
Minimization of Makespan with Discrete-Time State-Task Network
Formulation

Christos T. Maravelias, Ignacio E. Grossmann∗

Department of Chemical Engineering, Carnegie Mellon University
Pittsburgh, PA 15213, USA

Abstract

A novel algorithm is proposed for the minimization of makespan of multipurpose batch plants using
the State Task Network formulation. The algorithm involves the solution of successive feasibility
problems, where the time horizon is extended until a feasible schedule for the given demand is found.
To exploit the tight LP relaxation of the STN formulation, a production maximization problem (subject
to the given demand) is solved at each iteration and the algorithm terminates when the first feasible
solution is found. The algorithm is guaranteed to find an optimal solution, and if integer cuts are used
it can provide many alternative solutions. The algorithm appears to be computationally efficient for
many classes of problems and process networks of medium complexity.

1. Introduction

The State Task Network (STN) formulation was proposed by Kondili et al. (1993) to address the problem
of short-term scheduling of multipurpose batch plants. The STN, and its equivalent Resource Task
Network (RTN) (Pantelides, 1994) formulation, accounts for complex process network configurations
(batch splitting/mixing and recycle streams), variable batch sizes, utility requirements, and various storage
policies (NIS/FIS/UIS). The objective function is the maximization of profit over a fixed time horizon. In
the discrete-time formulation proposed by Kondili et al. (1993) and refined by Shah et al. (1993) the
processing times of tasks are assumed to be constant and the fixed time horizon is divided into time
intervals of known duration equal to the greatest common factor of the processing times of all tasks. The
assumption of constant processing times is not always realistic, while the length of the intervals may be so
small that it either leads to a prohibitive number of intervals rendering the resulting model unsolvable, or
else it requires approximations which may compromise the feasibility and optimality of the solution. This
has led several authors to develop continuous-time STN/RTN formulations where the time horizon is
divided into time intervals of unequal and unknown duration (Schilling and Pantelides, 1996; Zhang and
Sargent, 1995; Lee et al., 2001; Maravelias and Grossmann, 2003a). While more realistic, continuous-time
formulations are hard to solve mainly due to their poor LP relaxation, which is due to the big-M time
matching constraints.

In terms of the objective functions, both discrete and continuous-time STN formulations behave
moderately well when the objective function is the maximization of profit over a fixed time horizon. In
short-term scheduling, however, the demand is usually fixed and more meaningful objectives are the
minimization of makespan for a fixed demand, or the minimization of the production cost or the inventory
for fixed demands with due dates. For the minimization of makespan, specifically, discrete STN
formulations have never been used and continuous STN formulations behave poorly as shown in
Maravelias and Grossmann (2003a and 2003b).

In this paper we propose a novel algorithm, based on the discrete-time STN formulation, for the
minimization of makespan of multipurpose batch plants. To our knowledge, this is the first discrete-time
approach for the minimization of makespan. While the known assumptions (constant processing times,

∗ To whom all correspondence should be addressed. E-mail: grossmann@cmu.edu

 2

sequence independent setup times, etc.) and limitations (large number of binary variables, need for
approximations of processing times) of discrete-time STN models are still present, the proposed model
appears to be significantly faster than continuous-time STN models for many classes of problems.

2. Problem Statement

We assume that we are given the following items for a batch process:
(i) the available units and storage tanks, and their capacities
(ii) the available utilities and their upper limits
(iii) the production recipe (mass balance coefficients, utility requirements)
(iv) the processing time data
(v) the amounts of available raw materials and their delivery times
(vi) the minimum demand of each of the final products
The goal is then to find:
(i) the sequence and the timing of tasks taking place in each unit
(ii) the batch size of tasks
(iii) the allocated resources
(iv) the amount of raw materials purchased and the amount of final products produced
in order to minimize the makespan or completion time of the corresponding schedule.

3. Proposed Algorithm

3.1. MILP Model of STN

The proposed algorithm is based on the discrete STN formulation of Shah et al. (1993), where the binary
Wijt is equal to 1 if task i∈I starts on unit j∈J at time t∈T, Bijt is the batch size of task i that starts on unit j
at time t, Sst is the inventory level of state s∈S at time t, Rst/Dst are the purchases/sales of state s at time t
and Uut is the level of consumption of utility u∈U at time t.

tjW
jIi

pt

tt
ijt

i

∀∀≤∑ ∑
∈

+−

=

,1
)(

1

'
' (1)

tjIijWVBWV ijt
MAX
jijtijt

MIN
j ∀∈∀∀≤≤),(, (2)

tsDRBBSS stst
j sSIjIi

ijt
I
is

j sSOjIi
pijt

O
isstst i

∀∀−+−+= ∑ ∑∑ ∑
∩∈∩∈

−− ,
)()()()(

1 ρρ (3)

tsCS sst ∀∀≤≤ ,0 (4)

tsrR stst ∀∀≤ , (5)

tsdD stst ∀∀≥ , (6)

() tuBWU
j jIi

p

tijuitijuiut

i

∀∀+= ∑ ∑ ∑
∈

−

=
−− ,

)(

1

1
)()(

θ
θθ βα (7)

tuUU MAX
uut ∀∀≤≤ ,0 (8)

 3

∑∑=
t s

sts DZ ζmax (9)

Wijt∈{0,1}, Bijt, Sst, Dst, Rst, Uut ≥ 0 (10)

Equation (1) is the assignment constraint that ensures that at most one task is assigned to an equipment j at
any time. Constraint (2) bounds the batch size of a task within the lower Vj

MIN and upper Vj
MAX bounds of

the corresponding unit. Equation (3) is the mass balance equation for state s at time t, where ρI
is/ρO

is are
mass fractions for the consumption/production of state s by task i. Constraints (4) – (6) impose bounds on
Sst, Rst and Dst, where Cs is the capacity of the storage tank for state s, rst is the availability of state s at time
t and dst is the demand of state s at time t. The level of consumption of utility u at time t is calculated
through equation (7) where αui and βui are the fixed and variable requirements of task i for utility u. The
consumption of utility u at time t is bounded by the maximum availability Uu

MAX of utility u by constraint
(8). The objective function in (9) is the maximization of income from sales, where ζs is the price of state s.
The discrete-time STN model (M) consists of equations (1) – (10) and has a very tight LP relaxation.

3.2. Minimization of Makespan with STN formulations

In discrete-time STN models the number of time periods is fixed (i.e. set T has a fixed cardinality) and the
last time point corresponds to the (fixed) time horizon of the problem. Thus it is not clear how to minimize
the makespan. A simple solution is to define a new variable MS (makespan) that will be the objective
function to be minimized, and for every binary Wijt enforce the following condition:

() tjiMSptW iijt ∀∀∀≤− ,,
The resulting model, however, does not behave well.

In continuous-time MILP formulations, where each time point is not fixed, we can assign the last time
point to a variable MS (makespan) and minimize variable MS. The computational performance of this
model, however, is very poor (see Maravelias and Grossmann, 2003a and 2003b), and can only be handled
in a reasonable way with hybrid Constraint Programming / Mixed Integer Programming methods.

3.3. Iterative Scheme

In this paper we propose an iterative scheme based on the discrete STN formulation. At the beginning we
estimate a lower bound CARDt=|T| of MS (i.e. a time horizon), and we solve a production maximization
problem subject to meeting the fixed demands. We successively solve this problem by adding one
additional time point at each iteration until a feasible schedule is found. The discrete STN model (M) that
we use consists of equations (11)-(21):

CARDttjW
jIi

pt

tt
ijt

i

≤∀∀≤∑ ∑
∈

+−

=

,1
)(

1

'
' (11)

CARDttjIijWVBWV ijt
MAX
jijtijt

MIN
j ≤∀∈∀∀≤≤),(, (12)

CARDttsRBBSS st
j sSIjIi

ijt
I
is

j sSOjIi
pijt

O
isstst i

≤∀∀+−+= ∑ ∑∑ ∑
∩∈∩∈

−− ,
)()()()(

1 ρρ (13)

CARDttsCS sst ≤∀∀≤≤ ,0 (14)

CARDttsrR stst ≤∀∀≤ , (15)

 4

() CARDttuBWU
j jIi

p

tijuitijuiut

i

≤∀∀+= ∑ ∑ ∑
∈

−

=
−− ,

)(

1

1
)()(

θ
θθ βα (16)

CARDttuUU MAX
uut ≤∀∀≤≤ ,0 (17)

FPsDemS sCARDtts ∈∀≥=, (18)

1),(,0 +−≤∀∈∀∀= iijt pCARDttiJjiW (19)

∑ ==
s

CARDttsSZ ,max (20)

Wijt∈{0,1}, Bijt, Sst, Uut ≥ 0 (21)

Constraints (11)-(17) are similar to the constraints of the STN formulation of Shah et al. (1993), but in this
model we assume that final products are sold only at the end of the time horizon (i.e. there are no due
dates); note that the term Dst is not included in eq. (13) and that eq. (6) has been replaced by eq. (18)
which enforces that the inventory level of each final product at the end of the horizon is greater or equal to
the demand. The condition that no task is processed after the end of the scheduling horizon is enforced
through constraint (19).

Given a demand for final products we solve model (M) as a production maximization problem, or
equivalently as an inventory maximization problem (assuming that unlimited storage is available for final
products) as in equation (20). Model (M) is solved iteratively, increasing the cardinality of set T by one, as
shown in Figure 1. If model (M) is infeasible for the current scheduling horizon (i.e. for the current
CARDt=|T|), the minimization of makespan problem is also infeasible because there is no feasible
schedule for the postulated scheduling horizon that meets the given demand. Thus a longer scheduling
horizon is needed and we continue by increasing the number of time points. Note that the first feasible
solution found for problem (M), while probably suboptimal for (M), yields the optimal solution for the
minimization of makespan problem. Hence, we do not have to prove the optimality of the first integer
feasible solution and the algorithm terminates when the first feasible solution is found.

3.4. Estimation of Makespan

In order to solve few feasibility problems we propose a simple way to estimate a lower bound for the time
needed to satisfy the given demand. As mentioned above the discrete STN has a very tight LP relaxation
when the objective is the maximization of production. Thus, by solving the LP relaxation of model (M) for
an initial (arbitrary) CARDt0 we can get an estimate of the amount that can be produced over CARDt0 time
periods. Comparing this amount to the amount needed, we can get an estimate of the time needed to
satisfy the given demand.

When solving this LP, we use constraint (22) instead of constraint (18), in order to keep the ratio of
produced states close to the ratio of demands and thus get a better estimate,

FPsRDemST sCARDtst ∈∀≥
= 0 (22)

where R is the ratio of the demand that can be satisfied in CARDt0, and FP is the set of final products.
Furthermore, the objective is to maximize this ratio R and not the total production:

Rmax (23)
Thus, the model (M*) that we initially solve consists of equations (11) – (17), (19) and (21) – (23).

 5

The procedure is then the following:
1. We solve model (M*) for CARDt = CARDt0. Let R* be the maximum ratio.
2. We calculate the time needed to meet the given demand if the throughput of the plant was completely

linear: CARDt0/R.
3. In order to ensure that CARDt1 is always lower than the optimal makespan, we adjust the makespan

calculated in step 2 by underestimating it by a factor f: CARDt1 = f (CARDt0/R), where f∈[0.7,0.9].
A flow chart of the proposed algorithm is shown in Figure 1, where τ is the fixed duration of each time
period.

CARDt1

Solve (M)

Feasible ?

Optimal Solution
min MS = (CARDt-1)*τ

CARDt=CARDt + 1

YES

NO

Solve (M*)CARDt0

(arbitrary)
CARDt1 = f(CARDt0/R)

Figure 1: Proposed Algorithm

3.5. Remarks

The performance of the proposed algorithm can be enhanced in several ways. First, we can tune the
parameters of the MILP solver according to the needs of our algorithm. Specifically, we can use the
“feasibility” option that the latest versions of the MILP solvers offer (e.g. CPLEX, XPRESS). As
explained above, the first feasible solution found in the course of the algorithm is the optimal solution for
the makespan minimization problem. Thus, we are not interested in proving optimality in none of the
stages of the algorithm. Instead, we are interested in quickly identifying infeasible MILP’s and finding a
single integer feasible solution for the first feasible MILP.
Our computational experience with both CPLEX and X-PRESS show that the option for emphasis in
feasibility enhances the performance of the algorithm. Since it is important to identify infeasible models as
soon as possible, we can add a constraint that explicitly enforces the total production to be more than the
sum of the demands:

FPsDemB s
sSOi j t

ijt
O
is ∈∀≥∑ ∑∑

∈)(

ρ

4. Examples

To illustrate the applicability and the computational effectiveness of the proposed algorithm we present
three literature examples. The data for the three examples can be found online at http://pubs.acs.org as
supporting information. In all examples we have used τ=1 hour. Two instances of each example are

 6

presented. For the estimation of the makespan we have used f = 0.8 in all examples. In examples 1 and 2
we used CARDt0=20, while in example 3 we used CARDt0=40 because the production network is more
complicated and it takes longer to produce all products in large amounts.

The first example is from Kondili et al. (1993) (Figure 2). A minimum amount of 500 kg of product P1
and 400 kg of product P2 must be produced. The objective is to find the schedule of minimum makespan
that satisfies the demand. The estimated lower bound is 27 hours and the optimal makespan of 36 hours is
found in 10 iterations and 4.70 CPU seconds. The Gantt chart of the optimal solution is shown in Figure 3.

Feed A
H

Hot A
R2

Product P1

R1
Feed B

Feed C

R3

Impure E
S

Product P2

Int AB

Int BC

40% 40%

60%
60%

50%

50% 20%

80%

10%
90%

Figure 2: State Task Network of Example 1.

Heater H 52 20 32 20 32 20 20 32 32 32 20 32 20 32 20 32 52

R1 50 46 50 50
R2 50 50 50 50 50 50 50 50 50
R3 50 50 50 50 50 50 50 50 50 50 50

R1 80 80 80 78 80 80 76
R2 80 80 80 80 80 80 80 80 80 80
R3 80 71 80

Filter S 30 100 100 200 60 161

0 5 10 15 20 25 30 35

Reactor 1

Reactor 2

Figure 3: Gantt chart of optimal solution of Example 1.

We also solved Example 1 assuming that the demand for products P1 and P2 is 1,400 and 2,500 kg,
respectively. The estimated makespan is 99 hours and the minimum one is 108 hours and was found in 11
iterations and 163.12 CPU seconds.

The process network of Figure 4 (Papageorgiou and Pantelides, 1996) is used for the production of final
products P1, P2 and P3. The objective is to find the minimum makespan for the production of 10, 10 and
20 tons of products P1, P2 and P3 respectively. The optimal solution of 37 hours is found in 8 iterations
and 198.24 CPU seconds. The Gantt chart of the optimal solution can be found in http://pubs.acs.org. For
a demand of 40, 40 and 60 tons for products P1, P2 and P2, respectively, the minimum makespan is 100
hours, and the proposed algorithm requires 9 iterations and 9,637.57 CPU seconds.

T1 T2 T3 T4 T5

T7 T8

T6

T9 T10

F1 S1 S2 INT1 S3 P1

P2

WS

P3F2 S5 INT2

S4

ADD

S6

0.95

0.05 0.1

0.9 0.5

0.5

0.98

0.02

Figure 4: Process Network of Example 2.

 7

The process network of Figure 5 is used for the production of products P1, P2, P3 and P4 (Papageorgiou
and Pantelides, 1996). The objective is to find a schedule of minimum makespan that satisfies a demand of
20, 25, 20 and 15 tons for products P1, P2, P3 and P4, respectively. The optimal makespan of 44 hours is
found in 9 iterations and 35.24 CPU seconds (the Gantt chart can be found in http://pubs.acs.org). The
problem is also solved assuming that the demand for products P1, P2, P3 and P4 is 80, 100, 80 and 100
tons, respectively. The optimal solution with a makespan of 158 hours is found in 12 iterations and 158.16
CPU seconds.

T10 T11 T21 T22 T23
F2 S10 INT1 S21 S22 P1

T61 T61 T70 T71 T72
F5 S61 INT4 S70 S71 P4

T20
F1

T60
F6

S20

S72

T31 T32
F4 S31

T30
F3 S30

T40 T41INT2
S40

T50 T51
S50

INT3

P2

P3

S60

0.25

0.75

0.80

0.20 0.50

0.50

0.40

0.60

0.65

0.35

0.95

0.05

0.15

0.85

Figure 5: State Task Network of Example 3.

5. Computational Results

The computational times for the three examples are presented in Tables 1 and 2. A Pentium III PC at 1
GHz was used for all runs. All problems were modeled in GAMS and solved using CPLEX 7.5. A relative
optimality criterion of 1%, a resource limit of 1,800 CPU seconds for each subproblem and the option for
emphasis in feasibility has been used for all models.

Table 1: Computational statistics for the minimization of makespan.

 Example 1 Example 2 Example 3
Estimated Makespan 27 30 36
Optimal Makespan 36 37 44
Total CPU sec 4.70 198.24 35.24

As shown in Table 1, reasonable computational times are required for the solution of the small instances
of the three examples, which means that the proposed algorithm can be used for the short-term scheduling
of medium complexity process networks. The computational requirements, the solution statistics of the
largest MILP model and the number of LP and integer infeasible MILP’s for the large instances are
reported in Table 2. Note that even the larger instances of Examples 1 and 3 are solved in less than three
minutes. This is due to the fact that the LP relaxation of these examples is very tight. Thus, the first LP
feasible model is also MILP feasible, i.e. only one MILP has to be solved. The LP relaxation of Example
2, on the other hand, is less tight. Many MILP infeasible models, therefore, are LP feasible and in order to
prove infeasibility several nodes have to be examined. Since seven MILP’s are integer infeasible (but not
LP infeasible), extensive branch-and-bound trees are built seven times resulting in long computational
time.

 8

Table 2: Computational statistics for the minimization of makespan for the large instances.

 Example 1 Example 2 Example 3
Estimated Makespan (hours) 98 92 147
Optimal Makespan (hours) 108 100 158
Total CPU sec 163.12 9,637.57 158.16
LP infeasible MILPs 10 1 11
Integer infeasible MILPs - 7 -
Solution Statistics of Last MILP
 CPU seconds 149.13 23.31 34.14
 Nodes 5,411 404 99

6. Conclusions

An iterative algorithm for the minimization of makespan of batch plants with fixed demands, based on the
discrete-time STN formulation has been proposed. The algorithm presented in this paper appears to be the
first efficient discrete time STN method for the minimization of makespan of multipurpose batch plants
with fixed demand. The application of the algorithm is illustrated through a number of examples. The
results show that the algorithm is computationally efficient for many classes of problems and process
networks of medium complexity.

Nomenclature
Indices
t Time points
i Tasks
j Equipment units
u Utilities
s States
Sets
FP Set of final products
I(j) Set of tasks that can be scheduled on equipment j
SI(s) Set of tasks consuming state s
SO(s) Set of tasks producing state s
Parameters
H Time horizon
pi Fixed duration of task i
αir Fixed amount or utility r required for task i
βir Variable amount of utility r required for task i
rst Maximum amount of state s available at time period t
dst Minimum amount of state s that should be delivered at time period t
Dems Total demand for product s
ρI

is/ ρO
is Mass balance coefficient for the consumption/production of state s in task i

S0s Initial amount of state s
Cs Storage capacity for state s
Ur

MAX Upper bound for utility r
Vj

MIN / Vj
MAX Lower/upper bounds on the batch size of task i

ζs Price of state s

Deleted:

 9

Binary Variables
Wijt =1 if task i starts at time point n
Continuous Variables
Bijt Batch size of task i that starts at time point n
Sst Amount of state s available at time point n
Uut Amount of utility r utilized at time point n

Acknowledgements
The authors would like to gratefully acknowledge financial support from the National Science Foundation
under Grant ACI-0121497.

References

Kondili, E.; Pantelides, C. C.; Sargent, R. A General Algorithm for Short-Term Scheduling of Batch

Operations – I. MILP Formulation. Comput. Chem. Eng. 1993, 17, 211-227.
Kyu-Hwang Lee; Heung Il Park; In Beum Lee. A Novel Nonuniform Discrete Time Formulation for

Short-Term Scheduling of Batch and Continuous Processes. Ind. Eng. Chem. Res., 2001, 40, 4902-
4911.

Maravelias, C.T.; Grossmann, I.E. A New General Continuous-Time State Task Network Formulation for
the Short-Term Scheduling of Multipurpose Batch Plants. Ind. Eng. Chem. Res., 2003, 42 (13), 3056-
3074.

Maravelias, C.T.; Grossmann, I.E. A Hybrid MILP/CP Decomposition Approach for the Short Term
Scheduling of Multipurpose Batch Plants. Submitted for publication (2003).

Pantelides, C. C. Unified Frameworks for the Optimal Process Planning and Scheduling. In Proceedings
on the Second Conference on Foundations of Computer Aided Operations. 1994, 253-274.

Papageorgiou, L.G.; Pantelides, C.C. Optimal Campaign Planning/Scheduling of Multipurpose
Batch/Semicontinuous Plants. 2. Mathematical Decomposition Approach. Ind. Eng. Chem. Res., 1996,
35, 510-529.

Schilling, G.; Pantelides, C. C. A Simple Continuous-Time Process Scheduling Formulation and a Novel
Solution Algorithm. Comput. Chem. Eng. , 1996, 20, S1221-1226.

Shah, N.; E.; Pantelides, C. C.; Sargent, R. A General Algorithm for Short-Term Scheduling of Batch
Operations – IΙ. Computational Issues. Comput. Chem. Eng. 1993, 17, 229-244.

Zhang, X.; Sargent, R. W. H. The Optimal Operation of Mixed Production Facilities – General
Formulation and Some Approaches for the Solution. Comput. Chem. Eng., 1996, 20, 897-904.

