14)

(a) (b)

Figure 7: Transition times across time periods. In the figurelm denotes the last slot of the time period.
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Equations 15, 16, and 17 ensure that the length of each time period is equal to the sum of the

transition times plus the sum of the processing times. In each equation the equality ensures that

there are no idle times.
∑

i∈IM

∑

k 6=i

τei,k,t +
∑

i∈IM

∑

l∈LM

θi,l,t +
∑

i∈IM

∑

k 6=i

∑

l∈LMt\LML

τi,kZi,k,l,t = Ht ∀t ∈ TF (15)

∑

i∈IM

∑

k∈IM

τsi,k,t +
∑

i∈IM

∑

l∈LM

θi,l,t +
∑

i∈IM

∑

k∈IM

∑

l∈LMt\LML

τi,kZi,k,l,t+

+
∑

i∈IM

∑

k∈IM

τei,k,t = Ht ∀t ∈ TS \ (TF ∪ TL) (16)

∑

i∈IM

∑

k 6=i∈IM

τsi,k,t +
∑

i∈IM

∑

l∈LM

θi,l,t +
∑

i∈IM

∑

k 6=i∈IM

∑

l∈LM\LML

τi,kZi,k,l,t = Ht ∀t ∈ TSL (17)

5.1.6 Minimum run length

A minimum run length is enforced in the model in order to keep the process stable. Several authors

(Karimi and McDonald, 1997; Suerie, 2005; Lee et al., 2002; Lim and Karimi, 2003; Lamba and

Karimi, 2002; Ierapetritou et al., 1999) have developed equations to model this concept. The

minimum run length can be defined in a simplistic form by the following equation:

θi,l,t ≥ MRLiWi,l,t ∀i ∈ IM, l ∈ LMt, t ∈ TS (18)

whereθi,l,t is the processing time of producti in slot l during the time periodt andMRLi denotes

the minimum run length of producti. However, Equation 18 does not consider minimum run

lengths across due dates, which removes flexibility to the model.

In this section a general model to enforce minimum run lengths across multiple time periods

is presented. The main idea is that the production time of producti, θ̃i,t, plus the production times

of the same product in the next time periods that belong to theproduction run in the time period

t, plus the production times of the same product in the previous time periods that belong to the

same production run, must be greater or equal than the minimum run length ifYOPi,t ≥ 1. This is

represented by the disjunction in Equation 19.




YOPi,t

θ̃i,t +
∑

t′∈Bi,t

TPBi,t′ +
∑

t′∈Ai,t

TPAi,t′ ≥ MRLi



∨

[

¬YOPi,t

θ̃i,t = 0

]

∀i ∈ IM, t ∈ TS (19)

The above disjunction can be modeled as:

θ̃i,t +
∑

t′∈Bi,t

TPBi,t′ +
∑

t′∈Ai,t

TPAi,t′ ≥ MRLi YOPi,t ∀i ∈ IM, t ∈ TS (20)

θ̃i,t ≤ Ht YOPi,t (21)
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whereAi,t ⊆ T , and is formally defined as,

Ai,t := {t′ : t′ ≥ t + 1, t′ ≤ t∗ : HTt + MRLi ≤ HTt∗ , HTt + MRLi > HTt∗−1} (22)

and whereHTt denotes the time at the end of the time periodt. Bi,t ⊆ T , and is defined as

Bi,t := {t′ : t′ ≤ t − 1, t′ ≥ t∗ : HTt−1 − MRLi < HTt∗ , HTt−1 − MRLi ≤ HTt∗−1} (23)

The members ofAi,t are the time periods aftert, such that the sum of the length of the time

periods inAi,t plus the production run in the time periodt is greater or equal than the minimum

run length. The members ofBi,t are the time periods beforet, such that the sum of the length

of the time periods inBi,t plus the production run in the time periodt is greater or equal than

the minimum run length. As an example, consider the sequenceof production in Figure 8, with

Figure 8: Sequence of production from the productk to producti. The black box denotes a changeover.

MRLi = 20 days, and the duration of each interval is 10 days. The elements of Ai,t are given by

t′ ≥ t + 1 and t′ ≤ t∗ : HTt + MRLi ≤ HTt∗ , HTt∗−1 < HTt + MRLi, thust∗ = t + 2, and

Ai,t := {t + 1, t + 2}. Considering now as reference the time periodt + 2, the elements ofBi,t+2

are given byt′ ≤ (t + 2)− 1, andt′ ≥ t∗ : HTt+1 −MRLi ≥ HTt∗−1, HTt∗ > HTt+1 −MRLi, thus

t∗ = t, andBi,t+2 := {t, t + 1}.

TPAi,t′ is equal to the production time of the producti in the time periodt′ if there is a transition

from producti in time periodt′ − 1 to producti in the time periodt′, TRTi,i,t′−1, andTPAi,t′ is

equal to zero otherwise.TPBi,t′ is equal to the production time of the producti in the time periodt′

if there is a transition from producti in time periodt′ to producti in the time periodt′+1, TRTi,i,t′ ,

andTPBi,t′ is equal to zero otherwise. This is represented by the disjunctions in the Equations 24

and 25. Therefore in Equation 20, the term corresponding to the sum ofTPAi,t′ is the sum of the

production times of producti for t′ ≥ t +1 that belong to the same production run of the producti

in the time periodt. In the same equation the sum ofTPBi,t′ is the sum of the production times of

producti for t′ ≤ t− 1 that belong to the same production run of the producti in the time periodt.
[

TRTi,i,t

TPBi,t = θ̃i,t

]

∨

[

¬TRTi,i,t

TPBi,t = 0

]

∀i ∈ IM, t ∈ TS \ TL (24)

[

TRTi,i,t−1

TPAi,t = θ̃i,t

]

∨

[

¬TRTi,i,t−1

TPAi,t = 0

]

∀i ∈ IM, t ∈ TS \ TF (25)

These two disjunctions can be modeled using a convex-hull formulation (Balas, 1985), and after
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some algebraic manipulations the minimum run length can be formulated as:

θ̃i,t +
∑

tt∈Bi,t

θ̃b1i,tt +
∑

tt∈Ai,t

θ̃a1i,tt ≥ MRLi YOPi,t ∀i ∈ IM, t ∈ TS (26)

θ̃i,t = θ̃b1i,t + θ̃b2i,t ∀i ∈ IM, t ∈ TS (27)

θ̃b1i,t ≤ Ht TRTi,i,t ∀i ∈ IM, t ∈ TS (28)

θ̃b2i,t ≤ Ht (1 − TRTi,i,t) ∀i ∈ IM, t ∈ TS (29)

θ̃i,t = θ̃a1i,t + θ̃a2i,t ∀i ∈ IM, t ∈ TS (30)

θ̃a1i,t ≤ Ht TRTi,i,t−1 ∀i ∈ IM, t ∈ TS (31)

θ̃a2i,t ≤ Ht (1 − TRTi,i,t−1) ∀i ∈ IM, t ∈ T (32)

where the variablesTPBi,tt andTPAi,tt were eliminated. This formulation is tighter than a big-M

formulation, and uses the disaggregated variablesθ̃a1i,t, θ̃a2i,t, θ̃b1i,t, andθ̃b2i,t.

Equation 26 is active whenYOPi,t ≥ 1, and redundant otherwise. This means that the equation

is active for all the time periods that belong to a productionrun. For a production run with the

minimum run length that uses the time periodst, t + 1, andt + 2, the application of Equation

26 to the time periodt + 2 might consider the processing time of a production run that starts in

t + 3. However, for this production run the minimum run length is enforced by the application

of Equation 26 to the first time period of this production run.An alternative formulation could be

defined replacing the right hand side (RHS) of Equation 26, leading to

θ̃i,t +
∑

tt∈Bi,t

θ̃b1i,tt +
∑

tt∈Ai,t

θ̃a1i,tt ≥ MRLi

[

YOPi,t −

(

TRTi,i,t +
∑

l∈LM

Zi,i,l,t

)]

(33)

with the above RHS the constraint would be only active for thefirst time period of the produc-

tion run. However, from computational experience this formulation did not provide tighter linear

relaxations.

5.1.7 Inventory balances

Equations 34 and 35 define the inventory balances at the end ofthe time periods for each product,

INVOp,t − BCKLp,t = INVIp − BCKLIp + ηprp θ̃2p,t − Sp,t ∀p ∈ P, t ∈ TF (34)

INVOp,t−BCKLp,t = INVOp,t−1−BCKLp,t−1+ηprp θ̃2p,t−Sp,t ∀p ∈ P, t ∈ TS \TF (35)

whereINVOp,t andBCKLp,t denote the inventory and backlog of productp at the end of the time

period after the sales,INVIp, andBCKLIp are the initial inventory and backlog at the beginning

of the time horizon,ηp, andrp are the process yield and gross production rates of productp, and
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Sp,t denotes the sales of productp during time periodt. Note that the processing times used in

the inventory balances are given bỹθ2p,t defined over all the products, whilẽθi,t are defined over

the pseudo-products used in the assignment equations to defined the scheduling. The inventory

holding costs given by the area under the curve of the inventory vs time, represented byAreap,t, is

overestimated as discussed in Erdirik-Dogan and Grossmann(2006).

Areap,t ≥ INVIp Ht + ηprp θ̃2p,t Ht ∀p ∈ P, t ∈ TF (36)

Areap,t ≥ INVOp,t−1Ht + ηprp θ̃2p,t Ht ∀p ∈ P, t ∈ TS \ TF (37)

The safety stock bounds, and an upper bound for the maximum storage capacity are enforced by

Equations 38 and 39,

INVOp,t − BCKLp,t + sp,t ≥ INVMINp ∀p ∈ P, t ∈ TS (38)
∑

p∈P

INVOp,t + Sp,t ≤ INVMAX + qt ∀t ∈ TS (39)

wheresp,t andqt are slack variables,INVMINp is a constant representing the safety stock,INVMAX

is the maximum storage capacity. The sales are set equal to the deterministic forecast demand by

the equation:

Sp,t = dp,t ∀p ∈ P, t ∈ TS (40)

Equation 41 represents the terminal inventory constraintsthat are used to avoid the model driving

the inventory levels to the safety stock levels at the end of the time horizon.

INVOp,t − BCKLp,t + slthp ≥ INVMINp +
∑

tt∈TT

dp,tt ∀p ∈ P, t ∈ TL (41)

slthp is a slack variable, andTT is the set of time periods used to estimate the demand after the

end of the time horizon.TT is a parameter that must be defined (e.g. 4 months).

5.1.8 Symmetry breaking constraints

Erdirik-Dogan and Grossmann (2006) have proposed symmetrybreaking constraints to prevent

degenerate solutions when one product can be assigned to more than one slot in the same time

period. Their constraints, Equations 42 to 47 impose that only one product can be assigned to more

than one slot, and this product must be assigned to the first slot. These constraints are represented

by the following equations:

YOPi,t ≥ Wi,l,t ∀i ∈ IM, l ∈ LM, t ∈ TS, (42)

YOPi,t ≤ NYi,t ∀i ∈ IM, t ∈ TS (43)
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NYi,t =
∑

l∈LM

Wi,l,t ∀i ∈ IM, t ∈ TS (44)

NYi,t ≤ NSLOTSt YOPi,t ∀i ∈ IM, t ∈ TS (45)

NYi,t ≥ NSLOTSt−

(

∑

k∈IM

YOPk,t − 1

)

−Ms (1 − Wi,l,t) ∀i ∈ IM, l ∈ LMF, t ∈ TS (46)

NYi,t ≤ NSLOTSt−

(

∑

k∈IM

YOPk,t − 1

)

+Ms (1 − Wi,l,t) ∀i ∈ IM, l ∈ LMF, t ∈ TS (47)

whereNSLOTSt denotes the number of slots specified for the time periodt, andNYi,t the number

of slots assigned to producti, Ms represents big-M constants defined as a function of the number

of slots. Note that Equations 46 and 47 are only valid for the first slot of each time period.

In the derivation of Erdirik-Dogan and Grossmann (2006) it is assumed that by optimality the

product that is assigned to more than one slot uses consecutive slots. However, in the problem of

this paper this may not be true because the model may be drivento introduce transitions to reduce

processing costs and increase transition cost if this improves the objective function. In order to

force the slots to be consecutive the following symmetry breaking constraints are proposed:








Y Fi,t

NYi,t ≥ 2
∑

i

∑

l

∑

t

Zi,i,l,t ≥ NYi,t − 1









∨

[

¬Y Fi,t

NYi,t ≤ 1

]

∀i ∈ IM, t ∈ TS (48)

The above disjunction states that if one product is assignedto more than one slot then the number

of changeovers must be greater or equal than the number of slots minus one. Through a big-M

reformulation, Equation 48 yields:

NYi,t ≥ 2 − M2 (1 − Y Fi,t) ∀i ∈ IM, t ∈ TS (49)

NYi,t ≤ 1 + Mf Y Fi,t ∀i ∈ IM, t ∈ TS (50)

∑

l∈LMt\LML

Zi,i,l,t ≥ NYi,t − 1 − Mf (1 − Y Fi,t) ∀i ∈ IM, t ∈ TS (51)

Zi,i,l,t ≤ Y Fi,t ∀i ∈ IM, l ∈ LMt \ LML, t ∈ TS (52)

whereM2 andMf are big-M parameters with tight values.

5.1.9 Coatings

The following constraint is imposed by the operation of the online coater, which states that the

processing time of a product without coating must be greateror equal than the processing time for
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the products with the same substrate but with a coating applied.

θ̃2i′,t + θ̃2n,t ≥ θ̃2k,t + θ̃2j,t ∀i′ ∈ IS, k ∈ CT1, j ∈ CT2, n ∈ THK, t ∈ TS (53)

5.1.10 Objective function

The objective of the MILP model is to maximize the profit givenby the sum of the sales revenues

minus the inventory holding costs, operating costs, and transition costs. In addition, in the objective

function penalties are considered for the violation of safety stocks, maximum storage capacity, and

target inventory levels at the end of the time horizon.

profit =
∑

p∈P

∑

t∈TS

pp,t Sp,t −
∑

p∈P

∑

t∈TS

cinvp,t Areap,t −
∑

t∈TS

∑

p∈P

coperp,t ηprp θ̃2p,t

−
∑

i∈IM

∑

k∈IM

∑

l∈LM\LML

∑

t∈TS

ctrani,k Zi,k,l,t −
∑

i∈IM

∑

k∈IM

∑

t∈TS\TL

ctrani,k TRTi,k,t

−
∑

t∈TS

PEN1t qt −
∑

p∈P

∑

t∈TS

PEN2p,t sp,t −
∑

p∈P

PEN3 slthp

(54)

In the above objective function the transition costs are calculated over the changeovers within the

time periods and the changeovers across the due dates.

5.2 Planning model

The planning model used in this work is based on the model proposed by Erdirik-Dogan and

Grossmann (2008) with extensions similar to the ones of the scheduling model. It is a TSP-based

model, where the binary variables associated with the assignments areYPi,t, ZPi,k,t, ZPi,k,t, and

ZZZi,k,t, defined as:

YPi,t =

{

1 if product i is assigned to the time periodt

0 otherwise

ZPi,k,t =

{

1 if producti is followed by productk during time periodt

0 otherwise

ZZPi,k,t =

{

1 if the link between producti and productk is broken during time periodt

0 otherwise

ZZZi,k,t =











1 if producti assigned to the last slot ofl during time periodt is followed

by productk assigned to slot the first slot of time periodt + 1

0 otherwise

23



XFi,t =

{

1 if product i is assigned to the first position of the sequence in time period t

0 otherwise

XLi,t =

{

1 if product i is assigned to the last position of the sequence in time period t

0 otherwise

The sets of products, and time periods used in each planning model are defined as:

IM := set of pseudo-products i

TP := set of time periods active for the planning model

These are subsets of the setsP , andT that are defined over all products, and time periods. The

MILP model is described in detail in the next subsections.

5.2.1 Production and sequencing constraints

The processing time of the pseudo-products,θ̃i,t is bounded by the length of the time period, if the

product is assigned to the respective time period.

θ̃i,t ≤ Ht YPi,t ∀i ∈ IM, t ∈ TP (55)

Equations 56 to 62 represent the sequence constraints proposed by Erdirik-Dogan and Grossmann

(2008). The two first equations state that if producti is assigned to the time periodt then there is

a changeover from producti to productk during time periodt, and if productk is assigned to time

periodt then there is a changeover from productk to producti during time periodt.

YPi,t =
∑

k∈IM

ZPi,k,t ∀i ∈ IM, t ∈ TP (56)

YPk,t =
∑

i∈IM

ZPi,k,t ∀k ∈ IM, t ∈ TP (57)

These equations enforce a cycle between the products that isbroken by using the following con-

straint:
∑

i∈IM

∑

k∈IM

ZZPi,k,t = 1 t ∈ TP (58)

Equations 59 and 60 indicate that only one product can be assigned to the first and last position,

respectively.
∑

i∈IM

XFi,t = 1 ∀t ∈ TP (59)

∑

i∈IM

XLi,t = 1 ∀t ∈ TP (60)
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Equations 61 and 62 state that if producti is the last product of the time periodt then there is a

transition from producti from time periodt to productk in time periodt + 1, and if productk is

the first product of the time periodt + 1 then there is a transition from producti from time period

t to productk in time periodt + 1.
∑

i∈IM

ZZZi,k,t = XFk,t+1 ∀k ∈ IM, t ∈ TP \ TL (61)

∑

k∈IM

ZZZi,k,t = XLi,t ∀i ∈ IM, t ∈ TP \ TL (62)

The following equations introduce relations between the binary variables associated with the as-

signments and changeovers, including the case when only oneproducti is assigned to a time period

t.

ZZPi,k,t ≤ ZPi,k,t ∀i, k ∈ IM, t ∈ TP (63)

YPi,t ≥ ZPi,i,t ∀i ∈ IM, t ∈ TP (64)

ZPi,i,t + YPk,t ≤ 1 ∀i 6= k ∈ IM, t ∈ TP (65)

ZPi,i,t ≥ YPi,t −
∑

k 6=i∈IM

YPk,t ∀i ∈ IM, t ∈ TP (66)

XFk,t ≥
∑

i∈IM

ZZPi,k,t ∀k ∈ IM, t ∈ TP (67)

XLi,t ≥
∑

k∈IM

ZZPi,k,t ∀i ∈ IM, t ∈ TP \ TL (68)

YPi,t ≥ ZZPi,k,t ∀i, k ∈ IM, t ∈ TP (69)

YPk,t ≥ ZZPi,k,t ∀i, k ∈ IM, t ∈ TP (70)

YPi,t ≥ XFi,t ∀i ∈ IM, t ∈ TP (71)

YPi,t ≥ XLi,t ∀i ∈ IM, t ∈ TP (72)

5.2.2 Minimum run length

The equations to enforce a minimum run length follow the sameapproach used in the scheduling

model. Their derivation starts by postulating the following disjunction:




YPi,t

θ̃i,t +
∑

tt∈Bi,t

TPBi,tt +
∑

tt∈A

TPAi,tt ≥ MRLi



 ∨

[

¬YPi,t

θ̃i,t = 0

]

∀i ∈ IM, t ∈ TP (73)
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Following a similar reasoning as in the derivation of Equations 26 to 32, the minimum run length

for the planning model can be formulated as:

θ̃i,t +
∑

tt∈Bi,t

θ̃b1i,tt +
∑

tt∈A

θ̃a1i,tt ≥ MRLi YPi,t ∀i ∈ IM, t ∈ TP (74)

θ̃i,t = θ̃b1i,t + θ̃b2i,t ∀i ∈ IM, t ∈ TP (75)

θ̃b1i,t ≤ Ht ZZZi,i,t ∀i ∈ IM, t ∈ TP (76)

θ̃b2i,t ≤ Ht (1 − ZZZi,i,t) ∀i ∈ IM, t ∈ TP (77)

θ̃i,t = θ̃a1i,t + θ̃a2i,t ∀i ∈ IM, t ∈ TP (78)

θ̃a1i,t ≤ Ht ZZZi,i,t−1 ∀i ∈ IM, t ∈ TP (79)

θ̃a2i,t ≤ Ht (1 − ZZZi,i,t−1) ∀i ∈ IM, t ∈ T (80)

whereθ̃a1i,t, θ̃a2i,t, θ̃b1i,t, andθ̃b2i,t are additional auxiliary variables, and theTPBi,tt andTPAi,tt

were eliminated.

5.2.3 Inventory balances

The equations applied for the inventory balances are similar to the equations used in the scheduling

model.

θ̃i,t = θ̃2i′,t+θ̃2k,t+θ̃2j,t+θ̃2n,t ∀i ∈ IM, i′ ∈ ISi,i′, k ∈ CT1i,k, j ∈ CT2i,j, n ∈ THKi,n, t ∈ TP

(81)

Note that in the following equations the setP is defined asP := {IS ∪ CT1 ∪ CT2 ∪ THK}, which

means all products.

INVOp,t − BCKLp,t = INVIp − BCKLIp + ηprp θ̃2p,t − Sp,t ∀p ∈ P, t ∈ TF (82)

INVOp,t−BCKLp,t = INVOp,t−1−BCKLp,t−1+ηprp θ̃2p,t−Sp,t ∀p ∈ P, t ∈ TP \TF (83)

Areap,t ≥ INVIp Ht + ηprp θ̃2p,t Ht ∀p ∈ P, t ∈ TF (84)

Areap,t ≥ INVOp,t−1Ht + ηprp θ̃2p,t Ht ∀p ∈ P, t ∈ TP \ TF (85)

∑

p∈P

INVOp,t + Sp,t ≤ INVMAX + qt ∀t ∈ TP (86)

INVOp,t − BCKLp,t + sp,t ≥ INVMINp ∀p ∈ P, t ∈ TP (87)

Sp,t = dp,t ∀p ∈ P, t ∈ TP (88)
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INVOp,t − BCKLp,t + slthp ≥ INVMINp +
∑

tt∈TT

dp,tt ∀p ∈ P, t ∈ TL (89)

5.2.4 Time balances

The planning model uses a simplified representation of the timing constraints that does not take into

consideration possible changeovers between sub-cycles i within a time period. The total transition

time within a time period,TRNPt, is equal to the sum of all transition times minus the transition

time associated with the link that is broken,

TRNPt =
∑

i∈IM

∑

k 6=i∈IM

τi,kZPi,k,t −
∑

i

∑

k 6=i∈IM

τi,kZZPi,k,t ∀t ∈ TP (90)

∑

i∈IM

θ̃i,t + TRNPt +
∑

i∈IM

∑

k 6=i∈IM

τei,k,t = Ht ∀t ∈ TF (91)

∑

i∈IM

∑

k 6=i∈IM

τsi,k,t+
∑

i∈IM

θ̃i,t+TRNPt+
∑

i∈IM

∑

k 6=i∈IM

τei,k,t = Ht ∀t ∈ TP \(TF ∪ TL) (92)

∑

i∈IM

∑

k 6=i∈IM

τsi,k,t +
∑

i∈IM

θ̃i,t + TRNPt = Ht ∀t ∈ TL (93)

The changeover between time periods is also modeled across the due dates by,

τi,k ZZZi,k,t = τei,k,t + τsi,k,t+1 ∀i, k 6= i ∈ IM, t ∈ TP \ TL (94)

5.2.5 Coatings

The following constraint states that the processing time ofthe product without coating must be

greater or equal than the processing time for the products with the same substrate but with a coating

applied.

θ̃2i′,t + θ̃2n,t ≥ θ̃2k,t + θ̃2j,t ∀i′ ∈ IS, k ∈ CT1, j ∈ CT2, n ∈ THK, t ∈ TP (95)
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5.2.6 Objective function

The objective function is given by,

profit =
∑

p∈P

∑

t∈TP

pp,t Sp,t −
∑

p∈P

∑

t∈TP

cinvp,t Areap,t −
∑

t∈TP

∑

p∈P

coperp,t ηprpθ̃2p,t

−
∑

i∈IM

∑

k 6=i∈IM

∑

t∈TP

ctrani,k (ZPi,k,t − ZZPi,k,t)

−
∑

i∈IM

∑

k 6=i∈IM

∑

t∈TP

ctrani,k ZZZi,k,t

−
∑

t∈TP

PEN1tqt −
∑

p∈P

∑

t∈TP

PEN2p,tsp,t −
∑

p∈P

PEN3 slthp

(96)

Note that within the rolling horizon algorithms where the scheduling and planning models are

used, the objective function is defined over the time periodsof both model models.

5.2.7 Interface between scheduling and planning

The hybrid and the asynchronous rolling horizon algorithmsintegrate the scheduling and planning

models in the same subproblem. Thus, at the interface of these models some variable must be

linked in order to ensure that the minimum run lengths and changeovers across due dates are valid

over the interface of the two models. Equations 97 and 98 ensure the link between the binary

variables associated with the changeovers.
∑

i∈IM

TRTi,k,t = XFk,t+1 ∀i ∈ IM, l ∈ LML, t ∈ TSL, t /∈ TL (97)

TRTi,k,t = ZZZi,k,t ∀i, k ∈ IM, t ∈ TSL \ TL (98)

In the asynchronous strategy the set of time periods contains first the time periods for the

scheduling model and then the time periods for the planning model. This is illustrated with the

following example. Consider 8 time periods of 7 days in the scheduling model and two time

periods of 28 days in the planning model. Therefore, the set of time periods is defined as:

T := { w1, ..., w8, t1, t2}

wherew1 : w8 are the time periods for the scheduling model andt1, t2 denote the time periods

for the planning model. For a subproblem with the schedulingmodel defined overw1 : w4, and

the planning model overt2, the link between the scheduling and the planning model mustbe done

between the time periodsw4 andt2 (see Figure 9). Therefore, some of the equations presented

have to be slightly modified in order to incorporate the link between the last time period of the

scheduling model and the first period of the planning model for a given subproblem. In addition,
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Figure 9: Time representation for the asynchronous rollinghorizon strategy.

the link between the inventory levels is enforced with:

INVOp,t = INVOp,tt−1 ∀p ∈ P, t ∈ TSL, tt ∈ TPF (99)

BCKLp,t = BCKLp,tt−1 ∀p ∈ P, t ∈ TSL, tt ∈ TPF (100)

whereTSL andTPF are singletons that represent the last time period of the scheduling and the first

time period for the planning for a given subproblem. For the given example, we haveTSL := w4

andTPF := t2.

5.3 Remarks

1. At the interface of the scheduling and planning models thevariablesτei,k,t, τei,k,t, θb1i,t,

θa1i,t, are the same for both models, which together with Equations97 and 98 ensure that

minimum run lengths and transitions across due dates are valid at the interface.

2. The constraints proposed for modeling the changeovers across the due dates assume that

the changeovers fit in the length of two time periods. Otherwise, these constraints must be

reformulated.

3. The symmetry breaking constraints given by Equations 49 to 52 are only required if a mini-

mum run length and two more products can fit within a time period.

4. For the rolling horizon algorithms where the planning model is applied, optimality of the

solutions is not guaranteed because even if the planning model is solved to optimality, the

solution is an overestimation of the profit.

5. In the planning model, sub-tour elimination constraintsare not included, which may lead to

an overestimation of the processing time at this level. However, the products assigned can

then be re-adjusted at the scheduling level.
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5.4 Alternative models

In order to compare the performance of the proposed models, three additional models are stud-

ied. The first and second correspond to the scheduling and planning models described before, but

without considering the changeovers and minimum run lengths across the due dates. The aim is to

assess the computational cost of introducing these constraints, and the production flexibility pro-

vided by these constraints. The third model relies on a variation of the proposed planning model

with the sequence constraints, Equations 56 to 68, replacedby the sequence constraints used by

Liu et al. (2008):
∑

i∈IM

XFi,t = 1 ∀t ∈ TP (101)

∑

i∈IM

XLi,t = 1 ∀t ∈ TP (102)

XFi,t ≤ YPi,t ∀i ∈ IM, t ∈ TP (103)

XLi,t ≤ YPi,t ∀i ∈ IM, t ∈ TP (104)
∑

i6=k∈IM

ZPi,k,t = YPk,t − XFk,t ∀k ∈ IM, t ∈ TP (105)

∑

k 6=i∈IM

ZPi,k,t = YPi,t − XLi,t ∀i ∈ IM, t ∈ TP (106)

∑

i∈IM

ZZZi,k,t = XFk,t+1 ∀k ∈ IM, t ∈ TP \ TPL (107)

∑

k∈

ZZZi,k,t = XLi,t ∀i ∈ IM, t ∈ TP \ TPL (108)

Ok,t − (Oi,t + 1) ≥ −BIGMP (1 − ZPi,k,t) ∀i 6= k ∈ IM, t ∈ TP (109)

Oi,t ≤ BIGMP YPi,t ∀i ∈ IM, t ∈ TP (110)

Oi,t ≤
∑

k∈IM

YPk,t ∀i ∈ IM, t ∈ TP (111)

Oi,t ≥ XFi,t ∀i ∈ IM, t ∈ TP (112)

whereOi,t denotes the order for the assignment of producti in the time periodt. The remaining

variables follow the nomenclature used in this work. Note that the last four equations represent sub-

tour elimination constraints. The third model is used to evaluate the performance of the sequence

constraints implemented in the planning model. The goal is not to perform a comparison with the

model proposed by Liu et al. (2008), since their model does not include some of the features of the

models presented in this work.
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6 Case studies

In order to assess the performance of the proposed rolling horizon algorithms, and their appli-

cability to support real world decisions, six case studies are presented. The case studies are as

follows:

• Case 1 - hybrid rolling horizonalgorithmwith terminal constraintsfor the inventory at the

end of the time horizon of each subproblem. The time resolution is one month in the planning

and scheduling models.

• Case 2- asynchronous rolling horizonalgorithmwith terminal constraintsfor the inventory

at the end of the time horizon of each subproblem. The time resolution is 28 days in the

planning model, and 7 days in the scheduling model until the 18th month. For the remaining

time periods in the planning model the length is one month.

• Case 3- detailed rolling horizonalgorithmwith terminal constraintsfor the inventory at the

end of the time horizon of each subproblem. The time resolution is one month using only

the scheduling model with ten slots per time period.

• Case 4 - hybrid rolling horizonalgorithmwithout terminal constraintsfor the inventory at

the end of the time horizon of each subproblem. The time resolution is one month in the

planning and scheduling models.

• Case 5- hybrid rolling horizonalgorithmwith terminal constraintsfor the inventory at the

end of the time horizon of each subproblem,but without the changeovers and minimum

run lengths across the time periods. The time resolution is one month in the planning and

scheduling models.

• Case 6 - hybrid rolling horizonalgorithm with terminal constraintsfor the inventory at

the end of the time horizon of each subproblem, but amodified planning modelusing the

sequence constraints from the work of Liu et al. (2008). The planning and scheduling models

use time periods of one month.

The time horizon for each case is set to two years, which involves 18 months of detailed

scheduling plus six additional months with the planning model to provide feedback on the final

inventory level. The set of products to manufacture involves 10 different substrates, 9 coated prod-

ucts, and 1 substrate with a different thickness, resultingin 20 different products. The penalty

weights used in the objective functions are set to large values in order to avoid the violation of the

safety stocks, maximum storage capacity, and terminal constraints.
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For each case study, three instances with different stopping criteria are considered: 1) minimum

optimality gap of 5% and maximum time set to 3,600s; 2) minimum optimality gap of 1% and

maximum time set to 3,600s; and 3) minimum optimality gap of 1% and maximum time set to

10,800s for all subproblems of Case 4, and 3,600s in the first three subproblems and 10,800s

in the last three subproblems for the rolling horizon algorithms of Cases 1, 2, 3, 4 and 5. The

goal of the first instance is to try to find a solution with a reasonable optimality gap within one

hour. The second instance has a smaller minimum optimality gap without increasing the maximum

time allowed. The last instance provides an idea of how much the solution can be improved by

increasing the maximum time to 10,800s.

6.1 Overview of the results

For each case, the solution obtained from the rolling horizon algorithm corresponds to a period of

two years. In terms of objective functions, they are a combination of the profit and the penalty terms

for violation of the safety stocks, maximum storage capacity, and inventory terminal constraints.

In order to provide a quantification of the terms involved, Table 1 shows the detailed economic

and inventory results for the first year of the two years horizon. Table 1 shows that the values of

the profit are different from case to case, and in addition do not present a consistent trend with the

instances used. This is explained by the following reasons:1) different constraints are used, for

example Case 4 does not consider inventory terminal constraints, while the other cases consider;

2) models with different levels of accuracy, in Case 3 the rolling horizon algorithm uses only the

scheduling, while the other cases use also the planning model; Case 2 also uses a different time

discretization; 3) the solutions should be compared considering the profit and the violations of

inventory constraints; and 4) for each subproblem in the rolling horizon algorithm, CPLEX with

the heuristics and parallel options is used, which may lead to different solutions from run to run. In

this section the results obtained in terms of scheduling andtotal inventory levels are discussed. The

results for each case correspond to the second instance (maximum time of 3,600s and minimum

optimality gap of 1%).

6.1.1 Impact of the inventory terminal constraints

The influence of the inventory terminal constraints on the results is studied in this section. The

inventory terminal constraints set a minimum inventory level for each product at the end of the

time horizon, to the safety stock,INVMINp, plus four months of demand,
∑

tt∈TT dp,tt. We denote

the sum over all the products of the minimum inventories at the end of the time horizon byINV730,

INV730 =
∑

p∈P

(

INVMINp +
∑

tt∈TT

dp,tt

)

(113)
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Table 1: Economic and production results for each case for the first year of the time horizon.

Case 1† Case 2‡

Instances∗ 1 2 3 1 2 3

Profit ($) 4.063 4.131 4.08 4.393 4.228 4.235
Sales ($) 11.182 11.182 11.18 11.155 11.155 11.16
Inventory ($) 1.189 1.171 1.18 1.007 1.047 1.04
Operating ($) 5.324 5.242 5.24 4.924 5.195 5.17
Transitions ($) 0.606 0.639 0.68 0.831 0.685 0.72

# Transitions: 17.0 19.0 20 26.0 21.0 22
# Transition days: 62.3 65.7 69.8 85.5 70.5 73.8
Tons produced in the first year 43,251 42,371 43421 40,588 42,959 42900
Amount below the safety stock (ton): 0 0 0 304 268 268
Total backlog (ton): 0 0 0 12 12 12
Amount above max capacity (ton): 0 0 0 0 0 0
Total violation of inventory terminal constraints (ton) 0 163 0 4732 720 2328

Case 3† Case 4†

Instances∗ 1 2 3 1 2 3

Profit ($) 4.044 4.168 4.112 4.706 4.711 4.778
Sales ($) 11.182 11.182 11.182 11.182 11.182 11.182
Inventory ($) 1.175 1.171 1.196 1.021 1.002 0.985
Operating ($) 5.297 5.174 5.210 4.220 4.248 4.152
Transitions ($) 0.666 0.669 0.664 1.236 1.220 1.267

# Transitions: 20.0 20.0 20.0 31.0 29.0 31.0
# Transition days: 68.5 68.9 68.3 127.1 125.5 130.3
Tons produced in the first year 43,892 41,910 43,028 34,810 35,214 34,421
Amount below the safety stock (ton): 0 0 0 78 0 0
Total backlog (ton): 0 0 0 0 0 0
Amount above max capacity (ton): 0 0 0 0 0 0
Total violation of inventory terminal constraints (ton) 745 12 142 - - -

Case 5† Case 6†

Instances∗ 1 2 3 1 2 3

Profit ($) 4.070 4.147 4.127 4.088 4.102 4.111
Sales ($) 11.182 11.182 11.182 11.182 11.182 11.18
Inventory ($) 1.185 1.164 1.174 1.192 1.160 1.17
Operating ($) 5.333 5.186 5.221 5.279 5.279 5.27
Transitions ($) 0.593 0.685 0.660 0.623 0.641 0.63

# Transitions: 17.0 21.0 20.0 18.0 19.0 20
# Transition days: 61.0 70.5 67.9 64.1 66.0 65
Tons produced in the first year 43,536 43,038 43,501 43,145 43,236 43029
Amount below the safety stock (ton): 55 55 55 0 0 0
Total backlog (ton): 5 5 5 0 0 0
Amount above max capacity (ton): 0 0 0 0 0 0
Total violation of inventory terminal constraints (ton) 132 398 17 404 108 46

These results are masked and do not represent real values.∗ - Minimum optimality gap and maximum CPU time:
Instance 1 - Gap = 5%, CPU=3,600s, Instance 2 - Gap =1%, CPU = 3,600s, Instance 3 - Gap = 1%, CPU = 3,600s for
SP ={1,2,3}, 10,800s for SP= {4,5,6}. SP - Subproblem.† - Scenario with time periods of one month.‡ - Scenario
with time periods of one week. 33



Figure 10 presents the total inventory profile obtained withCases 1, 2, 3, and 4 forINV730 =

22, 645 ton. In Cases 1, 2, and 3 the total inventory level decreases at the beginning of the time

horizon, but afterwards there is not a clear trend to depletethe inventory. This is a result of the

terminal constraints for the minimum inventory levels enforced at the end of the time horizon of

each subproblem of the rolling horizon algorithms used. Thereduction in the inventory level at the

beginning of the time horizon is supported by the number of transitions and short production runs

in that period of time.

The bottom curve represents the total inventory profile for Case 4 over the period of two years

without the terminal constraints for the minimum inventorylevels at the end of the time horizon of

each subproblem of the hybrid rolling horizon algorithm. InCase 4, there is a clear trend to deplete

the total inventory level during the first year of the time horizon. In the first year the safety stocks

are not violated, while in the second year, because the totalinventory level continues to decrease,

it leads to violations of the safety stocks. The depletion ofthe inventory is explained by the large

number of transition days in the first year determined by the model, 125.5 days, against the 65.7

days obtained for Case 1, (see Table 1).

The sensitivity of the total inventory profile to different values ofINV730 is presented in Figure

11, using Case 1 with the first instance. This figure shows thatincreasing the value ofINV730 the

total inventory increases over the full time horizon, whilethe profit for the first year and objective

function over the two years decrease (see Table 2). Analyzing the results from Table 2, the relation

betweenINV730 and the objective function value suggests that an optimum value of INV730 may

exist betweenINV730 = 0 andINV730 = 15, 907 ton. As explained before, the relation between

the value ofINV730 and the profit is explained by the trade-off between the cost of the changeovers

and the operating cost of the products. This shows that the results in terms of scheduling, inventory,
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Figure 10: Total inventory profile for Case 1, 2, 3, and 4 over two years.
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Figure 11: Impact of the inventory terminal constraints on the total inventory profile over two years.INV730

denotes the total inventory set by the terminal constraintson the day 730th.

and profit are sensitive to the value ofINV730, and therefore its definition depends on the decision

maker. In this study a conservative approach is followed, using INV730 = 22, 647 ton.

Table 2: Results for Case 1 and 4 obtained with the first instance (minimum optimality gap = 5% and
maximum CPU time = 3,600s).

Case 4 Case 1

INV730 (ton) 0 15,097 18,871 22,645

Results for day 365

Inventory (ton) 14,360 18,013 19,190 22,801
Profit ($) 4.706 4.485 4.240 4.063

Results for day 730

Inventory (ton) 9,011 14,554 18,553 22,356
Objective function ($) -83.539 8.505 8.278 7.870
Violations of safety stocks (ton) 739 0 0 0
Violations of terminal constraints (ton) - 543 43 289

6.1.2 Gant charts

Figures 12 and 13 show the Gantt charts obtained in Case 1 for the same schedule, but with a

different level of detail in terms of products. In the first Gantt chart only the pseudo-products are

shown, while in the second all products are represented. These results illustrate that the processing

time of each run of the pseudo-products is equal to the sum of the processing times of the products

aggregated into them. Figures 12 and 15 show the Gantt chartsfor Cases 1 and 4, respectively,
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where the difference can be seen in terms of the number of transitions and length of the production

runs between both cases. The large number of transitions in Case 4 is explained by the trade-off

between the transition cost and the production cost.

In Figure 14 the Gantt chart obtained with Case 2 with the demand due at the end of every

seven days is presented. Comparing the sequence of production with the sequence of Case 1 it is

similar in the beginning of the time horizon, but after some time differences start to arise resulting

in two more transitions in this case than in Case 1.

The Gantt chart from Case 5, without considering minimum runlengths and changeovers across

due dates, is illustrated in Figure 16. Comparing this Ganttchart with the one from Case 1, is clear

that the model from Case 5 does not have as much flexibility as the models with minimum run

lengths and changeovers across due dates to fit changeovers and production runs within the time

periods, which leads to the violation of the safety stocks inthe first year (see Table 1).
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Figure 12: Schedule for Case 1, for the instance with minimumgap of 1% and maximum time of 3,600s.
The black boxes represent changeovers. Only the pseudo-products are represented.
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Figure 13: Schedule for Case 1, for the instance with minimumgap of 1% and maximum time of 3,600s.
The black boxes represent changeovers. All products are represented.
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Figure 14: Schedule for Case 2, instance with minimum gap of 1% and maximum time of 3,600s. The black
boxes represent changeovers. Only the pseudo-products arerepresented. Time periods of seven days are
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Figure 15: Schedule for Case 4, instance with minimum gap of 1% and maximum time of 3,600s. The black
boxes represent changeovers. Only the pseudo-products arerepresented.
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Figure 16: Schedule for Case 5, instance with minimum gap of 1% and maximum time of 3,600s. The black
boxes represent changeovers. Only the pseudo-products arerepresented.
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6.1.3 Analysis of the time resolution

The case studies with time periods of one month, and minimum run lengths and changeovers across

the due dates are able to achieve results without violation of the safety stocks. However, when a

finer time resolution is used, as in Case 2 with time periods ofone week, violations of safety stocks

and backlog occur, because the sample time is smaller. To illustrate this, Figures 6.1.3 and 6.1.3

show the inventory level of one product, designated by S41, obtained with Case 1 and Case 2,

respectively. Case 1 has time periods of one month, and Case 2has time periods of one week in

the scheduling model. The due dates are specified at the end ofthe month in Case 1, and in Case

2 they are specified at the end of each week. Considering the first 31 days of the time horizon, the

model in Case 1 does not consider a violation of the safety stock, because at the end of the first

time period, the inventory is at the level of the safety stock. However, in Case 2 with inventory

balances at the end of each week, the model determines the violation of the safety stocks for the

first four time periods.
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Figure 17: a) Inventory level of product S41, obtained with Case 1 with time periods of one month; b)
Inventory level of product S41 obtained with Case 2 with timeperiods of one week.
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6.2 Computational results

The MILP models and the rolling horizon algorithms are implemented in GAMS (Brooke et al.,

1998) and solved on a machine running Linux with 8 processorsIntel Xeon, 1.86GHz and 8GB

of RAM. CPLEX 11.2.0 is used, with the polishing (Rothberg, 2007) option activated after 10

minutes of elapsed time, and using the opportunistic parallel option with 4 threads. The algorithm

behind the polishing option is based on genetic operators that generate a vector of integer variables

with a sub-set of variables fixed for any given integer vector. For each sub-set of variables fixed,

a smaller sub-MILP is solved and a new incumbent may be found.This heuristic does not violate

the logic of upper and lower bound in the B&B algorithm. Note that both options, opportunistic

parallel and polishing, introduce random behavior in CPLEXthat may lead to nonreproducible

results. Nevertheless, the random search in the B&B tree mayimprove the incumbent, improving

implicitly and explicitly the performance of the search.

6.2.1 Case 1

The best profit over two years is 8.075m.u., which is obtainedwith the third instance. The maxi-

mum optimality gaps obtained are 5.0%, 6.6%, and 1.7% for thethree instances studied, respec-

tively (see Table 3). A finer time resolution with time periods of one week was also studied.

However the size of the model increases approximately four times posing a challenge to the solver

to close the optimality gap. The first instance (minimum optimality gap of 5% and maximum time

of 3,600s) is able to achieve the minimum gap set, with CPU times below 674s. While the sec-

ond and third instances presented in Table 3 show that the gaps can be reduced by increasing the

maximum time set. However, the relative difference of the objective function between the first and

the third instance is only 0.47%, but requiring an additional 9,278s, (see Table 3). The number

of slots considered for each scheduling model is determinedby the number of products that are

assigned by the planning model in the previous subproblem, for example the number of slots of

the subproblem 2 in the first instance is 17, which is determined by the total number of products

determined by the planning model for the first six months. Otherwise, if the scheduling model is

used as a first approach the number of slots would be 120.

6.2.2 Case 2

For this case, the best profit over two years is -13.919m.u., which is obtained in the second instance.

The maximum optimality gaps for each instance are 14.5%, 4.2%, and 11.7%, respectively, (see

Table 4). The negative value of the objective function meansthat there are nonzero slack variables

associated with the violation of the safety stocks. As mentioned before, this is due to the length of

the time periods.
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Table 3: Size of the models, and results for each subproblem and instances for Case 1 with time periods of
one month.

Variables

Instances SP Equations Total Binary Slots Gap (%) RMIP† Profit (m.u.) CPU (s)

1 Gap∗ = 5%
1 9,095 8,115 3,860 - 3.7 4.233 4.027 526
2 5,961 5,300 2,267 17 5.0 4.212 3.923 165
3 10,216 9,129 3,960 17 4.8 6.071 5.752 674
4 6,697 5,868 2,081 28 4.8 6.031 5.699 540
5 11,089 9,921 3,960 28 4.9 8.211 7.786 612
6 7,709 6,840 2,174 42 3.4 8.179 7.870 45

2 Gap∗ = 1%
1 9,095 8,115 3,860 - 2.3 4.233 4.085 3,600
2 6,123 5,540 2,408 20 0.9 4.219 4.076 573
3 10,278 9,171 3,960 20 6.6 6.070 5.649 3,600
4 6,802 5,962 2,108 32 2.6 6.036 5.815 3,600
5 11,220 10,009 3,960 32 2.1 8.234 8.002 3,600
6 7,925 7,033 2,236 48 1.1 8.215 7.993 3,600

3 Gap∗ = 1%
1 9,095 8,115 3,860 - 1.7 4.233 4.078 3,600
2 5,973 5,329 2,289 17 0.8 4.219 4.071 554
3 10,252 9,152 3,960 17 1.4 6.071 5.945 3,600
4 6,827 6,016 2,149 30 1.0 6.025 5.919 96
5 11,185 9,989 3,960 30 1.0 8.214 8.095 3,605
6 7,755 6,837 2,140 43 0.8 8.177 8.075 384

Minimum optimality gap and maximum CPU time: Instance 1 - Gap= 5%, CPU=3,600s, Instance 2 - Gap =1%, CPU
= 3,600s, Instance 3 - Gap = 1%, CPU = 3,600s for SP ={1,2,3}, 10,800s for SP= {4,5,6}. SP - Subproblem.† - Linear
relaxation in the root node.

6.2.3 Case 3

For this case the best profit over two years is 8.093m.u., which is obtained in the second instance.

The maximum optimality gaps obtained are 13.2%, 4.2%, and 4.5% for the three instances studied,

respectively. In this case a finer time resolution was also investigated, but increasing the resolution

of the time grid leads to large problems that cannot be solvedby CPLEX.

In this case, the size of the models is considerably larger than the size of the models in Case

1. However, the detailed model is able to obtain solutions with optimality gaps below 5% within

three hours, which is comparable with the performance obtained with the hybrid rolling horizon

algorithm used in Case 1. Comparing the first subproblem of the second instance of Cases 1 and 3,

the first has an objective function equal to 4.085m.u. with 2.3% gap obtained in 3,600s, and Case

3 has an objective function equal to 4.085m.u. with 2.5% gap obtained in 3,600s, (see Tables 3

and 5). This suggests that the planning model has a similar performance to the detailed scheduling

model for problems of this dimension.
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Table 4: Size of the models, and results for each subproblem and instances for Case 2 for three different
instances with different stopping criteria.

Variables

Instances SP Equations Total Binary Slots Gap (%) RMIP† Profit (m.u.) CPU (s)

1 Gap∗ = 5%
1 9,900 8,809 4,190 - 4.7 4.236 2.861 709
2 11,280 10,144 3,306 80 4.5 4.263 -18.352 557
3 14,339 12,887 4,290 80 5.3 -15.553 -16.459 3,600
4 14,902 13,480 3,288 136 8.9 -15.528 -17.597 3,600
5 17,839 16,148 4,290 136 14.5 -13.295 -15.589 3,600
6 17,343 15,470 2,433 182 6.9 -13.278 -22.938 3,600

2 Gap∗ = 1%
1 9,900 8,809 4,190 - 3.0 4.236 2.909 3,600
2 11,477 10,435 3,506 84 0.3 4.266 -17.576 1,470
3 14,329 12,888 4,290 84 2.9 -15.563 -16.063 3,600
4 14,559 12,913 2,877 136 2.9 -15.529 -16.049 3,600
5 17,892 16,178 4,290 136 4.2 -13.346 -13.970 3,600
6 17,531 15,636 2,490 186 2.6 -13.328 -13.919 3,600

3 Gap∗ = 1%
1 9,900 8,809 4,190 - 3.1 4.236 2.906 3,600
2 11,684 10,684 3,634 88 1.0 4.268 -17.698 638
3 14,389 12,923 4,290 88 4.8 -15.557 -16.365 3,600
4 14,472 12,818 2,819 136 6.3 -15.538 -16.651 10,800
5 17,863 16,166 4,290 136 7.2 -13.339 -14.400 10,800
6 17,669 15,824 2,607 190 11.7 -13.309 -15.129 10,800

Minimum optimality gap and maximum CPU time: Instance 1 - Gap= 5%, CPU=3,600s, Instance 2 - Gap =1%, CPU
= 3,600s, Instance 3 - Gap = 1%, CPU = 3,600s for SP ={1,2,3}, 10,800s for SP= {4,5,6}. SP - Subproblem.† - Linear
relaxation in the root node.

Table 5: Size of the models, and results for each subproblem and instances for Case 3 with time periods of
one month.

Variables

Instances SP Equations Total Binary Slots Gap (%) RMIP† Profit (m.u.) CPU (s)

1 Gap∗ = 5%
1 10,421 19,134 13,340 120 2.8 4.232 4.076 2,599
2 11,876 20,527 13,684 138 13.2 6.174 5.401 3,600
3 12,939 21,381 13,718 148 9.9 8.385 7.582 3,600

2 Gap∗ = 1%
1 10,421 19,134 13,340 120 2.5 4.232 4.085 3,600
2 11,867 20,498 13,659 138 4.2 6.179 5.868 3,600
3 12,933 21,371 13,705 148 3.3 8.416 8.093 3,600

3 Gap∗ = 1%
1 10,421 19,134 13,340 120 2.5 4.232 4.082 10,800
2 11,874 20,518 13,680 138 2.6 6.177 5.937 10,800
3 12,912 21,361 13,707 147 4.5 8.389 7.959 10,800

Minimum optimality gap and maximum CPU time: Instance 1 - Gap= 5%, CPU=3,600s, Instance 2 - Gap =1%, CPU
= 3,600s, Instance 3 - Gap = 1%, CPU = 3,600s for SP ={1,2,3}, 10,800s for SP= {4,5,6}. SP - Subproblem.† - Linear
relaxation in the root node.
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6.2.4 Case 4

For this case, the best objective function obtained is -83.539m.u., which corresponds to a penalized

objective function due to violations of the safety stocks during the second year. For the same

instance, for the first year the profit obtained is 4.706m.u with 127.1 days of transitions (see Table

1). Table 6 shows information about the size of the models andthe performance of this approach.

Results for the three instances with different stopping criteria are shown. In the three instances

Table 6: Size of the models, and results for each subproblem and instances for Case 4.

Variables

Instances SP Equations Total Binary Slots Gap (%) RMIP† Profit (m.u.) CPU (s)

1
1 9,095 8,116 3,860 - 4.8 5.352 4.939 461
2 6,171 5,612 2,446 21 4.5 5.325 4.851 14
3 10,302 9,199 3,960 21 2.8 7.404 7.125 49
4 7,141 6,400 2,340 40 0.7 7.361 7.221 33
5 11,339 10,094 3,960 40 109.3 9.677 -102.764 3,600
6 7,987 7,045 2,193 55 45.7 -45.286 -83.539 3,600

2
1 9,095 8,116 3,860 - 3.8 5.352 4.963 3,600
2 6,059 5,439 2,337 19 1.0 5.322 4.952 353
3 10,292 9,180 3,960 19 1.1 7.410 7.264 3,600
4 7,134 6,392 2,340 38 1.0 7.381 7.233 115
5 11,347 10,113 3,960 38 109.7 9.694 -98.829 3,600
6 7,995 7,075 2,200 53 29.9 -66.082 -94.546 3,600

3
1 9,095 8,116 3,860 - 3.6 5.352 4.968 3,600
2 6,059 5,439 2,337 19 0.9 5.324 4.966 254
3 10,317 9,208 3,960 19 1.0 7.409 7.273 1,700
4 7,104 6,341 2,306 37 0.9 7.381 7.251 29
5 11,352 10,100 3,960 37 105.4 9.710 -176.759 10,800
6 8,008 7,071 2,213 52 47.8 -81.580 -182.759 10,800

Minimum optimality gap and maximum CPU time: Instance 1 - Gap= 5%, CPU=3,600s, Instance 2 - Gap =1%, CPU
= 3,600s, Instance 3 - Gap = 1%, CPU = 3,600s for SP ={1,2,3}, 10,800s for SP= {4,5,6}. SP - Subproblem.† - Linear
relaxation in the root node.

relatively large optimality gaps are obtained for the subproblems 5 and 6, indicating that the solver

cannot close the gap between the linear relaxation and the integral solution within the specified

maximum time. This is explained by the fact that the linear relaxation is able to meet the safety

stocks levels while the integral solution cannot.

6.2.5 Case 5

In this case, the best profit over two years is 3.626m.u. obtained in the third instance. This value

is smaller than the previous results reported, and the maximum optimality gaps obtained are also

larger, 24.2%, 193.2%, and 32.8% for the three instances studied, respectively (see Table 7). These
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Table 7: Size of the models, and results for each subproblem and instances for Case 5.

Variables

Instances SP Equations Total Binary Slots Gap (%) RMIP† Profit (m.u.) CPU (s)

1 Gap∗ = 5%
1 7,367 5,467 2,520 - 19.2 4.229 -0.380 3,600
2 4,768 3,700 1,322 14 4.9 -0.289 -0.379 415
3 8,181 6,272 2,520 14 24.2 1.612 1.261 3,600
4 5,434 4,377 1,315 27 5.0 1.568 1.291 363
5 8,849 6,964 2,520 27 4.0 3.750 3.527 1,028
6 6,145 5,109 1,322 41 3.6 3.718 3.517 48

2 Gap∗ = 1%
1 7,367 5,467 2,520 - 17.1 4.229 -0.372 3,600
2 4,849 3,788 1,336 16 6.5 -0.288 -0.372 3,600
3 8,210 6,284 2,520 16 193.2 1.617 0.536 3,600
4 5,435 4,357 1,310 28 1.0 1.570 0.540 179
5 8,874 6,974 2,520 28 10.2 3.775 3.345 3,600
6 6,088 5,034 1,308 40 1.0 3.757 3.383 523

3 Gap∗ = 1%
1 7,367 5,467 2,520 - 16.7 4.229 -0.375 3,600
2 4,809 3,742 1,329 15 4.2 -0.290 -0.375 3,600
3 8,196 6,280 2,520 15 32.8 1.615 1.187 3,600
4 5,409 4,336 1,308 27 1.0 1.570 1.187 246
5 8,871 6,972 2,520 27 2.2 3.762 3.626 10,800
6 6,085 5,032 1,308 39 0.4 3.719 3.626 2,055

Minimum optimality gap and maximum CPU time: Instance 1 - Gap= 5%, CPU=3,600s, Instance 2 - Gap =1%, CPU
= 3,600s, Instance 3 - Gap = 1%, CPU = 3,600s for SP ={1,2,3}, 10,800s for SP= {4,5,6}. SP - Subproblem.† - Linear
relaxation in the root node.

large gaps demonstrate that this model, without considering minimum run lengths and changeovers

across the due dates, does not have enough flexibility to satisfy the safety stocks and terminal

constraints. The model has to fit the minimum run lengths and changeovers within the time periods

as can be seen in Figure 16. These results show that the cost ofadding the minimum run lengths

and transition across the due dates (instead of 7,367 equations, and 5,467 total variables and 2,520

binary variables in Case 5, 9,095 equations, 8,115 continuous variables, and 3,860 binary variables

in Case 1, for the first subproblem) is compensated by the gainin flexibility of the model.

6.2.6 Case 6

In this case, the best profit over two years is 8.069m.u. obtained in the third instance. The maxi-

mum optimality gaps obtained are 4.9%, 8.9%, and 2.8% for thethree instances studied. Compar-

ing the results in terms of computational times and profit obtained with Case 1 and this case, there

is no clear evidence that one planning model is superior to the other, both in terms of objective

function and CPU times.
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7 Conclusions

A long-term scheduling approach has been presented for the single stage continuous process for

manufacturing value added glass products. The proposed models represent extensions of the

models proposed by Erdirik-Dogan and Grossmann (2006) and Erdirik-Dogan and Grossmann

(2008) motivated by the specific features of the process under study. The extensions involve

changeovers and minimum run lengths across due dates, an aggregation strategy to handle the

case of changeovers without transition times between a subset of products, and the consideration

of terminal constraints for the inventory levels at the end of the time horizon. The challenge posed

by the long-term scheduling is addressed by using rolling horizon algorithms integrated with the

aggregation and disaggregation of the time, which reduce the size of the subproblems to solve.

The results have shown that the new extensions improve the flexibility and applicability of the

models by providing feasible solutions that are not possible with previous models. Problems with

time horizons of 24 months with 18 months of detailed scheduling have been solved with optimal-

ity gaps below 5% with reasonable computational times of less than six hours. The resolution of the

time periods has a clear impact on the size of the models, and on the quality of the results obtained.

For the models with time periods of one month, the three instances studied are able to achieve re-

sults with optimality gaps below 5% for the final subproblem with moderate computational efforts.

The asynchronous rolling horizon algorithm leads to more accurate inventory balances, without

increasing considerably the computational efforts. From the performance of the planning and the

scheduling models, within the respective rolling horizon algorithms in this problem, there is no

clear evidence that the planning model is computationally more efficient. Therefore, the detailed

rolling horizon algorithm used in Case 3 has the best performance. For all cases, the instance with

maximum optimality gap of 5% and maximum time of 3,600s showsa good compromise between

the quality of the final solution and the computational resources used.

Future work will involve the integration of a second production line, and the management of

the waste glass produced and used in the furnace, with the production scheduling.
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Nomenclature
Indices

i, i′, k products

j, n, p products

t, t′, t∗ time periods

l slots

Sets

Ai,t subset of periods of time after the time periodt that cover the minimum run length

Bi,t subset of periods of time before the time periodt that cover the minimum run length

CT1 set of products with coating 1

CT2 set of products with coating 2

P set of products

IM set of pseudo-products

L set of slots

LMt subset of slots active for the time periodt

LMF singleton with the first element of the setLM

LML singleton with the last element of the setLM

T set of time periods

TF singleton with the first element of the set of time periods

TFP singleton with the first element of the set of time periodsTF

TL singleton with the last element of the set of time periods

TP subset of time periods with only planning

TS subset of time periods with only detailed scheduling

TSL singleton with the last element of the setTS

Parameters

BCKLIp Initial backlog of productp

cinv inventory cost in a year basis

coperp,t operating cost for productp in periodt

ctranp,k transition cost from productp to productk

dp,t demand of productp in periodt

Ht duration of the tth time period

HTt time in terms of day at the end of the tth time period

MRTi minimum run length of producti

INVIp initial inventory of productp (ton)
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INVMAX maximum capacity for storage (ton)

INVMINp minimum inventory (ton)

rp gross production rates (ton/day)

pp,t selling price of productp in periodt

ηp production yield of productp

τi,k transition time from producti to productk

ηp production yield of productp

Variables

BCKLp,t backlog of productp in the time periodt

Areap,t area below the inventory time graph for productp at periodt

INVOp,t final inventory of productp at timet after the demands are satisfied

NYi,t number of slots that producti is assigned in periodt

Oi,t order of the assignment of producti in the time periodt

qt slack variable for maximum storage capacity violation in time periodt

Sp,t sales of productp at periodt

sp,t slack variable for the safety stock violation of productp during time periodt

slthp slack variable for the violation of the terminal inventory constraint of productp

TPAi,t production time of producti in t that is added to the production time ofi in t − 1

TPBi,t production time of producti in t that is added to the production time ofi in t + 1

Tel,t end time of slotl during periodt

T sl,t start time of slotl during periodt

Td total minimum inventory level at the end of the time time horizon enforced by

the terminal constraints

ηp yield of production of the productp

θi,l,t production time of producti in slot l during periodt

θ̃i,t production time of pseudo-product (aggregated)i ∈ IM during periodt

θ̃2p,t production time of productp ∈ P during periodt

θ̃a1i,t disaggregated variable ofθ̃i,t

θ̃a2i,t disaggregated variable ofθ̃i,t

θ̃b1i,t disaggregated variable ofθ̃i,t

θ̃b2i,t disaggregated variable ofθ̃i,t

τei,k,t part of the transition time between time periods assigned inthe end of periodt

τsi,k,t part of the transition time between time periods assigned inthe start of periodt

47



Binary variables

TRTi,k,t denotes if producti is followed by productk at the end of periodt

Wi,l,t denotes if producti is assigned to slotl during periodt

XFi,t denotes if producti is the first product in periodt

XLi,t denotes if producti is the last product in periodt

Y Fi,t denotes if producti is assigned to more than one slot

YOPi,t denotes if producti is assigned during periodt

YPi,t denotes if producti is assigned to periodt

Zi,k,l,t denotes if producti is followed by productk in slot l during periodt

ZPi,k,t denotes if producti precedes product k in periodt

ZZPi,k,t denotes if the link between productsi andk are broken

ZZZi,k,t denotes if producti is followed by productk at the end of periodt
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