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Abstract 

In this paper we consider the solution methods for mixed-integer linear fractional 

programming (MILFP) models, which arise in cyclic process scheduling problems. We first 

discuss convexity properties of MILFP problems, and then investigate the capability of 

solving MILFP problems with MINLP methods. Dinkelbach’s algorithm is introduced as an 

efficient method for solving large scale MILFP problems for which its optimality and 

convergence properties are established. Extensive computational examples are presented to 

compare Dinkelbach’s algorithm with various MINLP methods. To illustrate the applications 

of this algorithm, we consider industrial cyclic scheduling problems for a reaction-separation 

network and a tissue paper mill with byproduct recycling. These problems are formulated as 

MILFP models based on a continuous time Resource-Task Network (RTN). The results show 

that orders of magnitude reduction in CPU times can be achieved when using this algorithm 

compared to solving the problems with commercial MINLP solvers. 
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1. Introduction 

Cyclic scheduling is appropriate wherever product demands are stable over extended 

periods of time. In such cases, cyclic scheduling is usually implemented to find the best 

resource assignments as well as tasks sequencing, and then repeat such production pattern over 

an extended period of time (Sahinidis & Grossmann, 1991; Pinto & Grossmann, 1994; Castro 

and co-workers, 2003, 2005, 2009; Pochet & Warichet, 2008). Cyclic scheduling problems can 

be encountered in refinery operation (Pinto et al., 2000), chemical manufacturing (Sahinidis & 

Grossmann, 1991), pulp mills (Castro et al., 2003) and paper production (Castro et al., 2009). If 

continuous-time formulations are used, the objective function typically involves the 

maximization of a certain economic indicator (e.g. revenue, profit) divided by the cycle time, 

which is a model variable. If there are linear constraints and the objective function is given by 

the ratio of linear terms divided by the cycle time, the resulting mathematical problem is a 

special type of mixed-integer nonlinear program (MINLP) that is known as a mixed-integer 

linear fractional program (MILFP). 

An MILFP includes both continuous and discrete variables, has an objective function in 

general form as the ratio of two linear functions and all the constraints are linear. 

Mathematically, an MILFP can be formulated as following problem (P): 

     (P)   0

0

max   i ii I
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where it is assumed that 0 0i ii I
b b x

∈
+ >∑  for all feasible solutions and where all inequalities 

are converted into equalities through the use of slack variables. Due to the nonlinearities in the 

objective function and the combinatorial nature because of the presence of 0-1 variables, the 
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MILFP problems can become computationally intractable, especially for large scale instances 

with more than hundreds of binary variables.  

Since (P) has both continuous and discrete variables, and it includes a nonlinear objective 

function with nonconvexities, it is also a mixed-integer nonlinear programming (MINLP) 

problem. Thus, optimization methods for MINLP problems can also be utilized for MILFP 

problems. Global optimization methods for MINLP problems include the branch and reduce 

method (Ryoo & Sahinidis, 1996; Tawarmalani & Sahinidis, 2004), the α-BB method 

(Adjiman, et al., 2000), the spatial branch and bound search method for bilinear and linear 

fractional terms (Quesada & Grossmann, 1995; Smith & Pantelides, 1999) and the 

outer-approximation method by Kesavan et al. (2000). All these methods rely on a branch and 

bound solution procedure. The difference among these methods lies on the definition of the 

convex envelopes for computing the lower bound, and on how to perform the branching on the 

discrete and continuous variables. 

In addition to global optimization methods, MINLP methods that rely on convexity 

assumptions can also be utilized. Although global optimality cannot be guaranteed, these 

methods can usually obtain optimal or near optimal solutions for MILFP problems much faster 

than global optimizers. These MINLP methods include the branch & bound method (Leyffer, 

2001), generalized Benders decomposition (Geoffrion, 1972), outer-approximation (Duran & 

Grossmann, 1986; Viswanathan & Grossmann, 1990), LP/NLP based branch and bound 

(Quesada & Grossmann, 1992), and extended cutting plane Method (Westerlund and 

Pettersson, 1995). A number of computer codes are available that implement these methods. 

The program DICOPT is an MINLP solver that is based on the Outer-Approximation algorithm, 

and is available in the modeling system GAMS (Brooke, 1998). The code α-ECP implements 

the extended cutting plane method by Westerlund and Pettersson (1995, 2002). Codes that 

implement the branch-and-bound method include the code MINLP_BB (Leyffer, 2001) 
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available in AMPL, and the program SBB which is also available in GAMS. Recently, the open 

source MINLP solver Bonmin (Bonami, et al. 2008), which is part of the COIN-OR project, 

implements an extension of the branch-and-cut outer-approximation algorithm that was 

proposed by Quesada and Grossmann (1992), as well as the branch and bound and 

outer-approximation method.  

The rest part of this paper is organized as follows. In Section 2, we discuss the special 

properties of solving MILFP problems with convex MINLP methods. The Dinkelbach’s 

algorithm is introduced and discussed in Section 3. In Section 4 and Section 5, we present the 

numerical examples and cases studies. Section 6 concludes this paper. 

2. MINLP Methods for MILFP 

Due to the special structure of MILFP problems, we can obtain global optimal solutions by 

finding the local optima with certain MINLP methods. Before addressing the solution methods, 

let us first consider problem (RP), which is the nonlinear relaxation of (P) with all the binary 

variables { }0,1ix ∈ , 2i I∀ ∈  relaxed as continuous variables 0 1ix≤ ≤ , 2i I∀ ∈ .  

     (RP)   0

0

max   i ii I
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      s.t.  0 0j ij ii I
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        0ix ≥ , 1i I∀ ∈  and 0 1ix≤ ≤ , 2i I∀ ∈  and 1 2∪ =I I I  

It is easy to see that (RP) is a linear fractional program (LFP), in which the objective 

function is the ratio of two linear functions, all the constraints are linear and all the variables are 

continuous. The LFP problems are well studied and some of its important properties will assist 

the solution of MILFP with MINLP methods. 
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Lemma 1: Let ( )0( ) i ii I
Q x a a x

∈
= +∑ ( )0 i ii I

b b x
∈

+∑ , and let F be a convex set such that 

0 0i ii I
b b x

∈
+ ≠∑  over F. Then, ( )Q x  is both pseudoconvex and pseudoconcave over F.  

Proof: See Chapter 11.4, “Linear Fractional Programming” in Bazaraa et al. (2004). 

 

Lemma 2: ( )Q x  is strictly quasiconvex and strictly quasiconcave over F.  

Proof: Based on Lemma 1 that ( )Q x  is pseudoconvex and pseudoconcave, we can conclude 

that ( )Q x  is also strictly quasiconvex and strictly quasiconcave over F (Bazaraa et al., 2004). 

 

Lemma 3: Every local optimum of ( )Q x  over F is also its global solution. 

Proof: Lemma 2 and the properties of strictly quasiconvex and strictly quasiconcave functions 

(Bazaraa et al., 2004) lead to Lemma 3. 

  

Based on Lemma 3, we can conclude that the local maximum obtained by solving the LFP 

problem (RP) with any nonlinear programming (NLP) solver is also the global maximum of 

(RP). Furthermore, we can obtain the global optimal solution of the MILFP problem (P) with 

an MINLP method that can handle pseudoconvex/pseudoconcave objective function (eg. 

branch-and-bound, α-ECP methods). 

 

Lemma 4: A global optimal solution of the MILFP problem (P) can be obtained by solving it 

with MINLP methods that can handle pseudoconvex/pseudoconcave objective function (eg. 

branch-and-bound, α-ECP). 

Proof: Based on Lemma 3, the NLP relaxation of the MILFP problem (P) or an NLP 

subproblem with a subset of fixed 0-1 variables can be solved to global optimality by using a 

local NLP solver. Since the branch-and-bound method relies on solving a sequence of relaxed 
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NLP subproblems, global optimality can be guaranteed with that method. The α-ECP method 

by definition can handle pseudoconvex/pseudoconcave functions, and therefore it can also 

guarantee the global optimality. 

 

Lemma 4 allows us to obtain global optimal solutions of MILFP problems with convex 

MINLP solvers, such as SBB and α-ECP, which are potentially faster than using a global 

optimizer. Note that the Generalized Benders Decomposition (Geoffrion, 1972) algorithm and 

Outer-Approximation (Duran & Grossmann, 1986; Viswanathan & Grossmann, 1990) method 

do not guarantee global optimality, since in both cases the lower/upper bounds predicted by the 

master problem rely on the assumption that the functions are convex. 

Besides the MINLP methods, an alternative to solve the MILFP problems is to use 

Dinkelbach’s algorithm by successively solving a number of mixed-integer linear 

programming (MILP) problems.  

3. Dinkelbach's Algorithm for MILFP 

By exploiting the relationship between nonlinear fractional programming and nonlinear 

parametric programming, Dinkelbach (1967) developed an algorithm to solve convex 

nonlinear fractional programming problems (without discrete variables) by successive solving 

a sequence of simplified NLP problems. As an extension, Dinkelbach’s algorithm has recently 

been implemented to solve the MILFP problems (Bradley and Arntzen, 1999; Pochet & 

Warichet, 2008), but the optimality and convergence properties of using Dinkelbach’s 

algorithm to solve MILFP problems have not been fully addressed (Warichet, 2007). In this 

section, we first introduce the algorithmic scheme for solving MILFP problems with 

Dinkelbach’s algorithm, and then show that similar optimality and convergence properties 

(such as superlinear convergence rate) of using Dinkelbach’s algorithm for convex nonlinear 

fractional programming problems (Dinkelbach, 1967; Schaible, 1976) also exist in using this 
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algorithm for MILFP problems. 

 

Consider 0( ) i ii I
N x a a x

∈
= +∑ , 0( ) i ii I

D x b b x
∈

= +∑ , ( ) ( ) / ( )Q x N x D x=  and the 

feasible region of (P) as {: ( ) 0>S D x  and 0 0,  
∈

+ = ∀∑j ij ii I
c c x j  and 0ix ≥ , 1i I∀ ∈  

and 0,  1=ix , 2i I∀ ∈  and }1 2∪ =I I I , the Dinkelbach’s algorithm for MILFP problem (P): 

{ }max ( ) |Q x x S∈ is as follows: 

 

Step 1: choose arbitrary 1x S∈  and set ( )
( )

1
2

1

N x
q

D x
=  (or set 2 0q = ), let 2=k . 

Step 2: solve the MILP problem ( ) ( ) ( ){ }max |k kF q N x q D x x S= − ∈ , and denote the 

optimal solution as kx . 

Step 3: If ( )kF q δ<  (optimality tolerance), stop and output kx  as the optimal solution; If 

( )kF q δ≥ , let ( )
( )1

k
k

k

N x
q

D x+ =  and go to Step 2 to replace k  with 1+k  and kq  with 1kq + . 

 

Proposition 1 (Optimality): ( ) { }* *max ( ) ( ) | 0F q N x q D x x S= − ∈ =  if and only if 

( )
( ) { }

*
*

*
max ( ) / ( ) |

N x
q N x D x x S

D x
= = ∈ . 

Proof: See appendix. 

 

Proposition 2 (Convergence): Dinkelbach’s algorithm converges superlinearly for MILFP 

problem (P). 

Proof: See appendix. 
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Based on Proposition 1 and Proposition 2, we can solve a sequence of MILP subproblems 

to obtain the global optimal solution of an MILFP problem. A major advantage of using this 

algorithm is that no NLP solver is required, and the memory usage during the computational 

process tends to be rather small compared with using MINLP methods, especially for 

large-scale MILFP problems. In the next two sections, we present computational results for 

solving MILFP problems with Dinkelbach’s algorithm and various MINLP methods. 

4. Computational Results 

In order to illustrate the application of the proposed solution strategies, we present 

computational experiments for 20 large scale instances. The computational experiments are 

carried out on an Intel 3.2 GHz machine with 512 MB memory. The proposed solution 

procedure is coded in GAMS 22.8.1 (Brooke, 1998). The MILP problems in Dinkelbach’s 

solution procedure are solved using CPLEX 10, the MINLP solvers include SBB (special 

branch-and-bound algorithm), DICOPT (outer-approximation algorithm), and α-ECP (α - 

extended cutting-plane method), and the global optimizer used in the computational 

experiments is BARON 8.1.4. The relative optimality tolerance is set to be 10-6. 

We solve the MILFP problems (CE) as follows: 

    (CE)   0

0

1 2
max   

1 2
i i j ji I j J

i i j ji I j J

a a x a y

b b x b y
∈ ∈

∈ ∈

+ +

+ +
∑ ∑
∑ ∑

 

     s.t.  0 1 2 0k ik i jk ji I j J
c c x c y

∈ ∈
+ + =∑ ∑ , k K∀ ∈  

       0 1 2 0.001i i j ji I j J
b b x b y

∈ ∈
+ + ≥∑ ∑  

       0ix ≥ , i I∀ ∈  and { }0,1jy ∈ , j J∀ ∈  

which includes I  continuous variables, J  binary variables, and 1K +  

constraints/equations. The values of I , J  and K  range from 100 to 2,000. Given the 

large size of problems, the input data are generated randomly. 0a  is generated uniformly on 

U[-10, 10], 0b  is generated uniformly on U[-10, 10], 1ia  is generated uniformly on U[0, 10], 

2 ja  is generated uniformly on U[0, 10], 1ib  is generated uniformly on U[0, 10], 2 jb  is 
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generated uniformly on U[0, 10], 0kc  is generated uniformly on U[-15, 20], 1ikc  is generated 

uniformly on U[-10, 10], 2 jkc  is generated uniformly on U[-20, 15]. 

For each instance, we solve Problem (CE) with Dinkelbach’s algorithm using CPLEX (the 

initial value of q is set to 0), and MINLP solvers SBB, DICOPT, α-ECP, as well as the global 

optimizer BARON. The computational results are given in Table 1. The optimal solutions 

obtained with all the methods are the same and equal to the global maximum, although 

DICOPT does not guarantee global optimality. The CPU times vary from one approach to the 

other. Specifically, solving MILFP problems with Dinkelbach’s algorithm requires up to 7 

iterations and it is usually faster than using the global optimizer BARON and the MINLP 

solver α-ECP. Dinkelbach’s algorithm usually requires slightly more computational times than 

SBB and DICOPT for medium instances, but usually less CPU time than these MINLP solvers 

for large scale instances. More importantly, for very large scale instances with up to thousands 

of constraints and variables (instances 18-20), DICOPT and SBB both exceed the memory 

limit while Dinkelbach’s algorithm can still return global optimal solutions. This is due to the 

smaller memory requirement when solving MILP rather than MINLP problems. As for the 

comparison between the MINLP solvers and the global optimizer, SBB and DICOPT require 

similar computational resources and are both much faster than α-ECP and BARON, especially 

for large scale instances (instances 11-17). The computational studies suggest that SBB and 

DICOPT might be the most efficient solvers for medium size MILFP problems, and 

Dinkelbach’s algorithm may have higher computational efficiency for very large scale 

instances. In all runs, DICOPT was able to find the global optimal solutions, despite the fact 

that the outer-approximation method cannot guarantee global optimality for 

pseudoconvex/pseudoconcave functions. The results also show that Dinkelbach’s algorithm 

with CPLEX and the convex MINLP solvers (SBB, DICOPT and α-ECP) are far more efficient 

than global optimizer BARON for solving MILFP problems. 
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 Table 1   Computational results for MILFP Problems with Dinkelbach’s algorithm and MINLP methods 

*: Suboptimal solutions (or lower and upper bounds for BARON) obtained after 1 hour (3,600 seconds) 
**: No solution was returned after 1 hour (3,600 seconds) 
>memo: terminates because memory upper limit exceed 

Dinkelbach’s Algorithm 
(CPLEX) 

SBB DICOPT α-ECP BARON No. 
Cont. 
Var. 
|I| 

Disc. 
Var. 
|J| 

Eqs.  
|K|+1 

Iter. Obj. CPU (s) Obj. CPU (s) Obj. CPU (s) Obj. CPU (s) Obj. CPU (s) 
1 100 100 101 6 3.033 0.59 3.033 0.11 3.033 0.06 3.033 5.00 3.033 0.69 
8 200 100 101 5 2.213 0.65 2.213 0.08 2.213 0.08 2.213 7.00 2.213 10.97 
9 300 100 101 6 2.267 1.45 2.267 0.49 2.267 0.87 2.267 161.0 2.267 34.48 
10 500 100 101 5 2.085 2.16 2.085 0.53 2.085 1.48 2.085 18.98 2.085 71.64 
2 100 200 101 6 3.256 0.97 3.256 0.06 3.256 0.08 3.256 6.00 3.256 11.68 
3 100 300 101 7 3.556 1.44 3.556 0.47 3.556 0.87 3.556 65.40 3.556 31.05 
4 100 500 101 6 3.691 1.62 3.691 0.39 3.691 0.11 3.691 18.72 3.691 36.40 
5 100 100 201 6 3.033 0.84 3.033 0.19 3.033 0.06 3.033 8.00 3.033 12.69 
6 100 100 301 6 3.033 1.34 3.033 0.11 3.033 0.08 3.033 12.00 3.033 28.03 
7 100 100 501 6 3.033 2.58 3.033 0.14 3.033 0.16 3.033 26.88 3.033 25.72 
11 500 500 501 6 2.634 15.79 2.634 5.59 2.634 12.19 2.634 852.70 2.593~3.225* 3,600* 
12 1,000 500 501 6 2.311 68.11 2.311 50.31 2.311 45.11 1.786* 3,600* 2.310~14.811* 3,600* 
13 500 1,000 501 6 2.887 24.29 2.887 0.92 2.887 0.90 2.887 1,460 2.887~5.872* 3,600* 
14 500 500 1,001 6 2.633 34.11 2.633 1.77 2.633 1.77 2.633 1,647 2.633~19.205* 3,600* 
15 1,000 1,000 1,001 7 2.608 222.22 2.608 146.57 2.608 164.09 2.430* 3,600* --- 3,600** 
16 2,000 1,000 1,001 6 2.310 63.58 2.310 839.28 2.310 468.67 --- 3,600** --- 3,600** 
17 1,000 2,000 1,001 6 3.085 69.92 3.085 963.50 3.085 888.97 --- 3,600** --- 3,600** 
18 1,000 1,000 2,001 7 2.603 1466.59 ---** >memo ---** > memo --- 3,600** --- 3,600** 
19 2,000 2,000 1,001 6 2.593 517.95 ---** >memo ---** > memo --- 3,600** --- 3,600** 
20 2,000 2,000 2,001 6 2.705 242.23 ---** >memo ---** > memo --- 3,600** --- 3,600** 
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5. Cyclic Scheduling Problems 

 Cyclic scheduling problems can be formulated as mixed-integer linear fractional programs 

(Bradley and Arntzen, 1999; Pochet & Warichet, 2008). In this section, we employ the 

Dinkelbach’s algorithm to solve large scale MILFP models for cyclic production scheduling 

from two case studies when compared to the MINLP commercial solvers.  

5.1. Case study 1: Cyclic Scheduling for a Reaction-Separation Network 

 The first case study deals with a variant of the most studied scheduling problem in the 

process systems engineering literature (Kondili et al., 1993). It involves a multipurpose 

pharmaceutical batch plant producing two products from three different raw-materials through 

various reaction and separation operations. Figure 1 shows the associated RTN (Pantelides, 

1994), annotated with information on task duration and minimum and maximum task size. 

Notice that the duration of the reaction tasks is dependent on the type of equipment being used. 

The product values are equal to $12,000/kg and $10,000/kg, respectively, as in Schilling and 

Pantelides (1999). 

 The problem was first investigated by Schilling & Pantelides (1999) and more recently 

addressed by Castro et al. (2003) and Wu & Ierapetritou (2004). Different continuous-time 

multipurpose formulations can be used to solve the problem. The first two contributions relied 

on a single time grid to keep track of events taking place, while the latter is a unit-specific 

formulation. In this paper, we will be using the one proposed by Castro and co-workers 

(2003, 2005), which has been shown to be more efficient than the one by Schilling & 

Pantelides (1999), primarily due to the need of fewer event points to find the optimal 

solution. Bear in mind, however, that the formulation of Wu & Ierapetritou (2004) shows 

better performance. The small differences observed in the values of the reported solutions 

between the papers result from slightly different data. 
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Figure 1   Resource-Task Network representation of case study 1. Duration in h, size in kg. 

 The scheduling formulation uses the RTN process representation, which relies on generic 

entities like resources (set R) and tasks (set I) to describe the process/product recipe. Through 

the use of the wrap-around operator Ω(⋅) (Shah et al., 1993),  
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the cyclic scheduling formulation can be written in a very compact form, eqs 1-7. In addition, 

an anchoring constraint should be used for reducing solution degeneracy arising from cyclic 

scheduling permutations. 
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 The binary variables ',, ttiN  identify the start of task i at event point t and ending at event 

point t’, while the continuous variables ',, ttiξ  give the amount processed, which must lie 

within the equipment unit’s (r∈REQ) minimum ( min
rV ) and maximum capacities ( max

rV ), see 

eq 4. In this problem, the amount handled by the task affects its duration, with parameters αi 

(h) and βi
 (h/kg), giving the fixed and batch size dependent processing times, respectively. 

The excess amount of resource r at event point t is given by Rr,t. Raw-materials (r∈RRM) and 

final products (r∈RFP) have net consumption/production over the cycle, with variables Δr 

holding the exact amounts. The latter have a certain market value vr ($/kg), and the objective 

is to maximize the revenue while minimizing the cycle time, H (h), i.e. maximizing the 

hourly revenue ($/h), see eq 1. Variable Tt holds the time of event point t relative to the start 

of the cycle. Finally, structural parameters μr,i, ir ,μ  contain the consumption/production of 

resource r at the start/end (over bar) of the task that is independent on the amount processed. 

These are linked to the dashed arrows in Figure 1. Parameters νr,i and ir ,ν  are used for the 

batch size dependent values and are linked to the solid arrows. 

Cycle Time H

Cycle N Cycle N+1
Slot 1 Slot 2 Slot 3 Slot T Slot 1

1 2 3 4 T T+1=1 2

 
Figure 2   Event points and time grids in continuous-time formulation 
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Table 2   Results for Case Study 1 with Dinkelbach’s algorithm and MINLP methods 

|T| Δt Hmin Hmax Disc. 
Var. 

Cont. 
Var. Eqs. Obj. (k$/h) H(h) CPU (s) Solver 

28.768 36.866 11.97 (3 iter.) Dinkelbach
28.768 36.866 1448.04 SBB 
28.768 36.866 11.79 DICOPT 
28.768 36.866 87.80 α-ECP 

4 2 20 40 56 110 216 

28.768 36.866 455.54 BARON 
32.209 63.708 24.29 (4 iter.) Dinkelbach
32.209 63.708 1516.24 SBB 
26.514 40 10.34 DICOPT 
32.209 63.708 37.18 α-ECP 

4 2 40 70 56 110 216 

32.209 63.708 2986.54 BARON 
32.345 63.601 30.20 (3 iter.) Dinkelbach
32.345 63.601 6962.72 SBB 
26.514 40 36.09 DICOPT 
32.345 63.601 504.06 α-ECP 

4 3 40 70 84 138 300 

32.345 63.601 3059.87 BARON 
32.757 62.801 287.50 (3 iter.) Dinkelbach

32.209~60.617* 63.708 7,200* SBB 
26.514 40 94.25 DICOPT 
32.757 62.801 469.75 α-ECP 

5 3 40 70 105 172 374 

32.757~64.806* 62.801* 7,200* BARON 
32.605 97.585 288.67 (3 iter.) Dinkelbach

32.604~41.384* 97.585* 7,200* SBB 
30.302 70 284.70 DICOPT 
32.605 97.585 492.34 α-ECP 

5 3 70 100 105 172 374 

32.577~46.211* 97.812* 7,200* BARON 
33.396 105.677 857.84 (3 iter.) Dinkelbach

31.871~41.929* 118.192* 7,200* SBB 
33.396 105.677 5,554.94 DICOPT 
33.396 105.677 1654.66 α-ECP 

6 3 100 140 126 204 448 

33.396~41.644* 105.677* 7,200* BARON 
33.396 105.677 995.20 (3 iter.) Dinkelbach

31.254~44.470* 120.00* 7,200* SBB 
--- --- 7,200* DICOPT 

28.893* 126.140* 7,200* α-ECP 
6 4 100 140 168 246 574 

33.396~41.578* 105.677* 7,200* BARON 
34.108 103.47 2,298.72 (3 iter.) Dinkelbach

26.885~46.743* 120.00* 7,200* SBB 
--- --- 7,200* DICOPT 

24.295* 136.43* 7,200* α-ECP 
7 4 100 140 196 286 670 

34.108~45.537* 103.47* 7,200* BARON 
*: Suboptimal solutions (or lower and upper bounds for BARON and SBB) obtained 
after 2 hours (7,200 seconds) 
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 The drawback of a time grid formulation is that the solution returned depends on the 

number of event points, |T| (as shown in Figure 2), and also on the number of intervals that a 

task can span, which is specified through parameter Δt. Only for a sufficiently large number of 

both parameters can we find the global optimal optimum. The solution also depends on the 

cycle time range H∈[Hmin; Hmax] as illustrated by Wu & Ierapetritou (2004). 

 In this paper, however, the main goal is to compare the computational performance of 

various solvers/algorithms for MILFP problems, so we simply tested them for different values 

of these four parameters. We solve this problem using the same machine and software 

environment as introduced in Section 3 with Dinkelbach’s algorithm (solver CPLEX), MINLP 

solvers SBB, DICOPT and α-ECP, as well as global optimizer BARON. Table 2 lists the results 

obtained.  

 As we can see, the problem sizes increase as the number of event points |T| and the number 

of intervals that a task can span Δt increase. For the first three instances with |T|=4, the optimal 

solutions obtained by using Dinkelbach’s algorithm are the same as the global optimal 

solutions obtained by using BARON, and Dinkelbach’s algorithm requires much less 

computational time than BARON. Although the optimal solutions from SBB and α-ECP are 

also the same, these two solvers require longer CPU times than Dinkelbach’s algorithm. 

DICOPT can obtain solutions faster than Dinkelbach’s algorithm, but for the second and the 

third instances in Table 2, the solutions are not the global optimum. For those two instances 

with |T|=5, the computational results in Table 2 show that both SBB and BARON failed to 

converge in 2 hours, although suboptimal solutions closed to global maximum are returned. We 

can also see that α-ECP returned the same global optimal solutions as those obtained by 

Dinkelbach’s algorithm, although α-ECP requires more CPU times. DICOPT is the fastest 

solver, but again returned suboptimal solutions for these two instances. It is interesting to note 

that for the second, third and fourth instances, if the lower bound of the cycle time is reduced 
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from 40 to 20, then DICOPT does converge to the global optimum, because the lower bound 

predicted by the MILP master problem is a valid bound for these new instances. For large scale 

instances with |T|=6 and |T|=7, most of the MINLP solvers failed to converge in 2 hours 

(DICOPT and α-ECP can both solve the sixth instance), but Dinkelbach’s algorithm can solve 

all the three instances within 1 hour. Overall, Dinkelbach’s algorithm is clearly the best 

approach for solving large scale MILFP problems for this cyclic process scheduling problem. It 

requires much less computational times than most of the MINLP solvers and guarantees the 

global optimality of the solutions. Although DICOPT is a fast solver for this type of problems, 

it may return suboptimal solutions for some instances. 

5.2. Case study 2: Cyclic Scheduling for a Tissue Paper Mill with Byproduct 

Recycling 

 The second case study is taken from Castro et al. (2009) and involves a continuous 

multiproduct tissue-paper plant. The cyclic scheduling problem, occurring at a Scandinavian 

tissue paper mill consists of maximizing the profit of the plant and finding the optimal cycle 

time while meeting minimum demands for all products. There are basically two production 

stages, each featuring two continuous lines in parallel, the stock preparation lines in the first 

stage, and the tissue-paper machines in the second stage, see Figure 3. In the first stage, the 

different raw-materials (ONP=old newspaper, MOW=mixed office waste, VF=virgin fiber) 

together with some recycled fiber (broke) are prepared for the tissue machines. Five 

intermediate products result from stock preparation, with two of them having dedicated 

stockyard piles of limited capacity. These are then processed in the tissue machines to get the 

five qualities, from least to most valuable product: P50, P60, P75, P80 and P85, where the 

number represents the brightness in %ISO. 
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Figure 3. Flowsheet of the tissue mill. 

 In order to be more environmentally friendly and lower the operating costs, a proper 

broke recycling strategy should be implemented. Broke is mainly generated when processing 

fibers in the tissue machines and in the downstream converting lines. Despite the fact that the 

latter are not shown in the flowsheet, their fiber losses are accounted for in the tissue 

machines. Three scenarios were analyzed in Castro et al. (2009): (i) no recycling; (ii) 

incorporate all broke in the lowest quality products (P50 and P60); (iii) rather than mixing all 

broke, recycle it according to quality. More specifically, broke from P85 will partly replace 

VF, broke from P80, MOW, while broke from the remaining products will be mixed with 

ONP. The RTN corresponding to this option, the most cost efficient, is shown in Figure 4. 

 Similar to case study 1, we will be differentiating the resources. Equipment units (REQ) 

include the stock preparation lines (SP1-2), tissue machines (TM1-2), dewatering line that 

prepares the intermediates for storage (DW), and the two dedicated storage lines (L67, L80). 

The subset of raw-materials (RRM) contains ONP, MOW and VF; the intermediates comprise 

ONP50, ONP60, ONP67, MOW80, VF85, S67 and S80; and the final products (RFP) take in 

P50-P85. The elements of the subset of broke resources (RBK) vary according to the recycling 

policy. As for the tasks, all are of the continuous type and are characterized by maximum 
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processing rate max
iρ . A peculiar problem feature is that we cannot set beforehand the 

proportion of broke to be incorporated in a certain intermediate, since the amount produced 

will be determined as part of the optimization procedure and we want to use as much as 

possible. In other words, there are flexible proportions of input materials for the tasks 

executed in the stock preparation lines. Such variable recipe tasks (IVR) will be subject to 

additional sets of constraints. 
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Figure 4. Resource-Task Network representation of best broke recycling policy. 

 In contrast to their batch counterparts, it can be assumed without loss of generality that 

continuous tasks last a single time interval. As a consequence, only one time index is needed 

in the task-related model variables. Binary variables Ni,t assign the start of task i to event 

point t, while the total amount produced is given by ξi,t. For variable recipe tasks, the part due 

to resource r is accounted for by *
,, tirξ . In order to identify changeovers in the tissue 
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machines, variables Xr,i,i’,t are employed. The remaining variables were already presented in 

case 1. 

 The model constraints are given next. The objective function is the maximization of the 

annual profit, given in relative monetary units (r.m.u./year), eq 8. The first term includes the 

materials value, which is negative for raw-materials and broke resources and positive for final 

products. The second term includes the total operating cost and the third, the total changeover 

cost. Parameter wd gives the number of working days per year. Notice that the numerator is 

linear while the denominator, the cycle time H, is a variable, making this model an MILFP. 

 The other constraints are similar to case 1, with differences arising from handling 

continuous rather than batch tasks. In particular, note that structural parameters λr,i and ir ,λ  

have replaced νr,i and ir ,ν , in the excess resource balances (compare eq 9 to eq 2). 

Furthermore, the upper bound on the amount processed is now determined by the product of 

the maximum processing rate and the upper bound on the cycle time (eq 12). In addition, the 

timing constraints, eq 17, are written for every equipment resource rather than every task, 

where the duration of the task is determined by dividing the amount by the maximum 

processing rate. Specific constraints for this example are given in eqs 13-16. The extent of a 

certain variable recipe task must be equal to the sum of the partial extents, where parameter ffi 

(fiber factor) can be viewed as a yield. Eq 14 limits broke incorporation to 20% and eq 15 

activates the changeover variables. Finally, eq 16 ensures that the product demands are met. 
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 We consider four instances, total number of event points |T|=4, |T|=5, |T|=6 and |T|=7 

(Δt=1 for all the instances). We solve this problem using the same machine and software 

environment as introduced in Section 3 with Dinkelbach’s algorithm (solver CPLEX). Given 

the problem sizes of these instances and the fact from the previous case study that global 

optimizer BARON usually requires long CPU times for large scale instances, we only compare 

the performance of Dinkelbach’s algorithm with those of the MINLP solvers SBB, DICOPT 

and α-ECP. The results are listed in Table 3. 

 From Table 3, we can see that the same optimal solutions are obtained by using 

Dinkelbach’s algorithm and MINLP solvers for the instances that MINLP solvers can return 

optimal solution within 20 hours. Similar to what we observed in the previous case study, 

Dinkelbach’s algorithm requires much less computational times than the MINLP solvers, 

especially SBB. For the large scale instances with |T|=6 and |T|=7, only Dinkelbach’s algorithm 

and DICOPT can return optimal solutions, while SBB and α-ECP failed to converge within 20 

hours. For these two instances, Dinkelbach’s algorithm still requires significantly less CPU 

time than DICOPT, although DICOPT does return global optimal solutions for these instances. 
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Notice that the cycle time is converging to its upper bound, indicating that the objective 

function would continue to increase. However, longer cycle times would also mean longer 

storage periods for the intermediates and higher degradation resulting from instance from 

direct sunlight, which is not desirable. Since the obtained optimal schedules are the same as in 

Castro et al. (2009), the readers can refer to this paper for the detailed solutions. The 

computational results of this case study suggest the advantage of using Dinkelbach’s algorithm 

to solve MILFP models of cyclic scheduling problems.  

 

Table 3   Results for Case Study 2 with Dinkelbach’s algorithm and MINLP methods 

|T| Hmin Hmax Disc. 
Var. 

Cont. 
Var. Eqs. Obj. 

(r.m.u./yr) H(h) CPU (s) Solver 

94.722 7.600 34.33 (4 iter.) Dinkelbach
94.722 7.600 1,238.84 SBB 
94.722 7.600 42.23 DICOPT 

4 3 13.8 76 384 416 

94.722 7.600 42.97 α-ECP 
94.868 8.371 578.65 (3 iter.) Dinkelbach
92.814* 5.318* 72,000* SBB 
94.868 8.371 1,007.63 DICOPT 

5 3 13.8 95 478 516 

94.868 8.371 1,405.31 α-ECP 
95.248 13.80 1,967.92 (3 iter.) Dinkelbach
89.914* 3.226* 72,000* SBB 
95.248 13.80 10,349.52 DICOPT 

6 3 13.8 570 616 216 

91.280* 4.672* 72,000* α-ECP 
95.248 13.80 7,720.95 (3 iter.) Dinkelbach
69.758* 3.00* 72,000* SBB 
95.248 13.80 41,660.20 DICOPT 

7 3 13.8 664 716 670 

93.468* 5.804* 72,000* α-ECP 
*: Suboptimal solutions obtained after 20 hours (72,000 seconds) 
  

6. Conclusions 

 In this paper, we have discussed the convexity properties of MILFP problems and their 

NLP relaxation. The capability and optimality of solving MILFP problems with various 

MINLP methods has been addressed. We also show that Dinkelbach’s algorithm, which is 

used to solve continuous fractional programming problems, can be an efficient method for 
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solving large scale MILFP problems. We have addressed the optimality and convergence 

issues of this algorithm, and proved that it also has superlinear convergence rate. Extensive 

computational studies were performed to demonstrate the efficiency of this algorithm. Case 

studies of cyclic scheduling problems for a reaction-separation network and for a tissue paper 

mill with byproduct recycling were also considered to illustrate the practical capability of this 

algorithm. The results show that Dinkelbach’s algorithm required significantly less 

computational effort to solve MILFP test problems compared to commercial MINLP solvers, 

such as DICOPT (Outer-Approximation), SBB (special branch-and-bound),  α-ECP 

(extended cutting plane method), and the global optimizer BARON (branch-and-reduce). 
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Appendix 

Let 0( ) i ii I
N x a a x

∈
= +∑ , 0( ) i ii I

D x b b x
∈

= +∑ , ( ) ( ) ( ){ }max |F q N x qD x x S= − ∈ , 

( ) ( ) / ( )Q x N x D x= ,  and the feasible region be {: ( ) 0>S D x  and 0 0,  
∈

+ = ∀∑j ij ii I
c c x j  

and 0ix ≥ , 1i I∀ ∈  and 0 1ix≤ ≤ , 2i I∀ ∈  and }1 2∪ =I I I  

 

Before proving Proposition 1, first consider the following lemmas. 

Lemma 4: The function ( ) ( ) ( ){ }max |F q N x qD x x S= − ∈  is convex.  

Proof: Let tx  be the optimal solution that maximize ( )( )' 1 ''F tq t q+ −  with ' ''q q≠  and 

0 1t≤ ≤ . Thus, we have: 
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( )( )
( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ){ } ( ) ( ) ( ){ }
( ) ( ) ( )

    ' 1 ''

' 1 '' ' 1 ''

max ' | 1 max '' |

' 1 ''

t t t t t t

t t t t

F tq t q

N x tq t q D x t N x q D x t N x q D x

t N x q D x x S t N x q D x x S

tF q t F q

+ −

= − + − = − + − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
≤ ⋅ − ∈ + − ⋅ − ∈

= + −

 

 

Lemma 5: For ' ''q q< , we have ( ) ( )' ''F q F q> , i.e. ( ) ( ) ( ){ }max |F q N x qD x x S= − ∈  is 

strictly monotonic decreasing. 

Proof: Let * ∈x S  be the optimal solution that maximize ( )''F q . Assuming ( ) 0>D x , we 

have: 

( )
( ) ( ){ } ( ) ( )

( ) ( ) ( ) ( ){ }
( )

* *

* *

   ''

max '' | ''

' max ' |

'

F q

N x q D x x S N x q D x

N x q D x N x q D x x S

F q

= − ∈ = −

≤ − = − ∈

=

 

 

Lemma 6: ( ) 0F q =  has a unique solution. 

Proof: It is easy to see that for ( ) 0>D x , ( )lim
q

F q
→−∞

= +∞  and ( )lim
q

F q
→+∞

= −∞ . Furthermore, 

based on Lemma 5, we can conclude that ( ) 0F q =  has a unique solution. 

 

Lemma 7: For any '∈x S , let ( )
( )

'
'

'
=

N x
q

D x
. Then, we have ( )' 0≥F q . 

Proof:  It is easy to see that ( ) ( ) ( ){ } ( ) ( )   ' max ' | ' ' ' 0= − ∈ ≥ − =F q N x q D x x S N x q D x . 

 

Proof of Proposition 1:  

a) Let * ∈x S  be an optimal solution of ( ) ( ){ }*max |− ∈N x q D x x S , so we have 
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( ) ( )* * * 0− =N x q D x  and ( ) ( ) ( ) ( )* * * * 0− ≤ − =N x q D x N x q D x , x S∀ ∈ . 

Since ( ) 0>D x , we have ( ) ( ) ( ) ( )* * */ /= ≥q N x D x N x D x , x S∀ ∈ . 

Thus, *q  is the maximum of ( ) ( ){ }max |N x qD x x S− ∈ and *x  is the optimal solution 

of ( ) ( ){ }max / |N x D x x S∈ . 

b) Let *x  be an optimal solution of ( ) ( ){ }max / |N x D x x S∈  and *q  be the optimal 

objective function value, so we have ( ) ( ) ( ) ( )* * */ /= ≥q N x D x N x D x , x S∀ ∈ . 

Since ( ) 0>D x , we have ( ) ( ) ( ) ( )* * * * 0− ≤ − =N x q D x N x q D x , x S∀ ∈ . 

This implies that *x  is the optimal solution of ( ) ( ){ }*max |− ∈N x q D x x S . 

 

Before proving Proposition 2, consider the following lemmas. 

Lemma 8: Let 'x  and ''x  be the optimal solution of ( )'F q  and ( )''F q . If ' ''q q< , 

( ) ( )' ''D x D x≥ . 

Proof: Since 'x  and ''x  be the optimal solution of ( )'F q  and ( )''F q , we have: 

( ) ( ) ( ) ( )' ' ' '' ' ''N x q D x N x q D x− ≥ −  

( ) ( ) ( ) ( )'' '' '' ' '' 'N x q D x N x q D x− ≥ −  

Add the above two inequalities and rearrange both sides of the new one, we have: 

( ) ( ) ( ) ( )'' ' ' '' ' ''− ≥ −q q D x q q D x  

As '' '>q q , therefore we have ( ) ( )' ''D x D x≥ . 

 

Lemma 9: Let 'x  and ''x  be the optimal solution of ( )'F q  and ( )''F q . Then, 
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( ) ( ) ( )
( )

( )
( )

'' ''
'' '

'' '
F q F q

Q x Q x
D x D x

− ≥ − . 

Proof:  As ''x  is the optimal solution of ( )''F q , we have: 

( ) ( ) ( ) ( )'' '' '' ' '' 'N x q D x N x q D x− ≥ −  

Dividing both sides by ( )' 0D x > , we have ( )
( )

( )
( )

( )
( )

'' '' '' '
''

' ' '
N x q D x N x

q
D x D x D x

− ≥ − . 

Thus, we have  

( ) ( )
( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( ) ( )( ) ( ) ( )

( )
( )

( )
( )
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'' ' '' '' '' '' 1 1'' ''
'' ' '' ' ' '' ' ''

'' ''
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Q x Q x

N x N x N x N x D x D x
q F q

D x D x D x D x D x D x D x D x

F q F q
D x D x

−

⎡ ⎤ ⎛ ⎞
= − ≥ − + − = − −⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

= −

 

 

Lemma 10: Let 'x  and ''x  be the optimal solution of ( )'F q  and ( )''F q . If *' ''q q q≤ ≤ , 

Then, ( ) ( )' ''Q x Q x≤ , where *q  satisfies ( )* 0F q = . 

Proof:  The proof readily follows from Lemmas 7, 8 and 9. 

 

Lemma 11: Let 'x  and ''x  be the optimal solution of ( )'F q  and ( )''F q . Then, 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1'' ' '' ' '' ''

' ''
Q x Q x F q q q D x

D x D x
⎛ ⎞

− ≤ − + − −⎡ ⎤⎜ ⎟⎣ ⎦⎜ ⎟
⎝ ⎠

. 

Proof:  Similar to Lemma 9, considering the optimality condition for 'x , 

We have ( ) ( ) ( ) ( )' ' ' '' ' ''N x q D x N x q D x− ≥ − . 

Dividing both sides by ( )'D x , we have ( )
( )

( )
( )

( )
( )

' '' ''
' '

' ' '
N x N x D x

q q
D x D x D x

− ≥ − . 

Thus we have,  
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Lemma 12: Let 'x  and *x  be the optimal solution of ( )'F q  and ( )*F q , where *q  

satisfies ( )* 0F q = . Then we have: ( ) ( )
( )

*
* *( ') ' 1

'
D x

q Q x q q
D x

⎛ ⎞
⎜ ⎟− ≤ − −
⎜ ⎟
⎝ ⎠

 

Proof:  Since *q  satisfies ( )* 0F q = , we have ( )* *Q x q= . Based on Lemma 11, it is easy to 

prove Lemma 12. 

 

Proof of Proposition 2:  

Dinkelbach’s algorithm updates iq  with the previous value of ( )Q x , i.e. ( )1i iq Q x+ = , where 

ix  is the optimal solution of ( )iF q . From Lemma 12, the algorithm converges with a rate of 

( )
( )

*

1
i

D x
D x

⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠

. From Lemma 5, we have 
( )
( )

*

1
i

D x
D x

⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠

 is nonincreasing. Therefore, the 

sequence { }iq  obtained by Dinkelbach’s algorithm converges superlinearly to *q  for each 

*
iq q< . 
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