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Abstract

In this paper the long-term scheduling of a real world mpitiduct single stage continuous
process for manufacturing glass is studied. This processiries long minimum run lengths,
and sequence dependent changeovers of the order of dapshiglit transition costs. The
long-term scheduling involves extended time horizons kbad to large scale mixed integer
linear programming (MILP) scheduling models. In order tal@ds the difficulties posed by
the size of the models, three different rolling horizon aidpons based on different models
and time aggregation techniques are studied. The modetsarsebased on the continuous
time slot MILP model, and on the traveling salesman modep@sed by Erdirik-Dogan and
Grossmann (2008). Due to the particular characteristidh@fprocess under study, several
new features are proposed, which include: a) carry-ovengdavers across the due dates; b)
minimum run lengths across the due dates; c) a rigorous gagtpe of the products based
on the type of changeovers; d) definition of minimum inveptavels at the end of the time
horizon. Several case studies are formulated in order tpaoerdifferent scenarios, and assess
the proposed rolling horizon algorithms.

Keywords:Planning; Scheduling; Multi-product continuous plantdL.®; Glass production

1 Introduction

This paper addresses the long-term scheduling of a reatlwaulti-product continuous process
for manufacturing value added glass products. The long-ssheduling is embedded in a simul-
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taneous planning and scheduling framework motivated layegiic business goals, and by specific
features of the process, such as long sequence-dependagtecvers, and relatively large mini-
mum run lengths. The simultaneous planning and schedudiagproached through the formula-
tion of a mixed-integer linear programming (MILP) modeljngsexact methods based on linear
programming (LP) based Branch & Bound (B&B) to solve the peah In addition, time decom-
position strategies and rolling horizon algorithms areli@gpo solve the scheduling over a long
time horizon.

The simultaneous planning and scheduling aims to integha&tglanning decisions with the
scheduling details into one model, where the planning etinobjectives are merged with the
scheduling of the production over the time horizon of thenplag. This approach has the ad-
vantage of generating feasible planning decisions for gheduling in one step. However, this
integration may lead to large scale MILP models that reqeffieient models and solution ap-
proaches as discussed by several authors in the literafianayelias and Sung, 2009).

In this work two formulations are used and integrated intolatgon approach to be described
later: a) a slot-based continuous time formulation; and toqeling salesman problem (TSP) se-
guence based model. These two models are based on the maxpesqd by Erdirik-Dogan and
Grossmann (2006) and Erdirik-Dogan and Grossmann (2008sd& authors proposed a bi-level
decomposition algorithm where in the upper level a relaxatf the scheduling model is used to
define the products to be produced in the lower level. At thneetdevel a slot-based continuous
time formulation model is used to determine the detailedninoperations. The relaxation model
proposed in the first work is based on the underestimatidmeo$équence dependent-changeovers,
while in the latter work the relaxed model is based on using 38quence based constraints. Liu
et al. (2008) have also proposed a TSP-based model for profiiict continuous process, with
different sequence constraints and sub-tour eliminatmrstaints. In their studies, their model
compared favorable with a modified model of Erdirik-Dogad &rossmann (2008). In other re-
lated work, Sung and Maravelias (2007) have proposed a appebach, whereby feasible regions
for the production and cost are derived in off-line from tkbeduling model, and then integrated
within the planning model resulting in only one planning rabdlia and lerapetritou (2003) de-
veloped a continuous time MILP model for the simultaneoamping for gasoline blending and
short-term scheduling of the distribution, where small affetient models are used for real case
problems.

Optimal short term scheduling of continuous processes baa motivated by the economic
pressures to increase the efficiency of continuous prosd¢kaéproduce multiple products. Four
types of optimization models have been used for the shant$seheduling of continuous processes:
a) Resource-Task Network (RTN) models (Castro et al., 2Q089; Schilling and Pantelides,
1996; lerapetritou and Floudas, 1998; Zhang and Sarge®8)1B) State-Task Network with unit-



specific event-based continuous time representatiorp@énitou and Floudas, 1998); c¢) slot-based
continuous time models (Karimi and McDonald, 1997; Lamba&arimi, 2002; Lim and Karimi,
2003; Erdirik-Dogan and Grossmann, 2006; Lee et al., 20808);d) TSP-based models (Alle and
Pinto, 2002); e) proportional lot-sizing and schedulinglgpem (PLSP) (Suerie, 2005).

Recently, medium term scheduling models have been propngée literature (Shaik et al.,
2009; Erdirik-Dogan and Grossmann, 2008; Liu et al., 200822 Chen et al., 2008), using addi-
tional solution strategies to cope with the increased dizeeoMILP models to solve.

The concept of long-term scheduling is not common in thedttee because of two main
reasons: 1) scheduling is usually associated with batctabpes over a one or two weeks horizon;
and 2) there is no clear distinction between long-term sglwgl and planning. However, the
process under consideration in this work has specific feattirat lead us to use the idea of long-
term scheduling.

In order to address the computational burden that may pteverct methods to be used in
real world applications, some of the approaches that haga Hevised include: a) heuristics to
reduce the size of the models; b) decomposition and aggoedgathniques; and ¢) improvement
optimization-based strategies. A review of these appresmchn be found elsewhereMendez et al.
(2006).

Regarding decomposition approaches, Bassett et al. (196ppsed time-based decomposi-
tions concepts for scheduling of batch processes that swevalid for continuous processes. Their
decompositions rely on the aggregation of time at the plajihevel with time periods of one
month, and disaggregation of the time at the schedulind Vewie time periods of one week. Dim-
itriadis et al. (1997) presented two rolling horizon algjems that are characterized by using at
each level a detailed and an aggregate model in order to edtiecdimensionality of the prob-
lem by solving smaller subproblems. Their algorithms wélfarther analyzed later in this paper.
Recent works have used rolling horizon algorithms to redbheedimensionality of the problems
to solve. Liu et al. (2009) extended their previous model tdtiple continuous production lines,
and applied a rolling horizon algorithm where in each subjenm the time horizon is extended
and some binary variables are fixed. Shaik et al. (2009) [z@gba bi-level decomposition scheme
where in each subproblem a different model is solved. Theoagosition is integrated into a
rolling horizon algorithm that they have applied to a reaecatudy.

In addition, algorithmic advances involving the integoatof heuristics methods within B&B
solvers, while maintaining the logic inherent to the upped éIower bounds, may contribute to
tackle larger MILP problems. Examples of these heuristieslacal Branching (LB) (Fischetti
and Lodi, 2003), Relaxation Induced Neighborhood Sear¢tN$R(Danna et al., 2005), and evo-
lutionary algorithms for polishing MILP solutions (Rothige2007).

In this work we address the long-term scheduling of contirsumanufacturing of high perfor-



mance glass using extensions of the models proposed bykeigan and Grossmann (2008) in
order to cope with the specific features of the glass prodndithe, and to improve their applicabil-
ity. The main extensions are the following: a) implemewaf minimum run lengths across due
dates; b) changeovers across due dates; ¢) an aggregadieggtor the products; and d) terminal
constraints for inventory levels. Three rolling horizohgaoaithms are proposed based on time de-
composition strategies, and based on different modelssd tategies are featured with terminal
constraints for inventory levels at the end of the time hamito provide feedback to earlier time
periods of the demand after the time horizon.

2 Processdescription

The industrial process under consideration is a multi-pedbdontinuous process used to manufac-
ture high performance glass products, with high levels afigmitted daylight, and reduced heat
losses. From the point of view of production scheduling,ftihreace and an online coater are the
only relevant units.

In the furnace raw materials are melted with specific contmrs that define the color of
the substrate of the product, which defines the product tyije2 changeover from one product
with a given substrate to another product with a differefisstate is made through a continuous
operation, where the new raw materials are added to thedernzaorder to dilute or remove some
of the previous raw materials from the furnace. This is a dempperation that may take several
days in order to reach the desired composition. After thexgbaver from one substrate to other
substrate, the process must produce the same substratefioinaum run length.

The online coater is used to apply a coating to the surfackeofjlass that changes its color,
defining a new product. This task involves a changeover witaaignificant transition time.

The complex features of this process in terms of long charggsdetween some products
with high transition costs, and no changeovers between sdriiem, associated with minimum
run lengths of several days in order to ensure process isfahilotivated the development of a
mathematical programming approach to optimize the sciveglaf the production.

3 Problem statement

Given is a time horizon of 18 months over which the followitgms are specified: deterministic
product demands; initial, minimum, and maximum inventawels of products; production rates
for each product; sequence dependent transitions, opgyativentory, and transition costs, and
selling prices. The due dates are set at the end of each niRnaithucts with a coating have different
processing rates and costs, and selling prices. The sehggubblem consists in determining the
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production time for each product, sequence of productind,iaventory levels that maximize the
profit given by the difference between revenues and invgrtolding costs, operating costs, and
transition costs.

The sales are assumed to be equal to the forecasted demashédns that if the capacity of
the process is greater than the demand for a given time mtiize extra production is added to the
inventory. However, if the capacity of the process is notugjioto satisfy the forecasted demand,
inventories are used for meeting demands. The model inslsidek variables and penalties for
the violation of safety stocks, and the violation of the nmaxim storage capacity.

4 Solution approaches

The dynamics involved in this process in terms of the lendtthe transitions and minimum run
lengths require that horizons of the order of 18 to 24 monthsdnsidered. This has led us to
adopt the definition of long-term scheduling for this prableThe time horizon is divided into
two parts: a time horizon of 18 months which is of interestdetermining the production, and
an additional time horizon of six months to provide feedbaokthe future demand to avoid a
"myopic" inventory policy at the end of the scheduling pdrad 18 months.

Time decompositions integrated into a rolling horizon feavork are used in order to address
two issues. The first one is the size of the MILP model that ieeg&ted when long time horizons
are specified, and the associated difficulties posed to coah®ILP solvers. Using a rolling
horizon strategy smaller subproblems are solved in seguienarder to cover the specified time
horizon. The second issue is related to the "myopic” saitiom a model that does not take into
consideration the demand pattern after the time horizomtefest, and consequently drives the
inventory levels of each product to the safety stock levehatend of the time horizon. This as-
pect is particularly important in this process due to the lomration of minimum run lengths, long
transition times and number of products that may result e @oduct not being produced for to
several months. As a first approach the rolling horizon éligor was applied over a time horizon
longer than the time horizon of interest with the objectiproviding feedback information about
the demand after the time horizon of interest. However, esults showed that this is not enough
for the model to avoid dropping significantly the inventogyels during the time horizon of inter-
est. In order to overcome this issue, terminal constraoit$hfe inventory levels at the end of an
extended time horizon are proposed in this work to avoid #@eation of inventory. This situation
will be clear with one of the case studies presented latgurEil shows the extended time horizon
that includes the time horizon of interest, T.§.e. 18 months), and the additional time of 0.5
(i.,e. 6 months) at the end to provide feedback to the init@lizon. In addition, imposing the
constraints beyond the time I"Smooths the response over the time horizon of interest.
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Figure 1: Total inventory profile for two different modelsgarding inventory terminal constraints.

Figure 1 illustrates the trend of total inventory profileattmay result from the optimization
of two models, one with terminal constraints for the invent@nd the other without terminal
constraints at the end of the time horizon. The differencevéen the two profile trends in Figure
1 is explained by the trade-offs of the transition costsgemuory holding costs, and production cost
in each case. The solution of the bottom curve leads to arlatgaber of transitions, reducing the
production cost, and with the demand satisfied by depletingritory, decreasing it to significantly
low values.

In this work three rolling horizon algorithms are implemesfiit 1) a hybrid rolling horizon
involving a planning model and a scheduling model; 2) an elssonous rolling horizon, where
the time periods in the planning level are aggregated intde8&, and the scheduling models are
disaggregated into time periods of one week; and 3) a ddtenléng horizon strategy based only
on the scheduling model.

4.1 Hybridrolling horizon

The hybrid rolling horizon strategy integrates a plannind a scheduling model with expansions
and shrinking of the time intervals where the models areiagpsee Figure 2. The planning model
is a simplified representation of the scheduling model, Wwhiiges not consider the detailed timing
of the operations and uses the sequencing constraintsggdy Erdirik-Dogan and Grossmann
(2007). The scheduling model is a slot based continuousremresentation with a detailed timing
for the operations. The advantage of the planning modekisitidoes not require specifying the



number of slots per time period which is required by the sahied model.

This rolling horizon strategy involves three steps, where subproblems are solved in each
step (see Figure 2). The subproblems are solved for the samaédnbrizon, and between the steps
the time horizon is expanded. In step number one, in the filgproblem the planning model is
applied over the time horizon of one year, while in the secautgproblem the scheduling model
is applied over the first half of the year and the planning rheldenks to half of the time horizon.
The solution of the planning model from the first subproblsmsed to restrict the set of products
that can be assigned in each time period of the schedulingimadd consequently the number
of slots defined for each time period. From the solution ofdbleeduling model in the second
subproblem the binary variables associated with the agsgis of products to the time periods
and changeovers are fixed, while the continuous variabieairefree variables.

In the second step, the time horizon is expanded to 18 moatitsjn the first subproblem
the planning model is solved again over the time period ofywae. In the second subproblem,
the scheduling model is applied over the time period of orer,y&nd the planning model over
six months. In the scheduling model, in the second half otithe horizon all variables are free
and the products and slots are restricted by the solutioheoplanning model from the previous
subproblem.

In the last step, the time horizon is expanded to 24 montheraevthe scheduling model with
the binary variables fixed is applied over the first year amdpilanning model is applied over the
second year. In the second subproblem, the scheduling nsoglgdanded to more six months with
the products and slots restricted from the planning modehfthe previous subproblem.

4.2 Asynchronousrolling horizon

The asynchronous rolling horizon strategy uses the saroetste of the previous strategy, see
Figure 3, but with time periods aggregated in the planningl@h¢hat are then disaggregated in
the scheduling model. The objective of this approach is forave the accuracy of the balances
to the inventory levels by increasing the time resolutiothie scheduling models down to weeks,
while keeping the lower time resolution in the planning medeike in the previous approach, the
solution of the planning model is used to restrict the présland slots that are assigned to each
time period in the scheduling model. Here, the productsatehot assigned in a given time period
of time in the planning model, are not considered in the sglireglmodel in the time periods that
cover the same time of the period of the planning model. Impthaning model the length of the
time periods is 28 days, while in the scheduling model thgtleis 7 days. These lengths allow a
simple definition of the products that are not assigned inithe periods of the scheduling model,
which would not be possible with time periods of 31 days inglening model and 7 days in the
scheduling model. It should be noted that due dates are enthef every 7 days in the scheduling
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Figure 2: Hybrid rolling horizon strategy, steps, sub-peats and models used. SC - scheduling model
with time periods of one month, PL - planning model with tinegipds of one month
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model.

4.3 Detailed rolling horizon

The objective of the detailed rolling horizon is to evaludie performance of the scheduling model
when applied to large time horizons, and compare it with taaming model. The detailed rolling
horizon uses the scheduling model with time periods of onatmfor each subproblem as illus-
trated in Figure 4. This strategy involves the solution oé&subproblems. In the first subproblem,
the scheduling model is applied over the time horizon of agaryand the solution for the first six
months is used to restrict the products and number of slaigrasd to the first six months of
the next step. In the second step the time horizon is expaodatke year and half with a reduced
model in the first half year. In the third step the time horimexpanded to two years, where in the
first six months the binary variables are fixed, and in the s@s@mester the products and number
of slots are restricted according to the solution of the joey subproblem. Terminal constraints
for the inventory levels are used at the end of the time har@oeach subproblem.

The rolling horizon algorithms described have some conm@imilarities with the forward
rolling horizon proposed by Dimitriadis et al. (1997): apaegated and detailed models are used;
b) the detailed model is applied over a period of time in thgiftr@ng of the time horizon, and the
aggregated model over the remaining time; c) the periodé tver which the detailed model is
applied increases and the period of time over which the gaded model is applied shrinks; d)
after solving the detailed model the binary variables amdfibHowever, in this work the following
additional features are considered: a) the time horizonasn®erward between each step in order
to cover an extended time horizon; b) in the asynchronoulisgdhorizon algorithm, the planning
model represents a simplification of the scheduling modwel,aso uses aggregated time periods
in order to decrease the dimensionality of the problem; chiteal constraints are added at the
end of the time horizon, in order to prevent the depletiorhefinventory. In the proposed rolling
horizon algorithms the binary variables of the detailed elsdre also fixed, but the continuous
variables are free. This allows the algorithms not only twext part of the decisions made by the
planning models (Dimitriadis et al., 1997), but work alsadwise the continuous variables when
moving forward the terminal constraints for the inventaeydls at the end of the time horizon.

5 Mathematical for mulation

5.1 Detailed MILP model

The detailed MILP model used in this work is an extension & ¢ontinuous time slot-based
scheduling model proposed by Erdirik-Dogan and Grossm20dq). In this model the represen-
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tation of the time is divided into time periods, with the derdalue at the end of the time period,
i.e. one month. The time periods have fixed length, each odigided in slots with the following
features (see Figure 5):

1. all slots except the last slot of the time period involvéhtmproduction time and a transition
time;

N

. the last slot of each time period is only composed by thegssing time;

3. the slots have variable length;

B

only one product is assigned per slot;
5. products may be assigned to more than one slot per timedyeri
6. there is a fixed number of slots per time period.

The problem under study in this work has some significanedbffices when compared with
the case studies solved by Erdirik-Dogan and Grossmanr6j2@0rst, in this process there are
changeovers with transition times that can have the samaidnrof a time period, or take a
significant part of the time period. Second, there is a mimmnun length for a subset of products
that can be similar to the length of the time periods. In tlasecthe model of Erdirik-Dogan
and Grossmann (2006) may lead to infeasible solutions. leratharacteristic of our problem is
the presence of changeovers between some products wilitimartime equal to zero, which can
introduce degeneracy in the solutions. Erdirik-Dogan arms&mann (2006) have assumed in their
case studies that the sales could be greater or equal théorétasted demand, considering that
the production surplus after the demand is fulfilled can be. ddowever, if the sales are assumed
to be equal to the forecasted demand, the surplus capacibeqdrocess is stored as inventory,
since the process does not stop. Nevertheless, this is eleyant whenever the capacity of the
process exceeds the total forecasted demand. When thistisentase, the trade-offs between the
inventory holding cost, production cost, and transitiostaictate the amount of inventory that is
depleted and the capacity of the process, which dependssgrdlducts to manufacture, number
of transitions, and production runs duration. In additioecause of the minimum run lengths and
long transition times, the model cannot drive all the ineeptevels to the safety stock values at
the end of the time horizon. Otherwise, at the beginning efrtaxt time horizon the inventory
levels of some of the products would go below the safety stoaks.

In order to address these issues the following extensiotisetonodel of Erdirik-Dogan and
Grossmann (2006) are proposed: a) aggregate the produetsmimate the products without
changeovers from the scheduling part of the model; b) allanimum run lengths across due
dates; c) allow changeovers across due dates; d) termiveitiory constraints at the end of the
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time horizon. As will be shown these extensions are nonalrii he MILP model is described in
detail in the next subsections.

5.1.1 Aggregation of the products

In the process under study the products are distinguishéayriay color. Their color depends
on the substrate, which depends on the composition of themraigrials fed to the furnace, and
depends on the online application of a coating. Therefare,oduct with a given substrate has
a different color from another product with the same subsfolus a coating. In this process there
are two types of changeovers: 1) sequence-dependent awengeavith long transition times; and
2) changeovers with no transition time. The first type of devers correspond to change in the
composition of the melt in the furnace in order to change foora substrate to other substrate. A

Processing Transition
| time time |
Ts|t Slot / Tel t

(a) Slot structure with processing
time and transition time. Defined
for all slots except the last slot of
each time period.

Processing Transition

I time time
| _

TS/,t Last slot of the Te/,t
time period

(b) Slot structure with only pro-
cessing time. Defined for the last
slot of each time period.

Due date Due date Due date
Ht-2 Ht.1 Ht
Time period t-2 | Time period t-1 Time period ¢
Te
v f ot v
Slot 1Tsnotz
TSZ, "

Transition times
(c) Relation between time periods, due dates, and slots.

Figure 5: Slot based continuous time representation.
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changeover without transition time occurs when the thiskrie changed or a coating is applied
to a given substrate. Figure 6 illustrates the relation betwthe different products in terms of
changeovers. In each row, the products with the same stidan@presented, and in each column
the products that derive from the product in the same coluynagplication of a coating. The
last column corresponds to products with the same subditdtevith a different thickness. In
order to produce the product C1S1 (substrate 1 plus coadinduk to process constraints the
process must produce first the product S1 (only with sulesireand then make a changeover with
zero length to the product C1S1. Based on the fact that in th@ugstion sequence the products
with no changeovers always appear together, we aggregateitito one pseudo-product, and the
production sequence is only determined using the pseualdupts. Therefore, the processing time
assigned to one pseudo-product in the schedule must begdesgded into the processing times
of the products aggregated into it. The processing timedoh@seudo-producﬁi7t, Vi € IM, is
equal to the production time for the product defined by on@stbbstrate%/,t,v& € IS, plus the
processing time of the produkthat has coating ]9:2k,t, plus processing time of the prodyicthat
has coating 2@~2j7t, plus the processing time of the productvith a different thickness9,~2n7t,

O = 02 1402 402,402, Vi€ IM,i" € IS, 4,k € CT1;y,5 € CT2; ;,n € THK,,,,t € TS

(1)
< No changeovers ———
Substrates
Substrat Substrates Substrates with
ubstrates with with different
coating 1 coating 2 thickness
Enl
! 1
' [=] !
! 1
Ny
! 1
N enl
! 1
o 1 =1,
v ! 1
0 :
o ! !
< l
! 1
Ny
! 1
=]
1
]

Figure 6: Changeover matrix between products. Each boxsepts a product, and products in the same
row have the same substrate.
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The set of pseudo-products is defined &g IS is the set of products with only the substrate, and
the sets of products with coatings 1, coatings 2, and a diftehickness are represented®¥/1, ;,
c11,,;, THK, ,, respectively. The set of all productsis:= {IS U CT1U CT2 U THK}. Note
that the products aggregated into one pseudo-product hieeedt production rates, production
costs, demand and selling prices. Therefore, the proggsisires denoted by2; ,, 62;,, 62,
0~2n,t are then used in the inventory balances, and objectiveitmt account for the inventory
levels, and processing costs, respectively, for each gtodu

The binary variables associated with the assignment¥@fe,, W, , Z; x,. andTRI; ; , are
defined below, where the indéxs used for pseudo-products in the assignment equationthand
indexp for the disaggregated products in the inventory balances.

1 if product: is assigned to the time periad

YOP;, = .
! {0 otherwise

Wi = 1 if product: is assigned to slot during time period
") 0 otherwise

1 if producti assigned to slatis followed by produck assigned to slat+ 1
Zikit = during time period
0 otherwise

1 if producti assigned to the last slot bfluring time period is followed
TR . = by productk assigned to slot the first slot of time period 1
0 otherwise

The sets of products, slots, and time periods used in eaglusthg model are defined as:
LM, := set of slots active for the time period

TS := set of time periods active for the scheduling model

These are subsets of the setsl,, andT that are defined over all products, slots, and time periods.

5.1.2 Assignment and processing times

Equation 2 enforces that only one product be assigned to ®athand Equation 3 sets the pro-
cessing timeg; ; ., to zero if product is not assigned to slétduring the time period.

> Wiu=1 VIi€IM,teTS 2)

i€IM
Oire < HW, 14 Vi, € IM,l € LM;,t € TS 3)
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The processing time of each product during the time perisdjiven by the sum of the processing
times of product in all slots during the time period,

Oio= Y 6y VielMteTS (4)

le LM,

Note thatém is not equal to the length of the total production run of prddubecause the produc-
tion of a given product can take place across several time periods.
5.1.3 Transitionswithin time periods

The changeover from productto productk within a time periodt is formulated through the
following equations (Erdirik-Dogan and Grossmann, 2008):

> Zigie=Wiy Vi€IM,le€IM,\IMLteT (5)
keIM
> Ziie=Wirry Vi€ IM1€IM,\IMLteT (6)

i€IM
Equations 5 and 6 state that if produds assigned to sldtduring time period than there is one
changeover from producto productk, and if product is assigned to sldt+ 1 during time period
t then there is a changeover from produat slot/ to productk in slot¢ + 1. Notice that if only
one product is assigned to periotheni = k.

5.1.4 Transitions between adjacent periods

The changeovers across the due dates are modeled usingoaquaand 8.

> TRL =Wy  Vi€IM,l€IML,t€TS\TL 7)
kelIM
> TRy = Wigasr  Vk € IM,1 € IMF,t € TS\ TL (8)

i€IM
As an extension of the model proposed by Erdirik-Dogan arm$&nann (2006), the changeovers
in this model can occur before, across, and after the due ske¢eFigure 7. In order to model the
changeover across the due date, the transition timeis disaggregated into two variables; ;. ;

andrs; 11,
Tz’,kTer',k,t = TE€ikt T TSikttl VZ, ke ]M,t eTs \ TL (9)

whereTRI; ;. ; is a 0-1 variable to denote if products followed by produck at the end of period
t. Te; ¢ IS @ssigned at the end of the time period, arg, ;.1 is the part of the transition time that
is assigned at the beginning of the next time period. Seertteelialances in Equations 12 and 13.
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5.1.5 Timing balances

Within a time period:, each slot except the last slot, includes a processing timdeadransition
time. Thus, the end time of a sld¥, , is equal to the start time of the sldts,; ;, plus the processing
time plus the transition time:

Teyy =Tsiu+ Y Oue+ Y. Y Tinigas V1€ LM\ LMLt € TS (10)

i€IM k#ieIM
In the last slot of each time period the transition time is maiuded within the time period.
Therefore, the end time of these slots is given by,

Teyy =Tsii+ » 0y V1€ LMLt € TS (11)
i€IM
The end time of the last slot of each time period plus the gi@etransition time across time
periods is equal to the time at the end of time peridd;,

Tey+ Y > 7Tepe=HI, Vi€ IMLteTS (12)

i€IM k#£ieIM
The starting time of the first slot of each time period is eqoadhe potential transition time from
the product of the last slot of the previous time period phestime of the end of the previous time
period.

Tsip=» Y 7sine+HLy  Vl€ IMF,t € TS\ TF (13)

1€IM kelIM
The end time of each slot, except the last slot of each timegeis equal to the starting time of
the next slot:

T@l,t = TSH‘Lt ) € Wt \ WL,t € s (14)

N
< Hy due date
Teim,t
1 |
L
! l

TS te1 Time period t Hy Time period t+1
Hy Teim,t Ts1,t+1
Teim,t Ts1't+1
1 - —— -
;+| = / | o m H\

Hy Slot Im Slot 1
81,41

Transition time
Teim,t across periods

(a) (b)

Figure 7: Transition times across time periods. In the figuralenotes the last slot of the time period.
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Equations 15, 16, and 17 ensure that the length of each timedpe equal to the sum of the
transition times plus the sum of the processing times. I eguiation the equality ensures that
there are no idle times.

Z ZTei,k,t + Z Z 014+ Z Z Z TikZikit = Hy vVt e TF (15)

i€IM k#i 1€IM le LM i€IM k#i le LM\ LML
D22 TSt XD et ) Y D, Tt
i€IM keIM 1€IM le LM 1€IM keIM e LM\ LML
+ 3> reps=H,  VteTS\(TFUTL) (16)
1€IM kelM
S st NN 00+ Y Y raZiu=H VEeTSL (17)
1€IM k#icIM i€IM le LM 1€IM k#i€IM e LM\ LML

5.1.6 Minimum run length

A minimum run length is enforced in the model in order to kdepprocess stable. Several authors
(Karimi and McDonald, 1997; Suerie, 2005; Lee et al., 200&) Band Karimi, 2003; Lamba and
Karimi, 2002; lerapetritou et al., 1999) have developedatigns to model this concept. The
minimum run length can be defined in a simplistic form by théofeing equation:

010 > MRL;W, 4 Vie IM,l € LM, t € TS (18)

wheref, ;, is the processing time of producin slot/ during the time period and MRL, denotes
the minimum run length of produét However, Equation 18 does not consider minimum run
lengths across due dates, which removes flexibility to thdeho

In this section a general model to enforce minimum run lemgitross multiple time periods
is presented. The main idea is that the production time afyxt, éi,t, plus the production times
of the same product in the next time periods that belong tgtbduction run in the time period
t, plus the production times of the same product in the prewvtoue periods that belong to the
same production run, must be greater or equal than the mmiraa length ifYOP, , > 1. This is
represented by the disjunction in Equation 19.

YOy, ~YOP, .
0ic+ > TPBjy+ Y. TPA;yw > MRL; G —0 Vie IM,t € TS (19)
tIGBi’t t’GAi’t %
The above disjunction can be modeled as:
Oie+ > TPBiy+ Y TPAyy > MRL,YOP,, Vi€ IMteTS (20)
t/EBZ"t tIGAi’t
0;s < H, YOP,, (21)
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whereA4,;; C T, and is formally defined as,

Ay ={t' ' >t+1,¢/ <t*: HI, + MRL; < HI}+, HI, + MRL; > HI}+ 1} (22)
and wheref{T; denotes the time at the end of the time perio®;, C T, and is defined as

By ={t':t <t—1,t'>¢:HI, , — MRL; < HT}\», HI, 1 — MRL; < HI};-_1}  (23)

The members o4, ; are the time periods aftér such that the sum of the length of the time
periods inA; ; plus the production run in the time periods greater or equal than the minimum
run length. The members @, are the time periods before such that the sum of the length
of the time periods inB; ; plus the production run in the time periads greater or equal than
the minimum run length. As an example, consider the sequehpeoduction in Figure 8, with

t t+1 t+2

S E—— e

| | |
HTy HIyvyp  HIyyg

Figure 8: Sequence of production from the produtd producti. The black box denotes a changeover.

MRL,; = 20 days, and the duration of each interval is 10 days. The eltén, , are given by
' >t+1andt < ¢ : HI, + MRL; < HI, HI,-_y < HI, + MRL;, thust* = ¢ + 2, and
A, = {t+1,t+ 2}. Considering now as reference the time periad2, the elements oB; ;>
are given by’ < (¢t +2)—1,andt’ > t* : HT,,y — MRL; > HTy_y, HI}« > HT,.1 — MRL;, thus
t*=t,andB,; ;o = {t,t + 1}.

TPA, v is equal to the production time of the produat the time period’ if there is a transition
from producti in time period? — 1 to product: in the time period’, TRI;; 1, andTPA;  is
equal to zero otherwisd.PB,; » is equal to the production time of the produat the time period’
if there is a transition from producin time periodt’ to product: in the time period’ + 1, TRT; ; v,
and1PB,;  is equal to zero otherwise. This is represented by the disijums in the Equations 24
and 25. Therefore in Equation 20, the term correspondinggstm of/’PA; ;. is the sum of the
production times of produdtfor ¢’ > ¢ + 1 that belong to the same production run of the product
in the time period. In the same equation the sumXPB,; . is the sum of the production times of
product; for ¢ < ¢ — 1 that belong to the same production run of the produrcthe time period.

TRI ; —1TRI;; .
S ot Vie IM,t € TS\ TL (24)
TPBZ"t — ei,t TPBi7t — 0
[ TRL, . | [ -TRE ]
KA Y et Vi e IM,t € TS\ TF (25)
TPAi,t == (91'715 TPAZ’,t - 0

These two disjunctions can be modeled using a convex-hutidtation (Balas, 1985), and after
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some algebraic manipulations the minimum run length cambadlated as:

Oiet+ Y Obliw+ Y faliy > MRL;YOP, Vi€ IM,teTS (26)
tteB; ¢ tteA; ¢
00 = 0b1;, + 002, Vi€ IM,teTS (27)
0bl,, < H, TRT,;, Viec IM,teTS (28)
0v2;, < H, (1—1TRI,;,)  VieIM,teTS (29)
0y = Oaly; +0a2;;, Vi€ IM,teTS (30)
fal,, < H, TRT,;,_, VieIM,teTS (31)
0a2;; < H, (1—TRI,;,_,) YielIMteT (32)

where the variable$PB,; , andTPA; , were eliminated. This formulation is tighter than a big-M
formulation, and uses the disaggregated variatés,, fa2; ;, b1, ,, anddb2; ,.

Equation 26 is active wheYiOP, ; > 1, and redundant otherwise. This means that the equation
is active for all the time periods that belong to a production. For a production run with the
minimum run length that uses the time periagds + 1, andt + 2, the application of Equation
26 to the time period + 2 might consider the processing time of a production run ttatsin
t + 3. However, for this production run the minimum run length igagced by the application
of Equation 26 to the first time period of this production rém alternative formulation could be
defined replacing the right hand side (RHS) of Equation 28]ileg to

YOP,, — (TRB,i,t +> Zi,i,l,t>] (33)

leLM

éi,t + Z ébli,tt + Z éalz’,tt > MRL;

tteB; + tteA; ¢

with the above RHS the constraint would be only active forfittst time period of the produc-
tion run. However, from computational experience this folation did not provide tighter linear
relaxations.

5.1.7 Inventory balances
Equations 34 and 35 define the inventory balances at the ehé time periods for each product,
INVO,,; — BCKL,,; = INVI, — BOKII, + nyry 02, — S,y Vp € P,t € TF (34)
INVO,,,— BOKL,,; = INVO,,, 1 — BOKLy, ;1 + 0,102y, — Sps  ¥p € P,t € TS\TF (35)

whereINVO,,; and BCKL,,, denote the inventory and backlog of prodpdit the end of the time
period after the sale\NV1,, and BCKLI, are the initial inventory and backlog at the beginning
of the time horizony,, andr, are the process yield and gross production rates of progustd
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S, denotes the sales of prodycturing time period. Note that the processing times used in
the inventory balances are given @}glp,t defined over all the products, whi@gt are defined over
the pseudo-products used in the assignment equations teddfe scheduling. The inventory
holding costs given by the area under the curve of the invgn®time, represented byrea, ¢, is
overestimated as discussed in Erdirik-Dogan and Grossi{2096).

Area,, > INVL, H; + n,r,02,, H,  Vp € Pt € TF (36)
Area,; > INVO,, 1H, +n,r,02,, H, ~ ¥Ype Pt € TS\ TF (37)

The safety stock bounds, and an upper bound for the maximonags capacity are enforced by
Equations 38 and 39,

INVO,; — BCKL,; + s, > INVMINp ~ ¥Yp e Pt € TS (38)
> INVO,, + Spy < INVMAX +¢, Vit € TS (39)
peEP

wheres,, ; andg, are slack variablegNVMINp is a constant representing the safety stdsk;/M/AX
is the maximum storage capacity. The sales are set equad tieterministic forecast demand by
the equation:

Spt = dpy Vpe PteTS (40)

Equation 41 represents the terminal inventory constréivatisare used to avoid the model driving
the inventory levels to the safety stock levels at the entd@time horizon.
INVO, — BOKLy; + slth, > INVMIN, + > d,y ~ Vp€ Pt € TL (41)
tteTT
slth, is a slack variable, andT" is the set of time periods used to estimate the demand after th
end of the time horizorl'T" is a parameter that must be defined (e.g. 4 months).

5.1.8 Symmetry breaking constraints

Erdirik-Dogan and Grossmann (2006) have proposed symnbeggking constraints to prevent
degenerate solutions when one product can be assigned ther one slot in the same time
period. Their constraints, Equations 42 to 47 impose thigtame product can be assigned to more
than one slot, and this product must be assigned to the fitst®hese constraints are represented
by the following equations:

YOP, s > W, 14 Vie IM,l € LM,t € TS, (42)

YOP,, < NYi, Vi€ IM,teTS (43)
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NYie=Y Wiy, VielMteTs (44)

leLM

NY;, < NSLOTS,YOP,,  Vie IM,tcTS (45)

NY;, > NSLOTS,— ( > yop, - 1) —Ms(1—W,)  VielIM,leIMF,teTS (46)

kelM

NY;, < NSLOTS, — (Z YOP, , — 1) +Ms(1—W,,,)  VielIM,le IMF,teTS (47)

keIM
whereN SLOTS, denotes the number of slots specified for the time periadd/VY; ; the number
of slots assigned to produit)M s represents big-M constants defined as a function of the numbe
of slots. Note that Equations 46 and 47 are only valid for tist §ilot of each time period.

In the derivation of Erdirik-Dogan and Grossmann (20063 &a$sumed that by optimality the
product that is assigned to more than one slot uses congeslais. However, in the problem of
this paper this may not be true because the model may be davetroduce transitions to reduce
processing costs and increase transition cost if this igwdhe objective function. In order to
force the slots to be consecutive the following symmetryakireg constraints are proposed:

YF,
NY;p > 2

Y02 Ziggs > NYiy—1
A A 7

The above disjunction states that if one product is assigmatbre than one slot then the number

Y Fi

Vie IM,t € TS (48)
NY;, <1

of changeovers must be greater or equal than the numbertefralaus one. Through a big-M
reformulation, Equation 48 yields:

NY;;, >2-My(1-YF,) VielM,teTS (49)

NY;; <14+ M;YF, VYielM,tcTS (50)
> Zia=NYi—1-M;(1-YF,) VieIMteTS (51)

le LM\ LML

Ziza <YFEy, Yie€lIM,lecIM,\IML,teTS (52)

wherel, andM; are big-M parameters with tight values.

519 Coatings

The following constraint is imposed by the operation of tidiree coater, which states that the
processing time of a product without coating must be greatequal than the processing time for
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the products with the same substrate but with a coating egbpli

021+ 02, > 02, +602,, ¥ €IS, ke CT1,j e CT2,ne THK,t € TS (53)

5.1.10 Objectivefunction

The objective of the MILP model is to maximize the profit givgnthe sum of the sales revenues
minus the inventory holding costs, operating costs, amiti@n costs. In addition, in the objective
function penalties are considered for the violation of geséocks, maximum storage capacity, and
target inventory levels at the end of the time horizon.

profit = Z Z Dp.t Spt — Z Z cinvy ; Areay; — Z Z copery + MpTp 9~2p7t

peP teTS peEP teTS teTsS peP

=22 2 D ctramuZiwe= ) ) >, crany TR (54)
1€IM keIM le LM\ LML teTS 1€IM kelIM teTS\TL

—~ > PENl,¢,—» Y PEN2,;s,,— Y PEN3sith,
teTsS peEP teTS peEP

In the above objective function the transition costs arewudated over the changeovers within the
time periods and the changeovers across the due dates.

5.2 Planning model

The planning model used in this work is based on the modelgseg by Erdirik-Dogan and
Grossmann (2008) with extensions similar to the ones oftheduling model. It is a TSP-based
model, where the binary variables associated with the assgts ar&’P, ;, ZP, ., ZF; ., and
ZZ Z; i1, defined as:

VP — 1 if product: is assigned to the time periad
"1 0 otherwise

7P 1 if producti is followed by product: during time period
" 0 otherwise

27D . — 1 if the link between produc¢tand produck is broken during time period
“SETY 0 otherwise
1 if producti assigned to the last slot bfluring time period is followed
227y = by productt assigned to slot the first slot of time period- 1

0 otherwise
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YR 1 if producti is assigned to the first position of the sequence in time gerio
"] 0 otherwise

XL — 1 if product: is assigned to the last position of the sequence in time ghério
a otherwise

The sets of products, and time periods used in each planniniginare defined as:
IM := set of pseudo-products i
TP := set of time periods active for the planning model

These are subsets of the sétsand7 that are defined over all products, and time periods. The
MILP model is described in detail in the next subsections.

5.2.1 Production and sequencing constraints

The processing time of the pseudo-produ@tgis bounded by the length of the time period, if the
product is assigned to the respective time period.

0., <HYP, YielIMtecTP (55)

Equations 56 to 62 represent the sequence constraintsggo by Erdirik-Dogan and Grossmann
(2008). The two first equations state that if prodiist assigned to the time periadhen there is
a changeover from producto productt during time period, and if product is assigned to time
periodt then there is a changeover from prodicd product; during time period.

YPy= > ZPy, VicIMteTP (56)
kelIM

YPuy =Y ZPyy  Vk€IMteTP (57)
i€IM

These equations enforce a cycle between the products thaiken by using the following con-
straint:
> > zzPy,=1 telTP (58)
i€IM kelIM
Equations 59 and 60 indicate that only one product can bgraesito the first and last position,
respectively.

Y XF,=1 VteTP (59)

i€IM

> XLiy=1 VteTP (60)

i€ IM
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Equations 61 and 62 state that if produds the last product of the time perigdhen there is a
transition from product from time periodt to productk in time periodt + 1, and if product: is
the first product of the time periad+ 1 then there is a transition from produdrom time period
t to productk in time periodt + 1.

Y ZZZipy=XFoy Ve IMteTP\TL (61)
i€IM
Y ZZZipy=XLiy Vi€IMteTP\TL (62)
keIM

The following equations introduce relations between theahy variables associated with the as-
signments and changeovers, including the case when onlyrodect; is assigned to a time period
t.

ZZPyy < ZP;  YikeIM,teTP (63)

YP,>ZP,, Yic€IM,tcTP (64)

ZP i+ YP, <1 Vi#£ ke lIM,t € TP (65)

ZPiy>YPy— > YPy, Vi€ IMteTP (66)

k#icIM

XFey> Y ZZPgy  Vke€IMt € TP (67)
i€IM

XLiy> Y ZZPy, Vi€ IM,teTP\TL (68)
kelIM

YP, > ZZP,.,  Vi,ke€ IM,te TP (69)

YPy, > ZZPy, Vi k€ IM,t € TP (70)

YP,>XF, YicIM,tcTP (71)

YP,> XL, Yi€IM,teTP (72)

5.2.2 Minimum run length

The equations to enforce a minimum run length follow the sapproach used in the scheduling
model. Their derivation starts by postulating the follogvofisjunction:
YP
éi,t + > TPBiu+ Y, TPA,;+ > MRL;

ttEBiyt tte A

“YPi,

Vie IM,t € TP (73)
092‘,25 — O
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Following a similar reasoning as in the derivation of Eqoiasi 26 to 32, the minimum run length
for the planning model can be formulated as:

Oie+ > Ol + Y faliy > MRL;YP, Vi€ IMteTP (74)
tEB; ¢+ tteA
00 = Obl;, + 002,  VieIM,t € TP (75)
Obl,, <H, ZZZ;;,  YiecIM,t € TP (76)
0v2:, <H, 1—2%Z%Z;;;,) Vi€ IM,t € TP (77)
0 = Oal;; +0a2;;, Vi€ IM,t € TP (78)
faliy <H, ZZZ;;;—1  Yie IMt € TP (79)
002, <H, (1—Z2ZZ;,,) VielM,teT (80)

wherefal; ,, fa2;,, 6b1,,, anddb2, , are additional auxiliary variables, and theB; ;, andTPA, ,,
were eliminated.

5.2.3 Inventory balances

The equations applied for the inventory balances are sitaifdoe equations used in the scheduling
model.

O = 020 14024 402,402, Vi€ IM,i' € IS; 4,k € CT1;4,5 € CT2;;,n € THK,,,,t € TP
(81)

Note that in the following equations the gets defined as® := {IS U CT1 U CT2 U THK }, which
means all products.

INVO,; — BCKL,; = INVI, — BOKLI, + n,r,62,, — S,;,  Vpe€ P,t € TF (82)
INVO, ;— BCKL,,; = INVO,; 1 — BCKLy; 1 +1,7p02,:—S,;  Vp € P,t € TP\TF (83)

Area,, > INVL, H; + n,r,02,, H,  Vp € P,t € TF (84)
Areay, > INVO,, 1 H; +npyr,02,, H,  Vp € P,t € TP\ TF (85)
> INVO,, + S,y < INVMAX +¢q, ¥Vt € TP (86)
peEP

INVO,,; — BCKL,; + s,; > INVMINp ~ Vp € P,t € TP (87)
Spt = dpy Vpe Pt € TP (88)
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INVO,, — BOKLy + slth, > INVMIN, + Y dpu ~ Vp€ Pt € TL (89)

tteTT

5.2.4 Timebalances

The planning model uses a simplified representation of thimj constraints that does not take into

consideration possible changeovers between sub-cycliésin time period. The total transition
time within a time period7' RN P,, is equal to the sum of all transition times minus the tramsit
time associated with the link that is broken,

TRNP, =Y Y 7uZPyy— Y, > 7inZZPiyy VtETP (90)
1€IM k#icIM i k#FieIM

> 0y +TRNP,+ > > 7epp=H, VteTF (91)

i€IM 1€IM k#i€IM

S> tsikat Y 0u+TRNP+Y > rejpe=H,  VteTP\(TFUTL) (92)

1€IM k#i€IM ieIM 1€IM k#ieIM
> > 7sika+ Y 0+ TRNP,=H, VteTL (93)
i€IM k#ieIM i€IM

The changeover between time periods is also modeled atr@ssie dates by,

Tik ZZZi,k,t = TEi kit —+ TSik,t+1 V’l, k # 1€ [M,t e TP \ TL (94)

5.25 Coatings

The following constraint states that the processing timéhefproduct without coating must be
greater or equal than the processing time for the produtkstiie same substrate but with a coating

applied.
0251 + 02, > 02, + 62, Vi €IS keCTl,j€CT2,necTHK,t € TP (95)
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5.2.6 Objectivefunction

The objective function is given by,

profit = Z Z Dp.t Spt — Z Z cinvy ; Areay; — Z Z copery ¢ nprp0~2p,t

pEP tETP pEP teTP teTP peP

_ Z Z Z ctran; , (ZP, gt — ZZ P, 1)

1€IM k#icIM teTP

_ Z Z Z ctran; i ZZZz‘,k,t

1€IM k#icIM teTP

— Y PENLg —» Y PEN2,s,, — > PEN3sith,

teTP peEP teTP peEP

(96)

Note that within the rolling horizon algorithms where théneduling and planning models are
used, the objective function is defined over the time peraidsth model models.

5.2.7 Interface between scheduling and planning

The hybrid and the asynchronous rolling horizon algoritimisgrate the scheduling and planning
models in the same subproblem. Thus, at the interface oéthexlels some variable must be
linked in order to ensure that the minimum run lengths anehgbavers across due dates are valid
over the interface of the two models. Equations 97 and 98ren$e link between the binary
variables associated with the changeovers.

> TRL g = XFipy Vi€ IM,l € IML,t € TSL,t ¢ TL (97)

i€IM

TR o = ZZZ; 14 Vi, k € IM,t € TSL \ TL (98)

In the asynchronous strategy the set of time periods canfast the time periods for the
scheduling model and then the time periods for the plannindeh This is illustrated with the
following example. Consider 8 time periods of 7 days in theestuling model and two time
periods of 28 days in the planning model. Therefore, thefs@the periods is defined as:

T:={wl,.., w8 tl,t2}

wherewl : w8 are the time periods for the scheduling model and2 denote the time periods

for the planning model. For a subproblem with the schedulireglel defined ovew1 : w4, and

the planning model ovee, the link between the scheduling and the planning model treisione
between the time periods4 and¢2 (see Figure 9). Therefore, some of the equations presented
have to be slightly modified in order to incorporate the lirdvieeen the last time period of the
scheduling model and the first period of the planning mode&fgiven subproblem. In addition,
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t1 t2

PL Link between the
inventory levels is
established.

SC

w1 w2 w3 w4 wh w6 w7 w8

wl w2 w3 wé4-

Figure 9: Time representation for the asynchronous rotiogzon strategy.

the link between the inventory levels is enforced with:

INVO,, = INVO, ;.  Vp€ P,t € TSL,tt € TPF (99)
BCKL,; = BCKL, 11 Vp e Pt € TSL,tt € TPF (100)

whereTSL andTPF are singletons that represent the last time period of thedsding and the first

time period for the planning for a given subproblem. For thveig example, we havéSL := w4
andTPF := t2.

5.3

1.

Remarks

At the interface of the scheduling and planning modelsvréablesre; i, ;, 7€, k.1, b1, 4,
fal,,, are the same for both models, which together with Equat®dnhand 98 ensure that
minimum run lengths and transitions across due dates akatghe interface.

. The constraints proposed for modeling the changeoveossithe due dates assume that

the changeovers fit in the length of two time periods. Othsewihese constraints must be
reformulated.

. The symmetry breaking constraints given by Equation®42tare only required if a mini-

mum run length and two more products can fit within a time gerio

For the rolling horizon algorithms where the planning mlad applied, optimality of the
solutions is not guaranteed because even if the planninghi®dolved to optimality, the
solution is an overestimation of the profit.

In the planning model, sub-tour elimination constraarts not included, which may lead to
an overestimation of the processing time at this level. Harehe products assigned can
then be re-adjusted at the scheduling level.
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5.4 Alternative models

In order to compare the performance of the proposed modekse additional models are stud-
ied. The first and second correspond to the scheduling andiplg models described before, but
without considering the changeovers and minimum run lengtnoss the due dates. The aim is to
assess the computational cost of introducing these camistrand the production flexibility pro-
vided by these constraints. The third model relies on a wtanaf the proposed planning model
with the sequence constraints, Equations 56 to 68, replagdlde sequence constraints used by
Liu et al. (2008):

> XF,=1 VtelP (101)
i€IM
> XLiy=1 VteTP (102)
i€IM
XF,,<YP, VielM,teTP (103)
XL, <YP, VYielM,teTP (104)
> ZPyy=YPy—XFy,  VkeIMteTP (105)
i£keIM
> ZPy,=YP,— XLy, VieIMteTP (106)
k#ieIM
> ZZZiyy=XFy  Vke€IMteTP\TPL (107)
i€IM
Y ZZZiyy=XLy  Vie€lIMteTP\TPL (108)
ke
Okt — (Oiy+1) > —=BIGyp (1 — ZP,yy)  Vi# k€ IM,t € TP (109)
Oiy < BIGypYPy,  YieIM,teTP (110)
0 <Y YP, VieIMteTP (111)
kelIM
Oy > XF;,  VielM,teTP (112)

whereO,, denotes the order for the assignment of produntthe time period. The remaining
variables follow the nomenclature used in this work. Not&d the last four equations represent sub-
tour elimination constraints. The third model is used td@at® the performance of the sequence
constraints implemented in the planning model. The goabigmperform a comparison with the
model proposed by Liu et al. (2008), since their model do¢gotude some of the features of the
models presented in this work.
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6 Casestudies

In order to assess the performance of the proposed rollingdroalgorithms, and their appli-
cability to support real world decisions, six case studiesmesented. The case studies are as
follows:

e Case 1 - hybrid rolling horizonalgorithmwith terminal constraintgor the inventory at the
end of the time horizon of each subproblem. The time resmiusi one month in the planning
and scheduling models.

e Case 2- asynchronous rolling horizoalgorithmwith terminal constraint$or the inventory
at the end of the time horizon of each subproblem. The timelugen is 28 days in the
planning model, and 7 days in the scheduling model until 8ta inonth. For the remaining
time periods in the planning model the length is one month.

e Case 3- detailed rolling horizoralgorithmwith terminal constraint$or the inventory at the
end of the time horizon of each subproblem. The time resmus one month using only
the scheduling model with ten slots per time period.

e Case 4 - hybrid rolling horizonalgorithmwithout terminal constraintfor the inventory at
the end of the time horizon of each subproblem. The time wéisol is one month in the
planning and scheduling models.

e Case 5- hybrid rolling horizonalgorithmwith terminal constraintgor the inventory at the
end of the time horizon of each subproblebut without the changeovers and minimum
run lengths across the time period§he time resolution is one month in the planning and
scheduling models.

e Case 6 - hybrid rolling horizonalgorithm with terminal constraintdor the inventory at
the end of the time horizon of each subproblem, batalified planning modelsing the
sequence constraints from the work of Liu et al. (2008). Tlhaming and scheduling models
use time periods of one month.

The time horizon for each case is set to two years, which w8 months of detailed
scheduling plus six additional months with the planning eldd provide feedback on the final
inventory level. The set of products to manufacture invsli2 different substrates, 9 coated prod-
ucts, and 1 substrate with a different thickness, resulting0 different products. The penalty
weights used in the objective functions are set to largeegi order to avoid the violation of the
safety stocks, maximum storage capacity, and terminaltinss.
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For each case study, three instances with different stgupiteria are considered: 1) minimum
optimality gap of 5% and maximum time set to 3,600s; 2) mimmaptimality gap of 1% and
maximum time set to 3,600s; and 3) minimum optimality gap @ 4nd maximum time set to
10,800s for all subproblems of Case 4, and 3,600s in the firsetsubproblems and 10,800s
in the last three subproblems for the rolling horizon altjonis of Cases 1, 2, 3, 4 and 5. The
goal of the first instance is to try to find a solution with a @able optimality gap within one
hour. The second instance has a smaller minimum optimajywgthout increasing the maximum
time allowed. The last instance provides an idea of how mbehsblution can be improved by
increasing the maximum time to 10,800s.

6.1 Overview of theresults

For each case, the solution obtained from the rolling horalgorithm corresponds to a period of
two years. In terms of objective functions, they are a comatoam of the profit and the penalty terms
for violation of the safety stocks, maximum storage capaeimd inventory terminal constraints.
In order to provide a quantification of the terms involvedbl€él shows the detailed economic
and inventory results for the first year of the two years haizTable 1 shows that the values of
the profit are different from case to case, and in additionaig@resent a consistent trend with the
instances used. This is explained by the following reasahstifferent constraints are used, for
example Case 4 does not consider inventory terminal contstravhile the other cases consider;
2) models with different levels of accuracy, in Case 3 thémrglhorizon algorithm uses only the
scheduling, while the other cases use also the planning ImGdse 2 also uses a different time
discretization; 3) the solutions should be compared censid the profit and the violations of
inventory constraints; and 4) for each subproblem in thingphorizon algorithm, CPLEX with
the heuristics and parallel options is used, which may lealifterent solutions from run to run. In
this section the results obtained in terms of schedulingatadlinventory levels are discussed. The
results for each case correspond to the second instancénfomaxime of 3,600s and minimum
optimality gap of 1%).

6.1.1 Impact of theinventory terminal constraints

The influence of the inventory terminal constraints on treilts is studied in this section. The
inventory terminal constraints set a minimum inventoryelefor each product at the end of the
time horizon, to the safety stockYVMIN,, plus four months of demand, ,, . d,,+. We denote
the sum over all the products of the minimum inventories @etid of the time horizon biy/N V7,

INVagg =Y (]NVMINP + ) dpi,f) (113)

peEP tteTT
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Table 1: Economic and production results for each case &fitst year of the time horizon.

Case 1 Case 2
Instance$ 1 2 3 1 2 3
Profit ($) 4.063 4131 4.08 4.393 4.228 4.235
Sales (%) 11.182 11.182 11.18 11.155 11.155 11.16
Inventory ($) 1.189 1.171 1.18 1.007 1.047 1.04
Operating ($) 5.324 5.242 5.24 4.924 5.195 5.17
Transitions ($) 0.606 0.639 0.68 0.831 0.685 0.72
# Transitions: 17.0 19.0 20 26.0 21.0 22
# Transition days: 62.3 65.7 69.8 85.5 70.5 73.8
Tons produced in the first year 43,251 42,371 43421 40,588 9582, 42900
Amount below the safety stock (ton): 0 0 0 304 268 268
Total backlog (ton): 0 0 0 12 12 12
Amount above max capacity (ton): 0 0 0 0 0 0
Total violation of inventory terminal constraints (ton) 0 63 0 4732 720 2328

Case 3 Case 4
Instance$s 1 2 3 1 2 3
Profit ($) 4.044 4.168 4,112 4.706 4,711 4.778
Sales (3$) 11.182 11.182 11.182 11.182 11.182 11.182
Inventory ($) 1.175 1171 1196 1.021  1.002  0.985
Operating ($) 5.297 5.174 5.210 4.220 4.248 4.152
Transitions ($) 0.666 0.669 0.664 1.236 1.220 1.267
# Transitions: 20.0 20.0 20.0 31.0 29.0 31.0
# Transition days: 68.5 68.9 68.3 127.1 125.5 130.3
Tons produced in the first year 43,892 41,910 43,028 34,810,2135 34,421
Amount below the safety stock (ton): 0 0 0 78 0 0
Total backlog (ton): 0 0 0 0 0 0
Amount above max capacity (ton): 0 0 0 0 0 0
Total violation of inventory terminal constraints (ton) 54 12 142 - - -

Case % Case 6
Instance$ 1 2 3 1 2 3
Profit ($) 4.070 4.147 4.127 4.088 4.102 4.111
Sales (%) 11.182 11.182 11.182 11.182 11.182 11.18
Inventory ($) 1.185 1.164 1.174 1.192 1.160 1.17
Operating ($) 5.333 5.186 5.221 5.279 5.279 5.27
Transitions ($) 0.593 0.685 0.660 0.623 0.641 0.63
# Transitions: 17.0 21.0 20.0 18.0 19.0 20
# Transition days: 61.0 70.5 67.9 64.1 66.0 65
Tons produced in the first year 43,536 43,038 43,501 43,145,2363 43029
Amount below the safety stock (ton): 55 55 55 0 0 0
Total backlog (ton): 5 5 5 0 0 0
Amount above max capacity (ton): 0 0 0 0 0 0
Total violation of inventory terminal constraints (ton) 23 398 17 404 108 46

These results are masked and do not represent real valugslinimum optimality gap and maximum CPU time:
Instance 1 - Gap = 5%, CPU=3,600s, Instance 2 - Gap =1%, CP8088, Instance 3 - Gap = 1%, CPU = 3,600s for
SP ={1,2,3}, 10,800s for SP= {4,5,6}. SP - Subproblein. Scenario with time periods of one month- Scenario
with time periods of one week. 33



Figure 10 presents the total inventory profile obtained Wd#ses 1, 2, 3, and 4 fdiNVz3y =
22,645 ton. In Cases 1, 2, and 3 the total inventory level decreaste deginning of the time
horizon, but afterwards there is not a clear trend to dephetenventory. This is a result of the
terminal constraints for the minimum inventory levels enéal at the end of the time horizon of
each subproblem of the rolling horizon algorithms used. rEldeiction in the inventory level at the
beginning of the time horizon is supported by the numberasigitions and short production runs
in that period of time.

The bottom curve represents the total inventory profile fas€4 over the period of two years
without the terminal constraints for the minimum inventtayels at the end of the time horizon of
each subproblem of the hybrid rolling horizon algorithmCase 4, there is a clear trend to deplete
the total inventory level during the first year of the timeikaon. In the first year the safety stocks
are not violated, while in the second year, because theitatahtory level continues to decrease,
it leads to violations of the safety stocks. The depletiothefinventory is explained by the large
number of transition days in the first year determined by tloeleh 125.5 days, against the 65.7
days obtained for Case 1, (see Table 1).

The sensitivity of the total inventory profile to differerdlues ofl N'Vz3, is presented in Figure
11, using Case 1 with the first instance. This figure showsitica¢asing the value afN V73, the
total inventory increases over the full time horizon, while profit for the first year and objective
function over the two years decrease (see Table 2). Angjythimresults from Table 2, the relation
betweenl N3, and the objective function value suggests that an optimdaevaf / N'Vz3, may
exist betweend NVz3, = 0 and I NVz3, = 15,907 ton. As explained before, the relation between
the value off N'V734 and the profit is explained by the trade-off between the dasisochangeovers
and the operating cost of the products. This shows that thtsan terms of scheduling, inventory,

35,000
--Casel
All with terminal - Case 2
30,000r constraints —Case 3
—Case 4

25,000F

Total inventory (ton)
N
o
o
o
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15,0001

10,0001
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Figure 10: Total inventory profile for Case 1, 2, 3, and 4 owar years.
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Figure 11: Impact of the inventory terminal constraintstmatbtal inventory profile over two yearsN Vzsg
denotes the total inventory set by the terminal constraintdhe day 730th.

and profit are sensitive to the valueldVVz3,, and therefore its definition depends on the decision
maker. In this study a conservative approach is followehgusN V73, = 22, 647 ton.

Table 2: Results for Case 1 and 4 obtained with the first icstgminimum optimality gap = 5% and
maximum CPU time = 3,600s).

Case 4 Case 1

IN Vi3, (ton) 0 15,097 18,871 22,645
Results for day 365

Inventory (ton) 14,360 18,013 19,190 22,801
Profit ($) 4.706 4.485 4.240 4.063
Results for day 730

Inventory (ton) 9,011 14,554 18,553 22,356
Obijective function ($) -83.539 8.505 8.278 7.870
Violations of safety stocks (ton) 739 0 0 0
Violations of terminal constraints (ton) - 543 43 289

6.1.2 Gant charts

Figures 12 and 13 show the Gantt charts obtained in Case hdéosadme schedule, but with a
different level of detail in terms of products. In the firsti@achart only the pseudo-products are
shown, while in the second all products are representedseTisults illustrate that the processing
time of each run of the pseudo-products is equal to the suhregfrtiocessing times of the products
aggregated into them. Figures 12 and 15 show the Gantt doar@ases 1 and 4, respectively,
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where the difference can be seen in terms of the number dfitiams and length of the production
runs between both cases. The large number of transitionase € is explained by the trade-off
between the transition cost and the production cost.

In Figure 14 the Gantt chart obtained with Case 2 with the dehdue at the end of every
seven days is presented. Comparing the sequence of praaiwgth the sequence of Case 1 it is
similar in the beginning of the time horizon, but after somngetdifferences start to arise resulting
in two more transitions in this case than in Case 1.

The Gantt chart from Case 5, without considering minimumemgths and changeovers across
due dates, is illustrated in Figure 16. Comparing this Gelmdtt with the one from Case 1, is clear
that the model from Case 5 does not have as much flexibilithasrtodels with minimum run
lengths and changeovers across due dates to fit changeoadepsagluction runs within the time
periods, which leads to the violation of the safety stockbefirst year (see Table 1).
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Figure 12: Schedule for Case 1, for the instance with miningam of 1% and maximum time of 3,600s.
The black boxes represent changeovers. Only the pseudogisoare represented.
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Figure 13: Schedule for Case 1, for the instance with miningam of 1% and maximum time of 3,600s.
The black boxes represent changeovers. All products aresepted.
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Figure 14: Schedule for Case 2, instance with minimum gag®&fhd maximum time of 3,600s. The black
boxes represent changeovers. Only the pseudo-producte@esented. Time periods of seven days are
used.
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Figure 15: Schedule for Case 4, instance with minimum gag@ahd maximum time of 3,600s. The black

boxes represent changeovers. Only the pseudo-produatspaiesented.
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Figure 16: Schedule for Case 5, instance with minimum gag@ahd maximum time of 3,600s. The black
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6.1.3 Analysisof thetime resolution

The case studies with time periods of one month, and mininumtengths and changeovers across
the due dates are able to achieve results without violatidheosafety stocks. However, when a
finer time resolution is used, as in Case 2 with time periodsefweek, violations of safety stocks
and backlog occur, because the sample time is smaller. ugiréite this, Figures 6.1.3 and 6.1.3
show the inventory level of one product, designated by S#iained with Case 1 and Case 2,
respectively. Case 1 has time periods of one month, and Chas me periods of one week in
the scheduling model. The due dates are specified at the éhd ofonth in Case 1, and in Case
2 they are specified at the end of each week. Considering gté&1irdays of the time horizon, the
model in Case 1 does not consider a violation of the safetgkstmecause at the end of the first
time period, the inventory is at the level of the safety stoklowever, in Case 2 with inventory
balances at the end of each week, the model determines tla¢iatoof the safety stocks for the
first four time periods.
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20} no violation of the
safety stock
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Figure 17: a) Inventory level of product S41, obtained withs€ 1 with time periods of one month; b)
Inventory level of product S41 obtained with Case 2 with tipegiods of one week.

39



6.2 Computational results

The MILP models and the rolling horizon algorithms are inmpésted in GAMS (Brooke et al.,
1998) and solved on a machine running Linux with 8 procesbkues Xeon, 1.86GHz and 8GB
of RAM. CPLEX 11.2.0 is used, with the polishing (Rothber02) option activated after 10
minutes of elapsed time, and using the opportunistic parafition with 4 threads. The algorithm
behind the polishing option is based on genetic operatatgénerate a vector of integer variables
with a sub-set of variables fixed for any given integer veckar each sub-set of variables fixed,
a smaller sub-MILP is solved and a new incumbent may be folihas heuristic does not violate
the logic of upper and lower bound in the B&B algorithm. Ndtattboth options, opportunistic
parallel and polishing, introduce random behavior in CPLiEXt may lead to nonreproducible
results. Nevertheless, the random search in the B&B treeimpsove the incumbent, improving
implicitly and explicitly the performance of the search.

6.2.1 Casel

The best profit over two years is 8.075m.u., which is obtaingd the third instance. The maxi-
mum optimality gaps obtained are 5.0%, 6.6%, and 1.7% fotliteee instances studied, respec-
tively (see Table 3). A finer time resolution with time persodf one week was also studied.
However the size of the model increases approximately fogd posing a challenge to the solver
to close the optimality gap. The first instance (minimummgtiity gap of 5% and maximum time
of 3,600s) is able to achieve the minimum gap set, with CPlsitmelow 674s. While the sec-
ond and third instances presented in Table 3 show that trecapbe reduced by increasing the
maximum time set. However, the relative difference of thgdiive function between the first and
the third instance is only 0.47%, but requiring an additidha78s, (see Table 3). The number
of slots considered for each scheduling model is determinyetthe number of products that are
assigned by the planning model in the previous subproblemgxXample the number of slots of
the subproblem 2 in the first instance is 17, which is deteeohioy the total number of products
determined by the planning model for the first six months.eBilse, if the scheduling model is
used as a first approach the number of slots would be 120.

6.2.2 Case?

For this case, the best profit over two years is -13.919mhictwis obtained in the second instance.
The maximum optimality gaps for each instance are 14.5%p4dhd 11.7%, respectively, (see
Table 4). The negative value of the objective function mehasthere are nonzero slack variables
associated with the violation of the safety stocks. As nueretdl before, this is due to the length of
the time periods.
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Table 3: Size of the models, and results for each subprobfehinstances for Case 1 with time periods of
one month.

Variables
Instances SP Equations Total Binary Slots Gap (%) RMIRProfit(m.u.) CPU (s)
1 Gap =5%
1 9,095 8,115 3,860 - 3.7 4.233 4.027 526
2 5,961 5,300 2,267 17 50 4.212 3.923 165
3 10,216 9,129 3,960 17 48 6.071 5.752 674
4 6,697 5,868 2,081 28 48 6.031 5.699 540
5 11,089 9,921 3,960 28 49 8.211 7.786 612
6 7,709 6,840 2,174 42 3.4  8.179 7.870 45
2 Gap = 1%
1 9,095 8,115 3,860 - 23  4.233 4.085 3,600
2 6,123 5,540 2,408 20 09 4.219 4.076 573
3 10,278 9,171 3,960 20 6.6 6.070 5.649 3,600
4 6,802 5,962 2,108 32 26 6.036 5.815 3,600
5 11,220 10,009 3,960 32 21 8.234 8.002 3,600
6 7,925 7,033 2,236 48 11  8.215 7.993 3,600
3 Gap =1%
1 9,095 8,115 3,860 - 1.7 4.233 4.078 3,600
2 5,973 5,329 2,289 17 0.8 4.219 4.071 554
3 10,252 9,152 3,960 17 14 6.071 5.945 3,600
4 6,827 6,016 2,149 30 1.0 6.025 5.919 96
5 11,185 9,989 3,960 30 1.0 8.214 8.095 3,605
6 7,755 6,837 2,140 43 0.8 8.177 8.075 384

Minimum optimality gap and maximum CPU time: Instance 1 - G&%0, CPU=3,600s, Instance 2 - Gap =1%, CPU
=3,600s, Instance 3 - Gap = 1%, CPU = 3,600s for SP ={1,2,3Ba®s for SP= {4,5,6}. SP - Subprobleii Linear
relaxation in the root node.

6.2.3 Case3

For this case the best profit over two years is 8.093m.u.,miBiobtained in the second instance.
The maximum optimality gaps obtained are 13.2%, 4.2%, ab%b4or the three instances studied,
respectively. In this case a finer time resolution was algestigated, but increasing the resolution
of the time grid leads to large problems that cannot be sdiyedPLEX.

In this case, the size of the models is considerably largar the size of the models in Case
1. However, the detailed model is able to obtain solutiorth wptimality gaps below 5% within
three hours, which is comparable with the performance pbthivith the hybrid rolling horizon
algorithm used in Case 1. Comparing the first subproblemeo$éitond instance of Cases 1 and 3,
the first has an objective function equal to 4.085m.u. wi8%2gap obtained in 3,600s, and Case
3 has an objective function equal to 4.085m.u. with 2.5% datpined in 3,600s, (see Tables 3
and 5). This suggests that the planning model has a simittorpgance to the detailed scheduling
model for problems of this dimension.
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Table 4: Size of the models, and results for each subprobtahirestances for Case 2 for three different
instances with different stopping criteria.

Variables
Instances SP Equations Total Binary Slots Gap (%) RMIfProfit(m.u.) CPU (s)
1 Gap =5%
1 9,900 8,809 4,190 - 4.7 4.236 2.861 709
2 11,280 10,144 3,306 80 4.5 4.263 -18.352 557
3 14,339 12,887 4,290 80 5.3 -15.553 -16.459 3,600
4 14,902 13,480 3,288 136 8.9 -15.528 -17.597 3,600
5 17,839 16,148 4,290 136 145 -13.295 -15.589 3,600
6 17,343 15,470 2,433 182 6.9 -13.278 -22.938 3,600
2 Gap = 1%
1 9,900 8,809 4,190 - 3.0 4.236 2.909 3,600
2 11,477 10,435 3,506 84 0.3 4.266 -17.576 1,470
3 14,329 12,888 4,290 84 2.9 -15.563 -16.063 3,600
4 14,559 12,913 2,877 136 2.9 -15.529 -16.049 3,600
5 17,892 16,178 4,290 136 42 -13.346 -13.970 3,600
6 17,531 15,636 2,490 186 2.6 -13.328 -13.919 3,600
3 Gap =1%
1 9,900 8,809 4,190 - 3.1 4.236 2.906 3,600
2 11,684 10,684 3,634 88 1.0 4.268 -17.698 638
3 14,389 12,923 4,290 88 4.8 -15.557 -16.365 3,600
4 14,472 12,818 2,819 136 6.3 -15.538 -16.651 10,800
5 17,863 16,166 4,290 136 7.2 -13.339 -14.400 10,800
6 17,669 15,824 2,607 190 11.7 -13.309 -15.129 10,800

Minimum optimality gap and maximum CPU time: Instance 1 - G&%, CPU=3,600s, Instance 2 - Gap =1%, CPU
=3,600s, Instance 3 - Gap = 1%, CPU = 3,600s for SP ={1,2,3Ba®s for SP={4,5,6}. SP - Subprobleii: Linear
relaxation in the root node.

Table 5: Size of the models, and results for each subprobfehinstances for Case 3 with time periods of
one month.

Variables
Instances SP Equations Total Binary Slots Gap (%) RMIRProfit(m.u.) CPU (s)
1 Gap =5%
1 10,421 19,134 13,340 120 28 4.232 4.076 2,599
2 11,876 20,527 13,684 138 132 6.174 5.401 3,600
3 12,939 21,381 13,718 148 9.9 8.385 7.582 3,600
2 Gap =1%
1 10,421 19,134 13,340 120 25 4.232 4.085 3,600
2 11,867 20,498 13,659 138 42  6.179 5.868 3,600
3 12,933 21,371 13,705 148 3.3 8.416 8.093 3,600
3 Gap =1%
1 10,421 19,134 13,340 120 25 4.232 4.082 10,800
2 11,874 20,518 13,680 138 26  6.177 5.937 10,800
3 12,912 21,361 13,707 147 45  8.389 7.959 10,800

Minimum optimality gap and maximum CPU time: Instance 1 - G&%o0, CPU=3,600s, Instance 2 - Gap =1%, CPU
= 3,600s, Instance 3 - Gap = 1%, CPU = 3,600s for SP ={1,2,3BAs for SP={4,5,6}. SP - Subproblein: Linear
relaxation in the root node.
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6.24 Case4

For this case, the best objective function obtained is &3rhu., which corresponds to a penalized
objective function due to violations of the safety stocksimty the second year. For the same
instance, for the first year the profit obtained is 4.706mth\d27.1 days of transitions (see Table
1). Table 6 shows information about the size of the modelsta@gerformance of this approach.

Results for the three instances with different stoppinteda are shown. In the three instances

Table 6: Size of the models, and results for each subprobtehinstances for Case 4.

Variables

Instances SP  Equations Total Binary Slots  Gap (%) RMIPProfit (m.u.)  CPU (s)
1

1 9,095 8,116 3,860 - 4.8 5.352 4.939 461
2 6,171 5,612 2,446 21 4.5 5.325 4.851 14
3 10,302 9,199 3,960 21 2.8 7.404 7.125 49
4 7,141 6,400 2,340 40 0.7 7.361 7.221 33
5 11,339 10,094 3,960 40 109.3 9.677 -102.764 3,600
6 7,987 7,045 2,193 55 457  -45.286 -83.539 3,600
2
1 9,095 8,116 3,860 - 3.8 5.352 4.963 3,600
2 6,059 5,439 2,337 19 1.0 5.322 4.952 353
3 10,292 9,180 3,960 19 11 7.410 7.264 3,600
4 7,134 6,392 2,340 38 1.0 7.381 7.233 115
5 11,347 10,113 3,960 38 109.7 9.694 -98.829 3,600
6 7,995 7,075 2,200 53 299 -66.082 -94.546 3,600
3
1 9,095 8,116 3,860 - 3.6 5.352 4.968 3,600
2 6,059 5,439 2,337 19 0.9 5.324 4.966 254
3 10,317 9,208 3,960 19 1.0 7.409 7.273 1,700
4 7,104 6,341 2,306 37 0.9 7.381 7.251 29
5 11,352 10,100 3,960 37 105.4 9.710 -176.759 10,800
6 8,008 7,071 2,213 52 47.8 -81.580 -182.759 10,800

Minimum optimality gap and maximum CPU time: Instance 1 - G&%0, CPU=3,600s, Instance 2 - Gap =1%, CPU
= 3,600s, Instance 3 - Gap = 1%, CPU = 3,600s for SP ={1,2,3B0s for SP={4,5,6}. SP - Subprobleii: Linear
relaxation in the root node.

relatively large optimality gaps are obtained for the sobpgms 5 and 6, indicating that the solver
cannot close the gap between the linear relaxation and tegral solution within the specified
maximum time. This is explained by the fact that the linedaxation is able to meet the safety
stocks levels while the integral solution cannot.

6.25 Case5

In this case, the best profit over two years is 3.626m.u. nbthin the third instance. This value
is smaller than the previous results reported, and the maximptimality gaps obtained are also
larger, 24.2%, 193.2%, and 32.8% for the three instancegestirespectively (see Table 7). These
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Table 7: Size of the models, and results for each subprobfehinstances for Case 5.

Variables
Instances SP Equations Total Binary Slots Gap (%) RMIProfit(m.u.) CPU (s)
1 Gap =5%
1 7,367 5,467 2,520 - 19.2 4,229 -0.380 3,600
2 4,768 3,700 1,322 14 49 -0.289 -0.379 415
3 8,181 6,272 2,520 14 24.2 1.612 1.261 3,600
4 5,434 4,377 1,315 27 5.0 1.568 1.291 363
5 8,849 6,964 2,520 27 4.0 3.750 3.527 1,028
6 6,145 5,109 1,322 41 3.6 3.718 3.517 48
2 Gap = 1%
1 7,367 5,467 2,520 - 17.1 4,229 -0.372 3,600
2 4,849 3,788 1,336 16 6.5 -0.288 -0.372 3,600
3 8,210 6,284 2,520 16 193.2 1.617 0.536 3,600
4 5,435 4,357 1,310 28 1.0 1.570 0.540 179
5 8,874 6,974 2,520 28 10.2 3.775 3.345 3,600
6 6,088 5,034 1,308 40 1.0 3.757 3.383 523
3 Gap = 1%
1 7,367 5,467 2,520 - 16.7 4.229 -0.375 3,600
2 4,809 3,742 1,329 15 42 -0.290 -0.375 3,600
3 8,196 6,280 2,520 15 32.8 1.615 1.187 3,600
4 5,409 4,336 1,308 27 1.0 1.570 1.187 246
5 8,871 6,972 2,520 27 2.2 3.762 3.626 10,800
6 6,085 5,032 1,308 39 0.4 3.719 3.626 2,055

Minimum optimality gap and maximum CPU time: Instance 1 - G&%0, CPU=3,600s, Instance 2 - Gap =1%, CPU
= 3,600s, Instance 3 - Gap = 1%, CPU = 3,600s for SP ={1,2,3BAs for SP={4,5,6}. SP - Subproblein: Linear
relaxation in the root node.

large gaps demonstrate that this model, without consigenimimum run lengths and changeovers
across the due dates, does not have enough flexibility tefgdktie safety stocks and terminal
constraints. The model has to fit the minimum run lengths &iathgeovers within the time periods
as can be seen in Figure 16. These results show that the cadtlioig the minimum run lengths
and transition across the due dates (instead of 7,367 eqgatind 5,467 total variables and 2,520
binary variables in Case 5, 9,095 equations, 8,115 contisuariables, and 3,860 binary variables
in Case 1, for the first subproblem) is compensated by theigdiexibility of the model.

6.2.6 Caseb

In this case, the best profit over two years is 8.069m.u. pbthin the third instance. The maxi-
mum optimality gaps obtained are 4.9%, 8.9%, and 2.8% fotitte instances studied. Compar-
ing the results in terms of computational times and profiaoigd with Case 1 and this case, there
is no clear evidence that one planning model is superioreémther, both in terms of objective
function and CPU times.
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7 Conclusions

A long-term scheduling approach has been presented folingke stage continuous process for
manufacturing value added glass products. The proposeaImogpresent extensions of the
models proposed by Erdirik-Dogan and Grossmann (2006) adutiiEDogan and Grossmann
(2008) motivated by the specific features of the processrusidely. The extensions involve
changeovers and minimum run lengths across due dates, asgaggn strategy to handle the
case of changeovers without transition times between asobgroducts, and the consideration
of terminal constraints for the inventory levels at the ehthe time horizon. The challenge posed
by the long-term scheduling is addressed by using rollingzba algorithms integrated with the
aggregation and disaggregation of the time, which reduesitte of the subproblems to solve.

The results have shown that the new extensions improve tibifty and applicability of the
models by providing feasible solutions that are not poesiith previous models. Problems with
time horizons of 24 months with 18 months of detailed scheduiave been solved with optimal-
ity gaps below 5% with reasonable computational times aftlean six hours. The resolution of the
time periods has a clear impact on the size of the models, mttteayuality of the results obtained.
For the models with time periods of one month, the three nt&s studied are able to achieve re-
sults with optimality gaps below 5% for the final subproblettvmoderate computational efforts.
The asynchronous rolling horizon algorithm leads to morieate inventory balances, without
increasing considerably the computational efforts. Frbengerformance of the planning and the
scheduling models, within the respective rolling horizégoathms in this problem, there is no
clear evidence that the planning model is computationattlyawefficient. Therefore, the detailed
rolling horizon algorithm used in Case 3 has the best perdoga. For all cases, the instance with
maximum optimality gap of 5% and maximum time of 3,600s shawysod compromise between
the quality of the final solution and the computational reses used.

Future work will involve the integration of a second prodantline, and the management of
the waste glass produced and used in the furnace, with tlgeigiion scheduling.
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Nomenclature

I ndices

1,1,k products

j,n, p products

t, t, t* time periods

l slots

Sets

Ay subset of periods of time after the time pertathat cover the minimum run length
B, subset of periods of time before the time periddat cover the minimum run length
CcT1 set of products with coating 1

cT?2 set of products with coating 2

P set of products

IM set of pseudo-products

L set of slots

LM, subset of slots active for the time period

LMF singleton with the first element of the st/

LML singleton with the last element of the &t/

T set of time periods

TF singleton with the first element of the set of time periods
TFP singleton with the first element of the set of time peri@#s
TL singleton with the last element of the set of time periods
TP subset of time periods with only planning

Ts subset of time periods with only detailed scheduling
TSL singleton with the last element of the gei

Parameters

BCKI, Initial backlog of producp

cinu inventory cost in a year basis

copery operating cost for produgtin period¢
ctran,)  transition cost from produgtto productt

dpy demand of produgt in periodt

H,; duration of the tth time period

HT; time in terms of day at the end of the tth time period
M RT; minimum run length of produat

INVI, initial inventory of product (ton)

46



INVMAX
INVMIN,

Ppt

Tlp

Tik

Tlp
Variables
BCKL,,
Area,
INVO,,,
NYi,
Oiz

a

Sp.t

Sp.t
slth,,
TPA;,
TPB,; ;
Te,
T'syy

Tp

Oi 1.t
O; ¢
02,
éalm
§a2i7t
b1,
0b2;
TCi k.t

TSikt

maximum capacity for storage (ton)
minimum inventory (ton)

gross production rates (ton/day)
selling price of producp in periodt
production yield of produch

transition time from productto productk
production yield of produch

backlog of producp in the time period

area below the inventory time graph for prodpétt periodt

final inventory of producp at timet after the demands are satisfied
number of slots that producis assigned in periot

order of the assignment of produan the time period

slack variable for maximum storage capacity violation meiperiodt

sales of producp at periodt

slack variable for the safety stock violation of prodpaturing time period
slack variable for the violation of the terminal inventolgnstraint of producp
production time of productin ¢ that is added to the production timeiah ¢ — 1
production time of productin ¢ that is added to the production timedah ¢ + 1
end time of slot during periodt

start time of slot during periodt

total minimum inventory level at the end of the time time &ori enforced by
the terminal constraints

yield of production of the produgt

production time of productin slot/ during periodt

production time of pseudo-product (aggregated)/M during periodt
production time of produgt € P during periodt

disaggregated variable élf,t

disaggregated variable élf,t

disaggregated variable élfi

disaggregated variable élf,t

part of the transition time between time periods assignelderend of period
part of the transition time between time periods assignédarstart of period
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Binary variables
TRI 1.t denotes if product s followed by productk at the end of period

Wit denotes if productis assigned to sldtduring periodt

XF;, denotes if productis the first product in period

XL, denotes if productis the last product in period

YF,, denotes if productis assigned to more than one slot

YOP, ; denotes if productis assigned during periad

YP;, denotes if product is assigned to period

Zi kit denotes if productis followed by product: in slot/ during periodt

ZP; denotes if product precedes product k in periad
ZZP,y denotes if the link between producétandk are broken
ZZZ;,:  denotes if productis followed by product at the end of period
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