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Abstract 
A hybrid Mixed-Integer Linear Programming (MILP)/Constraint Programming (CP) decomposition 
algorithm is proposed for the short-term scheduling of batch plants that rely on the State Task Network 
representation. The decisions about the type and number of tasks performed, as well as the assignment of 
units to tasks are made by the MILP master problem. The CP subproblem checks the feasibility of a 
specific assignment and generates integer cuts for the master problem. A graph-theoretic preprocessing 
that determines time windows for the tasks and equipment units is also performed to enhance the 
performance of the algorithm. To exclude as many infeasible configurations as possible, three classes of 
integer cuts are generated. Various objective functions such as the minimization of assignment cost, the 
minimization of makespan for fixed demand and the maximization of profit for a fixed time horizon can 
be accommodated. Variable batch-sizes and durations, different storage policies, and resource constraints 
are taken into account. The proposed framework is very general and can be used for the solution of 
almost all batch scheduling problems. Numerical results show that for some classes of problems, the 
proposed algorithm can be two to three orders of magnitude faster than standalone MILP and CP models. 

 
 
 
1. Introduction 
 
The problem of short term scheduling of general (or multipurpose) batch plants has received considerable 
attention in the literature. Kondili et al. (1993) proposed the discrete-time State Task Network (STN) 
representation, and Shah et al. (1993) proposed a reformulation. The equivalent Resource Task Network 
(RTN) representation was proposed by Pantelides (1994). Continuous time representations, which are more 
general but potentially difficult to solve, were proposed by Sargent and Zhang (1995), and Mockus and 
Reklaitis (1999). Based on the STN and RTN representations, several other continuous time MILP models 
have been proposed since then (e.g. Ierapetritou and Floudas, 1998; Lee et al., 2001; Castro et al., 2001; 
Maravelias and Grossmann, 2003a). Although the performance of these models in several test problems has 
proved to be encouraging, their major limitation is that for large problems they can become computationally 
expensive due to the big-M constraints that are used for time matching. This has led previous workers to 
consider special cases of the general multipurpose batch plant problem. Some of the common assumptions 
are, (a) no resource constraints other than equipment, and (b) no batch splitting and mixing. Furthermore, the 
computational performance of STN- and RTN-based models is poor when the objective is the minimization 
of makespan for a given demand. For short-term scheduling, however, the demands are usually fixed, which 
implies that the minimization of makespan or the minimization of production cost is often a more realistic 
objective. 
 
Constraint Programming (CP) is a new modeling and solution paradigm that has proved to be very effective 
for solving certain classes of problems (van Hentenryck, 1989; Marriot and Stuckey, 1999; Hooker, 2000). 
                                                 
∗ To whom all correspondence should be addressed:  
   E-mail: grossmann@cmu.edu, Tel: 412-268-3642, Fax: 412-268-7139 



 2

Constraint Programming is particularly effective for solving feasibility problems and seems to be better than 
traditional MILP approaches in discrete optimization problems where finding a feasible solution is difficult. 
The lack of an obvious relaxation, however, makes CP worse for loosely constrained problems, where the 
focus is on finding the optimal solution among many feasible ones and proving optimality. Constraint 
Programming has been successfully used for some classes of scheduling problems (Baptiste et al., 2001).  
 
In the general short-term scheduling of multipurpose batch plants the number of tasks (jobs) is not known a 
priori: it is a decision variable that is to be determined by the optimization. Moreover, in its general form 
(variable processing times and batch sizes, recycle streams, batch splitting/mixing, resources other than 
equipment, changeover times) the scheduling problem is loosely constrained and a standalone CP approach is 
not efficient. Thus, in this work we have combined the traditional MILP approach with the CP approach in 
order to take advantage of their complementary strengths. We use MILP to optimize and find partial 
solutions and CP to check feasibility and produce complete solutions. Similar approaches have been 
proposed by Jain and Grossmann (2001), and Harjunkoski and Grossmann (2002) for the restricted cases of 
minimization of assignment cost of single and multistage batch plants, respectively, yielding considerable 
computational improvements compared to standalone MILP and CP models.  
 
The proposed hybrid MILP/CP method consists of two phases and is based on the MILP model by 
Maravelias and Grossmann (2003a). In the first phase we determine the earliest start times (EST) and the 
latest finish times (LFT) of tasks and units, and derive strong integer cuts that exclude infeasible 
“subconfigurations.” In the second phase we use an iterative scheme where we solve a master MILP model 
and a CP subproblem. The master problem yields a set of tasks to be performed and their assignments to 
units. The subproblem checks feasibility and derives a feasible schedule, if one exists, for the assignment 
obtained by the master problem. Integer cuts are added in the master problem to exclude the current 
assignment. Three objective functions are considered: (a) minimization of makespan subject to satisfying a 
given demand, (b) maximization of profit for a fixed time horizon, and (c) minimization of cost subject to 
satisfying given orders with due dates. Numerical examples are presented that show that orders of magnitude 
reduction in computational effort can be achieved with the proposed hybrid approach. 
 
 
 
2. Background 
 
2.1. Mixed-Integer Formulations for Multipurpose Batch Plants 
 
In this paper we address the scheduling of multipurpose batch plants. An example is shown in Figure 1, 
where raw material S1 is heated to form intermediate S2, which is then used for the production of 
intermediate S3 (Reaction 1), intermediate S4 and final product S5 (Reaction 2). Intermediates S3 and S4 are 
mixed to produce final product S7 (Reaction 3) and intermediate S3 is purified to give final product S6 and 
S2 that is recycled (Separation). Multipurpose batch plants exhibit a number of features that make their 
modeling challenging. As shown in Figure 1, unlike traditional scheduling problems where each batch can be 
viewed as an entity moving throughout the plant, we may have batch splitting (e.g. a batch of S2 can be used 
for Reaction 1 and Reaction 2), batch mixing (e.g. intermediates S3 and S4 are mixed to produce one batch 
of S7) or recycle streams. Thus, general batch plants can be viewed as the generalization of all possible plant 
configurations. Furthermore, the duration and the batch size of the tasks may not be constant. Moreover, 
resource constraints other than those on equipment units may be present (e.g. manpower, cooling water, etc.), 
and different storage policies (UIS/FIS/NIS/ZW) can be applied for the various chemicals. In order to 
account for all these issues, we need to monitor the level of inventories and the level of resource 
consumption throughout the time horizon. To do so, we need to partition the time horizon into a sufficiently 
large number of periods and enforce equipment unit, utility and inventory feasibility for all time periods, 
which leads to large and difficult to solve formulations.  
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Figure 1: Multipurpose batch plant 

 
Kondili et al. (1993) formulated the STN representation for batch scheduling with an MILP using a discrete-
time representation (Figure 2a), where the time horizon is divided into H intervals of equal duration, 
common for all units, and where the tasks begin and finish at a time point. This means that the duration of the 
intervals must be equal to the greatest common factor of the processing times of tasks and that the discrete-
time representation can only be used when the processing times are constant. The assumption of constant 
processing times is not always realistic, while the length of the intervals may be so small that it either leads 
to a prohibitive number of intervals rendering the resulting model unsolvable, or else it requires 
approximations which may compromise the feasibility and optimality of the solution. It should be noted that 
the Resource Task Network (RTN) formulation by Pantelides (1994) provides a more compact representation 
but shares similar limitations as the STN model. 
 
To circumvent the above cited difficulties, two different continuous-time representations have been proposed 
in which the time horizon is divided into time intervals of unequal and unknown duration, common for all 
units. In the continuous time representation I (Figure 2b), each task must start and finish exactly at a time 
point (Zhang and Sargent, 1995; Schilling and Pantelides, 1996; Mockus and Reklaitis, 1999), while in the 
representation II (Figure 2c), each task must start at a time point but it need not finish at a time point (Castro 
et al., 2001). In both representations, the number of time points is determined with an iterative procedure, 
during which the number of time points is increased by one until there is no improvement in the objective 
function. Since time points are not fixed, constraints that match a time point with the start (or finish) of a task 
are necessary. These constraints are big-M constraints that result in poor LP relaxations. On the other hand, 
the continuous-time representation accounts for variable processing times, and is more realistic than the 
discrete-time representation. It also requires significantly fewer time intervals and hence leads to smaller 
problems. A combination of the two types of continuous-time representations was proposed by Maravelias 
and Grossmann (2003a). 
 
An alternative approach is the event-point representation (Figure 2d) proposed by Ierapetritou and Floudas 
(1998), where time events are not common for all units. In this approach, the time horizon is divided into a 
number of events which are different for each unit, subject to certain sequencing constraints. Since events 
need not be common among units, the number of events necessary in this approach is usually smaller than 
the number of periods required in other continuous-time representations, and the proposed model is faster 
compared to continuous-time STN formulations with common time grid. However, as has been shown in 
Maravelias and Grossmann (2003a), this representation may not always yield accurate representations of 
batch operations. 
 
Finally, a number of papers address special cases of multipurpose batch plants (Rodrigues et al., 2000; 
Mendez et al., 2000; Mendez and Cerda, 2000; Mendez et al., 2001; Lee et al., 2001). In most of these 
papers, special assumptions are made to allow the development of special MILP models that are easier to 
solve. Some of the common assumptions are, (a) the plant has some special configuration, (b) no batch 
splitting and mixing is allowed, and (c) there are no resource constraints other than those on equipment units.  
 
The objective function in most of these approaches is the maximization of profit for a fixed time horizon. In 
short-term scheduling, however, the demand is usually fixed and more meaningful objectives are to minimize 
the makespan for a fixed demand, or minimize the production cost for fixed demands with due dates. As has 



 4

been shown, however, the computational performance of STN-based MILP models is poor when the 
objective is the minimization of makespan. For this reason we consider Constraint Programming as an 
alternative solution technique.  
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Figure 2: Time Representations. 

 
 
2.2. Constraint Programming and MILP/CP Integration Schemes 
 
Constraint Programming (van Hentenryck, 1989; Hooker, 2000) was originally developed to solve feasibility 
problems, but it has been extended to solve optimization problems as well. Constraint programming (CP) is 
based on performing a tree enumeration by reducing at each node the domains of the variables, which can be 
continuous, general integer, boolean and binary. If an empty domain is found the domain is pruned. 
Branching is performed whenever a domain of an integer, binary or boolean variable has more than one 
element, or when the bounds of the domain of a continuous variable do not lie within a tolerance. Whenever 
a solution is found, or a domain of a variable is reduced, new constraints are added. The search terminates 
when no further nodes must be examined. Constraint programming algorithms are very efficient for some 
classes of problems, among which scheduling is a prominent one. Due to the general nature of the batch 
plants that appear in chemical industry, however, a standalone CP model would not be effective for solving 
this class of problems. This is due to the fact that the type and number of tasks to be performed in a general 
batch plant are optimization decisions, which implies that the number of potential activities in the CP 
formulation may be very large and, moreover, the large number of alternative production paths makes the CP 
problem loosely constrained. The computational performance of a standalone CP model that we developed 
was indeed very poor. Specifically, the computational time required for a well studied example of Kondili et 
al. (1993), that involves five tasks, four units and nine states, by a standalone CP model is more than 300 
CPU sec, whereas the same problem is solved in less than 1 CPU sec by any continuous-time MILP model. 
 
Models that integrate MILP and CP have also appeared recently. The motivation for this integration follows 
from the fact that MILP and CP have complementary strengths that can be exploited simultaneously. 
Mathematical programming techniques are efficient in finding optimal solutions and providing good bounds, 
while the CP language is more expressive and the CP search techniques are often more efficient in solving 
feasibility problems. The integration between MILP and CP can be achieved in two ways (Hooker, 2002; van 
Hentenryck, 2002): 
(a) By combining MILP and CP constraints into one hybrid model. In this case a hybrid algorithm is also 

needed for the solution of the model. 
(b) By decomposing the original problem into two subproblems: one MILP and one CP problem. Each 

model is solved separately and information obtained while solving one subproblem is used for the 
solution of the other subproblem.  
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More information on CP can be found in Marriot and Stuckey (1999) and Hooker (2000). Constrained-based 
scheduling algorithms can be found in Baptiste et al. (2001), and a short description of MILP/CP integration 
schemes can be found in Jain and Grossmann (2001). 
 
 
 
3. Problem Statement 
 
For the problem addressed in this paper we assume that we are given: 
(i) a fixed or variable time horizon 
(ii) the available units and storage tanks, and their capacities 
(iii) the available utilities and their upper limits 
(iv) the production recipe (mass balance coefficients, utility requirements) 
(v) the processing times and changeover times  
(vi) the amounts of available raw materials; the demand of final products and their due dates 
(vii) the prices of raw materials and final products 
The goal is then to determine: 
(i) the type and number of tasks performed 
(ii) the assignment of equipment units to tasks 
(iii) the sequencing and timing of tasks taking place in each unit 
(iv) the batch size and duration of tasks 
(v) the amount of resources allocated to each task 
(vi) the amount of raw materials purchased and the amount of final products sold 
The objective can be, (a) the maximization of production, income or profit for a fixed time horizon, or (b) the 
minimization of makespan for a specified demand, or (c) the minimization of cost for specified orders with 
due dates.  
 
 
 
4. Proposed Hybrid Algorithm 
 
As mentioned above, several STN-based MILP models have been proposed for the scheduling of batch 
plants. Discrete-time models, while computationally more effective than the continuous-time models, often 
require approximations that may give infeasible or suboptimal solutions. Furthermore, the scheduling of 
medium complexity process networks (10-20 tasks, 10-20 states) becomes intractable when the number of 
intervals is above 60. Continuous-time and event-based models, while more general in terms of task 
durations, become computationally intractable even more quickly. Specifically, medium-complexity STN 
networks, problems with more than 15 intervals are intractable. Another shortcoming of continuous-time 
STN models is that they perform reasonably well only for the maximization of profit over a fixed time 
horizon. Their computational performance for other objectives is often poor (Maravelias and Grossmann, 
2003a).  
 
The difficulty in solving STN scheduling problems led us to develop a hybrid MILP/CP method that exploits 
the complementary strengths of MILP and CP. We use MILP to optimize the high level decisions, and CP to 
determine a feasible detailed schedule. Specifically, we propose an iterative scheme where we iterate 
between a MILP master problem and a CP subproblem, in a similar fashion as in Jain and Grossmann (2001). 
However, in this work the type and number of tasks to be performed and the assignment of tasks to 
equipment units are determined in the master MILP problem, while the CP subproblem is used to derive a 
feasible schedule for the assignment obtained by the master problem. At each iteration, one or more 
specialized integer cuts are added to the master problem to exclude infeasible or previously obtained 
assignments. For a maximization problem, the relaxed master problem provides an upper bound and the 
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subproblem, when feasible, provides a lower bound. To enhance the performance of the algorithm, 
preprocessing is performed before the main iterative scheme. Preprocessing is used to determine Earliest 
Start Times (EST) and Latest Finish Times (LFT) of both tasks and units, and to create strong integer cuts 
that are added a priori in the cut-pool of the master problem. Moreover, the proposed method can be used to 
obtain more than one feasible solutions; we just need to, (a) store all feasible solutions found during the 
execution, and (b) keep iterating after the convergence of the bounds. For the implementation of the method 
we used ILOG’s OPL Studio 3.5. (Appendix A). A simplified flow diagram of the proposed algorithm for the 
maximization of profit is shown in Figure 3. The flow diagrams for the minimization of makespan and cost 
are similar.  
 
 
4.1. MILP Master Problem 
 
For the master MILP problem an aggregated STN representation has been used with no time points, or 
equivalent continuous time intervals. Only assignment, batch size and mass balance constraints are included, 
and since there are no time points, mass balance constraints are expressed once (for the total amounts) at the 
end of the time horizon for each state. Special integer cuts are added to exclude previously found sets of 
tasks. Resource constraints other than equipment are not considered.  
 

Solve MILP Master Problem
max profit
s.t. Assignment constraints

Total mass balances
Integer Cuts

Obtain UB

Solve CP Subproblem
max profit 
s.t. ALL CONSTRAINTS

w/ fixed tasks/assignments 
Obtain LB

Fix tasks/assignments

Preprocessing I
Calculate EST, LFT ∀i,∀j

Add Integer
Cuts I

UB ≤≤≤≤ LB  ? 

YES

NO

Preprocessing II
Decompose into subnetworks
Derive Integer Cuts II and III

 
 

Figure 3: Schematic diagram of the proposed hybrid MILP/CP algorithm. 
 
In order to decouple units from tasks, we use the following rule: if a task i can be performed in both units j 
and j’, then two tasks i (performed in unit j) and i’ (performed in unit j’) are defined (see Ierapetritou and 
Floudas, 1998). As explained above, the number of times each task is carried out is to be determined by the 
optimization, and thus for each task i we postulate a maximum number of copies, i.e. an upper bound on the 
number of batches of task i that can be carried out in any feasible solution. A strict upper bound Ci

MAX on the 
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number of copies of task i is given by equation (1) where H is an upper bound on the length of the time 
horizon and DMIN is the minimum duration of task i. In practice, though, we can use our knowledge about the 
process network to postulate a smaller number of copies.  

  iDHCC MINMAX
ii ∀== /  (1) 

For each copy c of task i we define the binary Zic, which is equal to 1 if the cth copy of task i is carried out. 
We also define its duration Dic and batch size Bic. For each state, we define its inventory level sŜ at the end of 
the scheduling horizon. The master MILP problem is shown in Appendix C to be a relaxation of the MILP 
model of Maravelias and Grossmann (2003a) given in Appendix B. Hence, the master MILP problem (MP) 
provides an upper bound to the profit and a lower bound to the cost or makespan. It consists of equations (2) 
to (10): 

jMSD
jIi c

ic ∀≤∑ ∑
∈ )(

 (2) 

iiciiciic CciBZD ∈∀∀+= ,βα  (3) 

iic
MAX
iicic

MIN
i CciZBBZB ∈∀∀≤≤ ,  (4) 

sBBSS
sIi c

ic
I

sOi c
ic

O
ss isis

∀−+= ∑ ∑∑ ∑
∈∈ )()(

0ˆ ρρ  (5) 

FPsdS ss ∈∀≥ˆ  (6) 

INTsCS ss ∈∀≤ˆ  (7) 

iiicic CcCciZZ <∈∀∀≤+ ,,1  (8) 

Integer Cuts (9) 
Objective Function (10) 

0ˆ,0,0},1,0{ ≥≥≥∈ sicicic SBDZ  

Constraint (2) is a relaxed assignment constraint which enforces that the sum of the durations of the tasks 
assigned to a unit does not exceed the scheduling horizon MS, where I(j) is the set of tasks that can be 
assigned to unit j. The duration of copy c of task i is a function of its batch size [constraint (3)], and the batch 
size of copy c of task i is bounded through constraint (4). The amount of state s at the end of the time horizon 

sŜ  is calculated by (5) to be equal to the initial amount S0s plus the amount produced, minus the amount 
consumed, where ρis

I and ρis
O are the mass fractions for consumption and production, respectively, of state s 

by task i. Note that constraint (5) ensures that the net production of state s in non-negative, but since we do 
not monitor and restrict the inventory level of state s during the entire scheduling horizon, a solution of the 
master problem may imply that the level of state s is at some point negative. If state s corresponds to a final 
product (s∈FP), sŜ must be greater than the demand ds [constraint (6)]; if it corresponds to an intermediate 
(s∈INT) it must be less than the capacity Cs of the storage tank of state s [constraint (7)]. Constraint (8) is 
used to eliminate symmetric assignments by enforcing the condition that copy c+1 of task i can be carried 
out only if copy c is carried out. At a specific iteration k, constraints (9) include all the integer cuts that have 
been added during preprocessing and in previous iterations. The objective function, which as noted above 
provides a bound, can be the maximization of profit for a fixed time horizon, the minimization of makespan 
for fixed demand, or the minimization of production cost for fixed demand and due dates. The exact form of 
the objective function is given in section 4.5. 
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4.2. CP Subproblem 
 
In this paper we model CP subproblems using the modeling language of ILOG’s OPL Studio 3.5, which has 
a number of global constraints and special constructs specifically developed for scheduling applications, for 
which a short description can be found in Appendix A. The description of the CP subproblem, hence, is made 
in terms of these constructs and constraints.  
 
For each equipment unit j we define a unary resource called Unit[j] and for each resource r (e.g. cooling 
water) we define a discrete resource Utility[r] with a maximum capacity Rr

MAX. Furthermore, for each state s 
we define a reservoir called State[s] with capacity Cs and initial level S0s. For each binary Zic that is equal to 
1 in the current optimal solution of the master problem (i.e. copy c of task i is carried out) we define an 
activity called Task[i,c] with duration Dic. We also define a dummy activity MS with zero duration and no 
resource requirements. The reason we introduce MS, is because Constraint Programming is more efficient 
when the objective function is a function of one or few variables. Moreover, if a dummy activity is not used, 
the objective function for the minimization of makespan will be the minimization of the maximum finish 
time (i.e. a min max problem), which will require the introduction of additional constraints. If there are 
orders with due dates, and D is the set of orders for final products, D(s) is the set of orders for state s (i.e. 
D=∪s D(s)), and for each d∈D, ADd is the amount due and TDd is the due date, we also define |D| activities, 
called Order[d], with zero duration that are used for the “representation” of the orders. The corresponding 
declarations in OPL modeling language are: 
 

UnaryResource Unit[j in Units]; (11) 

DiscreteResource Utility[r in Utilities] (Rr
MAX); (12) 

Reservoir State[s in States] (Cs, S0s); (13) 
Activity Task[i in Tasks, c in Copies] (Dic); (14) 

Activity MS (0); (15) 

Activity Order[d in Orders] (0); (16) 
 
The CP subproblem (SP) consists of equations (17) to (32): 
 

i
MAX
iic

MIN
i CciBBB ∈∀∀≤≤ ,  (17) 

iiciiic CcZWiBD ∈∀∈∀+= ,βα  (18a) 

iiciiic CcZWiBD ∈∀∉∀+≥ ,βα  (18b) 

sCciBB iic
I
is

I
ics ∀∈∀∀= ,,ρ  (19) 

sCciBB iic
O
is

O
ics ∀∈∀∀= ,,ρ  (20) 

iiciriricr CciBR ∈∀∀+= ,δγ  (21) 

FPsdB s
i c

O
ics ∈∀≥∑∑  (22) 

Task[i,c] requires Unit[j] ∀j,∀i∈I(j),∀c∈Ci (23) 

Task[i,c] requires Ricr Utility[r] ∀i,∀c∈Ci, ∀r (24) 



 9

Task[i,c] consumes BI
ics State[s] ∀i,∀c∈Ci,∀s (25) 

Task[i,c] produces BO
ics State[s] ∀i,∀c∈Ci,∀s (26) 

Order[d].start = TDd ∀d (27)  

Order[d] consumes ADd State[s] ∀s, ∀d∈D(s) (28) 

Task[i,c].end ≤ MS.start ∀i,∀c∈Ci (29) 

Task[i,c] precedes Task[i,c+1] ∀i,∀c<|Ci| (30) 
Process Network Specific Constraints (31) 

(Optional) Objective Function (32) 
 
The batch size of activities is bounded by equation (17). If Zero Wait storage policy applies, the product of a 
task must be immediately transferred to the next task, and thus the duration of the task is exactly equal to its 
processing time as in (18a); for any other storage policy the material can be temporarily stored in the 
equipment unit, which means that the time during which equipment unit is “used” by Task[i,c] can be greater 
than the actual processing time [constraint (18b)]. The amount of reservoir State[s] consumed/produced by 
activity Task[i,c] is calculated by equation (19)/(20); the amount of discrete resource Utility[r] required by 
activity Task[i,c] is calculated in (21); the condition that the amount of final products should meet the 
demand is enforced by (22), where ds is the total demand for state s. Parameter ds is either given (in the case 
of fixed demand with no due dates) or calculated by, 

sADd
sDd

ds ∀= ∑
∈ )(

 

Special CP constructs and global constraints are used in equations (23) to (31). Constraint (23) enforces that 
all tasks in I(j) are assigned to unary resource Unit[j]. The consumption of Ricr units of discrete resource 
Utility[r] by activity Task[i,c] is enforced in (24), and the consumption/production of BI

ics /BO
ics units of 

reservoir State[s] by Task[i,c] is enforced by constraint (25)/(26). Orders with due dates are modeled through 
constraints (27) and (28). Each order is executed at its due time [constraint (27)], and the amount delivered is 
equal to the amount due [constraint (28)]. In (29) the end time of all activities is restricted to be smaller than 
the start of activity MS, and MS has, (a) fixed finish time equal to H when the objective is the maximization 
of profit over a fixed time horizon, or the minimization of cost for fixed demand and due dates, and (b) a 
variable finish time when the objective is the minimization of makespan for fixed demand with no due dates. 
Constraint (30) is a symmetry-breaking constraint that reduces the number of possible configurations by 
imposing a sequence between copies of the same task.  
 
Constraints that describe some special features of the process network, or a special structure that can be 
exploited are included in (31). An example of such a feature is a Zero Wait state that is produced by only one 
task A and consumed by only one task B. In such a case, we can infer that every time task A takes place it 
must be immediately followed by task B, and that the batchsizes of consecutive batches of tasks A and B 
should be equal.  Therefore, we can add the following constraints that greatly enhance the computational 
efficiency of the CP solver: 

Task[A,c].end = Task[B,c].start  ∀c       (31a) 

BSAc =BSBc     ∀c       (31b) 
Depending on the nature of the problem (constant vs. variable processing times) and the objective function, 
we may want to solve the CP subproblem as one feasibility problem, as successive feasibility problems or as 
an optimization problem (details in section 4.6.2.). If the CP is an optimization problem we add the objective 
(32) whose exact form is given in section 4.5. 
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4.3. Time Domain Reduction 
 
The performance of the proposed model depends on how fast we solve models (MP) and (SP), and the 
number of iterations needed to generate solutions and prove optimality. It is crucial, consequently, to exclude 
infeasible or suboptimal assignments of tasks as soon as possible. Preprocessing enhances the performance of 
the algorithm by (a) reducing the domains of certain variables, and (b) creating strong cuts that are added in 
the cut-pool of the master problem and are used to eliminate a priori a number of potential configurations.  
 
4.3.1. Earliest Start Time and Latest Finish Time of Units 
 
To illustrate the domain reduction for units, consider the example of Figure 4, where units U1, U2 and U3 
are used for the production of products A, B and C, for which we assume that the duration of all tasks is 2 
hours, the time horizon is 12 hours, and that at most two copies of the same task can take place (i.e. |Ci|=2 
∀i). Specifically, for unit U2, replacing durations from (3) into (2) we get: 

2ZTA2,1+2ZTA2,2+2ZTB2,1+2ZTB2,2+2ZTC2,1+2ZTC2,2 ≤ 12 
which implies that all 26 possible assignments are feasible since the constraint is satisfied if all Zic are equal 
to 1.  
 
In the case where there are no intermediates SA1, SB1 and SC1 at t=0, however, no task can be carried out 
in unit U2 before t=2, i.e. before one of the states used as input in unit U2 is produced. Hence, the Earliest 
Start Time (EST) for any task in unit U2 is 2 hours. Similarly, since the time horizon is 12 hours, any amount 
of intermediates SA2, SB2 and SC2 produced after t=10 will not be used for the production of final products, 
which means that in all realistic solutions all tasks assigned to U2 must finish at or before t=10; i.e. the 
Latest Finish Time (LFT) of unit U2 is 10. When the time horizon is not fixed instead of using LFT we use 
the Shortest Tail (ST) which is the difference between the variable scheduling horizon and the LFT. In this 
example, the Shortest Tail (ST) of unit U2 is 2 hours. 
 

TA1
FA

TA2
SA1

TA3
SA2 A

TB1
FB

TB2
SB1

TB3
SB2 B

TC1
FC

TC2
SC0

TC3
SC2 C

U2 U3U1  
Figure 4: Flow diagram of Example. 

 
Using this insight, we can rewrite the assignment constraint for unit U2 as follows: 

2ZTA2,1+2ZTA2,2+2ZTB2,1+2ZTB2,2+2ZTC2,1+2ZTC2,2 ≤ LFTU2 - ESTU2 = (H-STU2) – ESTU2 = 8 
which allows only up to four tasks assigned to unit U2, i.e. only 22 out of the total 26 assignments. 
Note that similar tightening can be also performed when processing times are variables; in the example of 
Figure 4, we need only use the minimum, instead of the fixed, processing times of tasks TA1, TB1 and TC1 
to calculate the EST of unit U2, and the minimum processing time of tasks TA3, TB3 and TC3 to calculate 
the ST of unit U3.  
In the general case assignment constraint (2) is tightened as follows, 

jESTSTMSD
jIi

jj
c

ic ∀−−≤∑ ∑
∈ )(

)(  (33) 
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where STj and ESTj are the Shortest Tail and Earliest Start Time of unit j, respectively, and MS is the time 
horizon (equal to H in the case of fixed time horizon). To calculate the EST and ST of unit j we need to 
calculate first the EST and ST of the tasks performed in j, which is described in the next section. 
 
4.3.2. Earliest Start Time and Latest Finish Time of Tasks 
 
To illustrate the domain reduction for tasks, consider the example of Figure 5. The duration of all tasks is 2 
hours, the time horizon is 16 hours, each task can be carried out at most three times and unit U1 is used for 
tasks T1 and T8. If no intermediates are available at t=0, the EST and LTF for task T1 are 0 and 4 hours, 
respectively, and for task T8 EST is equal to 6 and LFT is equal to 10. This means that we can write the 
following constraints, 

2ZT1,1+2ZT1,2+2ZT1,3 ≤ 4 – 0 = 4 (34) 

2ZT8,1+2ZT8,+2ZT8,3≤ 10 – 6 = 4 (35) 
Furthermore, the EST and LTF for unit U1 are 0=min{ESTT1,ESTT8} and 10=max{LFTT1,LFTT8}, 
respectively, and the assignment constraint for unit U1 is,  

(2ZT1,1 + 2ZT1,2+2ZT1,3) + (2ZT8,1+2ZT8,2+2ZT8,3) ≤ 10 – 0 = 10 (36) 
Note that the LHS of constraint (36) is the sum of the LHSs of constraints (34) and (35), whereas the RHS of 
constraint (36) is larger than the sum of the sum of the RHSs of constraints (34) and (35), which implies that 
constraint (36) is a relaxation of constraints (34) and (35). In general, thus, we can get a tighter formulation 
by adding the constraints that restrict the sum of the processing times of the copies of the same task. Thus, 
for the general case, we add the following constraint for each task in I(j),  

)()( jIiESTSTMSD ii
c

ic ∈∀−−≤∑  (37) 

where STi and ESTi are the Shortest Tail and the Earliest Start Time of task i, respectively. We can therefore 
replace equation (2) by equations (33) and (37), and hence the master problem (MP) consists of equations (3) 
– (10), (33) and (37). 

T1 T2 T3 T4 T5

T6 T7 T8 T9

F1 S1 S2 INT1 S3 P1

P2F2 S5 INT2

S4 ADD

S6
0.95

0.05 0.1
0.9 0.5 0.5

Unit U1  
Figure 5: Process network of Example 2. 

 
Note that for a general batch plant the calculations for EST and ST (or LFT) are not equivalent to a time 
window calculations for flow-shop batch plants. The main reasons for this are: (a) batch splitting and mixing 
is allowed, and (b) inventory for intermediate states may be available at t=0.  In principle, EST and ST of 
tasks can be determined by inspection, but here we use a general, graph-theoretic algorithm that relies on 
identifying shortest and longest paths within the STN.   
 
We define parameter ATs as the time at which state s becomes available. States that are available at the 
beginning of the time horizon have ATs=0. In order to calculate the EST of a task we need to know the ATs of 
all the states that are consumed by task i. In order to calculate the AT of a state we need to know the EST and 
the (minimum) processing time of all tasks producing this state. If SI(i) is the set of states consumed by task 
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i, O(s) is the set of tasks that produce state s, DTs is the earliest delivery time of state s (zero if state s is 
available at t=0), and Di

MIN is the minimum duration of task i,  the procedure, in summary, is as follows: 
 
The EST of task i is calculated by: ESTi = maxs∈SI(i) {ATs} 
The AT of state s is calculated by: ATs = min{DTs, mini∈O(s) {ESTi + Di

MIN}} 
 
For the calculation of the Shortest Tail STi of task i we follow similar rules but we start from the final 
products (s∈FP), and for each state s∈S we calculate the minimum time MTs needed for state s to be used for 
the production of a final product. Is SO(s) is the set of states produced by task i, and I(s) is the set of tasks 
consuming state s, the summary of the backward procedure for the calculation of the ST of tasks (if there are 
no recycle streams) is the following: 
 
The ST of task i is calculated by: STi = mins∈SO(i) {MTs} 
The MT of state s is calculated by: MTs = mini∈I(s) {STi + Di

MIN} 
 
If ET (UT) is the set of examined (unexamined) tasks, and ES (US) is the set of examined (unexamined) 
states, and Di

MIN is the minimum (or fixed) processing time of task i, a straightforward computer 
implementation of the procedure for networks with variable or constant processing times and no recycle 
streams is the following:  
 
Calculation of EST: 
Initialization: ET = ∅, UT = I, ES = {s∈S| S0s > 0}, US = S\ES, ATs=0 ∀s∈ES 
Until UT = ∅  do 
 For all i∈UT 
  If ES∩SI(i) = SI(i) then EST(i) = maxs∈SI(i) {ATs}  
      ET = ET∪{i} 
      UT = UT\{i} 
 For all s∈US 
  If ET∩O(s) = O(s) then AT(s) = min{DTs, mini∈O(s) {ESTi + Di

MIN }} 
      ES = ES∪{s} 
      US = US\{s} 

 
Calculation of ST: 
Initialization: ET = ∅, UT = I, ES = FP, US = S\FP, MTs=0 ∀s∈ES 
Until UT = ∅  do 
 For all i∈UT 
  If ES∩SO(i)=SO(i) then  ST(i) = mins∈SO(i) {MTs }  
     ET = ET∪{i} 
     UT = UT\{i} 
 For all s∈US 
  If ET∩I(s) = I(s) then MT(s) = mini∈I(s) {STi + Di

MIN } 
     ES = ES∪{s} 
     US = US\{s} 

 
An example of its application is presented in Appendix D. In case there are recycle streams and RC is the set 
of recycled states, the calculation is more complicated. We initially exclude states in RC (i.e. 
US=S\(FP∪RC), calculate EST and ST for all states and then re-calculate taking into account the recycled 
states. Having calculated the EST and ST of all tasks, the EST and ST of units are easily calculated by, 

ESTj = min{ESTi |i∈I(j)} (38) 

STj = min{STi |i∈I(j)} (39) 
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4.4. Integer Cuts 
 
The preprocessing described in the previous section reduces the number of potential configurations by 
tightening the existing and adding new assignment constraints in the MILP master problem (MP). Another 
way to reduce the number of potential assignments is by generating integer cuts that explicitly forbid some 
infeasible or suboptimal configurations that cannot be excluded by the tightening of domains. While one 
simple integer cut is added at each iteration of the proposed algorithm, some integer cuts can be inferred 
during preprocessing. The simple integer cuts and two more classes of cuts derived during preprocessing are 
discussed next. 
 
4.4.1. Integer Cuts I 
 
The first class of integer cuts comprises of the simplest and weakest cuts that exclude the current assignment, 
and its general form is: 

1)1(
),(),(

−+≤−+ ∑∑
∈∈

kk

Nci
ic

Bci
ic NBZZ

kk

     or      1
),(),(

−≤− ∑∑
∈∈

k

Nci
ic

Bci
ic BZZ

kk

 (40) 

where Bk and Nk are the sets of (i,c) pairs for which Zic = 1 and Zic=0, respectively, in the current iteration k. 
The integer cut in (40) excludes only the current assignment. A stronger cut is one that excludes the current 
assignment k and any other assignment that is a superset of assignment k; i.e. any assignment l for which 
Bl⊇Bk. The general form of this cut is: 

1
),(

−≤∑
∈

k

Bci
ic BZ

k

 (41) 

While stronger, the integer cuts in (41) may cutoff feasible solutions. If economy of scale holds for batch-
sizes and processing times, then they can be safely used when the time horizon is fixed and the current 
assignment Bk is infeasible, since any assignment Bl with Bl⊇Bk will also be infeasible. But they cannot be 
used if the current assignment is feasible, because an assignment Bl with Bl⊇Bk may yield a higher profit. A 
case where they can be added in every iteration is when the objective is the minimization of makespan and 
processing times are constant; in this case, if an assignment Bk satisfies the demand and yields a makespan 
MSk, then any assignment l that includes more tasks would yield a makespan MKl ≥  MKk.  
 
4.4.2. Integer Cuts II 
 
The motivation behind these cuts is to decompose the STN into subnetworks in order to identify infeasible 
assignments of tasks as early as possible. To illustrate the derivation of this class of integer cuts consider the 
process network shown in Figure 6. There, raw material RM1 is converted into intermediate INT1 (via tasks 
T11, T12, T13 or T14 that are performed in unit U1), raw material RM2 is converted into intermediate INT2 
(via tasks T21 or T22 that are performed in unit U2), intermediates INT1 and INT2 are fed in a 4:1 ratio for 
task T31 in unit U1 to produce final product P1, and intermediate INT2 is converted into final product P2 
(through task T32 also in unit U3). Each task has a constant cost c and a constant processing time pt shown 
in Figure 6. The capacity of units U1, U2 and U3 is 5, 10 and 10 kg respectively. There is one order of 5 kg 
of P1 to be met at t=6 and one order of 5 kg of P2 to be met at t=4. The objective is to find a schedule of 
minimum cost that satisfies the demand and the due dates. 
 
The Earliest Start Time (EST) for all tasks performed in units U1 and U2 is 0, while for tasks T31 and T32 it 
is 2. Since the latest due date is at t=6, the scheduling horizon is 6 hours the Latest Finish Time (LFT) of all 
tasks performed in units U1 and U2 is 4 and for T31and T32 in unit U3 is 6 (or STU1=STU2=2 and STU3=0). 
Using these values, the proposed iterative scheme yields the series of assignments shown in Figure 7 (tasks 
that are carried out are highlighted). The first three assignments include one of the tasks performed in U1, 
and tasks T22, T31 and T32 and they are all infeasible. The reason for the infeasibility is that the duration of 
task T22 is 3 hours, which means that intermediate INT2 becomes available at t=3, and thus the order of P2 
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cannot be met on time. We can easily infer that in any feasible solution, task T21 must be carried out because 
this is the only way intermediate INT2 becomes available at t=2. Hence, if we had this insight before starting 
the iterative scheme and we had fixed binary ZT21,1 to 1, we would get the 4th assignment at the first iteration. 
Note that similar reasoning can also be applied when processing times are variables, using the minimum 
instead of the fixed processing time of tasks. 
 

T11

T12

T13

T14

c=2.0
pt=4

T21

T22

T31

T32

RM1

RM2

INT1

INT2

P1

P2

U1 U2 U3

80%

20%
c=2.2
pt=4

c=2.4
pt=4

c=4
pt=2

c=3
pt=2

c=2
pt=3

c=4
pt=2

c=4
pt=2

 
Figure 6: Flow diagram for integer cuts. 

 
 

Iteration 1:
Cost = 12.0
INFEASIBLE ASSIGNMENT
Cut: ZT11,1+ZT22,1+ZT31,1+ZT32,1≤3

Iteration 2:
Cost = 12.2
INFEASIBLE ASSIGNMENT
Cut: ZT12,1+ZT22,1+ZT31,1+ZT32,1≤3

Iteration 3:
Cost = 12.4
INFEASIBLE ASSIGNMENT
Cut: ZT13,1+ZT22,1+ZT31,1+ZT32,1≤3

Iteration 4:
Cost = 13.0
FEASIBLE ASSIGNMENT
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Figure 7: Assignments of Master Problem 

 
Based on this simple example we can in general decompose the process network into smaller subnetworks 
and try to infer general rules (fixed assignments or integer cuts) that hold true in any solution. By 
subnetworks we mean a subset of tasks that, (a) can be easily identified (e.g. with a procedure similar to the 
one described in the next paragraph), and (b) are likely to give useful information (i.e. information that holds 
true for larger sets of tasks and ideally for the entire process network). Such a subnetwork can be, for 
example, the set of tasks used for the production of one individual product. In the example of Figure 6 the 
process network can be decomposed into the two subnetworks shown in Figure 8. While no inference can be 
made by the subnetwork for the production of P1, the second subnetwork reveals that in order to meet the 
due date for product P2 we need to carry out task T21 (i.e. ZT21,1=1 in every feasible solution). Having fixed 
ZT21,1, we then obtain the optimal assignment (Figure 7d) at the first iteration. Since (a) the capacity of unit 
U2 is 10 kg, (b) the processing time of task T21 does not depend on the batch size and (c) for both orders we 
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need 6 kg of INT2, we could have further inferred that no other task is needed to be carried out in unit U2 
(i.e. ZT21,c = ZT22,c = 0, ∀c). 
 

(a) Subnetwork for the production of P1

(b) Subnetwork for the production of P2
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T32RM2
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U2 U3

c=3
pt=2

c=2
pt=3 c=4

pt=2

 
Figure 8: Subnetworks of process network of Figure 6. 

 
In general, any network can be decomposed in |FP| subnetworks, and each subnetwork SN consists of a 
subset of tasks SNI⊂ I and a subset of states SNS⊂ S. To identify such a subnetwork, we start from a final 
product s*∈FP and, backtracking, we add to SNI and SNS all the tasks and states that are involved in the 
production of s*. If  O(s) is the set of tasks that produce state s, SI(i) is the set of input states to task i, and 
RM is the set of raw material states, the formal procedure for the identification of the subnetwork that 
corresponds to final product s* is the following: 
 
SUBNET_PROC: 
Initialization: SNI = ∅, SNS = {s*}, CI = O(s*) 
Until CI = ∅ 
     For all i∈CI 
          SNI = SNI∪{i}, CI = CI\{i} 
          For all s∈SI(i) 
               SNS = SNS∪{s}, CI = CI∪O(s) 

 
For each subnetwork identified by SUBNET_PROC, we apply the proposed iterative algorithm and derive 
cuts that have the general form of constraint (40) and exclude configurations that are infeasible for the 
specific subnetwork; i.e. Integer Cuts II have the form of (40), where i∈SNI∩Bk. Moreover, since Integer 
Cuts II have the form of equation (40), they exclude only one assignment and, thus, can be used for both 
constant and variable processing times. Network-specific constraints that include only the Zic binaries, 
similar to constraints in (31) of the CP subproblem, can be added also in the master problem and grouped as 
Integer Cuts II. For the case of Zero Wait state that is produced by only one task A and consumed by only 
one task B, for instance, we can add the following equation that allows assignments that consist of the same 
number of copies of tasks A and B:  

∑∑ =
c

Bc
c

Ac ZZ           (42) 

Note, that the restriction for zero-wait storage policy for one or more states makes, in general, continuous 
MILP models very difficult to solve due to the additional time points needed for the finish time of the tasks 
that produce ZW states. In contrast, this restriction makes the CP subproblem of the proposed approach 
easier to solve because it becomes more tightly constrained.  
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Depending on the plant topology, other sub-networks can also be studied. The equations added in this step 
(fixing of variables or integer cuts) are Integer Cuts II. Any other cut that can be extracted from the structure 
of the process network (based on heuristic rules, prior knowledge of the process network or any other source) 
can be grouped in this class.  
 
4.4.3. Integer Cuts III 
 
In batch plants it is very common to have a number of identical parallel units in one stage, or similar tasks 
that are carried out in the same unit. The similarity of these tasks is that they have the same processing time 
but slightly different utility requirements or cost. Tasks T11, T12 and T13 of the network in Figure 6, for 
example, are similar because they have equal processing times but different costs. This similarity usually 
implies that if one of these tasks leads to an infeasible assignment, every other similar task will also give an 
infeasible assignment. The high frequency at which these configurations appear in many problems led us to 
develop a new class of integer cuts. The aim is to exclude similar assignments in as few iterations as 
possible. 
 
To motivate this class of cuts, consider the previous process network (Figure 6), with two orders of 5 kg each 
for P1 due at t=4 and t=10, and one order of 5 kg of P2 due at t=8. The domain reduction for tasks and units 
yields the results of Table 1. 
 
Table 1: Earliest start and latest finish times of Example. 

 T11 T12 T13 T14 T21 T22 T31 T32 U1 U2 U3 
EST 0 0 0 0 0 0 2 2 0 0 2 
LFT 8 8 8 8 8 8 10 8 8 8 10 

 
Assuming that the time horizon of the two subnetworks used for the production of P1 and P2 is 10 and 8 
hours, respectively, the study of the two subnetworks does not reveal any additional information (i.e. we 
cannot derive any integer cut of type II). Thus, the iterative scheme yields the assignments that are shown in 
Figure 9, and the optimal solution is found in the 8th iteration. Note that assignments 1, 2 and 3 are practically 
the same because the processing times of tasks T11, T12 and T13 are the same. Similarly, assignments 4, 5 
and 6 are identical to each other in terms of processing times. To exclude these two groups of similar 
assignments, however, we need the first six integer cuts shown in Figure 9. It would be very useful, hence, to 
develop a class of integer cuts that excludes a whole group of similar assignments. To do so, we need to 
identify the classes of similar equipment units and define new binary variables. 
 
The general procedure for deriving the third class of integer cuts is the following: 
(a) Identify classes of similar tasks; i.e. tasks that perform identical operations (same input and output states 

and same conversion factors) and with equal processing times. The set of similar tasks that belong to 
class g is denoted by I(g). 

(b) Define new binary variables Ygcn for each class g of similar tasks; binary Ygcn is 1 if, in the current 
assignment, there are n of the cth copies of tasks in I(g). The value of the Ygcn binaries is determined by 
the following equations that link the class binaries Ygcn to the task binaries Zic,  

cgYnZ
gIn

gcn
gIi

ic ∀∀⋅= ∑∑
=∈

,
)|(|..1)(

        (43)  

cgY
gIn

gcn ∀∀=∑
=

,1
)|(|..1

         (44) 

In the example of Figure 6, for instance, if A is the class of tasks {T11, T12, T13} and in the current 
assignment there are two copies of task T11 (ZT11,c =1, for c=1, 2), and one copy of task T12 (ZT12c =1, 
for c=1), we will have YA12 =1, YA21 =1. 
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(c) Develop integer cuts in the mixed (Ygcn, Zic) space:  for any assignment that includes a task i∈I(g) use 
equations (43) and (44) to calculate binaries Ygcn and develop a new cut (cut III) by replacing binaries Zic 
with binary Ygnc in the corresponding integer cut I. Any integer cut that includes Ygcn binaries is called an 
Integer Cut III.  

 

Iteration 1:
Cost = 12.0
INFEASIBLE ASSIGNMENT
Cut: ZT11,1+ZT22,1+ZT31,1+ZT32,1≤3

Iteration 2:
Cost = 12.2
INFEASIBLE ASSIGNMENT
Cut: ZT12,1+ZT22,1+ZT31,1+ZT32,1≤3

Iteration 3:
Cost = 12.4
INFEASIBLE ASSIGNMENT
Cut: ZT13,1+ZT22,1+ZT31,1+ZT32,1≤3

Iteration 4:
Cost = 13.0
INFEASIBLE ASSIGNMENT
Cut: ZT11,1+ZT21,1+ZT31,1+ZT32,1≤3

Iteration 5:
Cost = 13.2
INFEASIBLE ASSIGNMENT
Cut: ZT12,1+ZT21,1+ZT31,1+ZT32,1≤3

Iteration 6:
Cost = 13.4
INFEASIBLE ASSIGNMENT
Cut: ZT13,1+ZT21,1+ZT31,1+ZT32,1≤3

Iteration 7:
Cost = 14.0
INFEASIBLE ASSIGNMENT
Cut: ZT14,1+ZT22,1+ZT31,1+ZT32,1≤3

Iteration 8:
Cost = 15.0
FEASIBLE ASSIGNMENT
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Figure 9: Assignments derived by the master problem. 
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In the example of Figure 6, tasks T11, T12 and T13 make up a class of similar tasks. Let A be this class. The 
seven first assignments of Figure 9 and the corresponding integer cuts are given in the second and third 
column, respectively, of Table 2.  
 
Table 2: Assignments of Figure 9 and integer cuts I and III.  

Iter. Tasks of assignment  Integer Cut I Equation (43) Integer Cut III 
1st  T11,  T22, T31, T32 ZT11,1+ZT22,1+ZT31,1+ZT32,1≤ 3 ZT11,1=1→ YA,1,1=1 YA,1,1+ZT22,1+ZT31,1+ZT32,1≤ 3 
2nd  T12,  T22, T31, T32 ZT12,1+ZT22,1+ZT31,1+ZT32,1≤ 3 ZT12,1=1→ YA,1,1=1  
3rd  T13,  T22, T31, T32 ZT13,1+ZT22,1+ZT31,1+ZT32,1≤ 3 ZT13,1=1→ YA,1,1=1  
4th  T11,  T21, T31, T32 ZT11,1+ZT21,1+ZT31,1+ZT32,1≤ 3 ZT11,1=1→ YA,1,1=1 YA,1,1+ZT21,1+ZT31,1+ZT32,1≤ 3 
5th  T12,  T21, T31, T32 ZT12,1+ZT21,1+ZT31,1+ZT32,1≤ 3 ZT12,1=1→ YA,1,1=1  
6th  T13,  T21, T31, T32 ZT13,1+ZT21,1+ZT31,1+ZT32,1≤ 3 ZT13,1=1→ YA,1,1=1  
7th  T14,  T21, T31, T32 ZT14,1+ZT21,1+ZT31,1+ZT32,1≤ 3   

 
Using equations (43) and (44) we can calculate the value of binary YAnc at each iteration (shown in the fourth 
column) and develop the new integer cuts III by replacing Zic for tasks in A by binary YAcn (fifth column). 
Note that the six first assignments correspond to only two different assignments in the (Zic, Ygcn) – space. The 
first integer cut III excludes the first three assignments and the second cut excludes the next three 
assignments. Thus, we could have found the optimal assignment in only four iterations if we had added the 
two integer cuts of the fifth column. Integer Cuts III can be used for both constant and variable processing 
times. 
 
 
4.5. Objective Functions and Properties of Upper and Lower Bounds 
 
4.5.1. Maximization of Profit over a Fixed Time Horizon 

Master problem objective:   ∑
∈FPs

ss Ŝmax ζ       (10a) 

Subproblem objective:   ∑ ∑ ∑
∈ ∈ ∈FPs sIi Cc

O
icss

i

B
)(

max ζ     (32a) 

where ζs is the price of final product s∈FP, MS in constraints (33) and (36), is equal to the fixed time horizon 
H, and the dummy activity MS in the CP subproblem is fixed to start at t=H. The maximization of production 
is a special case of this objective with ζs=1 for all s. 
 
Since the objective is to maximize profit, assignments that are feasible with regard to each unit separately are 
obtained by the master problem, and the upper bound provided by the master problem is often very large. 
Even feasible assignments yield upper bounds that are usually much higher than their actual objective value 
(calculated by the subproblem). The first CP subproblems are usually infeasible and the optimal solution 
usually corresponds to the solution of one of the first feasible assignments, but a significant number of 
additional iterations may be needed to prove optimality. A typical graph of the upper and lower bounds is 
given in Figure 10a, where some assignments are infeasible, the upper-lower bound gap is large, and many 
additional iterations are needed to prove optimality. 
 
4.5.2. Minimization of Makespan for Fixed Demand (with no Due Dates) 

Master problem objective:   MSmin       (10b) 
Subproblem objective:   endMS.min       (32b) 
where MS in constraints (33) and (34) is a variable, and MS.end is the finishing time of the dummy task MS 
in the CP subproblem. 
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Any assignment that fulfills the fixed demand is feasible for the CP subproblem, but the lower bound on 
makespan calculated by the master problem is smaller than the actual makespan calculated by the 
subproblem. Thus, the optimal assignment is usually found early in the iterative process and it takes a few 
more iterations to prove optimality. A typical graph of the upper and lower bound for the minimization of 
makespan problem is shown in Figure 10b, where all assignments are feasible, the upper-lower bound gap is 
small and few additional iterations are needed to prove optimality. 
 
4.5.3. Minimization of Production Cost for Fixed Demand with Due Dates 

Master problem objective:    ∑∑
∈i Cc

ici
i

ZPCmin     (10c) 

Subproblem is a feasibility problem 
where PCi is the constant cost of carrying out task i.  
 
The production cost of an assignment provided by the master problem is equal to the actual cost of this 
assignment, if feasible. Thus, the first feasible assignment is the optimal assignment, and the last iteration 
provides the only upper bound that is equal to the optimal solution and the current lower bound. This is 
illustrated in Figure 10c. 
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(c) Minimization of Production Cost for Fixed Demand with Due Dates

(b) Minimization of Makespan for Fixed Demand (with no Due Dates)

(a) Maximization of Production over a Fixed Time Horizon

 
Figure 10: Graphs of upper and lower bounds for the three objectives. 

 
Overall, the proposed method is computationally highly efficient when the objective function is the 
minimization of makespan or the minimization of assignment cost, while it is moderately efficient when the 
objective is the maximization of production or profit. The computational effort required for each iteration in 
the presence of intermediate due dates remains the same, but the number of iterations needed to find the 
optimal solution and prove optimality increases. Jain and Grossmann (2001) and Harjunkoski and 
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Grossmann (2002) proposed similar, though simpler, approaches for the minimization of assignment cost in 
single- and multi-stage batch plants, respectively, and showed that hybrid MIP/CP schemes are very 
effective. 
 
 
4.6. Remarks 
 
4.6.1. Validity of Integer Cuts 
 
Integer Cuts I in (40) are always valid while Integer Cuts I in (41) are valid only in special cases (e.g. 
minimization of makespan with fixed processing times). In order to guarantee optimality, we use the form in 
(41) only when they do not cut off feasible solutions. Integer Cuts II can be (a) equations that describe some 
special structure or characteristic of the process network (e.g. constraint (42) for a ZW storage policy), or (b) 
integer cuts derived from the study of the subnetworks derived by the SUBNET_PROC procedure. In both 
cases they are always valid. Integer Cuts III are cuts that include the Ygcn binaries, and they are very useful 
for multistage plants (Pinto and Grossmann, 1995) where in each stage there are many similar parallel units, 
and many orders with different due dates have to be processed. Note that these cuts are valid if added during 
preprocessing, and specifically, if added for the subnetworks identified by the SUBNET_PROC procedure, 
but they may cut off feasible solutions if added in the main iterative scheme. In the current implementation, 
however, they are added only for the subnetworks derived by the SUBNET_PROC procedure during the 
preprocessing phase and are always valid.  
 
4.6.2. Convergence 
 
Since there is a finite number of assignments, the proposed hybrid scheme of Figure 3 is guaranteed to 
converge in a finite number of iterations. Furthermore, the method is guaranteed to find the optimal solution, 
since the master problem is a relaxation, and the integer cuts we use are always valid as discussed in 4.6.1. 
The computational effort required for the convergence, however, varies considerably. Our computational 
studies show that, besides the size of the model, there are three main factors affecting the performance of the 
algorithm: 
 
(a) The number of different possible assignments. Problems with many similar assignments are hard to solve 

because there are many assignments with similar objective function values and it is hard to prove 
optimality. Networks with many identical tasks or tasks that can be performed in many units usually 
belong to this group of problems, and require a large number of iterations.  

(b) The objective function. The quality of the lower and upper bound depends heavily on the objective 
function. Specifically, since the master problem is a relaxation of the original problem, the tightness of 
the bound of the master problem is not always good. If the objective function of the original problem can 
be expressed in terms of the variables of the master problem the quality is good; otherwise it is not, and 
many iterations may be needed to close the gap.  

(c) The nature of the processing times (constant vs. variable) and the mass fractions. Most of the CP global 
constraints accept integer arguments, which means that in the case of variable processing times or mass 
fractions with many significant digits, fine discretization is needed for variables Bic, BI

ics, BO
ics and Dic 

which are interconnected. In the other extreme, if processing times are constant and mass fractions are 
equal to 1, Dic is constant and for the remaining variables a coarse discretization suffices. 

 
The first two factors affect the number of iterations, while the third one affects the computational effort 
needed for the solution of the CP subproblem and is discussed in section 4.6.4. The domain reduction 
through preprocessing and the addition of integer cuts of type II and III is very successful in reducing the 
number of potential assignments with similar objective function values. Any further cuts, heuristic rules or 
other network-specific information that reduce the number of potential assignments can also be used to 
reduce the number of iterations.  
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4.6.3. Solution of Subproblem 
 
The CP subproblem is a feasibility problem when we are trying to minimize cost and an optimization 
problem when we are trying to maximize profit or minimize makespan. For the minimization of cost the 
implementation is straightforward: the MILP master problem gives a non-decreasing lower bound and the CP 
subproblem checks feasibility. The first feasible subproblem gives an upper bound equal to the current lower 
bound, i.e. the optimal solution. When the CP subproblem is an optimization problem we can solve it either 
as an optimization problem, or as successive feasibility problems in which the bound on the objective 
function is updated. If solved as one optimization problem the implementation is straightforward, similar to 
the one for the minimization of cost, but it is usually very expensive to optimize a CP model. If it is solved as 
successive feasibility problems, the implementation is more complicated because it involves the solution of 
successive CP models but it is usually more efficient, since each successive tree search is more tightly 
constrained. When the objective is the minimization of makespan, the gap is small and thus few subproblems 
need to be solved in each major iteration. Hence, in this work, we always solve successive feasibility CP 
subproblems when we minimize makespan for fixed demand and in each subproblem we add the following 
constraint, 

MS.end ≤ MSk 
where MSk is the makespan in the feasibility subproblem of the kth iteration. 
For the maximization of profit, the gap between the upper and the lower bound is larger and we use both 
approaches. The complete iterative schemes for all cases are shown in Figure 11, where for the maximization 
of profit we solve one optimization subproblem.  
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Figure 11: Iterative Scheme 



 22

 
4.6.4. Discretization 
 
The global constraints requires, consumes and produces and the constructs activity, discrete resource and 
reservoir accept integer arguments; i.e. the arguments Ricr, BI

ics, BO
ics and Dic in constraints (12), (14) and  

(24)-(26) must be integer variables, and the arguments Rr
MAX, Cs,and S0s in constraints (12) and (13) must be 

integer constants. Thus, variables Dic, Bic, Ricr, BI
ics and BO

ics of the CP subproblem must be integers, while 
they satisfy constraints (18a) – (21) that interconnect them. To ensure that these variables are integers we 
should discretize the domains of the variables so that αi and γi are integers and the products of Bic with βi, δir, 
ρI

is and ρO
is are also integers. Depending on the values of constants αi, βi, γir, δir, ρI

is and ρO
is, and the required 

resolution this may result in very large domains for variables Dic, Bic, Ricr, BI
ics and BO

ics. A general rule is that 
fine discretization is needed when the greatest common factor of αi, βi, γir, δir, ρI

is and ρO
is constants is very 

small. 
 
Consider, for instance, that the processing time of task A is given by, 

DA = 1 + 0.5 BA   (in hours) 
where BA is the batch-size of task A in tons. Assuming that BA takes values in [2,6], we can deduce that DA 
takes values in [2,4]. In Constraint Programming, variables BA and DA must be integers, which means that BA 
takes values in {2,3,4,5,6}. Since DA should be an integer, we should scale our variables, i.e. the duration of 
the time intervals should be ½ hour instead of 1 hour and the processing time is given by: 
DA = 2 + BA   (in ½ hours) 
If finer resolution is required, we can also scale BA variable, i.e. express BA in hundreds of kilograms, which 
means that BA∈{20, 21, … 60}. In this case the time discretization should be in intervals of 3 minutes, i.e. the 
domain of DA is {20, 21, 22, ..80} and DA is given by: 

DA = 20 + BA   (in 3 mins) 
In general, the finer the resolution the harder to solve a CP problem, but note that in CP we can use much 
finer resolution than in discrete-time STN models. Moreover, in CP we can approximate the values of some 
of these constants (as in discrete-time STN), but we can also approximate (overestimate) the processing time 
of tasks without rounding the batch size of a task. A common approximation, for example, is to replace 
constraint (18a) with the following two constraints that do not require that the RHS of (18a) is an integer: 

iiciiic CcZWiBD ∈∀∈∀+≥ ,βα  (18a’) 

iiciiic CcZWiBD ∈∀∈∀++< ,1βα  (18a”) 

The duration of task A when BA is expressed in tons (i.e. BA∈{2,3,4,5,6}), for example, can be defined by its 
domain (i.e. DA∈{2,3,4}) and the following two constraints (note that DA is exact when BA is even, and it is 
an overestimation of the actual processing time when BA is odd): 

DA ≥ 1 + 0.5 BA   (in hours) 

DA < 1 + 0.5 BA +1 (in hours) 
It is important to note that despite the approximations that might be needed, the proposed method yields 
consistently better solutions than the exact MILP models. As shown in the next paragraph, exact MILP 
models are computationally expensive to solve and thus yield suboptimal solutions, whereas the proposed 
method, in the worst case, yields an “approximation” of the optimal solution, which is better than an exact 
suboptimal solution.  
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5. Examples 
 
To illustrate the implementation of the proposed algorithm we first solve two examples (from Papageorgiou 
and Pantelides, 1996) of multipurpose batch plants, assuming constant processing times and no resource 
constraints other than equipment. Computational results for constant and variable processing times and both 
maximization of profit and minimization of makespan for the first example are reported in section 6, as well 
as comparisons with the MILP model of Maravelias and Grossmann (2003a).  
 
5.1. Example 1 
 
A multi-stage batch plant is used for the production of three products P1, P2 and P3 as shown in Figure 12. 
Unlimited storage is available for raw materials and final products, finite intermediate storage is available for 
the intermediates produced in the first stage and zero-wait policy applies for the intermediates produced in 
the second stage. The objective is to maximize the overall production of the plant over a time horizon of 15 
hours. Sufficient amounts of raw materials are available at the beginning of the scheduling horizon, while 
there are zero amounts of all other states. Unit and storage tank capacity data as well as processing time data 
are given in Appendix E.  
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T30
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Finite Storage
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U1 U2 U3  
Figure 12: Process network of Example 1. 

 
The EST and LFT determined in the preprocessing stage are reported in Table 3. No integer cuts of type II 
and III are derived due to the small size of the problem and the absence of similar tasks and units. If we allow 
up to five copies for all tasks, the optimal solution with an objective function value of 12 units is found in 4 
iterations. The bounds and the assignments of all iterations are reported in Table 4, with the number of copies 
in parentheses if greater than 1. If a feasible solution has been found (i.e. a lower bound is available), the CP 
subproblem is solved as a feasibility subproblem where we are looking for solutions better than the current 
lower bound. The upper bound calculated by the master problem is equal to 12 for all iterations. The first 
assignment is infeasible. The second is feasible and yields a lower bound of 11. The third assignment is also 
infeasible. The fourth assignment is feasible and yields a solution of 12, which means that a lower bound of 
12 is found, and since the upper bound is also 12, this is the optimal solution. The total CPU time is 0.48 
seconds. 
 
Table 3: Task EST and LFT for Example 1 (in hours) 

Task/Unit T10 T20 T30 T11 T21 T31 T12 T22 T32 U1 U2 U3 
EST 0 0 0 4 3 2 6 5 3 0 2 3 
LFT 4 4 3 2 2 2 0 0 0 3 2 0 

 
Note that if the maximum number of copies were four rather than five, the optimal assignment is obtained 
and the optimality is proved in only one iteration. The Gantt chart of tasks for the optimal solution obtained 
is shown in Figure 13, where the batch size of tasks T10, T20 and T30 is 4 tons and the batch size of all other 
tasks is 2 tons. Note that the tasks in the third stage start as soon as the tasks in the second stage finish, due to 
the zero-wait policy for intermediates S11, S21 and S31.   
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Table 4: Progress of algorithm for Example 1. 
Iteration Master MILP Problem CP Subproblem 
 UB Assignment: Task (no of copies) Solution LB 
1 12 T10, T11(2), T12(2), T20(2), T21(3), T22(3), T30, T31, T32 Infeasible - 
2 12 T10(2), T11(3), T12(3), T30(2), T31(3), T32(3) Feasible with Z = 11 11 
3 12 T10(2), T11(4), T12(4), T30(2), T31(2), T32(2) Infeasible for Z > 11 11 
4 12 T10, T11(2), T12(2), T20, T21(2), T22(2), T30, T31(2), T32(2) Feasible for Z > 11 12 
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Figure 13: Task Gantt chart for Example 1. 

 
 
5.2. Example 2 
 
The batch plant of Figure 14 is used for the production of four final products (P1, P2, P3 and P4) from 6 raw 
materials (F1, F2, … F6). It involves 8 units, 27 states and 19 tasks. Some of these tasks can be performed in 
more than one unit. Unlimited storage is available for raw materials and final products, finite intermediate 
storage is available for states S20, S30, S31, S61 and S71, no intermediate storage is available for states S40, 
S50 and S60 and zero-wait policy applies for states S10, S21, S22 and S70. Sufficient amounts of raw 
materials and zero amounts of all other states are available at the beginning of the scheduling horizon. The 
objective is to minimize the makespan for a fixed production of 5 tons for all products. Unit and storage tank 
capacity data as well as processing time data are given in Appendix E.  
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Figure 14: Process network for Example 2. 
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Since there are no similar equipment and units, no integer cuts of type III are used. Since NIS policy applies 
for state S60, and tasks T60 and T61 can be carried in only one unit, we add an integer cut of type II that 
enforces the condition that in any solution the number of copies of task T60 is equal to the number of copies 
of task T61, 

∑∑ =
c

cT
c

cT ZZ ,61,60  

The same condition is imposed for the zero wait states, i.e. for the following pairs of tasks: (T10, T11), (T21, 
T22), (T22, T23) and (T71, T72). Moreover, since the objective is the minimization of makespan the integer 
cuts I exclude not only the current assignment, but also every superset of the current assignment [equation 
(41)]. 
 
Assuming that we can have at most 4 copies of each task, the optimal solution of 15 hours is found in 5 
iterations. The assignment that gives the optimal solution is found in the first iteration with a lower bound of 
14 hours. Successive feasibility CP problems are solved for this assignment, and a feasible schedule with a 
makespan of 15 hours is found in the second subproblem. The subsequent master problems give solutions 
with a lower bound on the makespan equal to 14 hours, but none of these assignments yields a feasible 
schedule with makespan shorter than 15 hours. The fifth MILP is infeasible, which means that there are no 
more assignments that can meet the given demand. The total computational time is 1.80 CPU seconds, from 
which 0.03 seconds are spent in preprocessing, 0.70 seconds are spent for the master problem (approximately 
0.14 sec for each MILP), and  1.07 seconds are spent for all the CP subproblems. The Gantt chart of the 
optimal solution is shown in Figure 15, where the batch size of each task is given in parentheses. 
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Figure 15: Equipment Gantt chart for Example 2 without changeovers. 

 
We next solve Example 2 assuming a changeover time of 1 hour between different tasks performed in the 
same unit. An optimal solution of 16 hours was obtained in 5 iterations and 2.66 of CPU seconds (0.03 for 
preprocessing, 0.71 for MILPs and 1.92 CPU seconds for all CP problems). Note that the increase in 
computational effort for changeover times is very small. The equipment Gantt chart of the solution is shown 
in Figure 16. The schedule of Figure 16 is different from the schedule of Figure 15 in that (a) task T60 starts 
in unit U4 at t=3 instead of t=2 due to the changeover time, (b) task T62 starts in unit U8 at t=4 instead of 
t=3 because the intermediate S60 produced by T60 becomes available 1 hour later, and (c) task T72 starts at 
t=15 (instead of t=14) due to the changeover time needed in unit U8. 
 
Note that when changeover times are included, the CP formulation of the subproblem remains practically the 
same. The only differences are that we should now define a transition type (TT) for the activities performed 
in the unit for which changeover times are required, through equation (45), provide the matrix of changeover 
times and define UnaryResources and Activities  through equations (46) and (47), respectively, instead of 
equations (11) and (14): 
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Tasks TT[t in Tasks,c in Copies] = t; (45) 

UnaryResource Equipment[Units] (m); (46) 
Activity Task[t in Tasks, c in Copies] (DurA[t,c]) transitionType TT[t,c]; (47) 
where TT is the type of transition and m is the matrix of changeover times (i.e. it is defined for every pair of 
tasks).  
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Figure 16: Equipment Gantt chart for Example 2 with changeovers. 

 
 
 
6. Computational Issues 
 
6.1. Computational Results and Comparisons 
 
In this section we present computational comparisons with the STN model of Maravelias and Grossmann 
(2003a) which appears to be among the most effective continuous-time MILP models for general scheduling 
problems. This model is solved using GAMS 20.7/CPLEX 7.5, while the hybrid scheme was modeled in 
OPL Studio 3.5, using CPLEX 7.5 for the master MILP and ILOG’s Solver 5.2 for the CP subproblem. The 
default CPLEX and Solver options have been used in all cases. A Pentium III PC at 670 MHz running 
Redhat Linux is used for both approaches. The comparison is made for both constant and variable processing 
times, for six different instances of Example 1. In instances Pr1, Pr2 and Pr3 we maximize the total 
production over a fixed time horizon of 15, 20 and 25 hours, respectively. In instances Ms1, Ms2 and Ms3 
we minimize the makespan for fixed demands. The demand for products P1/P2/P3 in instances Ms1, Ms2 
and Ms3 are 4/5/6, 5/6/8 and 5/8/10 tons, respectively. Suffices c and f are used to characterize the instances 
with constant and variable, respectively, processing times. For the hybrid scheme, we have used a maximum 
number of five copies in all instances (i.e. |Ci|=5).  
 
Note that in continuous-time MILP models, the quality of the solution obtained and the computational effort 
required depend heavily on the number of time intervals in which the time horizon is divided. The minimum 
number of time points needed to obtain the optimal solution is usually found through an iterative procedure 
where the number of time points is increased until there is no improvement in the objective function. This 
procedure, however, does not guarantee that the globally optimal solution is found, as one might get the same 
solution when the number of time points is increased by one, but then obtain a better solution when the 
number of time points is increased by two. This feature is not required in the MILP master problem of the 
proposed hybrid method. 
 
The computational results of the two methods for constant processing times are reported in Table 5. For the 
maximization of production, the MILP model of Maravelias and Grossmann obtained the optimal solution in 
all instances with 10, 12 and 15 time points, respectively. Reasonable computational effort was required for 
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instances Pr1c and Pr3c (58.5 and 523.6 CPU secs, respectively), while more than 4.5 CPU hours were 
required for Pr2c. It seems that the reason for the large computational requirements of instance Pr2c is the 
existence of many “equivalent” solutions. Specifically, the earliest start time for unit U3 is t=3 hours and the 
processing times of all tasks that can be performed in unit U3 is 2 hours. This implies that for a total time 
horizon of 20 hours (as in Pr2c) the total available time for processing time in unit U3 is 17 hours, while the 
maximum number of tasks assigned to U3 is 8. Since the total processing time in unit U3 is 16 hours (8 tasks 
* 2 hours) and the total available time is 17 (=20-3) hours, there are several different solutions with exactly 
the same objective. These solutions can be obtained by moving the tasks in U3 (forward or backward) by one 
hour. While these solutions are different solutions for the MILP models, they correspond to the same solution 
of the master problem of the proposed approach and thus examined only once. 
 
Table 5: Computational results for Example 1 for constant processing times. 

  MILP STN Model MILP/CP Hybrid Scheme 
Case H (hours) Obj ($103) Time Points Nodes CPU sec Obj ($103) # iter’s CPU sec 
Pr1c 15 12 10 739 58.5 12 4 0.48 
Pr2c 20 16 12 150,922 16,749.2 16 3 0.32 
Pr3c 25 22 15 1,570 523.6 22 4 0.43 
 Demand (tons) Obj (hr)    Obj (hr)   
Ms1c 4/5/6 23* 13 171,251 36,000 19 1 0.22 
Ms2c 5/6/8 - ** 16 111,700 36,000 23 1 11.20 
Ms3c 5/8/10 - ** 19 57,000 36,000 27 1 0.37 

* Suboptimal solution: Gap 35% 
** No integer solution found 
 
For the minimization of makespan for fixed demands, the MILP model is intractable. Instance Ms1c is the 
only one for which an integer solution is found with 13 time points, while instances Ms2c and Ms3c were 
solved for various time grids (i.e. no of time points) but no integer feasible solution was found in 36,000 
CPU seconds. The computational statistics reported in Table 5, correspond to the MILP with the minimum 
number of time points that can represent the optimal solution found by the hybrid algorithm. The proposed 
algorithm, on the other hand, obtained the optimal solution for all instances of both objectives. For the 
maximization of profit instances Pr1c, Pr2c and Pr3c it required 0.48, 0.32 and 0.43 CPU seconds, 
respectively. It is, therefore, more than two orders of magnitude faster that the MILP model for instances 
Pr1c and Pr3c, and more than four orders of magnitude faster for instance Pr2c. Instances Ms1c, Ms2c and 
Ms3c, for the minimization of makespan with fixed demand, were also solved to optimality in less than 12 
seconds. Compared to the results of the MILP model, we see that problems that were unsolvable with 
continuous-time MILP models are solved in seconds with the proposed scheme. 
 
The problem becomes more difficult for both methods when variable processing times are used. Due to the 
large number of time points and the excessive computational effort needed to solve large problems, the MILP 
model cannot find the optimal solution in none of the Pr1v, Pr2v and Pr3v instances. Feasible solutions are 
found for certain time grids, but when finer time grids are used the model becomes intractable. To illustrate 
we report in Table 6 the computational statistics of the MILP model of Maravelias and Grossmann for 
various time grids, for instance Pr3v. As shown, models with up to 11 time points are solved with reasonable 
computational effort, but when 12 or more time points are used, the model becomes intractable. Specifically, 
a solution with an objective value of 14.0 is obtained when 10 time points are used; an improved solution 
with an objective value of 16.0 is obtained with 11 time points; but no further improvement is possible, 
because the problems with more than 11 time points can only yield suboptimal solutions within the time limit 
of 36,000 CPU seconds. Hence, the best solution for the MILP is 16 (obtained with 11 time points). This is a 
feature common to all continuous-time MILP models, and restricts their use to mid-size problems.  
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Table 6: Computational statistics of the MILP model of Maravelias and Grossmann (2003a) for Pr3v. 
Time Points 10 11 12 13 14 
Objective 14.0 16.0 16.0 * 13.0 * 12.5 * 
Best Bound - - 17.98 19.98 21.95 
Gap (%) - - 12.4 53.7 75.6 
Nodes 37 1,669 173,893 110,531 86,198 
CPU sec 16.9 356.0 36,000 36,000 36,000 

* Optimality not proved 
 
The computational comparison of the two methods for variable processing times is given in Table 7. For the 
maximization of production, we were not able to find the optimal solution using the continuous-time MILP 
formulation because when more than 12 time points were used the resulting models could not be solved to 
optimality. Thus, for each instance we report the statistics of the MILP that obtained the best solution in 
36,000 CPU seconds (which is significantly smaller than the sum of the CPU times spent for all the MILP 
models with different number of points). The problem of minimizing makespan for fixed demand proved to 
be even more difficult for the MILP model as we were not able to get a single integer solution for any of the 
three instances. In Table 7 we report the computational statistics of the MILP with the smallest number of 
time points that was not infeasible for the specified demand. 
 
Table 7: Computational results for Example 1 for variable processing times. 

  MILP STN Model ♦ MILP/CP Hybrid Scheme ♦♦ 
Case H (hours) Obj ($103) Time points Nodes CPU sec Obj ($103) # iter’s CPU sec 
Pr1v 15 11.9* 12 215,214 36,000 12.0 31 8.85 
Pr2v 20 12.0 ** 12 175,799 36,000 16.5 125 297.76 
Pr3v 25 16.0 11 1,669 356.0 20.5 60 36,000 
 Demand (tons) Obj (hr)    Obj (hr)   
Ms1v 4/5/6 - *** 13 98,400 36,000 19.7 31 11.28 
Ms2v 5/6/8 - *** 14 58,500 36,000 23.8 33 27.67 
Ms3v 5/8/10 - *** 15 52,400 36,000 28.1 38 3,120.79 

♦ Statistics of the MILP that gave the best solution in 36,000 CPU-s. 
♦♦ Best solutions with 5 copies for each task. 
* Suboptimal solution: Gap 0.05% 
** Suboptimal solution: Gap 32.9% 
*** No integer solution found 
 
In the proposed hybrid approach we need to scale and approximate the parameters and scale the time horizon 
when we have variable processing times (see section 4.6.4.). In order to reduce the domains of the variables 
we have overestimated some processing times. The parameters that we used for this approximation are given 
in Table E4 of Appendix E. Nevertheless, the hybrid scheme yields better solutions than the MILP model in 
all instances. For the maximization of profit we obtained better solutions than the ones obtained by the MILP 
model, and with significantly less computational effort for instances Pr1v and Pr2v. As explained above, the 
MILP for instance Pr3v yields a suboptimal solution (profit = 16) in 356 CPU seconds but it becomes 
intractable for finer time partitions (Table 6) and no better solution can be found. The proposed scheme, in 
contrast, yields a much better solution (profit = 20.5). For the minimization of makespan we obtained the 
optimal solution (in terms of tasks) but with slightly overestimated makespan due to the scaling and the 
overestimation of processing times. As shown, and especially for the minimization of makespan, the 
proposed algorithm enables us to solve problems that were unsolvable with the existing tools. 
 
Finally, in Table 8 we present the number of iterations and the CPU time required for the preprocessing step, 
the solution of all MILP master problems and the solution of all CP subproblems. As shown, computational 
requirements for preprocessing are negligible for all instances. Note, however, that for these examples we 
only calculate EST and LFT of tasks and units (i.e. Preprocessing I of Figure 3) but we do not derive any 
integer cuts of type II and III (i.e. Preprocessing II of Figure 3) that could be potentially more time 
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consuming. The ratio of the total time spent for the solution of the MILP master-problem over the total time 
spent for the solution of the CP subproblem is variable: it is close to 1 for the easiest problems (instances 
Pr1c, Pr2c, Pr3c and Ms1c) but it decreases as problems become more difficult; it is almost three orders of 
magnitude smaller for instance Pr3v. An interesting observation is that the time needed for the solution of a 
single MILP problem does not increase significantly as the problems becomes more difficult: it varies 
between 0.055 CPU-s per iteration (Pr3c) up to 0.5 CPU-s per iteration (Pr3v). Hence, the factor that seems 
to affect the computational efficiency of the proposed scheme the most is the solution of the CP subproblem. 
Note that in CP the user can customize the search by choosing the order of variables at which branching is 
performed, constraint propagation rules (disjunctive, edge-finding, etc.) and search strategy (depth first, best 
first, slice-based, depth-bounded discrepancy, etc.). Hence, we were able to greatly enhance the solution of 
the CP subproblem by fine tuning, but for comparison reasons here we report the CPU requirements needed 
when the standard CP and MILP options are used both for the MILP of Maravelias and Grossmann (2003a) 
and the proposed hybrid scheme.  
 
Table 8: Computational results for Example 1 for variable processing times. 

Problem Instance Iterations Detailed Computational Requirements (CPU-s) 
   Pre-processing MILP CP Total 
Example 1       
Constant Pr1 4 0.02 0.26 0.20 0.48 
Processing Pr2 3 0.02 0.18 0.12 0.32 
Times Pr3 4 0.03 0.22 0.18 0.43 
 Ms1 1 0.01 0.1 0.11 0.22 
 Ms2 1 0.02 0.1 11.08 11.20 
 Ms3 1 0.02 0.09 0.26 0.37 
Variable Pr1 31 0.02 6.74 2.09 8.85 
Processing Pr2 125 0.02 54.02 243.72 297.76 
Times Pr3 60 0.02 29.98 35,970.00 36,000 
 Ms1 31 0.02 4.05 7.21 11.28 
 Ms2 33 0.02 4.66 22.99 27.67 
 Ms3 38 0.02 5.33 3,115.44 3,120.79 
Example 2       
 w/o setups 5 0.03 0.70 1.07 1.80 
 w/ setups 5 0.03 0.71 1.92 2.66 

 
 
6.2. Remarks 
 
6.2.1. Feasibility Emphasis in MILP Solvers 
 
In order to obtain a single feasible solution for the minimization of makespan using the MILP model of 
Maravelias and Grossmann, we could have used the CPLEX option for emphasis on feasibility. When we 
used this option we were indeed able to get feasible solutions for more instances, but these solutions were 
very poor and it was not possible to improve them in 36,000 CPU seconds.  
 
6.2.3. Discrete-time STN Formulations 
 
The reason we chose to compare the proposed method with a continuous-time STN model is because 
continuous-time STN models are, in principle, more general than discrete-time STN models. Despite the 
approximations needed, however, discrete-time models are widely used in practice because they are very 
effective. Variable processing times can be handled through the introduction of additional binary variables 
(Kondili et al., 1993). Moreover, an iterative scheme was recently proposed (Maravelias and Grossmann, 
2003c) to address the problem of minimization of makespan of multipurpose batch plants using a discrete-
time representation.  
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6.2.3. Application of Preprocessing in MILP Formulations 
 
It is legitimate to argue that for a fair comparison between the proposed method and standalone MILP 
models, preprocessing must be applied to both approaches. However, it is not clear how to apply the 
preprocessing described in this paper for MILP models. Specifically, it is not clear how to relate EST and 
LST of tasks and units with the Win binaries used in continuous-time MILP models to denote the start of task 
i at time point n. Consider, for example, that the EST of unit j is t=3 hours. Since, in continuous-time models 
we do not know a priori when a time point occurs, we cannot fix any of the Win binaries, other than the one 
that corresponds to t=0. Given that point n=0 corresponds to the start of the scheduling horizon (i.e. t=0), if 
the first time point (n=1) corresponds to t=2 (i.e. T1=2) we could have fixed Wi1 = 0 ∀i∈I(j), but if the first 
point corresponds to t=4 this constraint is incorrect. In discrete-time STN models (where we know when a 
time point occurs) it is possible to fix binaries to zero, but these constraints are usually automatically 
satisfied by the MIP formulation. Moreover, most commercial solvers that are used for the solution of the 
MILP models have very efficient preprocessing routines.  
 
6.2.4. Application of Integer Cuts in MILP Formulations 
 
Similarly, it is not straightforward how to lift an integer cut in the space of Win binaries. Consider, for 
example, the following cut:     

ZA1 + ZB1 - ZC1 ≤ 1          (48) 
which excludes a solution in which tasks A and B are performed and task C is not performed.   
Can we write this cut using binaries WAn, WBn and WCn? In general, we cannot replace Zi binaries by the 
summation of Win binaries over n, because such a cut excludes more assignments: 

Σn WAn + Σn WAn - Σn WAn ≤ 1         (49) 
The integer cut in (49), for example, excludes the possibly feasible assignment where task A is performed 
twice and tasks B and C are not performed at all. The only case where cuts can be lifted in the space of the 
Win binaries is when tasks can be performed only once (in this case equation (49) is correct). This case, 
however, is a very restricted subclass of multipurpose batch plants; actually, one of the main advantages of 
STN representation is that it is not restricted to this subclass of problems. Moreover, for this subclass of 
problems there are several things that can be done to enhance the performance of both the proposed method 
and MILP models.  
Finally, another issue that has to be resolved is how we acquire these or other types of cuts from a standalone 
MILP representation. In the proposed framework we identify assignments in the master problem and check 
feasibility in the subproblem. What type of iterative scheme can be used with continuous-time MILP 
models? Run a MILP solver for some time and check what binary combinations are infeasible? This would 
be practically impossible because there is no direct way to extract this information from a MILP solver, the 
space of binary variables in MILP models is much bigger than the one in the master problem of the proposed 
approach, and has never been proposed in the past. An alternative would be to use the proposed framework 
to derive some integer cuts, lift them in the space of Win binaries (only for the special subclass discussed 
above), and add these cuts in the MILP formulation. In this case, however, we would still need the proposed 
hybrid scheme. Overall, although pre-processing and integer cuts could potentially benefit standalone MILP 
formulations as well, currently there is no direct way to apply these enhancements in MILP STN-based 
formulations. 
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7. Conclusions 
 
A hybrid MILP/CP framework for STN scheduling problems has been presented in this paper. The proposed 
framework integrates traditional MILP and CP techniques, exploiting their complementary strengths. Mixed-
Integer Programming is used to identify potentially good assignments of equipment units to tasks and 
Constraint Programming is used to check feasibility and/or to derive optimal feasible schedules for specific 
assignments. Various classes of integer cuts are presented to exclude infeasible or previously examined 
assignments, and a graph-theoretic procedure is developed for pre-processing and domain reduction. The 
proposed framework is very general as it handles: (a) variable batch sizes and processing times, (b) complex 
plant configurations with batch splitting, mixing and recycle streams, (c) resource constraints other than 
equipment, and (d) different storage policies. Moreover, various objective functions can be accommodated. It 
can also be used as a two-level planning and scheduling tool, where the medium-term planning decisions 
(type and no of tasks needed and assignment of tasks to units) are made by the master MILP problem and the 
short-term detailed scheduling decisions are made by the CP subproblem. The proposed method can be 
extended to almost all batch plant configurations, where the MILP master problem can be enriched with 
constraints that represent the special structure of the problem, and the CP subproblem can be simplified if 
some of the features are not needed. Finally, the computational results showed that for some classes of 
problems the proposed MILP/CP hybrid algorithm was orders of magnitude faster than MILP models, 
enabling us to solve problems that are practically unsolvable with existing tools. 
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Nomenclature 
 
Indices 
i  Tasks 
j  Equipment units 
c  Copies of task 
r  Resource categories (utilities) 
s  States 
g  Classes of similar tasks 
d  Orders 
Sets 
ZW  Set of tasks producing materials for which zero-wait storage policy applies 
FP  Set of final products 
INT  Set of intermediate states 
I(j)  Set of tasks that can be scheduled on equipment j 
I(s)  Set of tasks that use state s as input 
I(FP)  Set of tasks that produce final products 
I(g)  Set of tasks that belong to class g 
O(s)  Set of tasks that produce state s 
SI(i)  Set of states consumed by task i 
SO(i)  Set of states produced by task i 
Parameters 
H  Time horizon 
αi  Fixed duration of task i 
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βi  Variable duration of task i 
γir  Fixed amount or utility r required for task i 
δir  Variable amount of utility r required for task i 
ρI

is /ρO
is  Mass balance coefficient for the consumption/production of state s in task i 

S0s  Initial amount of state s 
Cs  Storage capacity for state s 
RMAX

r  Upper bound for utility r 
BMIN

i / BMAX
i Lower/upper bounds on the batch size of task i 

ζs  Price of state s 
ADd  Amount due for order d 
TDd  Due date of order d 
ESTi /STi /LFTi Earliest Start Time / Shortest Tail / Latest Finish Time of task i 
ESTj /STj /LFTj Earliest Start Time / Shortest Tail / Latest Finish Time of unit j 
 
Variables of MILP Master Problem (MP) 
Binary Variables 
Zic   =1 if batch c of task i is performed 
Ygcn  =1 if there are n cth copies of tasks in I(g)  
Continuous Variables 
MS  Makespan 
Dic  Duration of copy c of task i 
Bic  Batch size of copy c of task i 

sŜ   Amount of state s 
 
Variables and constructs of CP Subproblem (SP) 
Variables 
Dic  Duration of copy c of task i 
Bic  Batch size of copy c of task i 
BI

ics / BO
ics Amount of state s consumed/produced by copy c of task i 

Ricr  Amount of utility r consumed by copy c of task i 
Constraint Programming Constructs 
MS  Dummy activity that appears at the end of the scheduling horizon 
Task[i,c] Activity that represents the cth copy of task i with duration Dic 
Order[d] Activity used to represent orders with due dates 
Unit[j]  Unary resource that represents the equipment unit j  
Utility[r] Discrete resource that represents utility r with maximum capacity Rr

MAX 

State[s]  Reservoir that represents state s, with initial inventory S0s and storage capacity Cs. 
 
Variables of MILP model of Maravelias and Grossmann (2003a) 
Binary Variables 
Wsin  =1 if task i starts at time point n  
Wpin   =1 if task i is being processed at time point n  
Wfin  =1 if task i finishes at or before time point n  
Continuous Variables 
Tn  Time that corresponds to time point n 
Tsin  Start time of task i that starts at time point n 
Tfin  Finish time of task i that starts at time point n 
Din  Duration of task i that starts at time point n 
Bsin  Batch size of task i that starts at time point n 
Bpin  Batch size of task i that is processed at time point n 
Bfin  Batch size of task i that finishes at or before time point n 
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BI
isn  Amount of state s used as input for task i at time point n 

BO
isn  Amount of state s produced from task i at or before time point n 

Ssn  Amount of state s available at time point n 
RI

irn  Amount of utility r consumed at time point n by task i 
RO

irn  Amount of utility r released at or before time point n by task i 
Rrn  Amount of utility r consumed at time point n 
 
 
 
Appendix A: ILOG’s OPL Studio 3.5 Modeling Language 
 
In this paper we model CP subproblems using the modeling language of ILOG’s OPL Studio 3.5, which has 
a number of global constraints and special constructs that are specifically developed for scheduling 
applications. The special constructs are:  
 
Activity: It is equivalent to a job or a task. There are three variables associated with each activity a: its start 
time (a.start), its duration (a.duration) and its end time (a.end). The user has to define a.duration. 
Unary Resource: It is a resource with capacity equal to 1 that can be used by only one activity at a time. It is 
used to model equipment units. 
Discrete Resource: It is a resource with (integer) capacity R>1 and it is used to model discrete (e.g. 
manpower) and continuous resources (cooling water). Its constant capacity R is user-defined. 
Reservoir: It is an entity that can be consumed/produced by a task and it is used to model the chemicals that 
are consumed/produced by tasks (activities). Its capacity C and initial amount S0 are user-defined. 
 
Let TASK be an activity, UNIT a unary resource, UTILITY a discrete resource and STATE a reservoir. The 
global constraints used in the CP subproblem are: 
 

TASK requires UNIT (A1) 
TASK requires RTASK UTILITY (A2) 
TASK consumes BI STATE (A3) 
TASK produces BO STATE (A4) 
 
where requires, consumes and produces are OPL’s special global constraints.  
Constraint (A1) is an assignment constraint that assigns and sequences activity TASK to unary resource 
UNIT, taking into account that at most one activity can be assigned to UNIT at any given time point. 
Constraint (A2) allocates RTASK units of discrete resource UTILITY to activity TASK, taking into account that 
at most R units of UTILITY can be allocated to all activities at any time point. Constraints (A3) and (A4) are 
used for the calculation of the amount of reservoir STATE consumed and produced by activity TASK, taking 
into account that the level of reservoir STATE at any time cannot be less than zero and cannot exceed its 
maximum capacity C.  
 
 
 
Appendix B: MILP Model of Maravelias and Grossmann (2003a) 
 
Among the continuous-time models the model of Maravelias and Grossmann (2003a) appears to be quite 
general in terms of the plant configurations and computationally among the most effective. This model is 
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presented here for reference and computational comparisons with the proposed hybrid MILP/CP 
decomposition scheme. 
 
Binaries Wsin (Wfin) are 1 if task i starts at time point n (finishes at or before time point n). Variable Tn is the 
time at which time point n occurs, Din is the duration of task i that starts at time point n, and Tsin (Tfin) is the 
start (finish) time of task i. Variables Bsin, Bpin and Bfin correspond to the batch size of task i that starts at, is 
being processed at, and finishes at or before time point n, respectively. Variable BO

isn (BI
isn) represents the 

amount of state s produced (consumed) by task i at time point n. Variable RI
irn (RO

irn) represents the amount 
of renewable resource (utility) r consumed (released) by task i at time point n. The amount of state s stored at 
point n is denoted by Ssn: 
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Calculation of Duration and Finish Time of Tasks 
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Utility Constraints 
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Ordering of Time Points 
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Tightening Valid Inequalities 
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Wsin, Wfin ∈ {0,1}, Bsin, Bpin, Bfin, SSsn, Ssn, Tn, Tsin, Tfin, Din, BI
isn, BO

isn RI
irn, RO

irn, Rrn ≥ 0 (B32) 
 
Constraints (B1) – (B4) are the assignment constraints and constraints (B5) – (B9) are used for the 
calculation and tightening of the duration, Din, and the finish time, Tfin, of task i. The elimination of start 
time, Tsin, is accomplished through (B10), while constraints (B11) and (B12) are used for time matching 
between finish time, Tfin, and Tn. Constraints (B13) – (B18) are used for the bounding of batch sizes (Bsin, 
Bpin and Bfin) and the amount of state s produced BO

isn (consumed BI
isn) by task i at time point n. Constraint 

(B19) is the mass balance for state s at time n, and constraint (B20) is a capacity constraint, where Cs is the 
capacity of the storage tank. The amount RI

rn of renewable resource r required by task i starting at time point 
n is calculated by constraint (B21). The same amount RO

rn is “released” when task i finishes, and is 
calculated by constraint (B22). The total amount of resource r required at time n is calculated in (B23) and 
bounded, not to exceed the maximum availability Rr

MAX, by (B24). Equations (B25) – (B27) define the start 
and the end of the time horizon and enforce an ordering among time points. The addition of valid inequalities 
(B28), (B29) and (B30) tightens the LP relaxation and significantly reduces the size of the branch-and-bound 
tree. The MILP model (M) for the maximization of profit over a fixed time horizon H consists of equations 
(B1) to (B32). 
 
If the objective is to minimize the makespan MS for fixed demand, the following changes need to be made: 
(a) The objective function is, 
       MSmin  (B31’) 
(b) Addition of constraint (33) that enforces that the demand is met, 

      NnsdS ssn =∀≥ ,          or         NnsdS ssn =∀= ,  (B33) 

     where ds is the demand for state s at the end of the horizon. 
(c) The length of the fixed time horizon, H, is replaced by the makespan, MS, in constraints (B26), (B28) and 

(B29). The parameter H is used in all other constraints as an upper bound on the makespan MS. 
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The model (M’) for the minimization of makespan consists of equations (B1) – (B30), (B31’) and (B32) - 
(B33). Finally, a generalization of model (M) that accounts for due dates and delivery dates has been 
proposed by Maravelias and Grossmann (2003b). 
 
 
 
Appendix C: Derivation of MILP Master Model (MP) 
 
In order to show that the master problem (MP) of the proposed scheme is a relaxation of the model (M) of 
Maravelias and Grossmann (2003a), we first need to clarify the relation between copies c∈Ci and time points 
n∈N. In the model (M) the authors divide the time horizon into |N-1| time periods, and each task can start at 
the beginning of any of these intervals (Wsin=1 and Bsin ≠ 0), i.e. can take place more than once. The number 
NBi

M of batches of task i can then be calculated from, 
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In the master problem (MP) of the proposed approach we use the notion of “copies” of task i, i.e. we 
postulate, through equation (1), a maximum number of copies (batches) |Ci|=Ci

MAX for each task i. The 
binary Zic is equal to 1 if copy c of task i takes place [subject to constraint (8) that is a symmetry-breaking 
constraint]. The number NBi

MP of batches of task i is defined by, 
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For a solution of model (M) to be mapped onto a solution of model (MP), it is necessary (but not sufficient) 
NBi

MP to be equal to NBi
M. Furthermore, for any solution of (M) we can find an equivalent solution of (MP) 

where the earliest batch (i.e. the smallest n for which Wsin=1) of task i of model (M) corresponds to the first 
(c=1) copy of task i of model (MP), the second earliest batch of (M) corresponds to the second copy of (MP), 
etc., and, moreover, the duration and batch size of each batch of task i in (M) is equal to the duration and 
batch size of the corresponding copy of task i in (MP). 
 
Taking into account the relationship between copies c∈Ci of model (MP) and time periods n∈N of model 
(M), we can say that any solution of model (M) is also feasible for model (MP) because, 
1. Constraints (2) are the same as constraints (B28); constraints (B28) have some additional zero terms 

for the time periods where no task starts. 
2. Constraints (3) are a subset of constraints (B5). 
3. Constraints (4) are a subset of constraints (B13). 
4. By adding constraints (B19) of (M) for all n∈N and state s we get:  
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Reversing the order of summation and plugging in equations (B17) and (B18) we get:   
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As explained above, for any solution of (M) we can construct a solution of (MP) with the same 
number of batches, and equal durations and batchsizes. Thus, the internal summations can be replaced 
by summations over the set of copies of (MP),  
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which is the same as constraint (5) of the master problem, if sŜ =Ss|N|, i.e. the variable sŜ of the master 
problem (MP) corresponds to the final amount of state s in the (M) model. 

5. Constraints (6) are the same as constraints (B33) 
6. Constraints (7) are the same as constraints (B20) for n=|N|. 
7. Constraints (8) are symmetry breaking constraints that cannot be mapped into the space of (M) model. 
 
Hence, from the above it follows that model (MP) consists either of constraints of model (M), or of 
constraints that are linear combinations of constraints of model (M). This implies that (MP) is a relaxation of 
(M) and that any solution of (M) can be “mapped” into a solution of (MP). The master problem (MP), 
therefore, provides an upper bound to the profit and a lower bound to the cost and the makespan. 
 
 
 
Appendix D: Example of Calculation of EST and ST of Tasks 
 
Consider the STN network of Figure D1, where we assume, for simplicity, that the processing times of all 
tasks are 2 hours (Di=2, ∀i) and raw materials RM1, RM2 and intermediate INT3 are available at time t=0.  
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R3
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70%

40%

60%30%

RM1

RM2

INT1

INT2

INT3
P1

P2R5
INT4

70%

30%

 
Figure D1: Process network of example for calculation of EST and ST of tasks. 

 
Since RM2 is initially available and R2 consumes only RM2, we have ESTR2=0. Similarly, the ESTR3=0. 
Intermediates INT1 and INT2 are produced only by task R2 and thus they will become available at 
ESTR2+DR2=2, i.e. ATINT1=ATINT2=2. Task R1 can only start if both RM1 and INT1 are available, which 
means that ESTR1=max{ATRM1, ATINT1}=max{0,2}=2. Similarly, task R4 consumes intermediates INT2 and 
INT3, and thus ESTR3=max{ATINT3, ATINT2}={0,2}=2. Since intermediate INT3 is available at t=0 task R3 can 
start immediately (ESTR3=0). Intermediate INT4 is produced by both R3 and R4 which means that it 
becomes first available at ATINT4=min{ESTR3+DR3, ESTR4+D4}={0+2, 2+2}=2. Finally, task R5 can start 
when INT4 is available, i.e. ESTR5=ATINT4=2. We need not calculate the ATP1 and ATP2. The sequence of 
calculations is shown in Figure D2, where the new calculations are highlighted. 
 
For the calculation of ST of tasks, we have MTP1=MTP2=0 and we first calculate STR5 = 0, which implies that 
MTINT4=DR5=2. Task R3 is used for the production of both P1 and INT4 and thus we have STR3 = min{MTP1, 
MTINT4} = 0. Since task R4 produces only state INT4, STR4=MTINT4=2. State INT3 is used for both tasks R3 
and R4, so MTINT3 = min{STR3+DR3, STR4+DR4} = min{0+2, 2+2} = 2. For state INT2 we have MTINT3 = STR4 
+ D4 = 4. Similarly, STR1=2 and STR2=4. We need not calculate MTRM1 and MTRM2. 
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Figure D2: Calculations of for EST of tasks. 

 
 
 
Appendix E: Example Data 
 
Table E1: Data for Example 1. 

State F1 F2 F3 S10 S20 S30 S11 S21 S31 P1 P2 P3 
Capacity UIS UIS UIS 10 10 10 ZW ZW ZW UIS UIS UIS 
S0 (ton) 100 100 100 - - - - - - - - - 
ζ ($103/ton) - - - - - - - - - 1 1 1 

 
Table E2: Data for Example 1 for constant processing times. 

Task T10 T20 T30 T11 T21 T31 T12 T22 T32 
Unit U1 U1 U1 U2 U2 U2 U3 U3 U3 
BMIN (ton) 1 1 1 1 1 1 1 1 1 
BMAX (ton) 5 5 5 2 2 2 3 3 3 
α (hr) 4 3 2 2 2 1 2 2 2 

 
Table E3: Exact data for Example 1 for variable processing times. 

Task T10 T11 T12 T20 T21 T22 T30 T31 T32 
Unit U1 U2 U3 U1 U2 U3 U1 U2 U3 
BMIN (ton) 2.5 1 1.5 2.5 1 1.5 2.5 1 1.5 
BMAX (ton) 5 2 3 5 2 3 5 2 3 
α (hr) 1 0.5 0.5 0.75 0.5 0.5 0.5 0.25 0.5 
β (hr/ton) 0.8 1 0.667 0.6 1 0.667 0.4 0.5 0.667 
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Table E4: Data for Example 1 for variable processing times: parameters used for approximation 
Task T10 T20 T30 T11 T21 T31 T12 T22 T32 
Unit U1 U1 U1 U2 U2 U2 U3 U3 U3 
BMIN (500 kg) 5 2 3 5 2 3 5 2 3 
BMAX (500 kg) 10 4 6 10 4 6 10 4 6 
α (6 min) 10 5 7 8 5 7 5 1 7 
β (6 min/ 500 kg) 4 5 3 3 5 3 2 3 3 

 
Table E5: Data for Example 2. 

State F1 F2 F3 F4 F5 F6 S10 S20 S21 S22 S30 S31 S40 S50 
Capacity 100 100 100 100 100 100 0 10 0 0 20 20 0 0 
S0 (kg) 100 100 100 100 100 100 - - - - - - - - 
               
State S60 S61 S70 S71 S72 IN1 IN2 IN3 IN4 P1 P2 P3 P4  
Capacity 0 20 0 10 2.5 100 100 100 100 100 100 100 100  
S0 (kg) - - - - - - - - - - - - -  

 
Table E6: Data for Example 2. 

Task T10 T11 T20 T21 T22 T23 T30 T31 T32 T40 
Duration (hr) 3 2 3 2 2 2 1 2 3 2 
Unit U1 U7 U5 U1 U7 U4 U4 U3 U2 U5 
BMIN (ton) 1 1 1 1 1 1 1 1 1 1 
BMAX (ton) 6 7 8 6 7 7 7 7 5 8 
           
Task T41 T50 T51 T60 T61 T62 T70 T71 T72  
Duration (hr) 1 2 1 2 3 2 2 1 1  
Unit U2/U7 U5 U2/U8 U4 U6 U8 U6 U8 U8  
BMIN (ton) 1 1 1 1 1 1 1 1 1  
BMAX (ton) 5/7 8 5/8 7 6 8 6 8 8  

 
 
 
References 
 
Baptiste, P.; Le Pape, C.; Nuijten, W. Constrained-Based Scheduling: Applying Constraint Programming to Scheduling 

Problems. Kluwer Academic Publishers, 2001. 
Castro, P.; Barbosa-Povoa, A. P. F. D.; Matos, H. An Improved RTN Continuous-Time Formulation for the Short-term 

Scheduling of Multipurpose Batch Plants,  Ind. Eng. Chem. Res., 2001, 40, 2059-2068. 
Harjunkoski, I.; Grossmann, I.E. Decomposition Techniques for Multistage Scheduling Problems Using Mixed-Integer 

and Constrained Programming Methods. Comp. Chem. Engng., 2002, 26, 1533-1552. 
Hentenryck, P.V. Constraint Satisfaction in Logic Programming. MIT Press, Cambridge, MA, 1989. 
Hentenryck, P.V. Constraint and Integer Programming in OPL. INFORMS Journal on Computing, 2002, 14(4), 345-

372. 
Hooker, J. Logic Based Methods for Optimization: Combining Optimization and Constraint Satisfaction. John Willey 

and Sons, Inc. New York, 2000. 
Hooker, J.N. Logic, Optimization, and Constraint Programming. INFORMS Journal on Computing, 2002, 14(4), 295-

321. 
Ierapetritou, M. G.; Floudas, C. A. Effective Continuous-Time Formulation for Short-Term Scheduling. 1. 

Multipurpose Batch Processes. Ind. Eng. Chem. Res., 1998, 37, 4341-4359. 
Ierapetritou, M. G.; Floudas, C. A. Effective Continuous-Time Formulation for Short-Term Scheduling. 2. Continuous 

and Semicontinuous Processes. Ind. Eng. Chem. Res., 1998, 37, 4360-4374. 
ILOG OPL Studio 3.5: The Optimization Language, ILOG Inc., 2001. 
ILOG OPL Studio 3.5: The User’s Manual, ILOG Inc., 2001. 



 40

Jain, V.; Grossmann, I.E. Algorithms for Hybrid MILP/CP Model for a Class of Optimization Problems. INFORMS 
Journal in Computing, 2001, 13, 258-276. 

Kondili, E.; Pantelides, C. C.; Sargent, R. A General Algorithm for Short-Term Scheduling of Batch Operations – I. 
MILP Formulation. Comput. Chem. Eng. 1993, 17, 211-227. 

Kyu-Hwang Lee; Heung Il Park; In Beum Lee. A Novel Nonuniform Discrete Time Formulation for Short-Term 
Scheduling of Batch and Continuous Processes. Ind. Eng. Chem. Res., 2001, 40, 4902-4911. 

Maravelias, C.T.; Grossmann, I.E. A New General Continuous-Time State Task Network Formulation for the Short-
Term Scheduling of Multipurpose Batch Plants.  Ind. Eng. Chem. Res., 2003, 42(13), 3056-3074. 

Maravelias, C. T.; Grossmann, I. E. A Continuous-Time State Task Network Formulation for the Short-Term 
Scheduling of Multipurpose Batch Plants with Due Dates. PSE 2003, Kunming, China. 

Maravelias, C.T.; Grossmann, I.E. Minimization of the Makespan with a Discrete-Time State-Task Network 
Formulation. Ind. Eng. Chem. Res., 2003, 42(24), 6252-6257. 

Marriott, K. Stuckey, P.J. Introduction to Constraint Logic Programming. MIT Press, Cambridge, MA, 1999. 
Mendez, C.A.; Cerda, J. Optimal Scheduling of Resource-Constrained Multiproduct Batch Plant Supplying 

Intermediates to Nearby End-product Facilities. Comp. Chem. Engng., 2000, 24, 369-376. 
Mendez, C.A.; Henning, G.P.; Cerda, J. Optimal Scheduling of Batch Plants Satisfying Multiple Product Orders with 

Different Due Dates. Comp. Chem. Engng., 2000, 24, 2223-2245. 
Mendez, C.A.; Henning, G.P.; Cerda, J. An MILP Continuous-Time Approach to Short-Term Scheduling of Resource-

Constrained Multistage Flowshop Batch Facilities. Comp. Chem. Engng., 2001, 25, 701-711. 
Mockus, L.; Reklaitis, G.V. Continuous Time Representation Approach to Batch and Continuous Process Scheduling. 

1. MINLP Formulation. Ind. Eng. Chem. Res. 1999, 38, 197-203. 
Nemhauser, G.L.; Wolsey, L.A. Integer and Combinatorial Optimization, John Willey and Sons, Inc., New York, 1989. 
Pantelides, C. C. Unified Frameworks for the Optimal Process Planning and Scheduling. In Proceedings on the Second 

Conference on Foundations of Computer Aided Operations (editors D.W.T. Rippin and J. Hale), 1994, 253-274. 
Papageorgiou, L.G.; Pantelides, C.C. Optimal Campaign Planning/Scheduling of Multipurpose Batch/Semicontinuous 

Plants. 2. Mathematical Decomposition Approach. Ind. Eng. Chem. Res., 1996, 35, 510-529. 
Pinto, J. M.; Grossmann, I.E. A Continuous Time Mixed Integer Linear Programming Model for Short Term 

Scheduling of Multistage Batch Plants. Ind. Eng. Chem. Res., 1995, 34, 3037-3051. 
Rodrigues, M. M.; Latre, L.G.; Rodrigues, L.A. Short-term Planning and Scheduling in Multipurpose Batch Chemical 

Plants: A Multi-level Approach. Comput. Chem. Eng. , 2000, 24, 2247-2258. 
Schilling, G.; Pantelides, C. C. A Simple Continuous-Time Process Scheduling Formulation and a Novel Solution 

Algorithm. Comput. Chem. Eng. , 1996, 20, S1221-1226. 
Shah, N.; E.; Pantelides, C. C.; Sargent, R. A General Algorithm for Short-Term Scheduling of Batch Operations – IΙ. 

Computational Issues. Comput. Chem. Eng. 1993, 17, 229-244. 
Zhang, X.; Sargent, R. W. H. The Optimal Operation of Mixed Production Facilities – General Formulation and Some 

Approaches for the Solution. Comput. Chem. Eng., 1996, 20, 897-904. 


