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Abstract 

A novel algorithm is proposed for the minimization of makespan of multipurpose batch plants using 
the State Task Network formulation. The algorithm involves the solution of successive feasibility 
problems, where the time horizon is extended until a feasible schedule for the given demand is found. 
To exploit the tight LP relaxation of the STN formulation, a production maximization problem (subject 
to the given demand) is solved at each iteration and the algorithm terminates when the first feasible 
solution is found. The algorithm is guaranteed to find an optimal solution, and if integer cuts are used 
it can provide many alternative solutions. The algorithm appears to be computationally efficient for 
many classes of problems and process networks of medium complexity. 

 
 
 
1. Introduction 
 
The State Task Network (STN) formulation was proposed by Kondili et al. (1993) to address the problem 
of short-term scheduling of multipurpose batch plants. The STN, and its equivalent Resource Task 
Network (RTN) (Pantelides, 1994) formulation, accounts for complex process network configurations 
(batch splitting/mixing and recycle streams), variable batch sizes, utility requirements, and various storage 
policies (NIS/FIS/UIS). The objective function is the maximization of profit over a fixed time horizon. In 
the discrete-time formulation proposed by Kondili et al. (1993) and refined by Shah et al. (1993) the 
processing times of tasks are assumed to be constant and the fixed time horizon is divided into time 
intervals of known duration equal to the greatest common factor of the processing times of all tasks. The 
assumption of constant processing times is not always realistic, while the length of the intervals may be so 
small that it either leads to a prohibitive number of intervals rendering the resulting model unsolvable, or 
else it requires approximations which may compromise the feasibility and optimality of the solution. This 
has led several authors to develop continuous-time STN/RTN formulations where the time horizon is 
divided into time intervals of unequal and unknown duration (Schilling and Pantelides, 1996; Zhang and 
Sargent, 1995; Lee et al., 2001; Maravelias and Grossmann, 2003a). While more realistic, continuous-time 
formulations are hard to solve mainly due to their poor LP relaxation, which is due to the big-M time 
matching constraints.  
 
In terms of the objective functions, both discrete and continuous-time STN formulations behave 
moderately well when the objective function is the maximization of profit over a fixed time horizon. In 
short-term scheduling, however, the demand is usually fixed and more meaningful objectives are the 
minimization of makespan for a fixed demand, or the minimization of the production cost or the inventory 
for fixed demands with due dates. For the minimization of makespan, specifically, discrete STN 
formulations have never been used and continuous STN formulations behave poorly as shown in 
Maravelias and Grossmann (2003a and 2003b).  
 
In this paper we propose a novel algorithm, based on the discrete-time STN formulation, for the 
minimization of makespan of multipurpose batch plants. To our knowledge, this is the first discrete-time 
approach for the minimization of makespan. While the known assumptions (constant processing times, 
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sequence independent setup times, etc.) and limitations (large number of binary variables, need for 
approximations of processing times) of discrete-time STN models are still present, the proposed model 
appears to be significantly faster than continuous-time STN models for many classes of problems. 
 
 
 
2. Problem Statement 
 
We assume that we are given the following items for a batch process: 
(i) the available units and storage tanks, and their capacities 
(ii) the available utilities and their upper limits 
(iii) the production recipe (mass balance coefficients, utility requirements) 
(iv) the processing time data 
(v) the amounts of available raw materials and their delivery times 
(vi) the minimum demand of each of the final products 
The goal is then to find: 
(i) the sequence and the timing of tasks taking place in each unit 
(ii) the batch size of tasks 
(iii) the allocated resources 
(iv) the amount of raw materials purchased and the amount of final products produced 
in order to minimize the makespan or completion time of the corresponding schedule. 
 
 
 
3. Proposed Algorithm 
 
3.1. MILP Model of STN 
 
The proposed algorithm is based on the discrete STN formulation of Shah et al. (1993), where the binary 
Wijt is equal to 1 if task i∈I starts on unit j∈J at time t∈T, Bijt is the batch size of task i that starts on unit j 
at time t, Sst is the inventory level of state s∈S at time t, Rst/Dst are the purchases/sales of state s at time t 
and Uut is the level of consumption of utility u∈U at time t.  
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Wijt∈{0,1}, Bijt, Sst, Dst, Rst, Uut ≥ 0       (10) 
 
Equation (1) is the assignment constraint that ensures that at most one task is assigned to an equipment j at 
any time. Constraint (2) bounds the batch size of a task within the lower Vj

MIN and upper Vj
MAX bounds of 

the corresponding unit. Equation (3) is the mass balance equation for state s at time t, where ρI
is/ρO

is are 
mass fractions for the consumption/production of state s by task i. Constraints (4) – (6) impose bounds on 
Sst, Rst and Dst, where Cs is the capacity of the storage tank for state s, rst is the availability of state s at time 
t and dst is the demand of state s at time t. The level of consumption of utility u at time t is calculated 
through equation (7) where αui and βui are the fixed and variable requirements of task i for utility u. The 
consumption of utility u at time t is bounded by the maximum availability Uu

MAX of utility u by constraint 
(8). The objective function in (9) is the maximization of income from sales, where ζs is the price of state s. 
The discrete-time STN model (M) consists of equations (1) – (10) and has a very tight LP relaxation. 
 
 
3.2. Minimization of Makespan with STN formulations 
 
In discrete-time STN models the number of time periods is fixed (i.e. set T has a fixed cardinality) and the 
last time point corresponds to the (fixed) time horizon of the problem. Thus it is not clear how to minimize 
the makespan. A simple solution is to define a new variable MS (makespan) that will be the objective 
function to be minimized, and for every binary Wijt enforce the following condition: 

( ) tjiMSptW iijt ∀∀∀≤− ,,  
The resulting model, however, does not behave well. 
 
In continuous-time MILP formulations, where each time point is not fixed, we can assign the last time 
point to a variable MS (makespan) and minimize variable MS. The computational performance of this 
model, however, is very poor (see Maravelias and Grossmann, 2003a and 2003b), and can only be handled 
in a reasonable way with hybrid Constraint Programming / Mixed Integer Programming methods. 
 
 
3.3. Iterative Scheme 
 
In this paper we propose an iterative scheme based on the discrete STN formulation. At the beginning we 
estimate a lower bound CARDt=|T| of MS (i.e. a time horizon), and we solve a production maximization 
problem subject to meeting the fixed demands. We successively solve this problem by adding one 
additional time point at each iteration until a feasible schedule is found. The discrete STN model (M) that 
we use consists of equations (11)-(21): 
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Constraints (11)-(17) are similar to the constraints of the STN formulation of Shah et al. (1993), but in this 
model we assume that final products are sold only at the end of the time horizon (i.e. there are no due 
dates); note that the term Dst is not included in eq. (13) and that eq. (6) has been replaced by eq. (18) 
which enforces that the inventory level of each final product at the end of the horizon is greater or equal to 
the demand. The condition that no task is processed after the end of the scheduling horizon is enforced 
through constraint (19).  
 
Given a demand for final products we solve model (M) as a production maximization problem, or 
equivalently as an inventory maximization problem (assuming that unlimited storage is available for final 
products) as in equation (20). Model (M) is solved iteratively, increasing the cardinality of set T by one, as 
shown in Figure 1. If model (M) is infeasible for the current scheduling horizon (i.e. for the current 
CARDt=|T|), the minimization of makespan problem is also infeasible because there is no feasible 
schedule for the postulated scheduling horizon that meets the given demand. Thus a longer scheduling 
horizon is needed and we continue by increasing the number of time points. Note that the first feasible 
solution found for problem (M), while probably suboptimal for (M), yields the optimal solution for the 
minimization of makespan problem. Hence, we do not have to prove the optimality of the first integer 
feasible solution and the algorithm terminates when the first feasible solution is found. 
 
 
3.4. Estimation of Makespan 
 
In order to solve few feasibility problems we propose a simple way to estimate a lower bound for the time 
needed to satisfy the given demand. As mentioned above the discrete STN has a very tight LP relaxation 
when the objective is the maximization of production. Thus, by solving the LP relaxation of model (M) for 
an initial (arbitrary) CARDt0 we can get an estimate of the amount that can be produced over CARDt0 time 
periods. Comparing this amount to the amount needed, we can get an estimate of the time needed to 
satisfy the given demand.  
 
When solving this LP, we use constraint (22) instead of constraint (18), in order to keep the ratio of 
produced states close to the ratio of demands and thus get a better estimate, 

FPsRDemST sCARDtst ∈∀≥
= 0         (22) 

where R is the ratio of the demand that can be satisfied in CARDt0, and FP is the set of final products. 
Furthermore, the objective is to maximize this ratio R and not the total production: 

Rmax             (23) 
Thus, the model (M*) that we initially solve consists of equations (11) – (17), (19) and (21) – (23). 
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The procedure is then the following: 
1. We solve model (M*) for CARDt = CARDt0. Let R* be the maximum ratio. 
2. We calculate the time needed to meet the given demand if the throughput of the plant was completely 

linear: CARDt0/R. 
3. In order to ensure that CARDt1 is always lower than the optimal makespan, we adjust the makespan 

calculated in step 2 by underestimating it by a factor f: CARDt1 = f (CARDt0/R), where f∈[0.7,0.9]. 
A flow chart of the proposed algorithm is shown in Figure 1, where τ is the fixed duration of each time 
period. 

CARDt1

Solve (M)

Feasible ?

Optimal Solution
min MS = (CARDt-1)*τ

CARDt=CARDt + 1

YES

NO

Solve (M*)CARDt0

(arbitrary)
CARDt1 = f(CARDt0/R)

 
Figure 1: Proposed Algorithm 

 
 
3.5. Remarks 
 
The performance of the proposed algorithm can be enhanced in several ways. First, we can tune the 
parameters of the MILP solver according to the needs of our algorithm. Specifically, we can use the 
“feasibility” option that the latest versions of the MILP solvers offer (e.g. CPLEX, XPRESS). As 
explained above, the first feasible solution found in the course of the algorithm is the optimal solution for 
the makespan minimization problem. Thus, we are not interested in proving optimality in none of the 
stages of the algorithm. Instead, we are interested in quickly identifying infeasible MILP’s and finding a 
single integer feasible solution for the first feasible MILP.  
Our computational experience with both CPLEX and X-PRESS show that the option for emphasis in 
feasibility enhances the performance of the algorithm. Since it is important to identify infeasible models as 
soon as possible, we can add a constraint that explicitly enforces the total production to be more than the 
sum of the demands: 

FPsDemB s
sSOi j t

ijt
O
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∈ )(
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4. Examples 
 
To illustrate the applicability and the computational effectiveness of the proposed algorithm we present 
three literature examples. The data for the three examples can be found online at http://pubs.acs.org as 
supporting information. In all examples we have used τ=1 hour. Two instances of each example are 
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presented. For the estimation of the makespan we have used f = 0.8 in all examples. In examples 1 and 2 
we used CARDt0=20, while in example 3 we used CARDt0=40 because the production network is more 
complicated and it takes longer to produce all products in large amounts. 
 
The first example is from Kondili et al. (1993) (Figure 2). A minimum amount of 500 kg of product P1 
and 400 kg of product P2 must be produced. The objective is to find the schedule of minimum makespan 
that satisfies the demand. The estimated lower bound is 27 hours and the optimal makespan of 36 hours is 
found in 10 iterations and 4.70 CPU seconds. The Gantt chart of the optimal solution is shown in Figure 3.  
 

Feed A
H

Hot A
R2

Product P1

R1
Feed B

Feed C

R3

Impure E
S

Product P2

Int AB

Int BC

40% 40%

60%
60%

50%

50% 20%

80%

10%
90%

 
Figure 2: State Task Network of Example 1. 

 
Heater H 52 20 32 20 32 20 20 32 32 32 20 32 20 32 20 32 52

R1 50 46 50 50
R2 50 50 50 50 50 50 50 50 50
R3 50 50 50 50 50 50 50 50 50 50 50

R1 80 80 80 78 80 80 76
R2 80 80 80 80 80 80 80 80 80 80
R3 80 71 80

Filter S 30 100 100 200 60 161

0 5 10 15 20 25 30 35

Reactor 1

Reactor 2

 
Figure 3: Gantt chart of optimal solution of Example 1. 

 
We also solved Example 1 assuming that the demand for products P1 and P2 is 1,400 and 2,500 kg, 
respectively. The estimated makespan is 99 hours and the minimum one is 108 hours and was found in 11 
iterations and 163.12 CPU seconds.  
 
The process network of Figure 4 (Papageorgiou and Pantelides, 1996) is used for the production of final 
products P1, P2 and P3. The objective is to find the minimum makespan for the production of 10, 10 and 
20 tons of products P1, P2 and P3 respectively. The optimal solution of 37 hours is found in 8 iterations 
and 198.24 CPU seconds. The Gantt chart of the optimal solution can be found in http://pubs.acs.org. For 
a demand of 40, 40 and 60 tons for products P1, P2 and P2, respectively, the minimum makespan is 100 
hours, and the proposed algorithm requires 9 iterations and 9,637.57 CPU seconds. 
 

T1 T2 T3 T4 T5

T7 T8

T6

T9 T10

F1 S1 S2 INT1 S3 P1

P2

WS

P3F2 S5 INT2

S4

ADD

S6

0.95

0.05 0.1

0.9 0.5

0.5

0.98

0.02

 
Figure 4: Process Network of Example 2. 
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The process network of Figure 5 is used for the production of products P1, P2, P3 and P4 (Papageorgiou 
and Pantelides, 1996). The objective is to find a schedule of minimum makespan that satisfies a demand of 
20, 25, 20 and 15 tons for products P1, P2, P3 and P4, respectively. The optimal makespan of 44 hours is 
found in 9 iterations and 35.24 CPU seconds (the Gantt chart can be found in http://pubs.acs.org). The 
problem is also solved assuming that the demand for products P1, P2, P3 and P4 is 80, 100, 80 and 100 
tons, respectively. The optimal solution with a makespan of 158 hours is found in 12 iterations and 158.16 
CPU seconds. 

T10 T11 T21 T22 T23
F2 S10 INT1 S21 S22 P1

T61 T61 T70 T71 T72
F5 S61 INT4 S70 S71 P4

T20
F1

T60
F6

S20

S72

T31 T32
F4 S31

T30
F3 S30

T40 T41INT2
S40

T50 T51
S50

INT3

P2

P3

S60

0.25

0.75

0.80

0.20 0.50

0.50

0.40

0.60

0.65

0.35

0.95

0.05

0.15

0.85

 
Figure 5: State Task Network of Example 3. 

 
 
 
5. Computational Results 
 
The computational times for the three examples are presented in Tables 1 and 2. A Pentium III PC at 1 
GHz was used for all runs. All problems were modeled in GAMS and solved using CPLEX 7.5. A relative 
optimality criterion of 1%, a resource limit of 1,800 CPU seconds for each subproblem and the option for 
emphasis in feasibility has been used for all models.  
 
Table 1: Computational statistics for the minimization of makespan. 

 Example 1 Example 2 Example 3 
Estimated Makespan 27 30 36 
Optimal Makespan 36 37 44 
Total CPU sec 4.70 198.24 35.24 

 
As shown in Table 1, reasonable computational times are required for the solution of the small instances 
of the three examples, which means that the proposed algorithm can be used for the short-term scheduling 
of medium complexity process networks. The computational requirements, the solution statistics of the 
largest MILP model and the number of LP and integer infeasible MILP’s for the large instances are 
reported in Table 2. Note that even the larger instances of Examples 1 and 3 are solved in less than three 
minutes. This is due to the fact that the LP relaxation of these examples is very tight. Thus, the first LP 
feasible model is also MILP feasible, i.e. only one MILP has to be solved. The LP relaxation of Example 
2, on the other hand, is less tight. Many MILP infeasible models, therefore, are LP feasible and in order to 
prove infeasibility several nodes have to be examined. Since seven MILP’s are integer infeasible (but not 
LP infeasible), extensive branch-and-bound trees are built seven times resulting in long computational 
time. 
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Table 2: Computational statistics for the minimization of makespan for the large instances. 

 Example 1 Example 2 Example 3 
Estimated Makespan (hours) 98 92 147 
Optimal Makespan (hours) 108 100 158 
Total CPU sec 163.12 9,637.57 158.16 
LP infeasible MILPs 10 1 11 
Integer infeasible MILPs - 7 - 
Solution Statistics of Last MILP    
                              CPU seconds 149.13 23.31 34.14 
                              Nodes 5,411 404 99 

 
 
 
6. Conclusions 
 
An iterative algorithm for the minimization of makespan of batch plants with fixed demands, based on the 
discrete-time STN formulation has been proposed. The algorithm presented in this paper appears to be the 
first efficient discrete time STN method for the minimization of makespan of multipurpose batch plants 
with fixed demand. The application of the algorithm is illustrated through a number of examples. The 
results show that the algorithm is computationally efficient for many classes of problems and process 
networks of medium complexity. 
 
 
 
Nomenclature 
Indices 
t  Time points 
i  Tasks 
j  Equipment units 
u  Utilities 
s  States 
Sets 
FP  Set of final products 
I(j)  Set of tasks that can be scheduled on equipment j 
SI(s)  Set of tasks consuming state s 
SO(s)  Set of tasks producing state s 
Parameters 
H  Time horizon 
pi  Fixed duration of task i 
αir  Fixed amount or utility r required for task i 
βir  Variable amount of utility r required for task i 
rst Maximum amount of state s available at time period t 
dst Minimum amount of state s that should be delivered at time period t 
Dems Total demand for product s 
ρI

is/ ρO
is  Mass balance coefficient for the consumption/production of state s in task i 

S0s  Initial amount of state s 
Cs  Storage capacity for state s 
Ur

MAX  Upper bound for utility r 
Vj

MIN / Vj
MAX Lower/upper bounds on the batch size of task i 

ζs  Price of state s 

Deleted:               
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Binary Variables 
Wijt  =1 if task i starts at time point n  
Continuous Variables 
Bijt  Batch size of task i that starts at time point n 
Sst  Amount of state s available at time point n 
Uut  Amount of utility r utilized at time point n 
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