
-1-

Dinkelbach’s Algorithm as an Efficient Method for Solving a Class of

MINLP Models for Large-Scale Cyclic Scheduling Problems

Fengqi You,1 Pedro M. Castro,2 Ignacio E. Grossmann1*

1 Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
2 Departamento de Modelação e Simulação de Processos, INETI, 1649-038 Lisboa, Portugal

January, 2009

Abstract

In this paper we consider the solution methods for mixed-integer linear fractional

programming (MILFP) models, which arise in cyclic process scheduling problems. We first

discuss convexity properties of MILFP problems, and then investigate the capability of

solving MILFP problems with MINLP methods. Dinkelbach’s algorithm is introduced as an

efficient method for solving large scale MILFP problems for which its optimality and

convergence properties are established. Extensive computational examples are presented to

compare Dinkelbach’s algorithm with various MINLP methods. To illustrate the applications

of this algorithm, we consider industrial cyclic scheduling problems for a reaction-separation

network and a tissue paper mill with byproduct recycling. These problems are formulated as

MILFP models based on a continuous time Resource-Task Network (RTN). The results show

that orders of magnitude reduction in CPU times can be achieved when using this algorithm

compared to solving the problems with commercial MINLP solvers.

Keywords: Cyclic Scheduling; Mixed-Integer Linear Fractional Programming; Mixed-integer

Nonlinear Programming; Dinkelbach’s Algorithm; Resource-Task Network;

* To whom all correspondence should be addressed. E-mail: grossmann@cmu.edu

-2-

1. Introduction

Cyclic scheduling is appropriate wherever product demands are stable over extended

periods of time. In such cases, cyclic scheduling is usually implemented to find the best

resource assignments as well as tasks sequencing, and then repeat such production pattern over

an extended period of time (Sahinidis & Grossmann, 1991; Pinto & Grossmann, 1994; Castro

and co-workers, 2003, 2005, 2009; Pochet & Warichet, 2008). Cyclic scheduling problems can

be encountered in refinery operation (Pinto et al., 2000), chemical manufacturing (Sahinidis &

Grossmann, 1991), pulp mills (Castro et al., 2003) and paper production (Castro et al., 2009). If

continuous-time formulations are used, the objective function typically involves the

maximization of a certain economic indicator (e.g. revenue, profit) divided by the cycle time,

which is a model variable. If there are linear constraints and the objective function is given by

the ratio of linear terms divided by the cycle time, the resulting mathematical problem is a

special type of mixed-integer nonlinear program (MINLP) that is known as a mixed-integer

linear fractional program (MILFP).

An MILFP includes both continuous and discrete variables, has an objective function in

general form as the ratio of two linear functions and all the constraints are linear.

Mathematically, an MILFP can be formulated as following problem (P):

 (P) 0

0

max i ii I

i ii I

a a x
b b x

∈

∈

+

+
∑
∑

 s.t. 0 0j ij ii I
c c x

∈
+ =∑ , j∀

 0ix ≥ , 1i I∀ ∈ and { }0,1ix ∈ , 2i I∀ ∈ and 1 2∪ =I I I

where it is assumed that 0 0i ii I
b b x

∈
+ >∑ for all feasible solutions and where all inequalities

are converted into equalities through the use of slack variables. Due to the nonlinearities in the

objective function and the combinatorial nature because of the presence of 0-1 variables, the

-3-

MILFP problems can become computationally intractable, especially for large scale instances

with more than hundreds of binary variables.

Since (P) has both continuous and discrete variables, and it includes a nonlinear objective

function with nonconvexities, it is also a mixed-integer nonlinear programming (MINLP)

problem. Thus, optimization methods for MINLP problems can also be utilized for MILFP

problems. Global optimization methods for MINLP problems include the branch and reduce

method (Ryoo & Sahinidis, 1996; Tawarmalani & Sahinidis, 2004), the α-BB method

(Adjiman, et al., 2000), the spatial branch and bound search method for bilinear and linear

fractional terms (Quesada & Grossmann, 1995; Smith & Pantelides, 1999) and the

outer-approximation method by Kesavan et al. (2000). All these methods rely on a branch and

bound solution procedure. The difference among these methods lies on the definition of the

convex envelopes for computing the lower bound, and on how to perform the branching on the

discrete and continuous variables.

In addition to global optimization methods, MINLP methods that rely on convexity

assumptions can also be utilized. Although global optimality cannot be guaranteed, these

methods can usually obtain optimal or near optimal solutions for MILFP problems much faster

than global optimizers. These MINLP methods include the branch & bound method (Leyffer,

2001), generalized Benders decomposition (Geoffrion, 1972), outer-approximation (Duran &

Grossmann, 1986; Viswanathan & Grossmann, 1990), LP/NLP based branch and bound

(Quesada & Grossmann, 1992), and extended cutting plane Method (Westerlund and

Pettersson, 1995). A number of computer codes are available that implement these methods.

The program DICOPT is an MINLP solver that is based on the Outer-Approximation algorithm,

and is available in the modeling system GAMS (Brooke, 1998). The code α-ECP implements

the extended cutting plane method by Westerlund and Pettersson (1995, 2002). Codes that

implement the branch-and-bound method include the code MINLP_BB (Leyffer, 2001)

-4-

available in AMPL, and the program SBB which is also available in GAMS. Recently, the open

source MINLP solver Bonmin (Bonami, et al. 2008), which is part of the COIN-OR project,

implements an extension of the branch-and-cut outer-approximation algorithm that was

proposed by Quesada and Grossmann (1992), as well as the branch and bound and

outer-approximation method.

The rest part of this paper is organized as follows. In Section 2, we discuss the special

properties of solving MILFP problems with convex MINLP methods. The Dinkelbach’s

algorithm is introduced and discussed in Section 3. In Section 4 and Section 5, we present the

numerical examples and cases studies. Section 6 concludes this paper.

2. MINLP Methods for MILFP

Due to the special structure of MILFP problems, we can obtain global optimal solutions by

finding the local optima with certain MINLP methods. Before addressing the solution methods,

let us first consider problem (RP), which is the nonlinear relaxation of (P) with all the binary

variables { }0,1ix ∈ , 2i I∀ ∈ relaxed as continuous variables 0 1ix≤ ≤ , 2i I∀ ∈ .

 (RP) 0

0

max i ii I

i ii I

a a x
b b x

∈

∈

+

+
∑
∑

 s.t. 0 0j ij ii I
c c x

∈
+ =∑ , j∀

 0 0i ii I
b b x

∈
+ >∑

 0ix ≥ , 1i I∀ ∈ and 0 1ix≤ ≤ , 2i I∀ ∈ and 1 2∪ =I I I

It is easy to see that (RP) is a linear fractional program (LFP), in which the objective

function is the ratio of two linear functions, all the constraints are linear and all the variables are

continuous. The LFP problems are well studied and some of its important properties will assist

the solution of MILFP with MINLP methods.

-5-

Lemma 1: Let ()0() i ii I
Q x a a x

∈
= +∑ ()0 i ii I

b b x
∈

+∑ , and let F be a convex set such that

0 0i ii I
b b x

∈
+ ≠∑ over F. Then, ()Q x is both pseudoconvex and pseudoconcave over F.

Proof: See Chapter 11.4, “Linear Fractional Programming” in Bazaraa et al. (2004).

Lemma 2: ()Q x is strictly quasiconvex and strictly quasiconcave over F.

Proof: Based on Lemma 1 that ()Q x is pseudoconvex and pseudoconcave, we can conclude

that ()Q x is also strictly quasiconvex and strictly quasiconcave over F (Bazaraa et al., 2004).

Lemma 3: Every local optimum of ()Q x over F is also its global solution.

Proof: Lemma 2 and the properties of strictly quasiconvex and strictly quasiconcave functions

(Bazaraa et al., 2004) lead to Lemma 3.

Based on Lemma 3, we can conclude that the local maximum obtained by solving the LFP

problem (RP) with any nonlinear programming (NLP) solver is also the global maximum of

(RP). Furthermore, we can obtain the global optimal solution of the MILFP problem (P) with

an MINLP method that can handle pseudoconvex/pseudoconcave objective function (eg.

branch-and-bound, α-ECP methods).

Lemma 4: A global optimal solution of the MILFP problem (P) can be obtained by solving it

with MINLP methods that can handle pseudoconvex/pseudoconcave objective function (eg.

branch-and-bound, α-ECP).

Proof: Based on Lemma 3, the NLP relaxation of the MILFP problem (P) or an NLP

subproblem with a subset of fixed 0-1 variables can be solved to global optimality by using a

local NLP solver. Since the branch-and-bound method relies on solving a sequence of relaxed

-6-

NLP subproblems, global optimality can be guaranteed with that method. The α-ECP method

by definition can handle pseudoconvex/pseudoconcave functions, and therefore it can also

guarantee the global optimality.

Lemma 4 allows us to obtain global optimal solutions of MILFP problems with convex

MINLP solvers, such as SBB and α-ECP, which are potentially faster than using a global

optimizer. Note that the Generalized Benders Decomposition (Geoffrion, 1972) algorithm and

Outer-Approximation (Duran & Grossmann, 1986; Viswanathan & Grossmann, 1990) method

do not guarantee global optimality, since in both cases the lower/upper bounds predicted by the

master problem rely on the assumption that the functions are convex.

Besides the MINLP methods, an alternative to solve the MILFP problems is to use

Dinkelbach’s algorithm by successively solving a number of mixed-integer linear

programming (MILP) problems.

3. Dinkelbach's Algorithm for MILFP

By exploiting the relationship between nonlinear fractional programming and nonlinear

parametric programming, Dinkelbach (1967) developed an algorithm to solve convex

nonlinear fractional programming problems (without discrete variables) by successive solving

a sequence of simplified NLP problems. As an extension, Dinkelbach’s algorithm has recently

been implemented to solve the MILFP problems (Bradley and Arntzen, 1999; Pochet &

Warichet, 2008), but the optimality and convergence properties of using Dinkelbach’s

algorithm to solve MILFP problems have not been fully addressed (Warichet, 2007). In this

section, we first introduce the algorithmic scheme for solving MILFP problems with

Dinkelbach’s algorithm, and then show that similar optimality and convergence properties

(such as superlinear convergence rate) of using Dinkelbach’s algorithm for convex nonlinear

fractional programming problems (Dinkelbach, 1967; Schaible, 1976) also exist in using this

-7-

algorithm for MILFP problems.

Consider 0() i ii I
N x a a x

∈
= +∑ , 0() i ii I

D x b b x
∈

= +∑ , () () / ()Q x N x D x= and the

feasible region of (P) as {: () 0>S D x and 0 0,
∈

+ = ∀∑j ij ii I
c c x j and 0ix ≥ , 1i I∀ ∈

and 0, 1=ix , 2i I∀ ∈ and }1 2∪ =I I I , the Dinkelbach’s algorithm for MILFP problem (P):

{ }max () |Q x x S∈ is as follows:

Step 1: choose arbitrary 1x S∈ and set ()
()

1
2

1

N x
q

D x
= (or set 2 0q =), let 2=k .

Step 2: solve the MILP problem () () (){ }max |k kF q N x q D x x S= − ∈ , and denote the

optimal solution as kx .

Step 3: If ()kF q δ< (optimality tolerance), stop and output kx as the optimal solution; If

()kF q δ≥ , let ()
()1

k
k

k

N x
q

D x+ = and go to Step 2 to replace k with 1+k and kq with 1kq + .

Proposition 1 (Optimality): () { }* *max () () | 0F q N x q D x x S= − ∈ = if and only if

()
() { }

*
*

*
max () / () |

N x
q N x D x x S

D x
= = ∈ .

Proof: See appendix.

Proposition 2 (Convergence): Dinkelbach’s algorithm converges superlinearly for MILFP

problem (P).

Proof: See appendix.

-8-

Based on Proposition 1 and Proposition 2, we can solve a sequence of MILP subproblems

to obtain the global optimal solution of an MILFP problem. A major advantage of using this

algorithm is that no NLP solver is required, and the memory usage during the computational

process tends to be rather small compared with using MINLP methods, especially for

large-scale MILFP problems. In the next two sections, we present computational results for

solving MILFP problems with Dinkelbach’s algorithm and various MINLP methods.

4. Computational Results

In order to illustrate the application of the proposed solution strategies, we present

computational experiments for 20 large scale instances. The computational experiments are

carried out on an Intel 3.2 GHz machine with 512 MB memory. The proposed solution

procedure is coded in GAMS 22.8.1 (Brooke, 1998). The MILP problems in Dinkelbach’s

solution procedure are solved using CPLEX 10, the MINLP solvers include SBB (special

branch-and-bound algorithm), DICOPT (outer-approximation algorithm), and α-ECP (α -

extended cutting-plane method), and the global optimizer used in the computational

experiments is BARON 8.1.4. The relative optimality tolerance is set to be 10-6.

We solve the MILFP problems (CE) as follows:

 (CE) 0

0

1 2
max

1 2
i i j ji I j J

i i j ji I j J

a a x a y

b b x b y
∈ ∈

∈ ∈

+ +

+ +
∑ ∑
∑ ∑

 s.t. 0 1 2 0k ik i jk ji I j J
c c x c y

∈ ∈
+ + =∑ ∑ , k K∀ ∈

 0 1 2 0.001i i j ji I j J
b b x b y

∈ ∈
+ + ≥∑ ∑

 0ix ≥ , i I∀ ∈ and { }0,1jy ∈ , j J∀ ∈

which includes I continuous variables, J binary variables, and 1K +

constraints/equations. The values of I , J and K range from 100 to 2,000. Given the

large size of problems, the input data are generated randomly. 0a is generated uniformly on

U[-10, 10], 0b is generated uniformly on U[-10, 10], 1ia is generated uniformly on U[0, 10],

2 ja is generated uniformly on U[0, 10], 1ib is generated uniformly on U[0, 10], 2 jb is

-9-

generated uniformly on U[0, 10], 0kc is generated uniformly on U[-15, 20], 1ikc is generated

uniformly on U[-10, 10], 2 jkc is generated uniformly on U[-20, 15].

For each instance, we solve Problem (CE) with Dinkelbach’s algorithm using CPLEX (the

initial value of q is set to 0), and MINLP solvers SBB, DICOPT, α-ECP, as well as the global

optimizer BARON. The computational results are given in Table 1. The optimal solutions

obtained with all the methods are the same and equal to the global maximum, although

DICOPT does not guarantee global optimality. The CPU times vary from one approach to the

other. Specifically, solving MILFP problems with Dinkelbach’s algorithm requires up to 7

iterations and it is usually faster than using the global optimizer BARON and the MINLP

solver α-ECP. Dinkelbach’s algorithm usually requires slightly more computational times than

SBB and DICOPT for medium instances, but usually less CPU time than these MINLP solvers

for large scale instances. More importantly, for very large scale instances with up to thousands

of constraints and variables (instances 18-20), DICOPT and SBB both exceed the memory

limit while Dinkelbach’s algorithm can still return global optimal solutions. This is due to the

smaller memory requirement when solving MILP rather than MINLP problems. As for the

comparison between the MINLP solvers and the global optimizer, SBB and DICOPT require

similar computational resources and are both much faster than α-ECP and BARON, especially

for large scale instances (instances 11-17). The computational studies suggest that SBB and

DICOPT might be the most efficient solvers for medium size MILFP problems, and

Dinkelbach’s algorithm may have higher computational efficiency for very large scale

instances. In all runs, DICOPT was able to find the global optimal solutions, despite the fact

that the outer-approximation method cannot guarantee global optimality for

pseudoconvex/pseudoconcave functions. The results also show that Dinkelbach’s algorithm

with CPLEX and the convex MINLP solvers (SBB, DICOPT and α-ECP) are far more efficient

than global optimizer BARON for solving MILFP problems.

-10-

 Table 1 Computational results for MILFP Problems with Dinkelbach’s algorithm and MINLP methods

*: Suboptimal solutions (or lower and upper bounds for BARON) obtained after 1 hour (3,600 seconds)
**: No solution was returned after 1 hour (3,600 seconds)
>memo: terminates because memory upper limit exceed

Dinkelbach’s Algorithm
(CPLEX)

SBB DICOPT α-ECP BARON No.
Cont.
Var.
|I|

Disc.
Var.
|J|

Eqs.
|K|+1

Iter. Obj. CPU (s) Obj. CPU (s) Obj. CPU (s) Obj. CPU (s) Obj. CPU (s)
1 100 100 101 6 3.033 0.59 3.033 0.11 3.033 0.06 3.033 5.00 3.033 0.69
8 200 100 101 5 2.213 0.65 2.213 0.08 2.213 0.08 2.213 7.00 2.213 10.97
9 300 100 101 6 2.267 1.45 2.267 0.49 2.267 0.87 2.267 161.0 2.267 34.48
10 500 100 101 5 2.085 2.16 2.085 0.53 2.085 1.48 2.085 18.98 2.085 71.64
2 100 200 101 6 3.256 0.97 3.256 0.06 3.256 0.08 3.256 6.00 3.256 11.68
3 100 300 101 7 3.556 1.44 3.556 0.47 3.556 0.87 3.556 65.40 3.556 31.05
4 100 500 101 6 3.691 1.62 3.691 0.39 3.691 0.11 3.691 18.72 3.691 36.40
5 100 100 201 6 3.033 0.84 3.033 0.19 3.033 0.06 3.033 8.00 3.033 12.69
6 100 100 301 6 3.033 1.34 3.033 0.11 3.033 0.08 3.033 12.00 3.033 28.03
7 100 100 501 6 3.033 2.58 3.033 0.14 3.033 0.16 3.033 26.88 3.033 25.72
11 500 500 501 6 2.634 15.79 2.634 5.59 2.634 12.19 2.634 852.70 2.593~3.225* 3,600*
12 1,000 500 501 6 2.311 68.11 2.311 50.31 2.311 45.11 1.786* 3,600* 2.310~14.811* 3,600*
13 500 1,000 501 6 2.887 24.29 2.887 0.92 2.887 0.90 2.887 1,460 2.887~5.872* 3,600*
14 500 500 1,001 6 2.633 34.11 2.633 1.77 2.633 1.77 2.633 1,647 2.633~19.205* 3,600*
15 1,000 1,000 1,001 7 2.608 222.22 2.608 146.57 2.608 164.09 2.430* 3,600* --- 3,600**
16 2,000 1,000 1,001 6 2.310 63.58 2.310 839.28 2.310 468.67 --- 3,600** --- 3,600**
17 1,000 2,000 1,001 6 3.085 69.92 3.085 963.50 3.085 888.97 --- 3,600** --- 3,600**
18 1,000 1,000 2,001 7 2.603 1466.59 ---** >memo ---** > memo --- 3,600** --- 3,600**
19 2,000 2,000 1,001 6 2.593 517.95 ---** >memo ---** > memo --- 3,600** --- 3,600**
20 2,000 2,000 2,001 6 2.705 242.23 ---** >memo ---** > memo --- 3,600** --- 3,600**

-11-

5. Cyclic Scheduling Problems

 Cyclic scheduling problems can be formulated as mixed-integer linear fractional programs

(Bradley and Arntzen, 1999; Pochet & Warichet, 2008). In this section, we employ the

Dinkelbach’s algorithm to solve large scale MILFP models for cyclic production scheduling

from two case studies when compared to the MINLP commercial solvers.

5.1. Case study 1: Cyclic Scheduling for a Reaction-Separation Network

 The first case study deals with a variant of the most studied scheduling problem in the

process systems engineering literature (Kondili et al., 1993). It involves a multipurpose

pharmaceutical batch plant producing two products from three different raw-materials through

various reaction and separation operations. Figure 1 shows the associated RTN (Pantelides,

1994), annotated with information on task duration and minimum and maximum task size.

Notice that the duration of the reaction tasks is dependent on the type of equipment being used.

The product values are equal to $12,000/kg and $10,000/kg, respectively, as in Schilling and

Pantelides (1999).

 The problem was first investigated by Schilling & Pantelides (1999) and more recently

addressed by Castro et al. (2003) and Wu & Ierapetritou (2004). Different continuous-time

multipurpose formulations can be used to solve the problem. The first two contributions relied

on a single time grid to keep track of events taking place, while the latter is a unit-specific

formulation. In this paper, we will be using the one proposed by Castro and co-workers

(2003, 2005), which has been shown to be more efficient than the one by Schilling &

Pantelides (1999), primarily due to the need of fewer event points to find the optimal

solution. Bear in mind, however, that the formulation of Wu & Ierapetritou (2004) shows

better performance. The small differences observed in the values of the reported solutions

between the papers result from slightly different data.

-12-

0.2 1.0

0.4

IntABHotA Reaction2_1
Dur.=13.333+0.27*Size

Size=20-80

Reaction2_2
Dur.=13.333+0.17*Size

Size=30-80

Product1

Separation
Dur.=6.667+3.33E-2*Size

Size=40-80 Product2

Reaction1_2
Dur.=13.333+0.17*Size

Size=30-80

FeedB Reac1

Reac2

Reaction3_2
Dur.=6.667+8.33E-2*Size

Size=30-80

Reaction3_1
Dur.=6.667+0.133*Size

Size=20-80

Reaction1_1
Dur.=13.333+0.27*Size

Size=20-80

Still

ImpureE

FeedC

IntBC

0.9

0.1

1.00.6 1.0

0.8

0.6

0.4

0.5

0.5

Figure 1 Resource-Task Network representation of case study 1. Duration in h, size in kg.

 The scheduling formulation uses the RTN process representation, which relies on generic

entities like resources (set R) and tasks (set I) to describe the process/product recipe. Through

the use of the wrap-around operator Ω(⋅) (Shah et al., 1993),

⎩
⎨
⎧

<+
≤≤

=Ω
1|,|
||1,

)(
tTt

Ttt
t

the cyclic scheduling formulation can be written in a very compact form, eqs 1-7. In addition,

an anchoring constraint should be used for reducing solution degeneracy arising from cyclic

scheduling permutations.

 max
FP

r r
r R

v
∈

⎛ ⎞
⋅ Δ⎜ ⎟

⎝ ⎠
∑ H (1)

TtRr

NNRR

tRrrRrr

Tttttttt
Tt

ttiirttiir
Ii

Tttttttt
Tt

ttiirttiirtrtr

FPRM ∈∈∀Δ−Δ

+++++=

=∈∈

+Δ−≥∨<≤Δ−
∈∈

−+Δ≤∨+Δ≤<
∈

−Ω ∑∑ ∑

,)(

])()([

1

||''
'

,',,,',,

||''
'

',,,',,,)1(,, ξνμξνμ

 (2)

EQ

Ii
tttt

Tt
ttiir

Tt
Tttttttt

Tt
ttiirTr RrNNR ∈∀++= ∑ ∑∑ ∑

∈
+Δ≤<

∈∈
−+Δ≤∨+Δ≤<

∈

)(1
'
'

',,,

||''
'

',,,||, μμ (3)

-13-

||',',,max
,',,',,

min
,',, TttttTtTtIiVNVN

EQEQ Rr
rirttitti

Rr
rirtti −+Δ≤<∈∈∈∀≤≤ ∑∑

∈∈

μξμ (4)

ttttTtTtIiNTT
Ii

ttiittiitt +Δ≤<∈∈∈∀+≥− ∑
∈

',',,)(',,',,' ξβα (5)

||',',,)(',,',,' TtttTtTtIiNHTT
Ii

ttiittiitt −+Δ≤∈∈∈∀+−≤− ∑
∈

ξβα (6)

0,,};1,0{;0;0; ,',,',,
max

1
maxmin ≥Δ∈≤≤=≤≤ rtrttittit RNHTTHHH ξ (7)

 The binary variables ',, ttiN identify the start of task i at event point t and ending at event

point t’, while the continuous variables ',, ttiξ give the amount processed, which must lie

within the equipment unit’s (r∈REQ) minimum (min
rV) and maximum capacities (max

rV), see

eq 4. In this problem, the amount handled by the task affects its duration, with parameters αi

(h) and βi
 (h/kg), giving the fixed and batch size dependent processing times, respectively.

The excess amount of resource r at event point t is given by Rr,t. Raw-materials (r∈RRM) and

final products (r∈RFP) have net consumption/production over the cycle, with variables Δr

holding the exact amounts. The latter have a certain market value vr ($/kg), and the objective

is to maximize the revenue while minimizing the cycle time, H (h), i.e. maximizing the

hourly revenue ($/h), see eq 1. Variable Tt holds the time of event point t relative to the start

of the cycle. Finally, structural parameters μr,i, ir ,μ contain the consumption/production of

resource r at the start/end (over bar) of the task that is independent on the amount processed.

These are linked to the dashed arrows in Figure 1. Parameters νr,i and ir ,ν are used for the

batch size dependent values and are linked to the solid arrows.

Cycle Time H

Cycle N Cycle N+1
Slot 1 Slot 2 Slot 3 Slot T Slot 1

1 2 3 4 T T+1=1 2

Figure 2 Event points and time grids in continuous-time formulation

-14-

Table 2 Results for Case Study 1 with Dinkelbach’s algorithm and MINLP methods

|T| Δt Hmin Hmax Disc.
Var.

Cont.
Var. Eqs. Obj. (k$/h) H(h) CPU (s) Solver

28.768 36.866 11.97 (3 iter.) Dinkelbach
28.768 36.866 1448.04 SBB
28.768 36.866 11.79 DICOPT
28.768 36.866 87.80 α-ECP

4 2 20 40 56 110 216

28.768 36.866 455.54 BARON
32.209 63.708 24.29 (4 iter.) Dinkelbach
32.209 63.708 1516.24 SBB
26.514 40 10.34 DICOPT
32.209 63.708 37.18 α-ECP

4 2 40 70 56 110 216

32.209 63.708 2986.54 BARON
32.345 63.601 30.20 (3 iter.) Dinkelbach
32.345 63.601 6962.72 SBB
26.514 40 36.09 DICOPT
32.345 63.601 504.06 α-ECP

4 3 40 70 84 138 300

32.345 63.601 3059.87 BARON
32.757 62.801 287.50 (3 iter.) Dinkelbach

32.209~60.617* 63.708 7,200* SBB
26.514 40 94.25 DICOPT
32.757 62.801 469.75 α-ECP

5 3 40 70 105 172 374

32.757~64.806* 62.801* 7,200* BARON
32.605 97.585 288.67 (3 iter.) Dinkelbach

32.604~41.384* 97.585* 7,200* SBB
30.302 70 284.70 DICOPT
32.605 97.585 492.34 α-ECP

5 3 70 100 105 172 374

32.577~46.211* 97.812* 7,200* BARON
33.396 105.677 857.84 (3 iter.) Dinkelbach

31.871~41.929* 118.192* 7,200* SBB
33.396 105.677 5,554.94 DICOPT
33.396 105.677 1654.66 α-ECP

6 3 100 140 126 204 448

33.396~41.644* 105.677* 7,200* BARON
33.396 105.677 995.20 (3 iter.) Dinkelbach

31.254~44.470* 120.00* 7,200* SBB
--- --- 7,200* DICOPT

28.893* 126.140* 7,200* α-ECP
6 4 100 140 168 246 574

33.396~41.578* 105.677* 7,200* BARON
34.108 103.47 2,298.72 (3 iter.) Dinkelbach

26.885~46.743* 120.00* 7,200* SBB
--- --- 7,200* DICOPT

24.295* 136.43* 7,200* α-ECP
7 4 100 140 196 286 670

34.108~45.537* 103.47* 7,200* BARON
*: Suboptimal solutions (or lower and upper bounds for BARON and SBB) obtained
after 2 hours (7,200 seconds)

-15-

 The drawback of a time grid formulation is that the solution returned depends on the

number of event points, |T| (as shown in Figure 2), and also on the number of intervals that a

task can span, which is specified through parameter Δt. Only for a sufficiently large number of

both parameters can we find the global optimal optimum. The solution also depends on the

cycle time range H∈[Hmin; Hmax] as illustrated by Wu & Ierapetritou (2004).

 In this paper, however, the main goal is to compare the computational performance of

various solvers/algorithms for MILFP problems, so we simply tested them for different values

of these four parameters. We solve this problem using the same machine and software

environment as introduced in Section 3 with Dinkelbach’s algorithm (solver CPLEX), MINLP

solvers SBB, DICOPT and α-ECP, as well as global optimizer BARON. Table 2 lists the results

obtained.

 As we can see, the problem sizes increase as the number of event points |T| and the number

of intervals that a task can span Δt increase. For the first three instances with |T|=4, the optimal

solutions obtained by using Dinkelbach’s algorithm are the same as the global optimal

solutions obtained by using BARON, and Dinkelbach’s algorithm requires much less

computational time than BARON. Although the optimal solutions from SBB and α-ECP are

also the same, these two solvers require longer CPU times than Dinkelbach’s algorithm.

DICOPT can obtain solutions faster than Dinkelbach’s algorithm, but for the second and the

third instances in Table 2, the solutions are not the global optimum. For those two instances

with |T|=5, the computational results in Table 2 show that both SBB and BARON failed to

converge in 2 hours, although suboptimal solutions closed to global maximum are returned. We

can also see that α-ECP returned the same global optimal solutions as those obtained by

Dinkelbach’s algorithm, although α-ECP requires more CPU times. DICOPT is the fastest

solver, but again returned suboptimal solutions for these two instances. It is interesting to note

that for the second, third and fourth instances, if the lower bound of the cycle time is reduced

-16-

from 40 to 20, then DICOPT does converge to the global optimum, because the lower bound

predicted by the MILP master problem is a valid bound for these new instances. For large scale

instances with |T|=6 and |T|=7, most of the MINLP solvers failed to converge in 2 hours

(DICOPT and α-ECP can both solve the sixth instance), but Dinkelbach’s algorithm can solve

all the three instances within 1 hour. Overall, Dinkelbach’s algorithm is clearly the best

approach for solving large scale MILFP problems for this cyclic process scheduling problem. It

requires much less computational times than most of the MINLP solvers and guarantees the

global optimality of the solutions. Although DICOPT is a fast solver for this type of problems,

it may return suboptimal solutions for some instances.

5.2. Case study 2: Cyclic Scheduling for a Tissue Paper Mill with Byproduct

Recycling

 The second case study is taken from Castro et al. (2009) and involves a continuous

multiproduct tissue-paper plant. The cyclic scheduling problem, occurring at a Scandinavian

tissue paper mill consists of maximizing the profit of the plant and finding the optimal cycle

time while meeting minimum demands for all products. There are basically two production

stages, each featuring two continuous lines in parallel, the stock preparation lines in the first

stage, and the tissue-paper machines in the second stage, see Figure 3. In the first stage, the

different raw-materials (ONP=old newspaper, MOW=mixed office waste, VF=virgin fiber)

together with some recycled fiber (broke) are prepared for the tissue machines. Five

intermediate products result from stock preparation, with two of them having dedicated

stockyard piles of limited capacity. These are then processed in the tissue machines to get the

five qualities, from least to most valuable product: P50, P60, P75, P80 and P85, where the

number represents the brightness in %ISO.

-17-

De-inking
line 1

De-inking

line 2

Intermediate
Storage 1

Tissue
Machine 1

Tissue
Machine 2

Broke
Storage

Ash

Raw material ONP
Raw material MOW

Raw material VF

P50
P60
P75
P80
P85

P50
P60
P75
P80
P85

Intermediate
Storage 2

Sludge & reject

Figure 3. Flowsheet of the tissue mill.

 In order to be more environmentally friendly and lower the operating costs, a proper

broke recycling strategy should be implemented. Broke is mainly generated when processing

fibers in the tissue machines and in the downstream converting lines. Despite the fact that the

latter are not shown in the flowsheet, their fiber losses are accounted for in the tissue

machines. Three scenarios were analyzed in Castro et al. (2009): (i) no recycling; (ii)

incorporate all broke in the lowest quality products (P50 and P60); (iii) rather than mixing all

broke, recycle it according to quality. More specifically, broke from P85 will partly replace

VF, broke from P80, MOW, while broke from the remaining products will be mixed with

ONP. The RTN corresponding to this option, the most cost efficient, is shown in Figure 4.

 Similar to case study 1, we will be differentiating the resources. Equipment units (REQ)

include the stock preparation lines (SP1-2), tissue machines (TM1-2), dewatering line that

prepares the intermediates for storage (DW), and the two dedicated storage lines (L67, L80).

The subset of raw-materials (RRM) contains ONP, MOW and VF; the intermediates comprise

ONP50, ONP60, ONP67, MOW80, VF85, S67 and S80; and the final products (RFP) take in

P50-P85. The elements of the subset of broke resources (RBK) vary according to the recycling

policy. As for the tasks, all are of the continuous type and are characterized by maximum

-18-

processing rate max
iρ . A peculiar problem feature is that we cannot set beforehand the

proportion of broke to be incorporated in a certain intermediate, since the amount produced

will be determined as part of the optimization procedure and we want to use as much as

possible. In other words, there are flexible proportions of input materials for the tasks

executed in the stock preparation lines. Such variable recipe tasks (IVR) will be subject to

additional sets of constraints.

SP2_ONP67

SP1

SP2

VF

MOW

ONP

ONP
50

ONP
60

ONP
67

VF
85

MOW
80

S67

S80

GTS_67
RateMax=48 t/day

GTS_80
RateMax=48 t/day

DW

GFS_80

L80

L67

GFS_67

P80

P75

P85

P50

P60 BR

TM2_P85

TM1_P85

TM1_P80

TM2_P80

TM1_P75

TM2_P75

TM2_P60

TM1_P60

TM1_P50

TM2_P50

TM1

TM2

0.1

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

SP2_ONP60

SP2_ONP50

SP2_VF85

BR
85

BR
80SP1_MOW80

0.224

0.224

0.896

0.896

Figure 4. Resource-Task Network representation of best broke recycling policy.

 In contrast to their batch counterparts, it can be assumed without loss of generality that

continuous tasks last a single time interval. As a consequence, only one time index is needed

in the task-related model variables. Binary variables Ni,t assign the start of task i to event

point t, while the total amount produced is given by ξi,t. For variable recipe tasks, the part due

to resource r is accounted for by *
,, tirξ . In order to identify changeovers in the tissue

-19-

machines, variables Xr,i,i’,t are employed. The remaining variables were already presented in

case 1.

 The model constraints are given next. The objective function is the maximization of the

annual profit, given in relative monetary units (r.m.u./year), eq 8. The first term includes the

materials value, which is negative for raw-materials and broke resources and positive for final

products. The second term includes the total operating cost and the third, the total changeover

cost. Parameter wd gives the number of working days per year. Notice that the numerator is

linear while the denominator, the cycle time H, is a variable, making this model an MILFP.

 The other constraints are similar to case 1, with differences arising from handling

continuous rather than batch tasks. In particular, note that structural parameters λr,i and ir ,λ

have replaced νr,i and ir ,ν , in the excess resource balances (compare eq 9 to eq 2).

Furthermore, the upper bound on the amount processed is now determined by the product of

the maximum processing rate and the upper bound on the cycle time (eq 12). In addition, the

timing constraints, eq 17, are written for every equipment resource rather than every task,

where the duration of the task is determined by dividing the amount by the maximum

processing rate. Specific constraints for this example are given in eqs 13-16. The extent of a

certain variable recipe task must be equal to the sum of the partial extents, where parameter ffi

(fiber factor) can be viewed as a yield. Eq 14 limits broke incorporation to 20% and eq 15

activates the changeover variables. Finally, eq 16 ensures that the product demands are met.

, , ' , , ',

'

max /
RM BK FP TM

r r i i t i i r i i t
i I t T i I i I t Tr R R R r R

v co ccg X wd Hξ
∈ ∈ ∈ ∈ ∈∈ ∪ ∪ ∈

⎛ ⎞
Δ − − ⋅⎜ ⎟

⎝ ⎠
∑ ∑∑ ∑ ∑∑∑ (8)

TtRr

NNRR

tRRrrRrr

Ii
irtiirtiirtiirtrtr

BKFPRM

tir

∈∈∀Δ−Δ

+++++=

=∪∈∈

∈
−Ω−Ω−Ω ∑ −Ω

,)(

)(

1

*
,)1(,,)1(,,,,)1(,,)1(,,
ξλξλμμ

 (9)

EQ

Ii
TiirTr RrNR ∈∀+= ∑

∈

 1 ||,,||, μ (10)

-20-

TtRrRR IT
rtr ∈∈∀≤ , max

, (11)

TtIiNH tiiti ∈∈∀⋅⋅≤ , ,
maxmax

, ρξ (12)

TtIiff VR

RRr
tirritii

BKRM

∈∈∀−= ∑
∪∈

, *
,,,, ξλξ (13)

TtIiff VR

Rr
tirritii

BK

∈∈∀−≥ ∑
∈

, 2.0 *
,,,, ξλξ (14)

TtIiiRrNNX TM
tititiir ∈∈∈∀−+≥ −Ω ,',, 1)1(,,',',, (15)

FP
rrr RrHdwdHd ∈∀⋅≤Δ⋅≤⋅ maxmin (16)

TtRrTHT EQ

Ii
itiirtTtTtt ∈∈∀≥−+ ∑

∈
=≠+ , / max

,,||||1 ρξμ (17)

0,,,;10};1,0{;0 ;0; ,
*

,,,,',,,
max

1
maxmin ≥Δ≤≤∈≤≤=≤≤ rtrtirtitiirtit RXNHTTHHH ξξ (18)

 We consider four instances, total number of event points |T|=4, |T|=5, |T|=6 and |T|=7

(Δt=1 for all the instances). We solve this problem using the same machine and software

environment as introduced in Section 3 with Dinkelbach’s algorithm (solver CPLEX). Given

the problem sizes of these instances and the fact from the previous case study that global

optimizer BARON usually requires long CPU times for large scale instances, we only compare

the performance of Dinkelbach’s algorithm with those of the MINLP solvers SBB, DICOPT

and α-ECP. The results are listed in Table 3.

 From Table 3, we can see that the same optimal solutions are obtained by using

Dinkelbach’s algorithm and MINLP solvers for the instances that MINLP solvers can return

optimal solution within 20 hours. Similar to what we observed in the previous case study,

Dinkelbach’s algorithm requires much less computational times than the MINLP solvers,

especially SBB. For the large scale instances with |T|=6 and |T|=7, only Dinkelbach’s algorithm

and DICOPT can return optimal solutions, while SBB and α-ECP failed to converge within 20

hours. For these two instances, Dinkelbach’s algorithm still requires significantly less CPU

time than DICOPT, although DICOPT does return global optimal solutions for these instances.

-21-

Notice that the cycle time is converging to its upper bound, indicating that the objective

function would continue to increase. However, longer cycle times would also mean longer

storage periods for the intermediates and higher degradation resulting from instance from

direct sunlight, which is not desirable. Since the obtained optimal schedules are the same as in

Castro et al. (2009), the readers can refer to this paper for the detailed solutions. The

computational results of this case study suggest the advantage of using Dinkelbach’s algorithm

to solve MILFP models of cyclic scheduling problems.

Table 3 Results for Case Study 2 with Dinkelbach’s algorithm and MINLP methods

|T| Hmin Hmax Disc.
Var.

Cont.
Var. Eqs. Obj.

(r.m.u./yr) H(h) CPU (s) Solver

94.722 7.600 34.33 (4 iter.) Dinkelbach
94.722 7.600 1,238.84 SBB
94.722 7.600 42.23 DICOPT

4 3 13.8 76 384 416

94.722 7.600 42.97 α-ECP
94.868 8.371 578.65 (3 iter.) Dinkelbach
92.814* 5.318* 72,000* SBB
94.868 8.371 1,007.63 DICOPT

5 3 13.8 95 478 516

94.868 8.371 1,405.31 α-ECP
95.248 13.80 1,967.92 (3 iter.) Dinkelbach
89.914* 3.226* 72,000* SBB
95.248 13.80 10,349.52 DICOPT

6 3 13.8 570 616 216

91.280* 4.672* 72,000* α-ECP
95.248 13.80 7,720.95 (3 iter.) Dinkelbach
69.758* 3.00* 72,000* SBB
95.248 13.80 41,660.20 DICOPT

7 3 13.8 664 716 670

93.468* 5.804* 72,000* α-ECP
*: Suboptimal solutions obtained after 20 hours (72,000 seconds)

6. Conclusions

 In this paper, we have discussed the convexity properties of MILFP problems and their

NLP relaxation. The capability and optimality of solving MILFP problems with various

MINLP methods has been addressed. We also show that Dinkelbach’s algorithm, which is

used to solve continuous fractional programming problems, can be an efficient method for

-22-

solving large scale MILFP problems. We have addressed the optimality and convergence

issues of this algorithm, and proved that it also has superlinear convergence rate. Extensive

computational studies were performed to demonstrate the efficiency of this algorithm. Case

studies of cyclic scheduling problems for a reaction-separation network and for a tissue paper

mill with byproduct recycling were also considered to illustrate the practical capability of this

algorithm. The results show that Dinkelbach’s algorithm required significantly less

computational effort to solve MILFP test problems compared to commercial MINLP solvers,

such as DICOPT (Outer-Approximation), SBB (special branch-and-bound), α-ECP

(extended cutting plane method), and the global optimizer BARON (branch-and-reduce).

Acknowledgment

The authors acknowledge the financial support from the National Science Foundation

under Grant No. OCI-0750826 and from the Luso-American Foundation.

Appendix

Let 0() i ii I
N x a a x

∈
= +∑ , 0() i ii I

D x b b x
∈

= +∑ , () () (){ }max |F q N x qD x x S= − ∈ ,

() () / ()Q x N x D x= , and the feasible region be {: () 0>S D x and 0 0,
∈

+ = ∀∑j ij ii I
c c x j

and 0ix ≥ , 1i I∀ ∈ and 0 1ix≤ ≤ , 2i I∀ ∈ and }1 2∪ =I I I

Before proving Proposition 1, first consider the following lemmas.

Lemma 4: The function () () (){ }max |F q N x qD x x S= − ∈ is convex.

Proof: Let tx be the optimal solution that maximize ()()' 1 ''F tq t q+ − with ' ''q q≠ and

0 1t≤ ≤ . Thus, we have:

-23-

()()
() ()() () () () () () ()

() (){ } () () (){ }
() () ()

 ' 1 ''

' 1 '' ' 1 ''

max ' | 1 max '' |

' 1 ''

t t t t t t

t t t t

F tq t q

N x tq t q D x t N x q D x t N x q D x

t N x q D x x S t N x q D x x S

tF q t F q

+ −

= − + − = − + − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
≤ ⋅ − ∈ + − ⋅ − ∈

= + −

Lemma 5: For ' ''q q< , we have () ()' ''F q F q> , i.e. () () (){ }max |F q N x qD x x S= − ∈ is

strictly monotonic decreasing.

Proof: Let * ∈x S be the optimal solution that maximize ()''F q . Assuming () 0>D x , we

have:

()
() (){ } () ()

() () () (){ }
()

* *

* *

 ''

max '' | ''

' max ' |

'

F q

N x q D x x S N x q D x

N x q D x N x q D x x S

F q

= − ∈ = −

≤ − = − ∈

=

Lemma 6: () 0F q = has a unique solution.

Proof: It is easy to see that for () 0>D x , ()lim
q

F q
→−∞

= +∞ and ()lim
q

F q
→+∞

= −∞ . Furthermore,

based on Lemma 5, we can conclude that () 0F q = has a unique solution.

Lemma 7: For any '∈x S , let ()
()

'
'

'
=

N x
q

D x
. Then, we have ()' 0≥F q .

Proof: It is easy to see that () () (){ } () () ' max ' | ' ' ' 0= − ∈ ≥ − =F q N x q D x x S N x q D x .

Proof of Proposition 1:

a) Let * ∈x S be an optimal solution of () (){ }*max |− ∈N x q D x x S , so we have

-24-

() ()* * * 0− =N x q D x and () () () ()* * * * 0− ≤ − =N x q D x N x q D x , x S∀ ∈ .

Since () 0>D x , we have () () () ()* * */ /= ≥q N x D x N x D x , x S∀ ∈ .

Thus, *q is the maximum of () (){ }max |N x qD x x S− ∈ and *x is the optimal solution

of () (){ }max / |N x D x x S∈ .

b) Let *x be an optimal solution of () (){ }max / |N x D x x S∈ and *q be the optimal

objective function value, so we have () () () ()* * */ /= ≥q N x D x N x D x , x S∀ ∈ .

Since () 0>D x , we have () () () ()* * * * 0− ≤ − =N x q D x N x q D x , x S∀ ∈ .

This implies that *x is the optimal solution of () (){ }*max |− ∈N x q D x x S .

Before proving Proposition 2, consider the following lemmas.

Lemma 8: Let 'x and ''x be the optimal solution of ()'F q and ()''F q . If ' ''q q< ,

() ()' ''D x D x≥ .

Proof: Since 'x and ''x be the optimal solution of ()'F q and ()''F q , we have:

() () () ()' ' ' '' ' ''N x q D x N x q D x− ≥ −

() () () ()'' '' '' ' '' 'N x q D x N x q D x− ≥ −

Add the above two inequalities and rearrange both sides of the new one, we have:

() () () ()'' ' ' '' ' ''− ≥ −q q D x q q D x

As '' '>q q , therefore we have () ()' ''D x D x≥ .

Lemma 9: Let 'x and ''x be the optimal solution of ()'F q and ()''F q . Then,

-25-

() () ()
()

()
()

'' ''
'' '

'' '
F q F q

Q x Q x
D x D x

− ≥ − .

Proof: As ''x is the optimal solution of ()''F q , we have:

() () () ()'' '' '' ' '' 'N x q D x N x q D x− ≥ −

Dividing both sides by ()' 0D x > , we have ()
()

()
()

()
()

'' '' '' '
''

' ' '
N x q D x N x

q
D x D x D x

− ≥ − .

Thus, we have

() ()
()
()

()
()

()
()

()
()

()
()

()
() ()() () ()

()
()

()
()

 '' '

'' ' '' '' '' '' 1 1'' ''
'' ' '' ' ' '' ' ''

'' ''
'' '

Q x Q x

N x N x N x N x D x D x
q F q

D x D x D x D x D x D x D x D x

F q F q
D x D x

−

⎡ ⎤ ⎛ ⎞
= − ≥ − + − = − −⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

= −

Lemma 10: Let 'x and ''x be the optimal solution of ()'F q and ()''F q . If *' ''q q q≤ ≤ ,

Then, () ()' ''Q x Q x≤ , where *q satisfies ()* 0F q = .

Proof: The proof readily follows from Lemmas 7, 8 and 9.

Lemma 11: Let 'x and ''x be the optimal solution of ()'F q and ()''F q . Then,

() () () () () () ()
1 1'' ' '' ' '' ''

' ''
Q x Q x F q q q D x

D x D x
⎛ ⎞

− ≤ − + − −⎡ ⎤⎜ ⎟⎣ ⎦⎜ ⎟
⎝ ⎠

.

Proof: Similar to Lemma 9, considering the optimality condition for 'x ,

We have () () () ()' ' ' '' ' ''N x q D x N x q D x− ≥ − .

Dividing both sides by ()'D x , we have ()
()

()
()

()
()

' '' ''
' '

' ' '
N x N x D x

q q
D x D x D x

− ≥ − .

Thus we have,

-26-

() ()
()
()

()
()

()
()

()
() () ()() () ()

() () () () ()

 '' '

'' '' '' '' 1 1' '' ' ''
'' ' ' '' ' ''

1 1'' ' '' ''
' ''

Q x Q x

N x N x D x D x
q N x q D x

D x D x D x D x D x D x

F q q q D x
D x D x

−

⎡ ⎤ ⎛ ⎞
≤ − − − = − + −⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

⎛ ⎞
= − + − −⎡ ⎤⎜ ⎟⎣ ⎦⎜ ⎟

⎝ ⎠

Lemma 12: Let 'x and *x be the optimal solution of ()'F q and ()*F q , where *q

satisfies ()* 0F q = . Then we have: () ()
()

*
* *(') ' 1

'
D x

q Q x q q
D x

⎛ ⎞
⎜ ⎟− ≤ − −
⎜ ⎟
⎝ ⎠

Proof: Since *q satisfies ()* 0F q = , we have ()* *Q x q= . Based on Lemma 11, it is easy to

prove Lemma 12.

Proof of Proposition 2:

Dinkelbach’s algorithm updates iq with the previous value of ()Q x , i.e. ()1i iq Q x+ = , where

ix is the optimal solution of ()iF q . From Lemma 12, the algorithm converges with a rate of

()
()

*

1
i

D x
D x

⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠

. From Lemma 5, we have
()
()

*

1
i

D x
D x

⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠

 is nonincreasing. Therefore, the

sequence { }iq obtained by Dinkelbach’s algorithm converges superlinearly to *q for each

*
iq q< .

References

1) Adjiman, C. S.; Androulakis, I. P.; Floudas, C. A. (2000). Global optimization of

mixed-integer nonlinear problems. AIChE Journal, 16(9), 1769-1797.

2) Bazaraa, M. S.; Sherali, H. D.; Shetty, C. M. (2004). Nonlinear Programming: Theory and

-27-

Algorithms. Wiley, New York.

3) Bonami, P.; Biegler, L. T.; Conn, A. R.; Cornuéjols, G.; Grossmann, I. E.; Laird, C. D.; Lee,

J.; Lodi, A.; Margot, F.; Sawaya, N; Waechter, A. (2008). An Algorithmic Framework for

Convex Mixed Integer Nonlinear Programs. Discrete Optimization, 5(2), 186-204

4) Bradley, J. R.; Arntzen, B. C. (1999). The Simultaneous Planning of Production, Capacity,

and Inventory in Seasonal Demand Environments. Operations Research, 47, (6), 795-806.

5) Brooke, A.; Kendrick, D.; Meeraus, A.; Raman, R. (1998). GAMS- A User’s Manual. In

GAMS Development Corp.

6) Castro, P.M., Barbosa-Póvoa, A.P., & Matos, H.A. (2003). Optimal Periodic Scheduling of

Batch Plants Using RTN-Based Discrete and Continuous-Time Formulations: A Case

Study Approach. Industrial & Engineering Chemistry Research, 42, 3346.

7) Castro, P.M., Barbosa-Póvoa, A.P., & Novais, A.Q. (2005). Simultaneous Design and

Scheduling of Multipurpose Plants Using Resource Task Network Based

Continuous-Time Formulations. Industrial & Engineering Chemistry Research, 44, 343.

8) Castro, P.M.; Westerland, J.; Forssel, S. (2009). Scheduling of a continuous plant with

recycling of by products: A case study from a tissue paper mill. Computers & Chemical

Engineering, 33, 347-358.

9) Dinkelbach W. (1967). On Nonlinear Fractional Programming. Management Science, 13,

(7), 492-498.

10) Duran, M. A.; Grossmann, I. E. (1986). An outer-approximation algorithm for a class of

mixed-integer nonlinear programs. Mathematical Programming, 36, (3), 307.

11) Geoffrion, A. M. (1972). Generalized Benders Decomposition. Journal of Optimization

Theory and Applications, 10, (4), 237-260.

12) Kesavan, P.; Allgor, R. J.; Gatzke, E. P.; Barton, P. I. (2004). Outer Approximation

Algorithms for Separable Nonconvex Mixed-Integer Nonlinear Programs. Mathematical

-28-

Programming, 100, (3), 517-535.

13) Kondili, E., Pantelides, C.C., & Sargent, R. (1993). A General Algortihm for Short-term

Scheduling of Batch Operations. I, MILP Formulation. Computers & Chemical

Engineering, 17, 211.

14) Leyffer, S. (2001). Integrating SQP and branch and bound for mixed integer nonlinear

programming. Computational Optimization and Applications, 18, 295-309.

15) Pantelides, C.C. (1994). Unified Frameworks for the optimal process planning and

scheduling. In Proceedings of the second conference on foundations of computer aided

operations (p.253). New York: Cache Publications.

16) Pinto, J. M.; Grossmann, I. E. (1994). Optimal Cyclic Scheduling of Multistage

Continuous Multiproduct Plants. Computers & Chemical Engineering, 18(9), 797-816

17) Pinto, J. M.; Joly, M.; Moro, L. F. L. (2000). Planning and scheduling models for refinery

operations. Computers & Chemical Engineering, 24(9-10), 2259-2276

18) Pochet, Y.; Warichet, F. (2008). A tighter continuous time formulation for the cyclic

scheduling of a mixed plant. Computers & Chemical Engineering, 32(11), 2723-2744

19) Quesada, I.; Grossmann, I. E. (1992). An LP/NLP based branch and bound algorithm for

convex MINLP optimization problems. Computers & Chemical Engineering, 16, 937-947.

20) Quesada, I.; Grossmann, I. E. (1995). A Global Optimization Algorithm for Linear

Fractional and Bilinear Programs. Journal of Global Optimization, 6, 39-76.

21) Ryoo, H. S.; Sahinidis, N. V., (1996). A branch-and-reduce approach to global

optimization. Journal of Global Optimization, 8, (2), 107-138.

22) Sahinidis, N. V. (1996). BARON: A general purpose global optimization software package.

Journal of Global Optimization, 8, (2), 201-205.

23) Sahinidis, N. V.; Grossmann, I. E. (1991). MINLP model for cyclic multiproduct

scheduling on continuous parallel lines. Computers & Chemical Engineering, 15, (2),

-29-

85-103

24) Schaible, S. (1976). Fractional Programming II: On Dinkelbach’s Algorithm. Management

Science. 22, (7), 868-873.

25) Schilling, G., & Pantelides, C.C. (1999). Optimal Periodic Scheduling of Multipurpose

Plants. Computers & Chemical Engineering, 23, 635.

26) Shah, N., Pantelides, C.C., & Sargent, R. (1993). Optimal Periodic Scheduling of

Multipurpose Batch Plants. Annals of Operations Research, 42, 193.

27) Smith, E. M. B.; Pantelides, C. C. (1999). A symbolic reformulation/spatial branch and

bound algorithm for the global optimization of nonconvex MINLPs. Computers &

Chemical Engineering, 23, 457-478.

28) Tawarmalani, M.; Sahinidis, N. V. (2004). Global optimization of mixed-integer nonlinear

programs: A theoretical and computational study. Mathematical Programming, 99,

563-591.

29) Viswanathan, J.; Grossmann, I. E. (1990). A combined penalty-function and

outer-approximation method for MINLP optimization. Computers & Chemical

Engineering, 14, (7), 769-782.

30) Warichet, F. (2007). Scheduling of mixed batch-continuous production lines. PhD thesis,

Université Catholique de Louvain, Belgium.

31) Westerlund, T.; Pettersson, F. (1995). A cutting plane method for solving convex MINLP

problems. Computers & Chemical Engineering, 19, S131-S136.

32) Westerlund, T.; Porn, R. (2002). Solving Pseudo-Convex Mixed Integer Optimization

Problems by Cutting Plane Techniques. Optimization & Engineering, 3, (3), 253-280.

33) Wu, D., & Ierapetritou, M. (2004). Cyclic short-term scheduling of multiproduct batch

plants using continuous-time representation. Computers & Chemical Engineering, 28,

2271–2286

