
A Hybrid MILP/CP Decomposition Approach for the
Continuous Time Scheduling of Multipurpose Batch Plants

Christos T. Maravelias, Ignacio E. Grossmann∗

Carnegie Mellon University, Department of Chemical Engineering
Pittsburgh, PA 15213

Submitted March 2003

Revised Manuscript Submitted December 2003

Abstract
A hybrid Mixed-Integer Linear Programming (MILP)/Constraint Programming (CP) decomposition
algorithm is proposed for the short-term scheduling of batch plants that rely on the State Task Network
representation. The decisions about the type and number of tasks performed, as well as the assignment of
units to tasks are made by the MILP master problem. The CP subproblem checks the feasibility of a
specific assignment and generates integer cuts for the master problem. A graph-theoretic preprocessing
that determines time windows for the tasks and equipment units is also performed to enhance the
performance of the algorithm. To exclude as many infeasible configurations as possible, three classes of
integer cuts are generated. Various objective functions such as the minimization of assignment cost, the
minimization of makespan for fixed demand and the maximization of profit for a fixed time horizon can
be accommodated. Variable batch-sizes and durations, different storage policies, and resource constraints
are taken into account. The proposed framework is very general and can be used for the solution of
almost all batch scheduling problems. Numerical results show that for some classes of problems, the
proposed algorithm can be two to three orders of magnitude faster than standalone MILP and CP models.

1. Introduction

The problem of short term scheduling of general (or multipurpose) batch plants has received considerable
attention in the literature. Kondili et al. (1993) proposed the discrete-time State Task Network (STN)
representation, and Shah et al. (1993) proposed a reformulation. The equivalent Resource Task Network
(RTN) representation was proposed by Pantelides (1994). Continuous time representations, which are more
general but potentially difficult to solve, were proposed by Sargent and Zhang (1995), and Mockus and
Reklaitis (1999). Based on the STN and RTN representations, several other continuous time MILP models
have been proposed since then (e.g. Ierapetritou and Floudas, 1998; Lee et al., 2001; Castro et al., 2001;
Maravelias and Grossmann, 2003a). Although the performance of these models in several test problems has
proved to be encouraging, their major limitation is that for large problems they can become computationally
expensive due to the big-M constraints that are used for time matching. This has led previous workers to
consider special cases of the general multipurpose batch plant problem. Some of the common assumptions
are, (a) no resource constraints other than equipment, and (b) no batch splitting and mixing. Furthermore, the
computational performance of STN- and RTN-based models is poor when the objective is the minimization
of makespan for a given demand. For short-term scheduling, however, the demands are usually fixed, which
implies that the minimization of makespan or the minimization of production cost is often a more realistic
objective.

Constraint Programming (CP) is a new modeling and solution paradigm that has proved to be very effective
for solving certain classes of problems (van Hentenryck, 1989; Marriot and Stuckey, 1999; Hooker, 2000).

∗ To whom all correspondence should be addressed:
 E-mail: grossmann@cmu.edu, Tel: 412-268-3642, Fax: 412-268-7139

 2

Constraint Programming is particularly effective for solving feasibility problems and seems to be better than
traditional MILP approaches in discrete optimization problems where finding a feasible solution is difficult.
The lack of an obvious relaxation, however, makes CP worse for loosely constrained problems, where the
focus is on finding the optimal solution among many feasible ones and proving optimality. Constraint
Programming has been successfully used for some classes of scheduling problems (Baptiste et al., 2001).

In the general short-term scheduling of multipurpose batch plants the number of tasks (jobs) is not known a
priori: it is a decision variable that is to be determined by the optimization. Moreover, in its general form
(variable processing times and batch sizes, recycle streams, batch splitting/mixing, resources other than
equipment, changeover times) the scheduling problem is loosely constrained and a standalone CP approach is
not efficient. Thus, in this work we have combined the traditional MILP approach with the CP approach in
order to take advantage of their complementary strengths. We use MILP to optimize and find partial
solutions and CP to check feasibility and produce complete solutions. Similar approaches have been
proposed by Jain and Grossmann (2001), and Harjunkoski and Grossmann (2002) for the restricted cases of
minimization of assignment cost of single and multistage batch plants, respectively, yielding considerable
computational improvements compared to standalone MILP and CP models.

The proposed hybrid MILP/CP method consists of two phases and is based on the MILP model by
Maravelias and Grossmann (2003a). In the first phase we determine the earliest start times (EST) and the
latest finish times (LFT) of tasks and units, and derive strong integer cuts that exclude infeasible
“subconfigurations.” In the second phase we use an iterative scheme where we solve a master MILP model
and a CP subproblem. The master problem yields a set of tasks to be performed and their assignments to
units. The subproblem checks feasibility and derives a feasible schedule, if one exists, for the assignment
obtained by the master problem. Integer cuts are added in the master problem to exclude the current
assignment. Three objective functions are considered: (a) minimization of makespan subject to satisfying a
given demand, (b) maximization of profit for a fixed time horizon, and (c) minimization of cost subject to
satisfying given orders with due dates. Numerical examples are presented that show that orders of magnitude
reduction in computational effort can be achieved with the proposed hybrid approach.

2. Background

2.1. Mixed-Integer Formulations for Multipurpose Batch Plants

In this paper we address the scheduling of multipurpose batch plants. An example is shown in Figure 1,
where raw material S1 is heated to form intermediate S2, which is then used for the production of
intermediate S3 (Reaction 1), intermediate S4 and final product S5 (Reaction 2). Intermediates S3 and S4 are
mixed to produce final product S7 (Reaction 3) and intermediate S3 is purified to give final product S6 and
S2 that is recycled (Separation). Multipurpose batch plants exhibit a number of features that make their
modeling challenging. As shown in Figure 1, unlike traditional scheduling problems where each batch can be
viewed as an entity moving throughout the plant, we may have batch splitting (e.g. a batch of S2 can be used
for Reaction 1 and Reaction 2), batch mixing (e.g. intermediates S3 and S4 are mixed to produce one batch
of S7) or recycle streams. Thus, general batch plants can be viewed as the generalization of all possible plant
configurations. Furthermore, the duration and the batch size of the tasks may not be constant. Moreover,
resource constraints other than those on equipment units may be present (e.g. manpower, cooling water, etc.),
and different storage policies (UIS/FIS/NIS/ZW) can be applied for the various chemicals. In order to
account for all these issues, we need to monitor the level of inventories and the level of resource
consumption throughout the time horizon. To do so, we need to partition the time horizon into a sufficiently
large number of periods and enforce equipment unit, utility and inventory feasibility for all time periods,
which leads to large and difficult to solve formulations.

 3

S1 S2Heat

Reaction1 Separation

Reaction 3

S3

S4

S6

S7

S5

Reaction2

1h

1h

3h

2h

2h
70%

30%

60%

40%

90%
10%

Figure 1: Multipurpose batch plant

Kondili et al. (1993) formulated the STN representation for batch scheduling with an MILP using a discrete-
time representation (Figure 2a), where the time horizon is divided into H intervals of equal duration,
common for all units, and where the tasks begin and finish at a time point. This means that the duration of the
intervals must be equal to the greatest common factor of the processing times of tasks and that the discrete-
time representation can only be used when the processing times are constant. The assumption of constant
processing times is not always realistic, while the length of the intervals may be so small that it either leads
to a prohibitive number of intervals rendering the resulting model unsolvable, or else it requires
approximations which may compromise the feasibility and optimality of the solution. It should be noted that
the Resource Task Network (RTN) formulation by Pantelides (1994) provides a more compact representation
but shares similar limitations as the STN model.

To circumvent the above cited difficulties, two different continuous-time representations have been proposed
in which the time horizon is divided into time intervals of unequal and unknown duration, common for all
units. In the continuous time representation I (Figure 2b), each task must start and finish exactly at a time
point (Zhang and Sargent, 1995; Schilling and Pantelides, 1996; Mockus and Reklaitis, 1999), while in the
representation II (Figure 2c), each task must start at a time point but it need not finish at a time point (Castro
et al., 2001). In both representations, the number of time points is determined with an iterative procedure,
during which the number of time points is increased by one until there is no improvement in the objective
function. Since time points are not fixed, constraints that match a time point with the start (or finish) of a task
are necessary. These constraints are big-M constraints that result in poor LP relaxations. On the other hand,
the continuous-time representation accounts for variable processing times, and is more realistic than the
discrete-time representation. It also requires significantly fewer time intervals and hence leads to smaller
problems. A combination of the two types of continuous-time representations was proposed by Maravelias
and Grossmann (2003a).

An alternative approach is the event-point representation (Figure 2d) proposed by Ierapetritou and Floudas
(1998), where time events are not common for all units. In this approach, the time horizon is divided into a
number of events which are different for each unit, subject to certain sequencing constraints. Since events
need not be common among units, the number of events necessary in this approach is usually smaller than
the number of periods required in other continuous-time representations, and the proposed model is faster
compared to continuous-time STN formulations with common time grid. However, as has been shown in
Maravelias and Grossmann (2003a), this representation may not always yield accurate representations of
batch operations.

Finally, a number of papers address special cases of multipurpose batch plants (Rodrigues et al., 2000;
Mendez et al., 2000; Mendez and Cerda, 2000; Mendez et al., 2001; Lee et al., 2001). In most of these
papers, special assumptions are made to allow the development of special MILP models that are easier to
solve. Some of the common assumptions are, (a) the plant has some special configuration, (b) no batch
splitting and mixing is allowed, and (c) there are no resource constraints other than those on equipment units.

The objective function in most of these approaches is the maximization of profit for a fixed time horizon. In
short-term scheduling, however, the demand is usually fixed and more meaningful objectives are to minimize
the makespan for a fixed demand, or minimize the production cost for fixed demands with due dates. As has

 4

been shown, however, the computational performance of STN-based MILP models is poor when the
objective is the minimization of makespan. For this reason we consider Constraint Programming as an
alternative solution technique.

U1
U2

.

.
UN

0 1 2 3 … H-1 H t

(a) Discrete-Time Representation

0 1 2 3 … H-1 H t

(b) Continuous-Time Representation I

0 1 2 3 … H-1 H t

(c) Continuous-Time Representation II

t

k

k

k+1

(d) Event-Point Representation

k

U1
U2

.

.
UN

U1
U2

.

.
UN

U1
U2

.

.
UN

…

…

Figure 2: Time Representations.

2.2. Constraint Programming and MILP/CP Integration Schemes

Constraint Programming (van Hentenryck, 1989; Hooker, 2000) was originally developed to solve feasibility
problems, but it has been extended to solve optimization problems as well. Constraint programming (CP) is
based on performing a tree enumeration by reducing at each node the domains of the variables, which can be
continuous, general integer, boolean and binary. If an empty domain is found the domain is pruned.
Branching is performed whenever a domain of an integer, binary or boolean variable has more than one
element, or when the bounds of the domain of a continuous variable do not lie within a tolerance. Whenever
a solution is found, or a domain of a variable is reduced, new constraints are added. The search terminates
when no further nodes must be examined. Constraint programming algorithms are very efficient for some
classes of problems, among which scheduling is a prominent one. Due to the general nature of the batch
plants that appear in chemical industry, however, a standalone CP model would not be effective for solving
this class of problems. This is due to the fact that the type and number of tasks to be performed in a general
batch plant are optimization decisions, which implies that the number of potential activities in the CP
formulation may be very large and, moreover, the large number of alternative production paths makes the CP
problem loosely constrained. The computational performance of a standalone CP model that we developed
was indeed very poor. Specifically, the computational time required for a well studied example of Kondili et
al. (1993), that involves five tasks, four units and nine states, by a standalone CP model is more than 300
CPU sec, whereas the same problem is solved in less than 1 CPU sec by any continuous-time MILP model.

Models that integrate MILP and CP have also appeared recently. The motivation for this integration follows
from the fact that MILP and CP have complementary strengths that can be exploited simultaneously.
Mathematical programming techniques are efficient in finding optimal solutions and providing good bounds,
while the CP language is more expressive and the CP search techniques are often more efficient in solving
feasibility problems. The integration between MILP and CP can be achieved in two ways (Hooker, 2002; van
Hentenryck, 2002):
(a) By combining MILP and CP constraints into one hybrid model. In this case a hybrid algorithm is also

needed for the solution of the model.
(b) By decomposing the original problem into two subproblems: one MILP and one CP problem. Each

model is solved separately and information obtained while solving one subproblem is used for the
solution of the other subproblem.

 5

More information on CP can be found in Marriot and Stuckey (1999) and Hooker (2000). Constrained-based
scheduling algorithms can be found in Baptiste et al. (2001), and a short description of MILP/CP integration
schemes can be found in Jain and Grossmann (2001).

3. Problem Statement

For the problem addressed in this paper we assume that we are given:
(i) a fixed or variable time horizon
(ii) the available units and storage tanks, and their capacities
(iii) the available utilities and their upper limits
(iv) the production recipe (mass balance coefficients, utility requirements)
(v) the processing times and changeover times
(vi) the amounts of available raw materials; the demand of final products and their due dates
(vii) the prices of raw materials and final products
The goal is then to determine:
(i) the type and number of tasks performed
(ii) the assignment of equipment units to tasks
(iii) the sequencing and timing of tasks taking place in each unit
(iv) the batch size and duration of tasks
(v) the amount of resources allocated to each task
(vi) the amount of raw materials purchased and the amount of final products sold
The objective can be, (a) the maximization of production, income or profit for a fixed time horizon, or (b) the
minimization of makespan for a specified demand, or (c) the minimization of cost for specified orders with
due dates.

4. Proposed Hybrid Algorithm

As mentioned above, several STN-based MILP models have been proposed for the scheduling of batch
plants. Discrete-time models, while computationally more effective than the continuous-time models, often
require approximations that may give infeasible or suboptimal solutions. Furthermore, the scheduling of
medium complexity process networks (10-20 tasks, 10-20 states) becomes intractable when the number of
intervals is above 60. Continuous-time and event-based models, while more general in terms of task
durations, become computationally intractable even more quickly. Specifically, medium-complexity STN
networks, problems with more than 15 intervals are intractable. Another shortcoming of continuous-time
STN models is that they perform reasonably well only for the maximization of profit over a fixed time
horizon. Their computational performance for other objectives is often poor (Maravelias and Grossmann,
2003a).

The difficulty in solving STN scheduling problems led us to develop a hybrid MILP/CP method that exploits
the complementary strengths of MILP and CP. We use MILP to optimize the high level decisions, and CP to
determine a feasible detailed schedule. Specifically, we propose an iterative scheme where we iterate
between a MILP master problem and a CP subproblem, in a similar fashion as in Jain and Grossmann (2001).
However, in this work the type and number of tasks to be performed and the assignment of tasks to
equipment units are determined in the master MILP problem, while the CP subproblem is used to derive a
feasible schedule for the assignment obtained by the master problem. At each iteration, one or more
specialized integer cuts are added to the master problem to exclude infeasible or previously obtained
assignments. For a maximization problem, the relaxed master problem provides an upper bound and the

 6

subproblem, when feasible, provides a lower bound. To enhance the performance of the algorithm,
preprocessing is performed before the main iterative scheme. Preprocessing is used to determine Earliest
Start Times (EST) and Latest Finish Times (LFT) of both tasks and units, and to create strong integer cuts
that are added a priori in the cut-pool of the master problem. Moreover, the proposed method can be used to
obtain more than one feasible solutions; we just need to, (a) store all feasible solutions found during the
execution, and (b) keep iterating after the convergence of the bounds. For the implementation of the method
we used ILOG’s OPL Studio 3.5. (Appendix A). A simplified flow diagram of the proposed algorithm for the
maximization of profit is shown in Figure 3. The flow diagrams for the minimization of makespan and cost
are similar.

4.1. MILP Master Problem

For the master MILP problem an aggregated STN representation has been used with no time points, or
equivalent continuous time intervals. Only assignment, batch size and mass balance constraints are included,
and since there are no time points, mass balance constraints are expressed once (for the total amounts) at the
end of the time horizon for each state. Special integer cuts are added to exclude previously found sets of
tasks. Resource constraints other than equipment are not considered.

Solve MILP Master Problem
max profit
s.t. Assignment constraints

Total mass balances
Integer Cuts

Obtain UB

Solve CP Subproblem
max profit
s.t. ALL CONSTRAINTS

w/ fixed tasks/assignments
Obtain LB

Fix tasks/assignments

Preprocessing I
Calculate EST, LFT ∀i,∀j

Add Integer
Cuts I

UB ≤≤≤≤ LB ?

YES

NO

Preprocessing II
Decompose into subnetworks
Derive Integer Cuts II and III

Figure 3: Schematic diagram of the proposed hybrid MILP/CP algorithm.

In order to decouple units from tasks, we use the following rule: if a task i can be performed in both units j
and j’, then two tasks i (performed in unit j) and i’ (performed in unit j’) are defined (see Ierapetritou and
Floudas, 1998). As explained above, the number of times each task is carried out is to be determined by the
optimization, and thus for each task i we postulate a maximum number of copies, i.e. an upper bound on the
number of batches of task i that can be carried out in any feasible solution. A strict upper bound Ci

MAX on the

 7

number of copies of task i is given by equation (1) where H is an upper bound on the length of the time
horizon and DMIN is the minimum duration of task i. In practice, though, we can use our knowledge about the
process network to postulate a smaller number of copies.

 iDHCC MINMAX
ii ∀== / (1)

For each copy c of task i we define the binary Zic, which is equal to 1 if the cth copy of task i is carried out.
We also define its duration Dic and batch size Bic. For each state, we define its inventory level sŜ at the end of
the scheduling horizon. The master MILP problem is shown in Appendix C to be a relaxation of the MILP
model of Maravelias and Grossmann (2003a) given in Appendix B. Hence, the master MILP problem (MP)
provides an upper bound to the profit and a lower bound to the cost or makespan. It consists of equations (2)
to (10):

jMSD
jIi c

ic ∀≤∑ ∑
∈)(

 (2)

iiciiciic CciBZD ∈∀∀+= ,βα (3)

iic
MAX
iicic

MIN
i CciZBBZB ∈∀∀≤≤ , (4)

sBBSS
sIi c

ic
I

sOi c
ic

O
ss isis

∀−+= ∑ ∑∑ ∑
∈∈)()(

0ˆ ρρ (5)

FPsdS ss ∈∀≥ˆ (6)

INTsCS ss ∈∀≤ˆ (7)

iiicic CcCciZZ <∈∀∀≤+ ,,1 (8)

Integer Cuts (9)
Objective Function (10)

0ˆ,0,0},1,0{ ≥≥≥∈ sicicic SBDZ

Constraint (2) is a relaxed assignment constraint which enforces that the sum of the durations of the tasks
assigned to a unit does not exceed the scheduling horizon MS, where I(j) is the set of tasks that can be
assigned to unit j. The duration of copy c of task i is a function of its batch size [constraint (3)], and the batch
size of copy c of task i is bounded through constraint (4). The amount of state s at the end of the time horizon

sŜ is calculated by (5) to be equal to the initial amount S0s plus the amount produced, minus the amount
consumed, where ρis

I and ρis
O are the mass fractions for consumption and production, respectively, of state s

by task i. Note that constraint (5) ensures that the net production of state s in non-negative, but since we do
not monitor and restrict the inventory level of state s during the entire scheduling horizon, a solution of the
master problem may imply that the level of state s is at some point negative. If state s corresponds to a final
product (s∈FP), sŜ must be greater than the demand ds [constraint (6)]; if it corresponds to an intermediate
(s∈INT) it must be less than the capacity Cs of the storage tank of state s [constraint (7)]. Constraint (8) is
used to eliminate symmetric assignments by enforcing the condition that copy c+1 of task i can be carried
out only if copy c is carried out. At a specific iteration k, constraints (9) include all the integer cuts that have
been added during preprocessing and in previous iterations. The objective function, which as noted above
provides a bound, can be the maximization of profit for a fixed time horizon, the minimization of makespan
for fixed demand, or the minimization of production cost for fixed demand and due dates. The exact form of
the objective function is given in section 4.5.

 8

4.2. CP Subproblem

In this paper we model CP subproblems using the modeling language of ILOG’s OPL Studio 3.5, which has
a number of global constraints and special constructs specifically developed for scheduling applications, for
which a short description can be found in Appendix A. The description of the CP subproblem, hence, is made
in terms of these constructs and constraints.

For each equipment unit j we define a unary resource called Unit[j] and for each resource r (e.g. cooling
water) we define a discrete resource Utility[r] with a maximum capacity Rr

MAX. Furthermore, for each state s
we define a reservoir called State[s] with capacity Cs and initial level S0s. For each binary Zic that is equal to
1 in the current optimal solution of the master problem (i.e. copy c of task i is carried out) we define an
activity called Task[i,c] with duration Dic. We also define a dummy activity MS with zero duration and no
resource requirements. The reason we introduce MS, is because Constraint Programming is more efficient
when the objective function is a function of one or few variables. Moreover, if a dummy activity is not used,
the objective function for the minimization of makespan will be the minimization of the maximum finish
time (i.e. a min max problem), which will require the introduction of additional constraints. If there are
orders with due dates, and D is the set of orders for final products, D(s) is the set of orders for state s (i.e.
D=∪s D(s)), and for each d∈D, ADd is the amount due and TDd is the due date, we also define |D| activities,
called Order[d], with zero duration that are used for the “representation” of the orders. The corresponding
declarations in OPL modeling language are:

UnaryResource Unit[j in Units]; (11)

DiscreteResource Utility[r in Utilities] (Rr
MAX); (12)

Reservoir State[s in States] (Cs, S0s); (13)
Activity Task[i in Tasks, c in Copies] (Dic); (14)

Activity MS (0); (15)

Activity Order[d in Orders] (0); (16)

The CP subproblem (SP) consists of equations (17) to (32):

i
MAX
iic

MIN
i CciBBB ∈∀∀≤≤ , (17)

iiciiic CcZWiBD ∈∀∈∀+= ,βα (18a)

iiciiic CcZWiBD ∈∀∉∀+≥ ,βα (18b)

sCciBB iic
I
is

I
ics ∀∈∀∀= ,,ρ (19)

sCciBB iic
O
is

O
ics ∀∈∀∀= ,,ρ (20)

iiciriricr CciBR ∈∀∀+= ,δγ (21)

FPsdB s
i c

O
ics ∈∀≥∑∑ (22)

Task[i,c] requires Unit[j] ∀j,∀i∈I(j),∀c∈Ci (23)

Task[i,c] requires Ricr Utility[r] ∀i,∀c∈Ci, ∀r (24)

 9

Task[i,c] consumes BI
ics State[s] ∀i,∀c∈Ci,∀s (25)

Task[i,c] produces BO
ics State[s] ∀i,∀c∈Ci,∀s (26)

Order[d].start = TDd ∀d (27)

Order[d] consumes ADd State[s] ∀s, ∀d∈D(s) (28)

Task[i,c].end ≤ MS.start ∀i,∀c∈Ci (29)

Task[i,c] precedes Task[i,c+1] ∀i,∀c<|Ci| (30)
Process Network Specific Constraints (31)

(Optional) Objective Function (32)

The batch size of activities is bounded by equation (17). If Zero Wait storage policy applies, the product of a
task must be immediately transferred to the next task, and thus the duration of the task is exactly equal to its
processing time as in (18a); for any other storage policy the material can be temporarily stored in the
equipment unit, which means that the time during which equipment unit is “used” by Task[i,c] can be greater
than the actual processing time [constraint (18b)]. The amount of reservoir State[s] consumed/produced by
activity Task[i,c] is calculated by equation (19)/(20); the amount of discrete resource Utility[r] required by
activity Task[i,c] is calculated in (21); the condition that the amount of final products should meet the
demand is enforced by (22), where ds is the total demand for state s. Parameter ds is either given (in the case
of fixed demand with no due dates) or calculated by,

sADd
sDd

ds ∀= ∑
∈)(

Special CP constructs and global constraints are used in equations (23) to (31). Constraint (23) enforces that
all tasks in I(j) are assigned to unary resource Unit[j]. The consumption of Ricr units of discrete resource
Utility[r] by activity Task[i,c] is enforced in (24), and the consumption/production of BI

ics /BO
ics units of

reservoir State[s] by Task[i,c] is enforced by constraint (25)/(26). Orders with due dates are modeled through
constraints (27) and (28). Each order is executed at its due time [constraint (27)], and the amount delivered is
equal to the amount due [constraint (28)]. In (29) the end time of all activities is restricted to be smaller than
the start of activity MS, and MS has, (a) fixed finish time equal to H when the objective is the maximization
of profit over a fixed time horizon, or the minimization of cost for fixed demand and due dates, and (b) a
variable finish time when the objective is the minimization of makespan for fixed demand with no due dates.
Constraint (30) is a symmetry-breaking constraint that reduces the number of possible configurations by
imposing a sequence between copies of the same task.

Constraints that describe some special features of the process network, or a special structure that can be
exploited are included in (31). An example of such a feature is a Zero Wait state that is produced by only one
task A and consumed by only one task B. In such a case, we can infer that every time task A takes place it
must be immediately followed by task B, and that the batchsizes of consecutive batches of tasks A and B
should be equal. Therefore, we can add the following constraints that greatly enhance the computational
efficiency of the CP solver:

Task[A,c].end = Task[B,c].start ∀c (31a)

BSAc =BSBc ∀c (31b)
Depending on the nature of the problem (constant vs. variable processing times) and the objective function,
we may want to solve the CP subproblem as one feasibility problem, as successive feasibility problems or as
an optimization problem (details in section 4.6.2.). If the CP is an optimization problem we add the objective
(32) whose exact form is given in section 4.5.

 10

4.3. Time Domain Reduction

The performance of the proposed model depends on how fast we solve models (MP) and (SP), and the
number of iterations needed to generate solutions and prove optimality. It is crucial, consequently, to exclude
infeasible or suboptimal assignments of tasks as soon as possible. Preprocessing enhances the performance of
the algorithm by (a) reducing the domains of certain variables, and (b) creating strong cuts that are added in
the cut-pool of the master problem and are used to eliminate a priori a number of potential configurations.

4.3.1. Earliest Start Time and Latest Finish Time of Units

To illustrate the domain reduction for units, consider the example of Figure 4, where units U1, U2 and U3
are used for the production of products A, B and C, for which we assume that the duration of all tasks is 2
hours, the time horizon is 12 hours, and that at most two copies of the same task can take place (i.e. |Ci|=2
∀i). Specifically, for unit U2, replacing durations from (3) into (2) we get:

2ZTA2,1+2ZTA2,2+2ZTB2,1+2ZTB2,2+2ZTC2,1+2ZTC2,2 ≤ 12
which implies that all 26 possible assignments are feasible since the constraint is satisfied if all Zic are equal
to 1.

In the case where there are no intermediates SA1, SB1 and SC1 at t=0, however, no task can be carried out
in unit U2 before t=2, i.e. before one of the states used as input in unit U2 is produced. Hence, the Earliest
Start Time (EST) for any task in unit U2 is 2 hours. Similarly, since the time horizon is 12 hours, any amount
of intermediates SA2, SB2 and SC2 produced after t=10 will not be used for the production of final products,
which means that in all realistic solutions all tasks assigned to U2 must finish at or before t=10; i.e. the
Latest Finish Time (LFT) of unit U2 is 10. When the time horizon is not fixed instead of using LFT we use
the Shortest Tail (ST) which is the difference between the variable scheduling horizon and the LFT. In this
example, the Shortest Tail (ST) of unit U2 is 2 hours.

TA1
FA

TA2
SA1

TA3
SA2 A

TB1
FB

TB2
SB1

TB3
SB2 B

TC1
FC

TC2
SC0

TC3
SC2 C

U2 U3U1
Figure 4: Flow diagram of Example.

Using this insight, we can rewrite the assignment constraint for unit U2 as follows:

2ZTA2,1+2ZTA2,2+2ZTB2,1+2ZTB2,2+2ZTC2,1+2ZTC2,2 ≤ LFTU2 - ESTU2 = (H-STU2) – ESTU2 = 8
which allows only up to four tasks assigned to unit U2, i.e. only 22 out of the total 26 assignments.
Note that similar tightening can be also performed when processing times are variables; in the example of
Figure 4, we need only use the minimum, instead of the fixed, processing times of tasks TA1, TB1 and TC1
to calculate the EST of unit U2, and the minimum processing time of tasks TA3, TB3 and TC3 to calculate
the ST of unit U3.
In the general case assignment constraint (2) is tightened as follows,

jESTSTMSD
jIi

jj
c

ic ∀−−≤∑ ∑
∈)(

)((33)

 11

where STj and ESTj are the Shortest Tail and Earliest Start Time of unit j, respectively, and MS is the time
horizon (equal to H in the case of fixed time horizon). To calculate the EST and ST of unit j we need to
calculate first the EST and ST of the tasks performed in j, which is described in the next section.

4.3.2. Earliest Start Time and Latest Finish Time of Tasks

To illustrate the domain reduction for tasks, consider the example of Figure 5. The duration of all tasks is 2
hours, the time horizon is 16 hours, each task can be carried out at most three times and unit U1 is used for
tasks T1 and T8. If no intermediates are available at t=0, the EST and LTF for task T1 are 0 and 4 hours,
respectively, and for task T8 EST is equal to 6 and LFT is equal to 10. This means that we can write the
following constraints,

2ZT1,1+2ZT1,2+2ZT1,3 ≤ 4 – 0 = 4 (34)

2ZT8,1+2ZT8,+2ZT8,3≤ 10 – 6 = 4 (35)
Furthermore, the EST and LTF for unit U1 are 0=min{ESTT1,ESTT8} and 10=max{LFTT1,LFTT8},
respectively, and the assignment constraint for unit U1 is,

(2ZT1,1 + 2ZT1,2+2ZT1,3) + (2ZT8,1+2ZT8,2+2ZT8,3) ≤ 10 – 0 = 10 (36)
Note that the LHS of constraint (36) is the sum of the LHSs of constraints (34) and (35), whereas the RHS of
constraint (36) is larger than the sum of the sum of the RHSs of constraints (34) and (35), which implies that
constraint (36) is a relaxation of constraints (34) and (35). In general, thus, we can get a tighter formulation
by adding the constraints that restrict the sum of the processing times of the copies of the same task. Thus,
for the general case, we add the following constraint for each task in I(j),

)()(jIiESTSTMSD ii
c

ic ∈∀−−≤∑ (37)

where STi and ESTi are the Shortest Tail and the Earliest Start Time of task i, respectively. We can therefore
replace equation (2) by equations (33) and (37), and hence the master problem (MP) consists of equations (3)
– (10), (33) and (37).

T1 T2 T3 T4 T5

T6 T7 T8 T9

F1 S1 S2 INT1 S3 P1

P2F2 S5 INT2

S4 ADD

S6
0.95

0.05 0.1
0.9 0.5 0.5

Unit U1
Figure 5: Process network of Example 2.

Note that for a general batch plant the calculations for EST and ST (or LFT) are not equivalent to a time
window calculations for flow-shop batch plants. The main reasons for this are: (a) batch splitting and mixing
is allowed, and (b) inventory for intermediate states may be available at t=0. In principle, EST and ST of
tasks can be determined by inspection, but here we use a general, graph-theoretic algorithm that relies on
identifying shortest and longest paths within the STN.

We define parameter ATs as the time at which state s becomes available. States that are available at the
beginning of the time horizon have ATs=0. In order to calculate the EST of a task we need to know the ATs of
all the states that are consumed by task i. In order to calculate the AT of a state we need to know the EST and
the (minimum) processing time of all tasks producing this state. If SI(i) is the set of states consumed by task

 12

i, O(s) is the set of tasks that produce state s, DTs is the earliest delivery time of state s (zero if state s is
available at t=0), and Di

MIN is the minimum duration of task i, the procedure, in summary, is as follows:

The EST of task i is calculated by: ESTi = maxs∈SI(i) {ATs}
The AT of state s is calculated by: ATs = min{DTs, mini∈O(s) {ESTi + Di

MIN}}

For the calculation of the Shortest Tail STi of task i we follow similar rules but we start from the final
products (s∈FP), and for each state s∈S we calculate the minimum time MTs needed for state s to be used for
the production of a final product. Is SO(s) is the set of states produced by task i, and I(s) is the set of tasks
consuming state s, the summary of the backward procedure for the calculation of the ST of tasks (if there are
no recycle streams) is the following:

The ST of task i is calculated by: STi = mins∈SO(i) {MTs}
The MT of state s is calculated by: MTs = mini∈I(s) {STi + Di

MIN}

If ET (UT) is the set of examined (unexamined) tasks, and ES (US) is the set of examined (unexamined)
states, and Di

MIN is the minimum (or fixed) processing time of task i, a straightforward computer
implementation of the procedure for networks with variable or constant processing times and no recycle
streams is the following:

Calculation of EST:
Initialization: ET = ∅, UT = I, ES = {s∈S| S0s > 0}, US = S\ES, ATs=0 ∀s∈ES
Until UT = ∅ do
 For all i∈UT
 If ES∩SI(i) = SI(i) then EST(i) = maxs∈SI(i) {ATs}
 ET = ET∪{i}
 UT = UT\{i}
 For all s∈US
 If ET∩O(s) = O(s) then AT(s) = min{DTs, mini∈O(s) {ESTi + Di

MIN }}
 ES = ES∪{s}
 US = US\{s}

Calculation of ST:
Initialization: ET = ∅, UT = I, ES = FP, US = S\FP, MTs=0 ∀s∈ES
Until UT = ∅ do
 For all i∈UT
 If ES∩SO(i)=SO(i) then ST(i) = mins∈SO(i) {MTs }
 ET = ET∪{i}
 UT = UT\{i}
 For all s∈US
 If ET∩I(s) = I(s) then MT(s) = mini∈I(s) {STi + Di

MIN }
 ES = ES∪{s}
 US = US\{s}

An example of its application is presented in Appendix D. In case there are recycle streams and RC is the set
of recycled states, the calculation is more complicated. We initially exclude states in RC (i.e.
US=S\(FP∪RC), calculate EST and ST for all states and then re-calculate taking into account the recycled
states. Having calculated the EST and ST of all tasks, the EST and ST of units are easily calculated by,

ESTj = min{ESTi |i∈I(j)} (38)

STj = min{STi |i∈I(j)} (39)

 13

4.4. Integer Cuts

The preprocessing described in the previous section reduces the number of potential configurations by
tightening the existing and adding new assignment constraints in the MILP master problem (MP). Another
way to reduce the number of potential assignments is by generating integer cuts that explicitly forbid some
infeasible or suboptimal configurations that cannot be excluded by the tightening of domains. While one
simple integer cut is added at each iteration of the proposed algorithm, some integer cuts can be inferred
during preprocessing. The simple integer cuts and two more classes of cuts derived during preprocessing are
discussed next.

4.4.1. Integer Cuts I

The first class of integer cuts comprises of the simplest and weakest cuts that exclude the current assignment,
and its general form is:

1)1(
),(),(

−+≤−+ ∑∑
∈∈

kk

Nci
ic

Bci
ic NBZZ

kk

 or 1
),(),(

−≤− ∑∑
∈∈

k

Nci
ic

Bci
ic BZZ

kk

 (40)

where Bk and Nk are the sets of (i,c) pairs for which Zic = 1 and Zic=0, respectively, in the current iteration k.
The integer cut in (40) excludes only the current assignment. A stronger cut is one that excludes the current
assignment k and any other assignment that is a superset of assignment k; i.e. any assignment l for which
Bl⊇Bk. The general form of this cut is:

1
),(

−≤∑
∈

k

Bci
ic BZ

k

 (41)

While stronger, the integer cuts in (41) may cutoff feasible solutions. If economy of scale holds for batch-
sizes and processing times, then they can be safely used when the time horizon is fixed and the current
assignment Bk is infeasible, since any assignment Bl with Bl⊇Bk will also be infeasible. But they cannot be
used if the current assignment is feasible, because an assignment Bl with Bl⊇Bk may yield a higher profit. A
case where they can be added in every iteration is when the objective is the minimization of makespan and
processing times are constant; in this case, if an assignment Bk satisfies the demand and yields a makespan
MSk, then any assignment l that includes more tasks would yield a makespan MKl ≥ MKk.

4.4.2. Integer Cuts II

The motivation behind these cuts is to decompose the STN into subnetworks in order to identify infeasible
assignments of tasks as early as possible. To illustrate the derivation of this class of integer cuts consider the
process network shown in Figure 6. There, raw material RM1 is converted into intermediate INT1 (via tasks
T11, T12, T13 or T14 that are performed in unit U1), raw material RM2 is converted into intermediate INT2
(via tasks T21 or T22 that are performed in unit U2), intermediates INT1 and INT2 are fed in a 4:1 ratio for
task T31 in unit U1 to produce final product P1, and intermediate INT2 is converted into final product P2
(through task T32 also in unit U3). Each task has a constant cost c and a constant processing time pt shown
in Figure 6. The capacity of units U1, U2 and U3 is 5, 10 and 10 kg respectively. There is one order of 5 kg
of P1 to be met at t=6 and one order of 5 kg of P2 to be met at t=4. The objective is to find a schedule of
minimum cost that satisfies the demand and the due dates.

The Earliest Start Time (EST) for all tasks performed in units U1 and U2 is 0, while for tasks T31 and T32 it
is 2. Since the latest due date is at t=6, the scheduling horizon is 6 hours the Latest Finish Time (LFT) of all
tasks performed in units U1 and U2 is 4 and for T31and T32 in unit U3 is 6 (or STU1=STU2=2 and STU3=0).
Using these values, the proposed iterative scheme yields the series of assignments shown in Figure 7 (tasks
that are carried out are highlighted). The first three assignments include one of the tasks performed in U1,
and tasks T22, T31 and T32 and they are all infeasible. The reason for the infeasibility is that the duration of
task T22 is 3 hours, which means that intermediate INT2 becomes available at t=3, and thus the order of P2

 14

cannot be met on time. We can easily infer that in any feasible solution, task T21 must be carried out because
this is the only way intermediate INT2 becomes available at t=2. Hence, if we had this insight before starting
the iterative scheme and we had fixed binary ZT21,1 to 1, we would get the 4th assignment at the first iteration.
Note that similar reasoning can also be applied when processing times are variables, using the minimum
instead of the fixed processing time of tasks.

T11

T12

T13

T14

c=2.0
pt=4

T21

T22

T31

T32

RM1

RM2

INT1

INT2

P1

P2

U1 U2 U3

80%

20%
c=2.2
pt=4

c=2.4
pt=4

c=4
pt=2

c=3
pt=2

c=2
pt=3

c=4
pt=2

c=4
pt=2

Figure 6: Flow diagram for integer cuts.

Iteration 1:
Cost = 12.0
INFEASIBLE ASSIGNMENT
Cut: ZT11,1+ZT22,1+ZT31,1+ZT32,1≤3

Iteration 2:
Cost = 12.2
INFEASIBLE ASSIGNMENT
Cut: ZT12,1+ZT22,1+ZT31,1+ZT32,1≤3

Iteration 3:
Cost = 12.4
INFEASIBLE ASSIGNMENT
Cut: ZT13,1+ZT22,1+ZT31,1+ZT32,1≤3

Iteration 4:
Cost = 13.0
FEASIBLE ASSIGNMENT

a)

b)

c)

d)

T11

T12

T13

T14

T21

T22

T31

T32

RM1

RM2

INT1

INT2

P1

P2

U1 U2 U3

80%

20%

T11

T12

T13

T14

T21

T22

T31

T32

RM1

RM2

INT1

INT2

P1

P2

U1 U2 U3

80%

20%

T11

T12

T13

T14

T21

T22

T31

T32

RM1

RM2

INT1

INT2

P1

P2

U1 U2 U3

80%

20%

T11

T12

T13

T14

T21

T22

T31

T32

RM1

RM2

INT1

INT2

P1

P2

U1 U2 U3

80%

20%

Figure 7: Assignments of Master Problem

Based on this simple example we can in general decompose the process network into smaller subnetworks
and try to infer general rules (fixed assignments or integer cuts) that hold true in any solution. By
subnetworks we mean a subset of tasks that, (a) can be easily identified (e.g. with a procedure similar to the
one described in the next paragraph), and (b) are likely to give useful information (i.e. information that holds
true for larger sets of tasks and ideally for the entire process network). Such a subnetwork can be, for
example, the set of tasks used for the production of one individual product. In the example of Figure 6 the
process network can be decomposed into the two subnetworks shown in Figure 8. While no inference can be
made by the subnetwork for the production of P1, the second subnetwork reveals that in order to meet the
due date for product P2 we need to carry out task T21 (i.e. ZT21,1=1 in every feasible solution). Having fixed
ZT21,1, we then obtain the optimal assignment (Figure 7d) at the first iteration. Since (a) the capacity of unit
U2 is 10 kg, (b) the processing time of task T21 does not depend on the batch size and (c) for both orders we

 15

need 6 kg of INT2, we could have further inferred that no other task is needed to be carried out in unit U2
(i.e. ZT21,c = ZT22,c = 0, ∀c).

(a) Subnetwork for the production of P1

(b) Subnetwork for the production of P2

T11

T12

T13

T14

c=2.0
pt=4

T21

T22

T31

RM1

RM2

INT1

INT2

P1

U1 U2 U3

80%

20%
c=2.2
pt=4

c=2.4
pt=4

c=4
pt=2

c=3
pt=2

c=2
pt=3

c=4
pt=2

T21

T22

T32RM2
INT2

P2

U2 U3

c=3
pt=2

c=2
pt=3 c=4

pt=2

Figure 8: Subnetworks of process network of Figure 6.

In general, any network can be decomposed in |FP| subnetworks, and each subnetwork SN consists of a
subset of tasks SNI⊂ I and a subset of states SNS⊂ S. To identify such a subnetwork, we start from a final
product s*∈FP and, backtracking, we add to SNI and SNS all the tasks and states that are involved in the
production of s*. If O(s) is the set of tasks that produce state s, SI(i) is the set of input states to task i, and
RM is the set of raw material states, the formal procedure for the identification of the subnetwork that
corresponds to final product s* is the following:

SUBNET_PROC:
Initialization: SNI = ∅, SNS = {s*}, CI = O(s*)
Until CI = ∅
 For all i∈CI
 SNI = SNI∪{i}, CI = CI\{i}
 For all s∈SI(i)
 SNS = SNS∪{s}, CI = CI∪O(s)

For each subnetwork identified by SUBNET_PROC, we apply the proposed iterative algorithm and derive
cuts that have the general form of constraint (40) and exclude configurations that are infeasible for the
specific subnetwork; i.e. Integer Cuts II have the form of (40), where i∈SNI∩Bk. Moreover, since Integer
Cuts II have the form of equation (40), they exclude only one assignment and, thus, can be used for both
constant and variable processing times. Network-specific constraints that include only the Zic binaries,
similar to constraints in (31) of the CP subproblem, can be added also in the master problem and grouped as
Integer Cuts II. For the case of Zero Wait state that is produced by only one task A and consumed by only
one task B, for instance, we can add the following equation that allows assignments that consist of the same
number of copies of tasks A and B:

∑∑ =
c

Bc
c

Ac ZZ (42)

Note, that the restriction for zero-wait storage policy for one or more states makes, in general, continuous
MILP models very difficult to solve due to the additional time points needed for the finish time of the tasks
that produce ZW states. In contrast, this restriction makes the CP subproblem of the proposed approach
easier to solve because it becomes more tightly constrained.

 16

Depending on the plant topology, other sub-networks can also be studied. The equations added in this step
(fixing of variables or integer cuts) are Integer Cuts II. Any other cut that can be extracted from the structure
of the process network (based on heuristic rules, prior knowledge of the process network or any other source)
can be grouped in this class.

4.4.3. Integer Cuts III

In batch plants it is very common to have a number of identical parallel units in one stage, or similar tasks
that are carried out in the same unit. The similarity of these tasks is that they have the same processing time
but slightly different utility requirements or cost. Tasks T11, T12 and T13 of the network in Figure 6, for
example, are similar because they have equal processing times but different costs. This similarity usually
implies that if one of these tasks leads to an infeasible assignment, every other similar task will also give an
infeasible assignment. The high frequency at which these configurations appear in many problems led us to
develop a new class of integer cuts. The aim is to exclude similar assignments in as few iterations as
possible.

To motivate this class of cuts, consider the previous process network (Figure 6), with two orders of 5 kg each
for P1 due at t=4 and t=10, and one order of 5 kg of P2 due at t=8. The domain reduction for tasks and units
yields the results of Table 1.

Table 1: Earliest start and latest finish times of Example.

 T11 T12 T13 T14 T21 T22 T31 T32 U1 U2 U3
EST 0 0 0 0 0 0 2 2 0 0 2
LFT 8 8 8 8 8 8 10 8 8 8 10

Assuming that the time horizon of the two subnetworks used for the production of P1 and P2 is 10 and 8
hours, respectively, the study of the two subnetworks does not reveal any additional information (i.e. we
cannot derive any integer cut of type II). Thus, the iterative scheme yields the assignments that are shown in
Figure 9, and the optimal solution is found in the 8th iteration. Note that assignments 1, 2 and 3 are practically
the same because the processing times of tasks T11, T12 and T13 are the same. Similarly, assignments 4, 5
and 6 are identical to each other in terms of processing times. To exclude these two groups of similar
assignments, however, we need the first six integer cuts shown in Figure 9. It would be very useful, hence, to
develop a class of integer cuts that excludes a whole group of similar assignments. To do so, we need to
identify the classes of similar equipment units and define new binary variables.

The general procedure for deriving the third class of integer cuts is the following:
(a) Identify classes of similar tasks; i.e. tasks that perform identical operations (same input and output states

and same conversion factors) and with equal processing times. The set of similar tasks that belong to
class g is denoted by I(g).

(b) Define new binary variables Ygcn for each class g of similar tasks; binary Ygcn is 1 if, in the current
assignment, there are n of the cth copies of tasks in I(g). The value of the Ygcn binaries is determined by
the following equations that link the class binaries Ygcn to the task binaries Zic,

cgYnZ
gIn

gcn
gIi

ic ∀∀⋅= ∑∑
=∈

,
)|(|..1)(

 (43)

cgY
gIn

gcn ∀∀=∑
=

,1
)|(|..1

 (44)

In the example of Figure 6, for instance, if A is the class of tasks {T11, T12, T13} and in the current
assignment there are two copies of task T11 (ZT11,c =1, for c=1, 2), and one copy of task T12 (ZT12c =1,
for c=1), we will have YA12 =1, YA21 =1.

 17

(c) Develop integer cuts in the mixed (Ygcn, Zic) space: for any assignment that includes a task i∈I(g) use
equations (43) and (44) to calculate binaries Ygcn and develop a new cut (cut III) by replacing binaries Zic
with binary Ygnc in the corresponding integer cut I. Any integer cut that includes Ygcn binaries is called an
Integer Cut III.

Iteration 1:
Cost = 12.0
INFEASIBLE ASSIGNMENT
Cut: ZT11,1+ZT22,1+ZT31,1+ZT32,1≤3

Iteration 2:
Cost = 12.2
INFEASIBLE ASSIGNMENT
Cut: ZT12,1+ZT22,1+ZT31,1+ZT32,1≤3

Iteration 3:
Cost = 12.4
INFEASIBLE ASSIGNMENT
Cut: ZT13,1+ZT22,1+ZT31,1+ZT32,1≤3

Iteration 4:
Cost = 13.0
INFEASIBLE ASSIGNMENT
Cut: ZT11,1+ZT21,1+ZT31,1+ZT32,1≤3

Iteration 5:
Cost = 13.2
INFEASIBLE ASSIGNMENT
Cut: ZT12,1+ZT21,1+ZT31,1+ZT32,1≤3

Iteration 6:
Cost = 13.4
INFEASIBLE ASSIGNMENT
Cut: ZT13,1+ZT21,1+ZT31,1+ZT32,1≤3

Iteration 7:
Cost = 14.0
INFEASIBLE ASSIGNMENT
Cut: ZT14,1+ZT22,1+ZT31,1+ZT32,1≤3

Iteration 8:
Cost = 15.0
FEASIBLE ASSIGNMENT

T11

T12

T13

T14

T21

T22

T31

T32

RM1

RM2

INT1

INT2

P1

P2

U1 U2 U3

80%

20%

T11

T12

T13

T14

T21

T22

T31

T32

RM1

RM2

INT1

INT2

P1

P2

U1 U2 U3

80%

20%

T11

T12

T13

T14

T21

T22

T31

T32

RM1

RM2

INT1

INT2

P1

P2

U1 U2 U3

80%

20%

T11

T12

T13

T14

T21

T22

T31

T32

RM1

RM2

INT1

INT2

P1

P2

U1 U2 U3

80%

20%

T11

T12

T13

T14

T21

T22

T31

T32

RM1

RM2

INT1

INT2

P1

P2

U1 U2 U3

80%

20%

T11

T12

T13

T14

T21

T22

T31

T32

RM1

RM2

INT1

INT2

P1

P2

U1 U2 U3

80%

20%

T11

T12

T13

T14

T21

T22

T31

T32

RM1

RM2

INT1

INT2

P1

P2

U1 U2 U3

80%

20%

T11

T12

T13

T14

T21

T22

T31

T32

RM1

RM2

INT1

INT2

P1

P2

U1 U2 U3

80%

20%

Figure 9: Assignments derived by the master problem.

 18

In the example of Figure 6, tasks T11, T12 and T13 make up a class of similar tasks. Let A be this class. The
seven first assignments of Figure 9 and the corresponding integer cuts are given in the second and third
column, respectively, of Table 2.

Table 2: Assignments of Figure 9 and integer cuts I and III.

Iter. Tasks of assignment Integer Cut I Equation (43) Integer Cut III
1st T11, T22, T31, T32 ZT11,1+ZT22,1+ZT31,1+ZT32,1≤ 3 ZT11,1=1→ YA,1,1=1 YA,1,1+ZT22,1+ZT31,1+ZT32,1≤ 3
2nd T12, T22, T31, T32 ZT12,1+ZT22,1+ZT31,1+ZT32,1≤ 3 ZT12,1=1→ YA,1,1=1
3rd T13, T22, T31, T32 ZT13,1+ZT22,1+ZT31,1+ZT32,1≤ 3 ZT13,1=1→ YA,1,1=1
4th T11, T21, T31, T32 ZT11,1+ZT21,1+ZT31,1+ZT32,1≤ 3 ZT11,1=1→ YA,1,1=1 YA,1,1+ZT21,1+ZT31,1+ZT32,1≤ 3
5th T12, T21, T31, T32 ZT12,1+ZT21,1+ZT31,1+ZT32,1≤ 3 ZT12,1=1→ YA,1,1=1
6th T13, T21, T31, T32 ZT13,1+ZT21,1+ZT31,1+ZT32,1≤ 3 ZT13,1=1→ YA,1,1=1
7th T14, T21, T31, T32 ZT14,1+ZT21,1+ZT31,1+ZT32,1≤ 3

Using equations (43) and (44) we can calculate the value of binary YAnc at each iteration (shown in the fourth
column) and develop the new integer cuts III by replacing Zic for tasks in A by binary YAcn (fifth column).
Note that the six first assignments correspond to only two different assignments in the (Zic, Ygcn) – space. The
first integer cut III excludes the first three assignments and the second cut excludes the next three
assignments. Thus, we could have found the optimal assignment in only four iterations if we had added the
two integer cuts of the fifth column. Integer Cuts III can be used for both constant and variable processing
times.

4.5. Objective Functions and Properties of Upper and Lower Bounds

4.5.1. Maximization of Profit over a Fixed Time Horizon

Master problem objective: ∑
∈FPs

ss Ŝmax ζ (10a)

Subproblem objective: ∑ ∑ ∑
∈ ∈ ∈FPs sIi Cc

O
icss

i

B
)(

max ζ (32a)

where ζs is the price of final product s∈FP, MS in constraints (33) and (36), is equal to the fixed time horizon
H, and the dummy activity MS in the CP subproblem is fixed to start at t=H. The maximization of production
is a special case of this objective with ζs=1 for all s.

Since the objective is to maximize profit, assignments that are feasible with regard to each unit separately are
obtained by the master problem, and the upper bound provided by the master problem is often very large.
Even feasible assignments yield upper bounds that are usually much higher than their actual objective value
(calculated by the subproblem). The first CP subproblems are usually infeasible and the optimal solution
usually corresponds to the solution of one of the first feasible assignments, but a significant number of
additional iterations may be needed to prove optimality. A typical graph of the upper and lower bounds is
given in Figure 10a, where some assignments are infeasible, the upper-lower bound gap is large, and many
additional iterations are needed to prove optimality.

4.5.2. Minimization of Makespan for Fixed Demand (with no Due Dates)

Master problem objective: MSmin (10b)
Subproblem objective: endMS.min (32b)
where MS in constraints (33) and (34) is a variable, and MS.end is the finishing time of the dummy task MS
in the CP subproblem.

 19

Any assignment that fulfills the fixed demand is feasible for the CP subproblem, but the lower bound on
makespan calculated by the master problem is smaller than the actual makespan calculated by the
subproblem. Thus, the optimal assignment is usually found early in the iterative process and it takes a few
more iterations to prove optimality. A typical graph of the upper and lower bound for the minimization of
makespan problem is shown in Figure 10b, where all assignments are feasible, the upper-lower bound gap is
small and few additional iterations are needed to prove optimality.

4.5.3. Minimization of Production Cost for Fixed Demand with Due Dates

Master problem objective: ∑∑
∈i Cc

ici
i

ZPCmin (10c)

Subproblem is a feasibility problem
where PCi is the constant cost of carrying out task i.

The production cost of an assignment provided by the master problem is equal to the actual cost of this
assignment, if feasible. Thus, the first feasible assignment is the optimal assignment, and the last iteration
provides the only upper bound that is equal to the optimal solution and the current lower bound. This is
illustrated in Figure 10c.

Iterations

××××

Cost

××××
×××× ××××

×××× ×××× ×××× ×××× UB (subproblem)
LB (master problem)××××

××××Z*

Iterations

Makespan

×××× ×××× ××××
××××

××××

×××× UB (subproblem)
LB (master problem)××××

Z*

Iterations

××××

Profit

×××× ××××
××××

××××

UB (master problem)
LB (subproblem)××××

Z*
××××

(c) Minimization of Production Cost for Fixed Demand with Due Dates

(b) Minimization of Makespan for Fixed Demand (with no Due Dates)

(a) Maximization of Production over a Fixed Time Horizon

Figure 10: Graphs of upper and lower bounds for the three objectives.

Overall, the proposed method is computationally highly efficient when the objective function is the
minimization of makespan or the minimization of assignment cost, while it is moderately efficient when the
objective is the maximization of production or profit. The computational effort required for each iteration in
the presence of intermediate due dates remains the same, but the number of iterations needed to find the
optimal solution and prove optimality increases. Jain and Grossmann (2001) and Harjunkoski and

 20

Grossmann (2002) proposed similar, though simpler, approaches for the minimization of assignment cost in
single- and multi-stage batch plants, respectively, and showed that hybrid MIP/CP schemes are very
effective.

4.6. Remarks

4.6.1. Validity of Integer Cuts

Integer Cuts I in (40) are always valid while Integer Cuts I in (41) are valid only in special cases (e.g.
minimization of makespan with fixed processing times). In order to guarantee optimality, we use the form in
(41) only when they do not cut off feasible solutions. Integer Cuts II can be (a) equations that describe some
special structure or characteristic of the process network (e.g. constraint (42) for a ZW storage policy), or (b)
integer cuts derived from the study of the subnetworks derived by the SUBNET_PROC procedure. In both
cases they are always valid. Integer Cuts III are cuts that include the Ygcn binaries, and they are very useful
for multistage plants (Pinto and Grossmann, 1995) where in each stage there are many similar parallel units,
and many orders with different due dates have to be processed. Note that these cuts are valid if added during
preprocessing, and specifically, if added for the subnetworks identified by the SUBNET_PROC procedure,
but they may cut off feasible solutions if added in the main iterative scheme. In the current implementation,
however, they are added only for the subnetworks derived by the SUBNET_PROC procedure during the
preprocessing phase and are always valid.

4.6.2. Convergence

Since there is a finite number of assignments, the proposed hybrid scheme of Figure 3 is guaranteed to
converge in a finite number of iterations. Furthermore, the method is guaranteed to find the optimal solution,
since the master problem is a relaxation, and the integer cuts we use are always valid as discussed in 4.6.1.
The computational effort required for the convergence, however, varies considerably. Our computational
studies show that, besides the size of the model, there are three main factors affecting the performance of the
algorithm:

(a) The number of different possible assignments. Problems with many similar assignments are hard to solve

because there are many assignments with similar objective function values and it is hard to prove
optimality. Networks with many identical tasks or tasks that can be performed in many units usually
belong to this group of problems, and require a large number of iterations.

(b) The objective function. The quality of the lower and upper bound depends heavily on the objective
function. Specifically, since the master problem is a relaxation of the original problem, the tightness of
the bound of the master problem is not always good. If the objective function of the original problem can
be expressed in terms of the variables of the master problem the quality is good; otherwise it is not, and
many iterations may be needed to close the gap.

(c) The nature of the processing times (constant vs. variable) and the mass fractions. Most of the CP global
constraints accept integer arguments, which means that in the case of variable processing times or mass
fractions with many significant digits, fine discretization is needed for variables Bic, BI

ics, BO
ics and Dic

which are interconnected. In the other extreme, if processing times are constant and mass fractions are
equal to 1, Dic is constant and for the remaining variables a coarse discretization suffices.

The first two factors affect the number of iterations, while the third one affects the computational effort
needed for the solution of the CP subproblem and is discussed in section 4.6.4. The domain reduction
through preprocessing and the addition of integer cuts of type II and III is very successful in reducing the
number of potential assignments with similar objective function values. Any further cuts, heuristic rules or
other network-specific information that reduce the number of potential assignments can also be used to
reduce the number of iterations.

 21

4.6.3. Solution of Subproblem

The CP subproblem is a feasibility problem when we are trying to minimize cost and an optimization
problem when we are trying to maximize profit or minimize makespan. For the minimization of cost the
implementation is straightforward: the MILP master problem gives a non-decreasing lower bound and the CP
subproblem checks feasibility. The first feasible subproblem gives an upper bound equal to the current lower
bound, i.e. the optimal solution. When the CP subproblem is an optimization problem we can solve it either
as an optimization problem, or as successive feasibility problems in which the bound on the objective
function is updated. If solved as one optimization problem the implementation is straightforward, similar to
the one for the minimization of cost, but it is usually very expensive to optimize a CP model. If it is solved as
successive feasibility problems, the implementation is more complicated because it involves the solution of
successive CP models but it is usually more efficient, since each successive tree search is more tightly
constrained. When the objective is the minimization of makespan, the gap is small and thus few subproblems
need to be solved in each major iteration. Hence, in this work, we always solve successive feasibility CP
subproblems when we minimize makespan for fixed demand and in each subproblem we add the following
constraint,

MS.end ≤ MSk
where MSk is the makespan in the feasibility subproblem of the kth iteration.
For the maximization of profit, the gap between the upper and the lower bound is larger and we use both
approaches. The complete iterative schemes for all cases are shown in Figure 11, where for the maximization
of profit we solve one optimization subproblem.

MIP Master Problem
(3)–(9), (33), (37), (10b)

Obtain LB

Feasible
for MSk? MSκ<UB ?

MSk<UB?

LB<UB?
YES

NO

LB<UB?

CP Subproblem
(17) – (26), (29) – (31), (32b)

Obtain UB

Fixed
Assignment
Set MSk=LB

Set MSk=MSk+1
YES

NO

YES

NO
NO

Set UB=MSk

YES

YES

NO

(b) Minimization of Makespan

NO

YES

MIP Master Problem
(3)-(9), (33), (37), (10a)

Obtain UB

CP Subproblem
(17) – (26), (29) – (31), (32a)

Obtain LB
LB<UB ?

Fixed
Assignment

Add Integer
Cuts III

YES
NO

LB<UB ?

(a) Maximization of Income/Production/Profit

Feasible
Assignment ?

YES

NO

MIP Master Problem
(3)–(9), (33), (37), (10c)

Obtain LB

CP Subproblem
(17) – (31)

Fixed
Assignment

Add Integer
Cuts III

(c) Minimization of cost

Figure 11: Iterative Scheme

 22

4.6.4. Discretization

The global constraints requires, consumes and produces and the constructs activity, discrete resource and
reservoir accept integer arguments; i.e. the arguments Ricr, BI

ics, BO
ics and Dic in constraints (12), (14) and

(24)-(26) must be integer variables, and the arguments Rr
MAX, Cs,and S0s in constraints (12) and (13) must be

integer constants. Thus, variables Dic, Bic, Ricr, BI
ics and BO

ics of the CP subproblem must be integers, while
they satisfy constraints (18a) – (21) that interconnect them. To ensure that these variables are integers we
should discretize the domains of the variables so that αi and γi are integers and the products of Bic with βi, δir,
ρI

is and ρO
is are also integers. Depending on the values of constants αi, βi, γir, δir, ρI

is and ρO
is, and the required

resolution this may result in very large domains for variables Dic, Bic, Ricr, BI
ics and BO

ics. A general rule is that
fine discretization is needed when the greatest common factor of αi, βi, γir, δir, ρI

is and ρO
is constants is very

small.

Consider, for instance, that the processing time of task A is given by,

DA = 1 + 0.5 BA (in hours)
where BA is the batch-size of task A in tons. Assuming that BA takes values in [2,6], we can deduce that DA
takes values in [2,4]. In Constraint Programming, variables BA and DA must be integers, which means that BA
takes values in {2,3,4,5,6}. Since DA should be an integer, we should scale our variables, i.e. the duration of
the time intervals should be ½ hour instead of 1 hour and the processing time is given by:
DA = 2 + BA (in ½ hours)
If finer resolution is required, we can also scale BA variable, i.e. express BA in hundreds of kilograms, which
means that BA∈{20, 21, … 60}. In this case the time discretization should be in intervals of 3 minutes, i.e. the
domain of DA is {20, 21, 22, ..80} and DA is given by:

DA = 20 + BA (in 3 mins)
In general, the finer the resolution the harder to solve a CP problem, but note that in CP we can use much
finer resolution than in discrete-time STN models. Moreover, in CP we can approximate the values of some
of these constants (as in discrete-time STN), but we can also approximate (overestimate) the processing time
of tasks without rounding the batch size of a task. A common approximation, for example, is to replace
constraint (18a) with the following two constraints that do not require that the RHS of (18a) is an integer:

iiciiic CcZWiBD ∈∀∈∀+≥ ,βα (18a’)

iiciiic CcZWiBD ∈∀∈∀++< ,1βα (18a”)

The duration of task A when BA is expressed in tons (i.e. BA∈{2,3,4,5,6}), for example, can be defined by its
domain (i.e. DA∈{2,3,4}) and the following two constraints (note that DA is exact when BA is even, and it is
an overestimation of the actual processing time when BA is odd):

DA ≥ 1 + 0.5 BA (in hours)

DA < 1 + 0.5 BA +1 (in hours)
It is important to note that despite the approximations that might be needed, the proposed method yields
consistently better solutions than the exact MILP models. As shown in the next paragraph, exact MILP
models are computationally expensive to solve and thus yield suboptimal solutions, whereas the proposed
method, in the worst case, yields an “approximation” of the optimal solution, which is better than an exact
suboptimal solution.

 23

5. Examples

To illustrate the implementation of the proposed algorithm we first solve two examples (from Papageorgiou
and Pantelides, 1996) of multipurpose batch plants, assuming constant processing times and no resource
constraints other than equipment. Computational results for constant and variable processing times and both
maximization of profit and minimization of makespan for the first example are reported in section 6, as well
as comparisons with the MILP model of Maravelias and Grossmann (2003a).

5.1. Example 1

A multi-stage batch plant is used for the production of three products P1, P2 and P3 as shown in Figure 12.
Unlimited storage is available for raw materials and final products, finite intermediate storage is available for
the intermediates produced in the first stage and zero-wait policy applies for the intermediates produced in
the second stage. The objective is to maximize the overall production of the plant over a time horizon of 15
hours. Sufficient amounts of raw materials are available at the beginning of the scheduling horizon, while
there are zero amounts of all other states. Unit and storage tank capacity data as well as processing time data
are given in Appendix E.

T10
F1

T11
S10

T12
S11 P1

T20
F2

T21
S20

T22
S21 P2

T30
F3

T31
S30

T32
S31 P3

Unlimited Storage

Finite Storage

Zero-Wait

U1 U2 U3
Figure 12: Process network of Example 1.

The EST and LFT determined in the preprocessing stage are reported in Table 3. No integer cuts of type II
and III are derived due to the small size of the problem and the absence of similar tasks and units. If we allow
up to five copies for all tasks, the optimal solution with an objective function value of 12 units is found in 4
iterations. The bounds and the assignments of all iterations are reported in Table 4, with the number of copies
in parentheses if greater than 1. If a feasible solution has been found (i.e. a lower bound is available), the CP
subproblem is solved as a feasibility subproblem where we are looking for solutions better than the current
lower bound. The upper bound calculated by the master problem is equal to 12 for all iterations. The first
assignment is infeasible. The second is feasible and yields a lower bound of 11. The third assignment is also
infeasible. The fourth assignment is feasible and yields a solution of 12, which means that a lower bound of
12 is found, and since the upper bound is also 12, this is the optimal solution. The total CPU time is 0.48
seconds.

Table 3: Task EST and LFT for Example 1 (in hours)

Task/Unit T10 T20 T30 T11 T21 T31 T12 T22 T32 U1 U2 U3
EST 0 0 0 4 3 2 6 5 3 0 2 3
LFT 4 4 3 2 2 2 0 0 0 3 2 0

Note that if the maximum number of copies were four rather than five, the optimal assignment is obtained
and the optimality is proved in only one iteration. The Gantt chart of tasks for the optimal solution obtained
is shown in Figure 13, where the batch size of tasks T10, T20 and T30 is 4 tons and the batch size of all other
tasks is 2 tons. Note that the tasks in the third stage start as soon as the tasks in the second stage finish, due to
the zero-wait policy for intermediates S11, S21 and S31.

 24

Table 4: Progress of algorithm for Example 1.
Iteration Master MILP Problem CP Subproblem
 UB Assignment: Task (no of copies) Solution LB
1 12 T10, T11(2), T12(2), T20(2), T21(3), T22(3), T30, T31, T32 Infeasible -
2 12 T10(2), T11(3), T12(3), T30(2), T31(3), T32(3) Feasible with Z = 11 11
3 12 T10(2), T11(4), T12(4), T30(2), T31(2), T32(2) Infeasible for Z > 11 11
4 12 T10, T11(2), T12(2), T20, T21(2), T22(2), T30, T31(2), T32(2) Feasible for Z > 11 12

0 2 4 6 8 10 12 14 15 t (hr)

HT
Tasks
T10
T20
T30
T11
T21
T31
T12
T22
T32

U1

U2

U3

Product P1

Product P2

Product P3

Figure 13: Task Gantt chart for Example 1.

5.2. Example 2

The batch plant of Figure 14 is used for the production of four final products (P1, P2, P3 and P4) from 6 raw
materials (F1, F2, … F6). It involves 8 units, 27 states and 19 tasks. Some of these tasks can be performed in
more than one unit. Unlimited storage is available for raw materials and final products, finite intermediate
storage is available for states S20, S30, S31, S61 and S71, no intermediate storage is available for states S40,
S50 and S60 and zero-wait policy applies for states S10, S21, S22 and S70. Sufficient amounts of raw
materials and zero amounts of all other states are available at the beginning of the scheduling horizon. The
objective is to minimize the makespan for a fixed production of 5 tons for all products. Unit and storage tank
capacity data as well as processing time data are given in Appendix E.

T10 T11 T21 T22 T23
F2 S10 INT1 S21 S22 P1

T61 T62 T70 T71 T72
F5 S61 INT4 S70 S71 P4

T20
F1

T60
F6

S20

S72

T31 T32
F4 S31

T30
F3 S30

T40 T41INT2
S40

T50 T51
S50

INT3

P2

P3

S60

0.25

0.75

0.80

0.20 0.50

0.50

0.40

0.60

0.65

0.35

0.95

0.05

0.15

0.85

Figure 14: Process network for Example 2.

 25

Since there are no similar equipment and units, no integer cuts of type III are used. Since NIS policy applies
for state S60, and tasks T60 and T61 can be carried in only one unit, we add an integer cut of type II that
enforces the condition that in any solution the number of copies of task T60 is equal to the number of copies
of task T61,

∑∑ =
c

cT
c

cT ZZ ,61,60

The same condition is imposed for the zero wait states, i.e. for the following pairs of tasks: (T10, T11), (T21,
T22), (T22, T23) and (T71, T72). Moreover, since the objective is the minimization of makespan the integer
cuts I exclude not only the current assignment, but also every superset of the current assignment [equation
(41)].

Assuming that we can have at most 4 copies of each task, the optimal solution of 15 hours is found in 5
iterations. The assignment that gives the optimal solution is found in the first iteration with a lower bound of
14 hours. Successive feasibility CP problems are solved for this assignment, and a feasible schedule with a
makespan of 15 hours is found in the second subproblem. The subsequent master problems give solutions
with a lower bound on the makespan equal to 14 hours, but none of these assignments yields a feasible
schedule with makespan shorter than 15 hours. The fifth MILP is infeasible, which means that there are no
more assignments that can meet the given demand. The total computational time is 1.80 CPU seconds, from
which 0.03 seconds are spent in preprocessing, 0.70 seconds are spent for the master problem (approximately
0.14 sec for each MILP), and 1.07 seconds are spent for all the CP subproblems. The Gantt chart of the
optimal solution is shown in Figure 15, where the batch size of each task is given in parentheses.

T10 (3) T21 (5)

T31 (5)

T32 (5) T32 (5) T32 (5)

T31 (7)

T30(3) T60 (1)

T20(1)

T61 (3)

T23 (5)

0 2 4 6 8 10 12 14 15 t (hr)

T50 (5) T40 (5)

T70 (6)

T11 (3) T22 (5) T41(5)

T71(6) T72(6)

U1
U2
U3
U4
U5
U6
U7
U8 T51(5)T62 (4)

Figure 15: Equipment Gantt chart for Example 2 without changeovers.

We next solve Example 2 assuming a changeover time of 1 hour between different tasks performed in the
same unit. An optimal solution of 16 hours was obtained in 5 iterations and 2.66 of CPU seconds (0.03 for
preprocessing, 0.71 for MILPs and 1.92 CPU seconds for all CP problems). Note that the increase in
computational effort for changeover times is very small. The equipment Gantt chart of the solution is shown
in Figure 16. The schedule of Figure 16 is different from the schedule of Figure 15 in that (a) task T60 starts
in unit U4 at t=3 instead of t=2 due to the changeover time, (b) task T62 starts in unit U8 at t=4 instead of
t=3 because the intermediate S60 produced by T60 becomes available 1 hour later, and (c) task T72 starts at
t=15 (instead of t=14) due to the changeover time needed in unit U8.

Note that when changeover times are included, the CP formulation of the subproblem remains practically the
same. The only differences are that we should now define a transition type (TT) for the activities performed
in the unit for which changeover times are required, through equation (45), provide the matrix of changeover
times and define UnaryResources and Activities through equations (46) and (47), respectively, instead of
equations (11) and (14):

 26

Tasks TT[t in Tasks,c in Copies] = t; (45)

UnaryResource Equipment[Units] (m); (46)
Activity Task[t in Tasks, c in Copies] (DurA[t,c]) transitionType TT[t,c]; (47)
where TT is the type of transition and m is the matrix of changeover times (i.e. it is defined for every pair of
tasks).

T10 (3) T21 (5)

T31 (5)

T32 (5) T32 (5) T32 (5)

T31 (7)

T30(3) T60 (1)

T20(1)

T61 (3)

T23 (5)

0 2 4 6 8 10 12 14 15 16 t (hr)

T50 (5) T40 (5)

T70 (6)

T11 (3) T22 (5) T41(5)

T71(6) T72(6)

U1
U2
U3
U4
U5
U6
U7
U8 T51(5)

Setup Time

T62 (43)

Figure 16: Equipment Gantt chart for Example 2 with changeovers.

6. Computational Issues

6.1. Computational Results and Comparisons

In this section we present computational comparisons with the STN model of Maravelias and Grossmann
(2003a) which appears to be among the most effective continuous-time MILP models for general scheduling
problems. This model is solved using GAMS 20.7/CPLEX 7.5, while the hybrid scheme was modeled in
OPL Studio 3.5, using CPLEX 7.5 for the master MILP and ILOG’s Solver 5.2 for the CP subproblem. The
default CPLEX and Solver options have been used in all cases. A Pentium III PC at 670 MHz running
Redhat Linux is used for both approaches. The comparison is made for both constant and variable processing
times, for six different instances of Example 1. In instances Pr1, Pr2 and Pr3 we maximize the total
production over a fixed time horizon of 15, 20 and 25 hours, respectively. In instances Ms1, Ms2 and Ms3
we minimize the makespan for fixed demands. The demand for products P1/P2/P3 in instances Ms1, Ms2
and Ms3 are 4/5/6, 5/6/8 and 5/8/10 tons, respectively. Suffices c and f are used to characterize the instances
with constant and variable, respectively, processing times. For the hybrid scheme, we have used a maximum
number of five copies in all instances (i.e. |Ci|=5).

Note that in continuous-time MILP models, the quality of the solution obtained and the computational effort
required depend heavily on the number of time intervals in which the time horizon is divided. The minimum
number of time points needed to obtain the optimal solution is usually found through an iterative procedure
where the number of time points is increased until there is no improvement in the objective function. This
procedure, however, does not guarantee that the globally optimal solution is found, as one might get the same
solution when the number of time points is increased by one, but then obtain a better solution when the
number of time points is increased by two. This feature is not required in the MILP master problem of the
proposed hybrid method.

The computational results of the two methods for constant processing times are reported in Table 5. For the
maximization of production, the MILP model of Maravelias and Grossmann obtained the optimal solution in
all instances with 10, 12 and 15 time points, respectively. Reasonable computational effort was required for

 27

instances Pr1c and Pr3c (58.5 and 523.6 CPU secs, respectively), while more than 4.5 CPU hours were
required for Pr2c. It seems that the reason for the large computational requirements of instance Pr2c is the
existence of many “equivalent” solutions. Specifically, the earliest start time for unit U3 is t=3 hours and the
processing times of all tasks that can be performed in unit U3 is 2 hours. This implies that for a total time
horizon of 20 hours (as in Pr2c) the total available time for processing time in unit U3 is 17 hours, while the
maximum number of tasks assigned to U3 is 8. Since the total processing time in unit U3 is 16 hours (8 tasks
* 2 hours) and the total available time is 17 (=20-3) hours, there are several different solutions with exactly
the same objective. These solutions can be obtained by moving the tasks in U3 (forward or backward) by one
hour. While these solutions are different solutions for the MILP models, they correspond to the same solution
of the master problem of the proposed approach and thus examined only once.

Table 5: Computational results for Example 1 for constant processing times.

 MILP STN Model MILP/CP Hybrid Scheme
Case H (hours) Obj ($103) Time Points Nodes CPU sec Obj ($103) # iter’s CPU sec
Pr1c 15 12 10 739 58.5 12 4 0.48
Pr2c 20 16 12 150,922 16,749.2 16 3 0.32
Pr3c 25 22 15 1,570 523.6 22 4 0.43
 Demand (tons) Obj (hr) Obj (hr)
Ms1c 4/5/6 23* 13 171,251 36,000 19 1 0.22
Ms2c 5/6/8 - ** 16 111,700 36,000 23 1 11.20
Ms3c 5/8/10 - ** 19 57,000 36,000 27 1 0.37

* Suboptimal solution: Gap 35%
** No integer solution found

For the minimization of makespan for fixed demands, the MILP model is intractable. Instance Ms1c is the
only one for which an integer solution is found with 13 time points, while instances Ms2c and Ms3c were
solved for various time grids (i.e. no of time points) but no integer feasible solution was found in 36,000
CPU seconds. The computational statistics reported in Table 5, correspond to the MILP with the minimum
number of time points that can represent the optimal solution found by the hybrid algorithm. The proposed
algorithm, on the other hand, obtained the optimal solution for all instances of both objectives. For the
maximization of profit instances Pr1c, Pr2c and Pr3c it required 0.48, 0.32 and 0.43 CPU seconds,
respectively. It is, therefore, more than two orders of magnitude faster that the MILP model for instances
Pr1c and Pr3c, and more than four orders of magnitude faster for instance Pr2c. Instances Ms1c, Ms2c and
Ms3c, for the minimization of makespan with fixed demand, were also solved to optimality in less than 12
seconds. Compared to the results of the MILP model, we see that problems that were unsolvable with
continuous-time MILP models are solved in seconds with the proposed scheme.

The problem becomes more difficult for both methods when variable processing times are used. Due to the
large number of time points and the excessive computational effort needed to solve large problems, the MILP
model cannot find the optimal solution in none of the Pr1v, Pr2v and Pr3v instances. Feasible solutions are
found for certain time grids, but when finer time grids are used the model becomes intractable. To illustrate
we report in Table 6 the computational statistics of the MILP model of Maravelias and Grossmann for
various time grids, for instance Pr3v. As shown, models with up to 11 time points are solved with reasonable
computational effort, but when 12 or more time points are used, the model becomes intractable. Specifically,
a solution with an objective value of 14.0 is obtained when 10 time points are used; an improved solution
with an objective value of 16.0 is obtained with 11 time points; but no further improvement is possible,
because the problems with more than 11 time points can only yield suboptimal solutions within the time limit
of 36,000 CPU seconds. Hence, the best solution for the MILP is 16 (obtained with 11 time points). This is a
feature common to all continuous-time MILP models, and restricts their use to mid-size problems.

 28

Table 6: Computational statistics of the MILP model of Maravelias and Grossmann (2003a) for Pr3v.
Time Points 10 11 12 13 14
Objective 14.0 16.0 16.0 * 13.0 * 12.5 *
Best Bound - - 17.98 19.98 21.95
Gap (%) - - 12.4 53.7 75.6
Nodes 37 1,669 173,893 110,531 86,198
CPU sec 16.9 356.0 36,000 36,000 36,000

* Optimality not proved

The computational comparison of the two methods for variable processing times is given in Table 7. For the
maximization of production, we were not able to find the optimal solution using the continuous-time MILP
formulation because when more than 12 time points were used the resulting models could not be solved to
optimality. Thus, for each instance we report the statistics of the MILP that obtained the best solution in
36,000 CPU seconds (which is significantly smaller than the sum of the CPU times spent for all the MILP
models with different number of points). The problem of minimizing makespan for fixed demand proved to
be even more difficult for the MILP model as we were not able to get a single integer solution for any of the
three instances. In Table 7 we report the computational statistics of the MILP with the smallest number of
time points that was not infeasible for the specified demand.

Table 7: Computational results for Example 1 for variable processing times.

 MILP STN Model ♦ MILP/CP Hybrid Scheme ♦♦
Case H (hours) Obj ($103) Time points Nodes CPU sec Obj ($103) # iter’s CPU sec
Pr1v 15 11.9* 12 215,214 36,000 12.0 31 8.85
Pr2v 20 12.0 ** 12 175,799 36,000 16.5 125 297.76
Pr3v 25 16.0 11 1,669 356.0 20.5 60 36,000
 Demand (tons) Obj (hr) Obj (hr)
Ms1v 4/5/6 - *** 13 98,400 36,000 19.7 31 11.28
Ms2v 5/6/8 - *** 14 58,500 36,000 23.8 33 27.67
Ms3v 5/8/10 - *** 15 52,400 36,000 28.1 38 3,120.79

♦ Statistics of the MILP that gave the best solution in 36,000 CPU-s.
♦♦ Best solutions with 5 copies for each task.
* Suboptimal solution: Gap 0.05%
** Suboptimal solution: Gap 32.9%
*** No integer solution found

In the proposed hybrid approach we need to scale and approximate the parameters and scale the time horizon
when we have variable processing times (see section 4.6.4.). In order to reduce the domains of the variables
we have overestimated some processing times. The parameters that we used for this approximation are given
in Table E4 of Appendix E. Nevertheless, the hybrid scheme yields better solutions than the MILP model in
all instances. For the maximization of profit we obtained better solutions than the ones obtained by the MILP
model, and with significantly less computational effort for instances Pr1v and Pr2v. As explained above, the
MILP for instance Pr3v yields a suboptimal solution (profit = 16) in 356 CPU seconds but it becomes
intractable for finer time partitions (Table 6) and no better solution can be found. The proposed scheme, in
contrast, yields a much better solution (profit = 20.5). For the minimization of makespan we obtained the
optimal solution (in terms of tasks) but with slightly overestimated makespan due to the scaling and the
overestimation of processing times. As shown, and especially for the minimization of makespan, the
proposed algorithm enables us to solve problems that were unsolvable with the existing tools.

Finally, in Table 8 we present the number of iterations and the CPU time required for the preprocessing step,
the solution of all MILP master problems and the solution of all CP subproblems. As shown, computational
requirements for preprocessing are negligible for all instances. Note, however, that for these examples we
only calculate EST and LFT of tasks and units (i.e. Preprocessing I of Figure 3) but we do not derive any
integer cuts of type II and III (i.e. Preprocessing II of Figure 3) that could be potentially more time

 29

consuming. The ratio of the total time spent for the solution of the MILP master-problem over the total time
spent for the solution of the CP subproblem is variable: it is close to 1 for the easiest problems (instances
Pr1c, Pr2c, Pr3c and Ms1c) but it decreases as problems become more difficult; it is almost three orders of
magnitude smaller for instance Pr3v. An interesting observation is that the time needed for the solution of a
single MILP problem does not increase significantly as the problems becomes more difficult: it varies
between 0.055 CPU-s per iteration (Pr3c) up to 0.5 CPU-s per iteration (Pr3v). Hence, the factor that seems
to affect the computational efficiency of the proposed scheme the most is the solution of the CP subproblem.
Note that in CP the user can customize the search by choosing the order of variables at which branching is
performed, constraint propagation rules (disjunctive, edge-finding, etc.) and search strategy (depth first, best
first, slice-based, depth-bounded discrepancy, etc.). Hence, we were able to greatly enhance the solution of
the CP subproblem by fine tuning, but for comparison reasons here we report the CPU requirements needed
when the standard CP and MILP options are used both for the MILP of Maravelias and Grossmann (2003a)
and the proposed hybrid scheme.

Table 8: Computational results for Example 1 for variable processing times.

Problem Instance Iterations Detailed Computational Requirements (CPU-s)
 Pre-processing MILP CP Total
Example 1
Constant Pr1 4 0.02 0.26 0.20 0.48
Processing Pr2 3 0.02 0.18 0.12 0.32
Times Pr3 4 0.03 0.22 0.18 0.43
 Ms1 1 0.01 0.1 0.11 0.22
 Ms2 1 0.02 0.1 11.08 11.20
 Ms3 1 0.02 0.09 0.26 0.37
Variable Pr1 31 0.02 6.74 2.09 8.85
Processing Pr2 125 0.02 54.02 243.72 297.76
Times Pr3 60 0.02 29.98 35,970.00 36,000
 Ms1 31 0.02 4.05 7.21 11.28
 Ms2 33 0.02 4.66 22.99 27.67
 Ms3 38 0.02 5.33 3,115.44 3,120.79
Example 2
 w/o setups 5 0.03 0.70 1.07 1.80
 w/ setups 5 0.03 0.71 1.92 2.66

6.2. Remarks

6.2.1. Feasibility Emphasis in MILP Solvers

In order to obtain a single feasible solution for the minimization of makespan using the MILP model of
Maravelias and Grossmann, we could have used the CPLEX option for emphasis on feasibility. When we
used this option we were indeed able to get feasible solutions for more instances, but these solutions were
very poor and it was not possible to improve them in 36,000 CPU seconds.

6.2.3. Discrete-time STN Formulations

The reason we chose to compare the proposed method with a continuous-time STN model is because
continuous-time STN models are, in principle, more general than discrete-time STN models. Despite the
approximations needed, however, discrete-time models are widely used in practice because they are very
effective. Variable processing times can be handled through the introduction of additional binary variables
(Kondili et al., 1993). Moreover, an iterative scheme was recently proposed (Maravelias and Grossmann,
2003c) to address the problem of minimization of makespan of multipurpose batch plants using a discrete-
time representation.

 30

6.2.3. Application of Preprocessing in MILP Formulations

It is legitimate to argue that for a fair comparison between the proposed method and standalone MILP
models, preprocessing must be applied to both approaches. However, it is not clear how to apply the
preprocessing described in this paper for MILP models. Specifically, it is not clear how to relate EST and
LST of tasks and units with the Win binaries used in continuous-time MILP models to denote the start of task
i at time point n. Consider, for example, that the EST of unit j is t=3 hours. Since, in continuous-time models
we do not know a priori when a time point occurs, we cannot fix any of the Win binaries, other than the one
that corresponds to t=0. Given that point n=0 corresponds to the start of the scheduling horizon (i.e. t=0), if
the first time point (n=1) corresponds to t=2 (i.e. T1=2) we could have fixed Wi1 = 0 ∀i∈I(j), but if the first
point corresponds to t=4 this constraint is incorrect. In discrete-time STN models (where we know when a
time point occurs) it is possible to fix binaries to zero, but these constraints are usually automatically
satisfied by the MIP formulation. Moreover, most commercial solvers that are used for the solution of the
MILP models have very efficient preprocessing routines.

6.2.4. Application of Integer Cuts in MILP Formulations

Similarly, it is not straightforward how to lift an integer cut in the space of Win binaries. Consider, for
example, the following cut:

ZA1 + ZB1 - ZC1 ≤ 1 (48)
which excludes a solution in which tasks A and B are performed and task C is not performed.
Can we write this cut using binaries WAn, WBn and WCn? In general, we cannot replace Zi binaries by the
summation of Win binaries over n, because such a cut excludes more assignments:

Σn WAn + Σn WAn - Σn WAn ≤ 1 (49)
The integer cut in (49), for example, excludes the possibly feasible assignment where task A is performed
twice and tasks B and C are not performed at all. The only case where cuts can be lifted in the space of the
Win binaries is when tasks can be performed only once (in this case equation (49) is correct). This case,
however, is a very restricted subclass of multipurpose batch plants; actually, one of the main advantages of
STN representation is that it is not restricted to this subclass of problems. Moreover, for this subclass of
problems there are several things that can be done to enhance the performance of both the proposed method
and MILP models.
Finally, another issue that has to be resolved is how we acquire these or other types of cuts from a standalone
MILP representation. In the proposed framework we identify assignments in the master problem and check
feasibility in the subproblem. What type of iterative scheme can be used with continuous-time MILP
models? Run a MILP solver for some time and check what binary combinations are infeasible? This would
be practically impossible because there is no direct way to extract this information from a MILP solver, the
space of binary variables in MILP models is much bigger than the one in the master problem of the proposed
approach, and has never been proposed in the past. An alternative would be to use the proposed framework
to derive some integer cuts, lift them in the space of Win binaries (only for the special subclass discussed
above), and add these cuts in the MILP formulation. In this case, however, we would still need the proposed
hybrid scheme. Overall, although pre-processing and integer cuts could potentially benefit standalone MILP
formulations as well, currently there is no direct way to apply these enhancements in MILP STN-based
formulations.

 31

7. Conclusions

A hybrid MILP/CP framework for STN scheduling problems has been presented in this paper. The proposed
framework integrates traditional MILP and CP techniques, exploiting their complementary strengths. Mixed-
Integer Programming is used to identify potentially good assignments of equipment units to tasks and
Constraint Programming is used to check feasibility and/or to derive optimal feasible schedules for specific
assignments. Various classes of integer cuts are presented to exclude infeasible or previously examined
assignments, and a graph-theoretic procedure is developed for pre-processing and domain reduction. The
proposed framework is very general as it handles: (a) variable batch sizes and processing times, (b) complex
plant configurations with batch splitting, mixing and recycle streams, (c) resource constraints other than
equipment, and (d) different storage policies. Moreover, various objective functions can be accommodated. It
can also be used as a two-level planning and scheduling tool, where the medium-term planning decisions
(type and no of tasks needed and assignment of tasks to units) are made by the master MILP problem and the
short-term detailed scheduling decisions are made by the CP subproblem. The proposed method can be
extended to almost all batch plant configurations, where the MILP master problem can be enriched with
constraints that represent the special structure of the problem, and the CP subproblem can be simplified if
some of the features are not needed. Finally, the computational results showed that for some classes of
problems the proposed MILP/CP hybrid algorithm was orders of magnitude faster than MILP models,
enabling us to solve problems that are practically unsolvable with existing tools.

Acknowledgements
The authors gratefully acknowledge financial support from the National Science Foundation under Grant
ACI-0121497.

Nomenclature

Indices
i Tasks
j Equipment units
c Copies of task
r Resource categories (utilities)
s States
g Classes of similar tasks
d Orders
Sets
ZW Set of tasks producing materials for which zero-wait storage policy applies
FP Set of final products
INT Set of intermediate states
I(j) Set of tasks that can be scheduled on equipment j
I(s) Set of tasks that use state s as input
I(FP) Set of tasks that produce final products
I(g) Set of tasks that belong to class g
O(s) Set of tasks that produce state s
SI(i) Set of states consumed by task i
SO(i) Set of states produced by task i
Parameters
H Time horizon
αi Fixed duration of task i

 32

βi Variable duration of task i
γir Fixed amount or utility r required for task i
δir Variable amount of utility r required for task i
ρI

is /ρO
is Mass balance coefficient for the consumption/production of state s in task i

S0s Initial amount of state s
Cs Storage capacity for state s
RMAX

r Upper bound for utility r
BMIN

i / BMAX
i Lower/upper bounds on the batch size of task i

ζs Price of state s
ADd Amount due for order d
TDd Due date of order d
ESTi /STi /LFTi Earliest Start Time / Shortest Tail / Latest Finish Time of task i
ESTj /STj /LFTj Earliest Start Time / Shortest Tail / Latest Finish Time of unit j

Variables of MILP Master Problem (MP)
Binary Variables
Zic =1 if batch c of task i is performed
Ygcn =1 if there are n cth copies of tasks in I(g)
Continuous Variables
MS Makespan
Dic Duration of copy c of task i
Bic Batch size of copy c of task i

sŜ Amount of state s

Variables and constructs of CP Subproblem (SP)
Variables
Dic Duration of copy c of task i
Bic Batch size of copy c of task i
BI

ics / BO
ics Amount of state s consumed/produced by copy c of task i

Ricr Amount of utility r consumed by copy c of task i
Constraint Programming Constructs
MS Dummy activity that appears at the end of the scheduling horizon
Task[i,c] Activity that represents the cth copy of task i with duration Dic
Order[d] Activity used to represent orders with due dates
Unit[j] Unary resource that represents the equipment unit j
Utility[r] Discrete resource that represents utility r with maximum capacity Rr

MAX

State[s] Reservoir that represents state s, with initial inventory S0s and storage capacity Cs.

Variables of MILP model of Maravelias and Grossmann (2003a)
Binary Variables
Wsin =1 if task i starts at time point n
Wpin =1 if task i is being processed at time point n
Wfin =1 if task i finishes at or before time point n
Continuous Variables
Tn Time that corresponds to time point n
Tsin Start time of task i that starts at time point n
Tfin Finish time of task i that starts at time point n
Din Duration of task i that starts at time point n
Bsin Batch size of task i that starts at time point n
Bpin Batch size of task i that is processed at time point n
Bfin Batch size of task i that finishes at or before time point n

 33

BI
isn Amount of state s used as input for task i at time point n

BO
isn Amount of state s produced from task i at or before time point n

Ssn Amount of state s available at time point n
RI

irn Amount of utility r consumed at time point n by task i
RO

irn Amount of utility r released at or before time point n by task i
Rrn Amount of utility r consumed at time point n

Appendix A: ILOG’s OPL Studio 3.5 Modeling Language

In this paper we model CP subproblems using the modeling language of ILOG’s OPL Studio 3.5, which has
a number of global constraints and special constructs that are specifically developed for scheduling
applications. The special constructs are:

Activity: It is equivalent to a job or a task. There are three variables associated with each activity a: its start
time (a.start), its duration (a.duration) and its end time (a.end). The user has to define a.duration.
Unary Resource: It is a resource with capacity equal to 1 that can be used by only one activity at a time. It is
used to model equipment units.
Discrete Resource: It is a resource with (integer) capacity R>1 and it is used to model discrete (e.g.
manpower) and continuous resources (cooling water). Its constant capacity R is user-defined.
Reservoir: It is an entity that can be consumed/produced by a task and it is used to model the chemicals that
are consumed/produced by tasks (activities). Its capacity C and initial amount S0 are user-defined.

Let TASK be an activity, UNIT a unary resource, UTILITY a discrete resource and STATE a reservoir. The
global constraints used in the CP subproblem are:

TASK requires UNIT (A1)
TASK requires RTASK UTILITY (A2)
TASK consumes BI STATE (A3)
TASK produces BO STATE (A4)

where requires, consumes and produces are OPL’s special global constraints.
Constraint (A1) is an assignment constraint that assigns and sequences activity TASK to unary resource
UNIT, taking into account that at most one activity can be assigned to UNIT at any given time point.
Constraint (A2) allocates RTASK units of discrete resource UTILITY to activity TASK, taking into account that
at most R units of UTILITY can be allocated to all activities at any time point. Constraints (A3) and (A4) are
used for the calculation of the amount of reservoir STATE consumed and produced by activity TASK, taking
into account that the level of reservoir STATE at any time cannot be less than zero and cannot exceed its
maximum capacity C.

Appendix B: MILP Model of Maravelias and Grossmann (2003a)

Among the continuous-time models the model of Maravelias and Grossmann (2003a) appears to be quite
general in terms of the plant configurations and computationally among the most effective. This model is

 34

presented here for reference and computational comparisons with the proposed hybrid MILP/CP
decomposition scheme.

Binaries Wsin (Wfin) are 1 if task i starts at time point n (finishes at or before time point n). Variable Tn is the
time at which time point n occurs, Din is the duration of task i that starts at time point n, and Tsin (Tfin) is the
start (finish) time of task i. Variables Bsin, Bpin and Bfin correspond to the batch size of task i that starts at, is
being processed at, and finishes at or before time point n, respectively. Variable BO

isn (BI
isn) represents the

amount of state s produced (consumed) by task i at time point n. Variable RI
irn (RO

irn) represents the amount
of renewable resource (utility) r consumed (released) by task i at time point n. The amount of state s stored at
point n is denoted by Ssn:

Assignment Constraints

njWfWs
jIi nn

inin ∀∀≤−∑ ∑
∈ ≤

,1)(
)('

''
 (B1)

iWfWs
n

in
n

in ∀=∑∑ (B2)

njWs
jIi

in ∀∀≤∑
∈

,1
)(

 (B3)

njWf
jIi

in ∀∀≤∑
∈

,1
)(

 (B4)

Calculation of Duration and Finish Time of Tasks
niBsWsD iniiniin ∀∀+= ,βα (B5)

niWsHDTsTf inininin ∀∀−++≤ ,)1((B6)

niWsHDTsTf inininin ∀∀−−+≥ ,)1((B7)

niWsHTfTf ininin ∀∀⋅≤− − ,1 (B8)

niWsTfTf iniinin ∀∀⋅≥− − ,1 α (B9)

Time-matching Constraints
niTTs nin ∀∀= , (B10)

niWfHTTf innin ∀∀−+≤− ,)1(1 (B11)

niZWiWfHTTf innin ∀∈∀−−≥−),()1(1 (B12)

Batch-size, Storage Constraints and Material Balances
niWsBBsWsB in

MAX
iinin

MIN
i ∀∀≤≤ , (B13)

niWfBBfWfB in
MAX
iinin

MIN
i ∀∀≤≤ , (B14)

niWfWsBBpWfWsB
nn

in
nn

in
MAX
iin

nn
in

nn
in

MIN
i ∀∀−≤≤− ∑∑∑∑

≤<≤<

,)()(
'

'
'

'
'

'
'

' (B15)

niBfBpBpBs inininin ∀∀+=+ −− ,11 (B16)

)(,, iSIsniBsB inis
I
isn ∈∀∀∀= ρ (B17)

)(,, iSOsniBfB inis
O
isn ∈∀∀∀= ρ (B18)

nsBBSS
sIi

I
isn

sOi

O
isnnssn ∀∀−+= ∑∑

∈∈
− ,

)()(
1,

 (B19)

nsCS ssn ∀∀≤ , (B20)

 35

Utility Constraints
nriBsWsR inirsinir

I
irn ∀∀∀+= ,,δγ (B21)

nriBfWfR inirsinir
O
irn ∀∀∀+= ,,δγ (B22)

nrRRRR
i

I
irn

i

O
irnrnrn ∀∀+−= ∑∑ −− ,11

 (B23)

nrRR MAX
rrn ∀∀≤ , (B24)

Ordering of Time Points
01 =T (B25)

HT n =|| (B26)

nTT nn ∀≥+1 (B27)

Tightening Valid Inequalities

∑ ∑
∈

∀≤
)(jIi n

in jHD (B28)

∑ ∑
∈ ≥

∀∀−≤
)('

' ,
jIi

n
nn

in njTHD (B29)

∑ ∑
∈ ≤

∀∀≤+
)(

'
'

' ,)(
jIi

niin
nn

iin njTBfWf βα (B30)

∑ ==
s

sNsnSZ ζ||max (B31)

Wsin, Wfin ∈ {0,1}, Bsin, Bpin, Bfin, SSsn, Ssn, Tn, Tsin, Tfin, Din, BI
isn, BO

isn RI
irn, RO

irn, Rrn ≥ 0 (B32)

Constraints (B1) – (B4) are the assignment constraints and constraints (B5) – (B9) are used for the
calculation and tightening of the duration, Din, and the finish time, Tfin, of task i. The elimination of start
time, Tsin, is accomplished through (B10), while constraints (B11) and (B12) are used for time matching
between finish time, Tfin, and Tn. Constraints (B13) – (B18) are used for the bounding of batch sizes (Bsin,
Bpin and Bfin) and the amount of state s produced BO

isn (consumed BI
isn) by task i at time point n. Constraint

(B19) is the mass balance for state s at time n, and constraint (B20) is a capacity constraint, where Cs is the
capacity of the storage tank. The amount RI

rn of renewable resource r required by task i starting at time point
n is calculated by constraint (B21). The same amount RO

rn is “released” when task i finishes, and is
calculated by constraint (B22). The total amount of resource r required at time n is calculated in (B23) and
bounded, not to exceed the maximum availability Rr

MAX, by (B24). Equations (B25) – (B27) define the start
and the end of the time horizon and enforce an ordering among time points. The addition of valid inequalities
(B28), (B29) and (B30) tightens the LP relaxation and significantly reduces the size of the branch-and-bound
tree. The MILP model (M) for the maximization of profit over a fixed time horizon H consists of equations
(B1) to (B32).

If the objective is to minimize the makespan MS for fixed demand, the following changes need to be made:
(a) The objective function is,
 MSmin (B31’)
(b) Addition of constraint (33) that enforces that the demand is met,

 NnsdS ssn =∀≥ , or NnsdS ssn =∀= , (B33)

 where ds is the demand for state s at the end of the horizon.
(c) The length of the fixed time horizon, H, is replaced by the makespan, MS, in constraints (B26), (B28) and

(B29). The parameter H is used in all other constraints as an upper bound on the makespan MS.

 36

The model (M’) for the minimization of makespan consists of equations (B1) – (B30), (B31’) and (B32) -
(B33). Finally, a generalization of model (M) that accounts for due dates and delivery dates has been
proposed by Maravelias and Grossmann (2003b).

Appendix C: Derivation of MILP Master Model (MP)

In order to show that the master problem (MP) of the proposed scheme is a relaxation of the model (M) of
Maravelias and Grossmann (2003a), we first need to clarify the relation between copies c∈Ci and time points
n∈N. In the model (M) the authors divide the time horizon into |N-1| time periods, and each task can start at
the beginning of any of these intervals (Wsin=1 and Bsin ≠ 0), i.e. can take place more than once. The number
NBi

M of batches of task i can then be calculated from,

IiWsNB
Nn

in
M
i ∈∀= ∑

∈

 (C1)

In the master problem (MP) of the proposed approach we use the notion of “copies” of task i, i.e. we
postulate, through equation (1), a maximum number of copies (batches) |Ci|=Ci

MAX for each task i. The
binary Zic is equal to 1 if copy c of task i takes place [subject to constraint (8) that is a symmetry-breaking
constraint]. The number NBi

MP of batches of task i is defined by,

IiZNB
iCc

ic
MP
i ∈∀= ∑

∈
 (C2)

For a solution of model (M) to be mapped onto a solution of model (MP), it is necessary (but not sufficient)
NBi

MP to be equal to NBi
M. Furthermore, for any solution of (M) we can find an equivalent solution of (MP)

where the earliest batch (i.e. the smallest n for which Wsin=1) of task i of model (M) corresponds to the first
(c=1) copy of task i of model (MP), the second earliest batch of (M) corresponds to the second copy of (MP),
etc., and, moreover, the duration and batch size of each batch of task i in (M) is equal to the duration and
batch size of the corresponding copy of task i in (MP).

Taking into account the relationship between copies c∈Ci of model (MP) and time periods n∈N of model
(M), we can say that any solution of model (M) is also feasible for model (MP) because,
1. Constraints (2) are the same as constraints (B28); constraints (B28) have some additional zero terms

for the time periods where no task starts.
2. Constraints (3) are a subset of constraints (B5).
3. Constraints (4) are a subset of constraints (B13).
4. By adding constraints (B19) of (M) for all n∈N and state s we get:

∑
∈

−=
)(

10 0
sIi

I
isss BSS

∑∑
∈∈

−+=
)(

1
)(

101
sIi

I
is

sOi

O
isss BBSS

∑∑
∈∈

−+=
)(

2
)(

212
sIi

I
is

sOi

O
isss BBSS

…
∑

∈
− +=

)(
||1||,||

sOi

O
NisNsNs BSS

or

∑ ∑∑ ∑
−

= ∈= ∈

−+=
1||

0)(

||

1)(
|| 0

N

n sIi

I
isn

N

n sOi

O
isnsNs BBSS

Reversing the order of summation and plugging in equations (B17) and (B18) we get:

 37

∑ ∑∑ ∑
∈

−

=∈ =
−+=

)(

1||

0)(

||

1
|| 0

sIi

N

n

I
in

I
is

sOi

N

n

O
in

O
issNs BBSS ρρ (C3)

As explained above, for any solution of (M) we can construct a solution of (MP) with the same
number of batches, and equal durations and batchsizes. Thus, the internal summations can be replaced
by summations over the set of copies of (MP),

∑ ∑∑ ∑
∈∈

−+=
)()(

|| 0
sIi c

I
in

I
is

sOi c

O
in

O
issNs BBSS ρρ

which is the same as constraint (5) of the master problem, if sŜ =Ss|N|, i.e. the variable sŜ of the master
problem (MP) corresponds to the final amount of state s in the (M) model.

5. Constraints (6) are the same as constraints (B33)
6. Constraints (7) are the same as constraints (B20) for n=|N|.
7. Constraints (8) are symmetry breaking constraints that cannot be mapped into the space of (M) model.

Hence, from the above it follows that model (MP) consists either of constraints of model (M), or of
constraints that are linear combinations of constraints of model (M). This implies that (MP) is a relaxation of
(M) and that any solution of (M) can be “mapped” into a solution of (MP). The master problem (MP),
therefore, provides an upper bound to the profit and a lower bound to the cost and the makespan.

Appendix D: Example of Calculation of EST and ST of Tasks

Consider the STN network of Figure D1, where we assume, for simplicity, that the processing times of all
tasks are 2 hours (Di=2, ∀i) and raw materials RM1, RM2 and intermediate INT3 are available at time t=0.

R1

R2 R4

R3
80%

20%

70%

40%

60%30%

RM1

RM2

INT1

INT2

INT3
P1

P2R5
INT4

70%

30%

Figure D1: Process network of example for calculation of EST and ST of tasks.

Since RM2 is initially available and R2 consumes only RM2, we have ESTR2=0. Similarly, the ESTR3=0.
Intermediates INT1 and INT2 are produced only by task R2 and thus they will become available at
ESTR2+DR2=2, i.e. ATINT1=ATINT2=2. Task R1 can only start if both RM1 and INT1 are available, which
means that ESTR1=max{ATRM1, ATINT1}=max{0,2}=2. Similarly, task R4 consumes intermediates INT2 and
INT3, and thus ESTR3=max{ATINT3, ATINT2}={0,2}=2. Since intermediate INT3 is available at t=0 task R3 can
start immediately (ESTR3=0). Intermediate INT4 is produced by both R3 and R4 which means that it
becomes first available at ATINT4=min{ESTR3+DR3, ESTR4+D4}={0+2, 2+2}=2. Finally, task R5 can start
when INT4 is available, i.e. ESTR5=ATINT4=2. We need not calculate the ATP1 and ATP2. The sequence of
calculations is shown in Figure D2, where the new calculations are highlighted.

For the calculation of ST of tasks, we have MTP1=MTP2=0 and we first calculate STR5 = 0, which implies that
MTINT4=DR5=2. Task R3 is used for the production of both P1 and INT4 and thus we have STR3 = min{MTP1,
MTINT4} = 0. Since task R4 produces only state INT4, STR4=MTINT4=2. State INT3 is used for both tasks R3
and R4, so MTINT3 = min{STR3+DR3, STR4+DR4} = min{0+2, 2+2} = 2. For state INT2 we have MTINT3 = STR4
+ D4 = 4. Similarly, STR1=2 and STR2=4. We need not calculate MTRM1 and MTRM2.

 38

R1

R2 R4

R3RM1

RM2

INT1

INT2

INT3
P1

P2R5
INT4

ATRM1=0

ATRM2=0

ATINT3=0

ESTR2=0

ATRM2=2

R1

R2 R4

R3RM1

RM2

INT1

INT2

INT3
P1

P2R5
INT4

ATRM1=0

ATRM2=0

ATINT3=0

ESTR2=0

ATRM2=2

ESTR1=2

ATINT2=2 ESTR4=2

ESTR3=0

ATINT4=2 ESTR5=2

R1

R2 R4

R3RM1

RM2

INT1

INT2

INT3
P1

P2R5
INT4

ATRM1=0

ATRM2=0

ATINT3=0

ESTR3=0

(a)

(b)

(c)

ATINT2=2

Figure D2: Calculations of for EST of tasks.

Appendix E: Example Data

Table E1: Data for Example 1.

State F1 F2 F3 S10 S20 S30 S11 S21 S31 P1 P2 P3
Capacity UIS UIS UIS 10 10 10 ZW ZW ZW UIS UIS UIS
S0 (ton) 100 100 100 - - - - - - - - -
ζ ($103/ton) - - - - - - - - - 1 1 1

Table E2: Data for Example 1 for constant processing times.

Task T10 T20 T30 T11 T21 T31 T12 T22 T32
Unit U1 U1 U1 U2 U2 U2 U3 U3 U3
BMIN (ton) 1 1 1 1 1 1 1 1 1
BMAX (ton) 5 5 5 2 2 2 3 3 3
α (hr) 4 3 2 2 2 1 2 2 2

Table E3: Exact data for Example 1 for variable processing times.

Task T10 T11 T12 T20 T21 T22 T30 T31 T32
Unit U1 U2 U3 U1 U2 U3 U1 U2 U3
BMIN (ton) 2.5 1 1.5 2.5 1 1.5 2.5 1 1.5
BMAX (ton) 5 2 3 5 2 3 5 2 3
α (hr) 1 0.5 0.5 0.75 0.5 0.5 0.5 0.25 0.5
β (hr/ton) 0.8 1 0.667 0.6 1 0.667 0.4 0.5 0.667

 39

Table E4: Data for Example 1 for variable processing times: parameters used for approximation
Task T10 T20 T30 T11 T21 T31 T12 T22 T32
Unit U1 U1 U1 U2 U2 U2 U3 U3 U3
BMIN (500 kg) 5 2 3 5 2 3 5 2 3
BMAX (500 kg) 10 4 6 10 4 6 10 4 6
α (6 min) 10 5 7 8 5 7 5 1 7
β (6 min/ 500 kg) 4 5 3 3 5 3 2 3 3

Table E5: Data for Example 2.

State F1 F2 F3 F4 F5 F6 S10 S20 S21 S22 S30 S31 S40 S50
Capacity 100 100 100 100 100 100 0 10 0 0 20 20 0 0
S0 (kg) 100 100 100 100 100 100 - - - - - - - -

State S60 S61 S70 S71 S72 IN1 IN2 IN3 IN4 P1 P2 P3 P4
Capacity 0 20 0 10 2.5 100 100 100 100 100 100 100 100
S0 (kg) - - - - - - - - - - - - -

Table E6: Data for Example 2.

Task T10 T11 T20 T21 T22 T23 T30 T31 T32 T40
Duration (hr) 3 2 3 2 2 2 1 2 3 2
Unit U1 U7 U5 U1 U7 U4 U4 U3 U2 U5
BMIN (ton) 1 1 1 1 1 1 1 1 1 1
BMAX (ton) 6 7 8 6 7 7 7 7 5 8

Task T41 T50 T51 T60 T61 T62 T70 T71 T72
Duration (hr) 1 2 1 2 3 2 2 1 1
Unit U2/U7 U5 U2/U8 U4 U6 U8 U6 U8 U8
BMIN (ton) 1 1 1 1 1 1 1 1 1
BMAX (ton) 5/7 8 5/8 7 6 8 6 8 8

References

Baptiste, P.; Le Pape, C.; Nuijten, W. Constrained-Based Scheduling: Applying Constraint Programming to Scheduling

Problems. Kluwer Academic Publishers, 2001.
Castro, P.; Barbosa-Povoa, A. P. F. D.; Matos, H. An Improved RTN Continuous-Time Formulation for the Short-term

Scheduling of Multipurpose Batch Plants, Ind. Eng. Chem. Res., 2001, 40, 2059-2068.
Harjunkoski, I.; Grossmann, I.E. Decomposition Techniques for Multistage Scheduling Problems Using Mixed-Integer

and Constrained Programming Methods. Comp. Chem. Engng., 2002, 26, 1533-1552.
Hentenryck, P.V. Constraint Satisfaction in Logic Programming. MIT Press, Cambridge, MA, 1989.
Hentenryck, P.V. Constraint and Integer Programming in OPL. INFORMS Journal on Computing, 2002, 14(4), 345-

372.
Hooker, J. Logic Based Methods for Optimization: Combining Optimization and Constraint Satisfaction. John Willey

and Sons, Inc. New York, 2000.
Hooker, J.N. Logic, Optimization, and Constraint Programming. INFORMS Journal on Computing, 2002, 14(4), 295-

321.
Ierapetritou, M. G.; Floudas, C. A. Effective Continuous-Time Formulation for Short-Term Scheduling. 1.

Multipurpose Batch Processes. Ind. Eng. Chem. Res., 1998, 37, 4341-4359.
Ierapetritou, M. G.; Floudas, C. A. Effective Continuous-Time Formulation for Short-Term Scheduling. 2. Continuous

and Semicontinuous Processes. Ind. Eng. Chem. Res., 1998, 37, 4360-4374.
ILOG OPL Studio 3.5: The Optimization Language, ILOG Inc., 2001.
ILOG OPL Studio 3.5: The User’s Manual, ILOG Inc., 2001.

 40

Jain, V.; Grossmann, I.E. Algorithms for Hybrid MILP/CP Model for a Class of Optimization Problems. INFORMS
Journal in Computing, 2001, 13, 258-276.

Kondili, E.; Pantelides, C. C.; Sargent, R. A General Algorithm for Short-Term Scheduling of Batch Operations – I.
MILP Formulation. Comput. Chem. Eng. 1993, 17, 211-227.

Kyu-Hwang Lee; Heung Il Park; In Beum Lee. A Novel Nonuniform Discrete Time Formulation for Short-Term
Scheduling of Batch and Continuous Processes. Ind. Eng. Chem. Res., 2001, 40, 4902-4911.

Maravelias, C.T.; Grossmann, I.E. A New General Continuous-Time State Task Network Formulation for the Short-
Term Scheduling of Multipurpose Batch Plants. Ind. Eng. Chem. Res., 2003, 42(13), 3056-3074.

Maravelias, C. T.; Grossmann, I. E. A Continuous-Time State Task Network Formulation for the Short-Term
Scheduling of Multipurpose Batch Plants with Due Dates. PSE 2003, Kunming, China.

Maravelias, C.T.; Grossmann, I.E. Minimization of the Makespan with a Discrete-Time State-Task Network
Formulation. Ind. Eng. Chem. Res., 2003, 42(24), 6252-6257.

Marriott, K. Stuckey, P.J. Introduction to Constraint Logic Programming. MIT Press, Cambridge, MA, 1999.
Mendez, C.A.; Cerda, J. Optimal Scheduling of Resource-Constrained Multiproduct Batch Plant Supplying

Intermediates to Nearby End-product Facilities. Comp. Chem. Engng., 2000, 24, 369-376.
Mendez, C.A.; Henning, G.P.; Cerda, J. Optimal Scheduling of Batch Plants Satisfying Multiple Product Orders with

Different Due Dates. Comp. Chem. Engng., 2000, 24, 2223-2245.
Mendez, C.A.; Henning, G.P.; Cerda, J. An MILP Continuous-Time Approach to Short-Term Scheduling of Resource-

Constrained Multistage Flowshop Batch Facilities. Comp. Chem. Engng., 2001, 25, 701-711.
Mockus, L.; Reklaitis, G.V. Continuous Time Representation Approach to Batch and Continuous Process Scheduling.

1. MINLP Formulation. Ind. Eng. Chem. Res. 1999, 38, 197-203.
Nemhauser, G.L.; Wolsey, L.A. Integer and Combinatorial Optimization, John Willey and Sons, Inc., New York, 1989.
Pantelides, C. C. Unified Frameworks for the Optimal Process Planning and Scheduling. In Proceedings on the Second

Conference on Foundations of Computer Aided Operations (editors D.W.T. Rippin and J. Hale), 1994, 253-274.
Papageorgiou, L.G.; Pantelides, C.C. Optimal Campaign Planning/Scheduling of Multipurpose Batch/Semicontinuous

Plants. 2. Mathematical Decomposition Approach. Ind. Eng. Chem. Res., 1996, 35, 510-529.
Pinto, J. M.; Grossmann, I.E. A Continuous Time Mixed Integer Linear Programming Model for Short Term

Scheduling of Multistage Batch Plants. Ind. Eng. Chem. Res., 1995, 34, 3037-3051.
Rodrigues, M. M.; Latre, L.G.; Rodrigues, L.A. Short-term Planning and Scheduling in Multipurpose Batch Chemical

Plants: A Multi-level Approach. Comput. Chem. Eng. , 2000, 24, 2247-2258.
Schilling, G.; Pantelides, C. C. A Simple Continuous-Time Process Scheduling Formulation and a Novel Solution

Algorithm. Comput. Chem. Eng. , 1996, 20, S1221-1226.
Shah, N.; E.; Pantelides, C. C.; Sargent, R. A General Algorithm for Short-Term Scheduling of Batch Operations – IΙ.

Computational Issues. Comput. Chem. Eng. 1993, 17, 229-244.
Zhang, X.; Sargent, R. W. H. The Optimal Operation of Mixed Production Facilities – General Formulation and Some

Approaches for the Solution. Comput. Chem. Eng., 1996, 20, 897-904.

