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Abstract 
Previous optimization models for the scheduling of tests for pharmaceuticals and agrochemicals, 
assume that the resources available for testing such as laboratories and scientists are constant 
throughout the testing horizon, and that all testing tasks have fixed cost, duration and resource 
requirements. In order to be able to handle more effectively a number of potential products in the 
R&D pipeline a company may consider the option to install/hire additional resources. Also, the 
type and amount of resources can be chosen for some tests to reduce their duration. In this paper 
we propose a new scheduling MILP model that addresses these issues to optimize the overall costs. 
More specifically, the model (a) allows for installation of new resources during the course of 
testing, and (b) handles cost and duration of tests as functions of the type and amount of the 
resources assigned to each test. To enhance the solution of the model we develop, (a) a 
reformulation with disaggregated variables, (b) a procedure for the tightening of the big-M 
constraints, (c) a procedure that fixes some of the sequencing binary variables, and (d) logic cuts. 
The solution of a single large-scale problem is avoided with a heuristic decomposition algorithm 
that relies on solving a reduced mixed-integer program that embeds the optimal schedules obtained 
for the individual products. The proposed algorithm is shown to be one to two orders of magnitude 
faster than the full space method, yielding solutions that are optimal or near optimal.  

 
 
 
1. Introduction 
 
In highly regulated industries, such as agrochemical and pharmaceutical, new products have to pass a number of 
regulatory tests to gain FDA approval. If a product fails one of these tests it cannot enter the market and the 
investment in previous tests is wasted. Depending on the nature of the products, testing may last up to 10 years 
(Gardner et al., 2003), and the scheduling of tests should be made with the goal of minimizing the time to market 
and the expected cost of the testing. The problem of scheduling testing tasks in new product development has 
been studied by several authors. Schmidt and Grossmann (1996) proposed various MILP optimization models 
for the scheduling of testing tasks with no resource constraints. The basic idea in this model is to use a 
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discretization scheme in order to induce linearity in the cost of testing. Jain and Grossmann (1999) extended 
these models to account for resource constraints. Honkomp et al. (1997) addressed the problem of scheduling 
R&D projects, which is very similar to the one of scheduling testing tasks for new products. Subramanian et al. 
(2001) proposed a simulation-optimization framework that takes into account uncertainty in duration, cost and 
resource requirements and extended this model to account for risk (Subramanian et al., 2003). Maravelias and 
Grossmann (2001) proposed an MILP model that integrates the scheduling of tests with the design and 
production planning decisions. Rogers et al. (2002) and Papageorgiou et al. (2001) have addressed related 
problems. A literature review of optimization approaches in the supply chain of pharmaceutical industries can be 
found in Shah (2003).  
 
A common assumption in all these approaches is that the available resources are constant throughout the testing 
period. In Schmidt and Grossmann (1996), Jain and Grossmann (1999), Subramanian et al. (2001), Maravelias 
and Grossmann (2001), (2003), and Subramanian et al. (2003) the authors develop models for the optimal 
scheduling of testing tasks assuming that the available resources are constant, and usually that there is only one 
resource for each task. In Papageorgiou et al. (2001) and Rogers et al. (2003) the authors develop models 
assuming that enough resources are always available. In reality, however, the availability of resources is often 
the bottleneck for launching new products in a timely fashion. Therefore, a company may decide to hire more 
scientists or build more laboratories to handle more effectively a great number of potential new products in the 
R&D pipeline. As another option the company may have to outsource the tests often at a high cost. Another 
assumption common in all these approaches is that the cost and the duration of one test do not depend on the 
amount of resources allocated to one test. In reality, however, there is sometimes the option of allocating more 
resources to some tests in order to reduce the length of the critical path that determines the duration of the testing 
process.  
 
In this work we propose a MILP optimization model that addresses the above issues. Specifically, the proposed 
model allows: (a) “installation” of new resources (e.g. hiring of new scientists) for a given set of products that 
are at different stages of the testing, with the option of outsourcing also included; (b) it handles the type and 
level of resources assigned to a test as a decision variable. This in turn implies that the cost and the duration of 
each test may be variables. The main trade-off is between the higher cost of testing (caused by the “installation” 
of additional resources, the utilization of outsourcing and the allocation of more resources) and the higher 
income from sales due to shorter completion times that result from eliminating bottlenecks. 
 
It should be noted that the duration, cost and probability of success of testing tasks are highly uncertain in 
practice. A multistage stochastic MILP that accounts for all the uncertain parameters can in principle address this 
issue. However, such a model is very difficult to formulate and solve (Birge and Louveaux, 1997). Even a 
simpler two-stage optimization model with multiple scenarios is non-trivial. Therefore, in order to eventually 
solve in an efficient way a stochastic optimization model it is essential to first have an efficient deterministic 
model which is the focus of this paper. Specifically, in order to improve the efficiency of solving the MILP 
model we propose to tighten the big-M parameters through time-window calculations and fix subsets of binary 

 2



variables via a graph-theoretic preprocessing and logic implication. We show that tighter LP relaxation can be 
obtained by a reformulation with disaggregated variables and through the addition of logic cuts. Finally, we 
build on the decomposition algorithm by Maravelias and Grossmann (2003) that was proposed for the standard 
resource-constrained scheduling problem and that yields order of magnitude improvements in the computation. 
Several examples are presented to illustrate the application of the proposed model and the computational 
performance of the proposed method. 
 
 
 
2.  Motivating Example 
 
To illustrate the trade-offs and the importance of resource management, consider the example of an R&D 
pipeline with two potential pharmaceutical products. Product A has passed successfully Phase I clinical trials, 
while product B is a new drug that passed successfully pre-clinical studies. Currently, due to limited resources, 
two tests of the same type cannot be performed simultaneously. To overcome this barrier, we assume that the 
company can install additional laboratories. We also assume for illustration purposes that outsourcing is not 
feasible. The expected duration of the remaining clinical trials for both drugs are given in Table 2, while the 
testing costs are given in Table 2. 
 
Table 1: Durations of tests for the motivating example.  

Duration (months) Phase I Phase II Phase III 
A - 8 14 
B 6 10 12 

 
Table 2: Testing costs for the motivating example.  

 Phase I Phase II Phase III 
Fixed Cost for product A ($106) - 5 15 
Fixed Cost for product B ($106) 3 6 12 
Cost of installing new resources ($106) - 5 10 

 
If no additional laboratories are installed, the testing completion time of drug A is 22 months and the completion 
time of drug B is 34 months. The total non-discounted cost of testing (assuming that Phase I and Phase II clinical 
trails will always be successful) will be $41,000,000 (the schedule of this case is shown in Figure 1a). If 
additional laboratories are installed for Phase III clinical trials, the completion time of drug B can be shortened 
to 30 months, but the total cost of testing increases to $51,000,000 (Figure 1b). Finally, if additional laboratories 
are installed for both Phase II and Phase III clinical trials, the completion time for product B is reduced to 28 
months and the total testing cost is $56,000,000. In all cases reduced completion times will potentially yield 
larger income from sales and larger market share. 
 
This example then shows that, in general, there is a trade-off among the (expected) cost of testing, the 
installation of new resources and the completion time of testing. The problem becomes even more difficult when 
outsourcing is available for certain tests, and resource constraints and technological precedences are also to be 

 3



taken into account. Thus, to maximize the Net Present Value of simultaneous projects, we need a systematic 
optimization model that takes into account all these aspects.  

A - II
B - I

A - III
B - II B - III

0      4        8       12      16     20      24     28      32 36    (months)

A - II
B - I

A - III
B - II B - III

A - II
B - I

A - III
B - II B - III

(1a): No additional resources installed

(1b): Additional resources for Phase III installed

(1c): Additional resources for Phase II and III installed

0      4        8       12      16     20      24     28      32 36    (months)

0      4        8       12      16     20      24     28      32 36    (months)

 
Figure 1: Alternative schedules for the motivating example. 

 
 
 
3.  Problem Statement 
 
Given is a set of potential products that are in various stages of the company’s R&D pipeline and a set of 
resources to complete the testing tasks. Each potential product is required to pass a series of tests. Each test has a 
given duration, cost and probability of success that is assumed to be known a priori. In some cases the duration 
and the cost of each test may be a function of the resource allocation. If needed, a test may be outsourced at a 
higher cost. Resources can also be installed at a known cost. Resources are discrete in nature (e.g. laboratories 
and scientists) and each resource unit can handle only one task at a time. Tests are assumed to be non-preemptive. 
Due to technological precedences some tests can only be performed after the completion of other tests. There are 
three main decisions regarding the resource management and the scheduling of tasks: (a) the decision to install a 
resource unit (wq =1 if resource q is “installed”, bq = time of installation), (b) the sequencing (ykk’ = 1 if test k 
finishes before test k’) and timing (sk = start time of test k) of tests, (c) the amount of resources allocated to a test 
(Nrk = number of resource units of category r allocated to test k) and the assignment of resource units to tests (xkq 
= 1 if resource unit q is assigned to test k). The option of outsourcing is also considered by postulating additional 
resource units. The objective is to maximize the Net Present Value (NPV) of multiple projects, i.e. the income 
from sales minus the expected cost of testing. 
 
It should be noted that other tasks, besides testing tasks, have to be completed before the commercialization of a 
new agrochemical or pharmaceutical product. Such tasks are the process development stage, the procurement 
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and validation of the equipment, the construction or retrofit of the manufacturing facilities and the qualification 
runs. These non-testing tasks have to be carried out in parallel with (or after) the testing tasks and resource 
scarcity for these tasks would also lead to delays in the commercialization of the new products. To account for 
this we model them as testing tasks with specific characteristics. The process development stage, for instance, 
can be modeled as a testing task that requires a specific type of resource (process development group), with a 
probability of success equal to 1 and for which outsourcing is not allowed. Qualification runs can be modeled as 
testing tasks that should be performed after the completion of all the other tasks. Note that in a case study by 
Subramanian et al. (2003), prelaunch, ramp up sales and mature sales are also modeled as testing tasks with 
specific resource requirements, duration, costs and revenues. It is because of some of these tasks that the 
variability in resource allocation should be included in a general testing model. Specifically, while clinical trials 
may often have fixed duration and resource requirements, many of the non-testing tasks have variable 
duration/resource requirements. The process development stage and the construction of manufacturing facilities, 
for example, can be expedited if more resources are used. The latter one, specifically, appears to become a very 
important task whose timing and duration are very important. 
 
We would also like to add that the proposed model is quite general and applicable to a number of industries. For 
instance, if applied to an agrochemical company, where each product has to undergo many short tests whose 
duration and cost are usually well known, the model can be simplified by assuming constant test durations and 
resource requirements. If applied on a pharmaceutical company, where the sequence of tasks for products close 
to commercialization can assumed to be known, the model can be simplified by ignoring sequencing decisions. 
 
 
 
4.  Proposed Model 
 
The proposed model is a generalization of the resource-constrained MILP model by Jain and Grossmann (1999). 
It includes the following additional features:  
(a) The available resources are not fixed. Additional resources can be installed during the course of testing if 

needed. 
(b) The duration and the cost of each test are not necessarily constant parameters but can be functions of the 

amount and type of the allocated resources; the duration of a cost can be reduced by allocating more 
resources at the expense of a higher cost. 

In the proposed model, J is the set of new products, K is the set of tests, R is the set of resource categories, Q is 
the set of resource units, and K(j) represents the set of tests to be performed for product j∈J (K = ∪j∈J K(j)). The 
set of tests that belong to the same product as test k is denoted by KK(k). Each resource unit q∈Q belongs to a 
resource category, and Q(r) is the set of resource units that belong to category r∈R (Q = ∪r∈R Q(r)). The set of 
tests that can be assigned to unit q is denoted by K(q). Outsourcing is represented through dummy resource units 
for which there are no resource constraints (i.e. many tests can be outsourced at the same time). QE is the set of 
existing resources, QN is the set of potentially newly installed units, and QD are the dummy units for out-
sourcing (Q=QE∪QN∪QD). The nomenclature is given at the end of the paper. 
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4.1.  Timing and Sequencing Constraints 
 
Constraint (1) ensures that the testing completion time, Tj, of product j is greater than the completion time of any 
task k required for product j, where dk is the duration of test k. Constraints (2) fix sequencing binaries ykk’ for 
pairs (k,k’) for which a technological precedence exists (i.e. (k,k’)∈A). Time sequencing is enforced through 
constraints (3) and (4), where U is a big-M parameter. The duration of test k, dk, is calculated in equation (5) as a 
function of the amount of resources Nrk allocated to test k. For the most common case where durations are fixed 
the parameters δrk are set to zero. Constraint (6) ensures that if the new resource unit q∈QN is assigned to test k 
(i.e. xkq=1), then the starting time of test k is larger than the installation time bq of resource unit q: 

)(, jKkjTds jkk ∈∀∀≤+  (1) 

Akkyy kkkk ∈∀== )',(0,1 ''  (2) 

Akksds kkk ∈∀≤+ )',('  (3) 

AkkkKKkkyUsds kkkkk ∉∈∀∀−+≤+ )',(|)(',)1( ''  (4) 

kNdd
r

rkrk
MAX
kk ∀−= ∑δ  (5) 

)(,)1( qKkQNqxUbs kqqk
∈∀∈∀−−≥  (6) 

 
 
4.2.  Resource Constraints 
 
The number of resource units of category r allocated to test k, Nkr, has to lie between a lower (Nkr

MIN) and upper 
(Nkr

MAX) bound [constraint (7)], where R(k) is the set of resource categories needed for test k. Constraint (8) 
enforces that exactly Nrk discrete resource units are allocated to test k, including outsourcing. Constraint (9) 
ensures that there is a precedence between tests k and k’ if are both assigned to resource unit q (see Maravelias 
and Grossmann, 2001). Constraint (9) is expressed for existing (q∈QE) and potentially new (q∈QN) resource 
units, but not for the dummy resource units (q∈QD) that represent the outsourcing option. Constraint (4*) 
enforces a precedence among tests of different products that can be scheduled on the same resource unit. The 
logical condition that a potentially new unit q∈QN cannot be assigned to any test (xkq=1) if it is not installed 
(wq=1) is expressed by constraint (10). 

)(, kRrkNNN MAX
krkr

MIN
kr ∈∀∀≤≤  (7) 

)(,
)(

kRrkNx kr
rQq

kq ∈∀∀=∑
∈

 (8) 

)('),(),(1''' qKkqKkQNQEqyyxx kkkkqkkq ∈∀∈∀∈∀≤−−+ U  (9) 

)(\)('),(),()1( '' kKKqKkqKkQNQEqyUsds kkkkk ∈∀∈∀∈∀−+≤+ U  (4*) 

kQNqwx qkq ∀∈∀≤ ,  (10) 
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4.3.  Testing Cost Constraints 
 
The cost of testing consists of three elements: (a) a fixed cost for each task, (b) a cost associated with the use of 
particular resource units, and (c) the cost of resource installation. Since the scheduling horizon is commonly 2-10 
years all costs should be discounted and a discounting rate ρ has been used. The discounting introduces 
nonlinearities and in order to avoid solving a large scale MINLP, we use a piece-wise linearization scheme to 
approximate the exponential discounting function. The cost elements for (a), (b) and (c) are approximated 
through grid points an, and weights λ1

kn, λ2
kqn and λ3

qn, respectively. The linearization factors are activated 
through equations (11), (12) and (13). For each test k, the fixed cost is always paid [constraint (11)], while the 
cost associated with the use of a particular resource unit q is paid only if unit q is assigned to test k [constraint 
(12)]; similarly, the installation cost for a resource unit q∈QN is only paid if the unit is installed [constraint (13)]. 
Linearization weights are calculated through equations (14), (15) and (17), where the cost of each test is 
discounted to reflect both the time-value of money (term –rsk or -rbq), and the probability of conducting this test 
(term Σk’∈KK(k) ln(pk) yk’k). Since the RHS of constraint (15) is always non-zero and the summation of λ2

kqn αn over 
n in the LHS may be zero [due to (12)], the slack variable slkq has been added. This variable is non-zero only 
when xkq = 0 (constraint 16). The details of the linearization scheme can be found in Schmidt and Grossmann 
(1996). 

k
n

kn ∀=∑ 11λ   (11) 

)(,2 qKkqxkq
n

kqn ∈∀∀=∑λ  (12) 

QNqwq
n

qn ∈∀=∑ 3λ   (13) 

kyps
kKKk

kkkk
n

nkn ∀+⋅−= ∑∑
∈ )('

'
1 )ln(ραλ  (14) 

)(,)ln(
)('

'
2 qKkqypssl

kKKk
kkkkkq

n
nkqn ∈∀∀+⋅−=− ∑∑

∈

ραλ  (15) 

)(,)1(|| qKkqxsl kqNkq ∈∀∀−≤α  (16) 

QNqbq
n

nqn ∈∀⋅−=∑ ραλ3  (17) 

 
 
4.4.  Objective Function Calculations 
 
The total fixed (CT1), resource-dependent (CT2) and installation (CT3) costs are calculated through constraints 
(18)-(20), where cfk, cqkq and cbq are the non-discounted costs. The income is calculated through constraints (21) 
and (22), where parameters gjm and fjm are used to represent income as a piecewise linear decreasing function of 
time. Alternative objective functions that can easily be handled are minimization of the testing completion time 
and the minimization of testing cost. The objective in (23) is to maximize the NPV of multiple projects: 
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∈
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mjgTu jmjjm ∀∀−≥ ,  (21) 

jufINCINC
m

jmjm
MAX
jj ∀−= ∑  (22) 

321max CTCTCTINCNPV
j

j −−−= ∑  (23) 

ykk’, xkq, wq∈ {0,1},Nrk∈{0,1,2,…}, λ1
kn,λ2

kqn,λ3
qn∈[0,1],  sk, Tj, Nkr, ujm, CT1,CT2,CT3,INCj,slkq ≥ 0 (24) 

 
The proposed MILP model (M) for optimizing the scheduling of tests and investment of resources for new 
product development consists of optimizing the objective in (23) subject to constraints (1) – (22) and (24). 
 
 
4.5.  Remarks 
 
The possibility of temporarily “hiring” resources can also be modeled. For a resource unit q∈QH (where QH is 
the set of resources that can be temporarily hired, Q=QE∪QN∪QD∪QD) we introduce a new variable b*

q that 
denotes the end of the hiring period (in addition to variable bq that denotes the beginning of the hiring period). 
The cost of hiring can thus be modeled either as an one-time cost discounted at bq or (bq+b*

q)/2 (similar to the 
cost for permanently installing a resource q∈QN), or as a variable cost proportional to the length of the 

temporary hiring period: [(b*
q – bq)-ε] qcb , where qcb  is the cost per time unit of hiring resource unit q∈QH 

and ε is a linear approximation of the correction for the discounting.  
Thus, if the temporary hiring of resources is allowed we should: 
(1) Express constraints (6) and (10) ∀q∈(QN∪QH), instead of ∀q∈QN. 
(2) Express constraints (9) and (4*) ∀q∈(QE∪QN∪QH), instead of ∀q∈(QE∪QN). 
(3) Add constraint (6*) that enforces that no task can be processed by q∈QH after the end of the hiring period: 

)(,)1(* qKkqQHxUbds kqqkk ∈∀∀−+≤+  (6*) 

(4A) If temporary hiring incurs a constant cost we treat resources in QH similarly to resources in QN and express 
constraints (13) and (17) ∀q∈QH and in constraint (20) sum over q∈(QN∪QH) instead of q∈QN 

(4B) If temporary hiring incurs a cost proportional to the duration of hiring, we modify constraint (20) as 
follows: 

 8



( )[ ]∑∑ ∑
∈∈

−−+=
QHq

qqq
QNq n

a
qnq bbcbecbCT n ελ *33  (20) 

where ε is the correction factor: if α is the annual discount rate, H is the time horizon and the time is 
expressed in years, the correction factor is equal to (bq+b*

q)/2 αΗ/Η.  

 
 
 
5.  Example 
 
An example with two new products P1 and P2, ten tests, 1 to 10, and two resource categories, A (scientists) and 
B (experimental equipment), is presented. Each test requires both scientists and equipment. We assume that one 
unit of each resource category is currently available (scientific group A1 and equipment units B1). The company 
can hire more scientists or buy equipment, and thus we assume that one additional unit for each category can be 
acquired: group A2 of type A at a cost of $200,000 and unit B2 of type B at a cost of $300,000. Outsourcing is 
available and the dummy resource units A3 and B3 are used to represent outsourcing. In this example we assume 
that the duration of all tests cannot be reduced by allocating more resources. Thus, the duration of all tests is 
fixed (dk

MAX=Dk
F) and parameters δkr are equal to zero, and the level of resources that can be allocated to a test is 

also fixed (Nrk
MIN = Nrk

MAX = 1 ∀k, ∀r). Testing data are given in Table 3, and income data in Table 4. As shown 
in Table 3, the resource-utilization cost of the dummy out-sourcing units A3 and B3 is significantly higher. The 
duration Dk

F is in months, the costs cfk and cqkq are in $104 and the decrease fjm in the income is in $104/month. 
 
Table 3: Testing data 

Product Test Dk
F pk cfk cqkq Precedences 

     A1 A2 A3 B1 B2 B3  
P1 1 12 1 10 5 5 20 6 5 20  

 2 13 0.7 15 4 5 16 5 5 22 1 
 3 12 0.95 20 6 6 18 3 3 15 2 
 4 20 1 40 10 8 30 2 2 12  
 5 18 1 60 3 3 15 5 5 30  
 6 15 0.6 20 8 8 22 10 10 35 3, 5 

P2 7 8 1 20 5 5 22 2 2 16  
 8 15 0.8 30 6 9 24 6 5 20 7 
 9 21 1 60 5 2 18 4 4 18  
 10 17 0.7 40 4 4 12 6 6 24 8, 9 

 
Table 4: Income data 

m gjm fjm  
1 0 0 r = 0.0075 
2 24 8 INCMAX = $5,000,000 
3 48 5  

 
The example is first solved assuming that additional resources cannot be acquired during the course of testing 
(case 1). The optimal solution yields an NPV $1,465,000 and the Gantt chart of resources is shown in Figure 2a. 
The example is next solved allowing installation of new resources (case 2). The optimal solution yields an NPV 
of $1,750,700 and involves the hiring of new scientists and the installation of new experimental equipment. The 
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Gantt chart is shown in Figure 2b and shows that some of the tests that were previously outsourced (e.g. P1-1, 
P1-2 and P1-4) are now performed in-house. Thus, although the duration of the testing and the income from 
sales is the same in the two cases for both products, a better solution is obtained in the second case because the 
cost of testing is lower. Specifically, the resource utilization cost CT2 in case 2 is $1,486,900 compared to 
$2,272,700 of case 1. This decrease of $785,800 is due to the installation of the additional resource units (at a 
cost of $500,000) that reduces the cost of outsourcing. The completion time, the income from sales, the testing 
costs and the objective value for the three cases are reported in Table 5. 
 

In-house P2 - 7 P2 - 8 P1 - 3 P1 - 6

Outsourced P1 - 1 P1 - 2 P1 - 4
Outsourced P1 - 5
Outsourced P2 - 9 P2 - 10

In-house P2 - 7 P1 - 2 P1 - 3 P1 - 6

Outsourced P1 - 1 P1 - 4
Outsourced P1 - 5
Outsourced P2 - 8 P2 - 10
Outsourced P2 - 9

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 Tc (months)

(2a)     Case 1: No resource installation

In-house P2 - 7 P2 - 8 P1 - 3 P1 - 6
In-house P1 - 1 P1 - 2 P1 - 4
Outsourced P1 - 5
Outsourced P2 - 9 P2 - 10

In-house P2 - 7 P2 - 8 P2 - 10
In-house P1 - 1 P1 - 2 P1 - 3 P1 - 6
Outsourced P1 - 5
Outsourced P2 - 9 P1 - 4

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 Tc (months)

(2b)    Case 2: Resource installation allowed

A

B

A

B

Figure 2: Resource Gantt charts of Example 
 
Table 5: Completion time, income and testing costs of Example 1. 

 Case 1 Case 2 
Product  P1 P2 P1 P2 
Completion Time 52 40 52 40 
Income ($103) 2,560 3,720 2,560 3,720 
CT1 ($103) 1,196.8 1,345.6 1,196.8 1,345.6 
CT2 ($103) 1,358.6 914.1 826.8 660.1 
CT3 ($103) - 500 
NPV ($103) 1,464.9 1,750.7 

 
The MILP model of this example consists of 979 constraints, 150 discrete and 864 continuous variables. Case 1 
was solved in 2.2 CPU seconds exploring 227 nodes, while case 2 was solved in 143.0 CPU seconds exploring 
22,354 modes on a PIII PC at 900 MHz using GAMS 20.7 / CPLEX 7.5.  
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6.  Computational Improvements 
 
As explained earlier in the paper, due to the uncertainty in many of the problem parameters, model (M) may 
have to be solved as a stochastic optimization problem, or it may be just a subproblem of a more general model 
that accounts for detailed capacity planning and/or real options. Therefore, it is crucial to be able to solve model 
(M) with reasonable computational effort.  
 
Agrochemical products, for example, have to undergo a large number of testing tasks that are usually short and 
have small variability, i.e. they require specific type and amount of resources and their cost and duration are 
fixed and well known. While the technological precedence graph is usually dense, there are precedences that are 
undetermined and therefore subject to optimization. Thus, there are many free sequencing and resource 
assignment binaries (ykk’ and xkq respectively), and since the expected cost of testing depends heavily on these 
binaries, the difficulty in solving these problems is due to the combinatorics of the problem.  
 
Pharmaceutical products, on the other hand, have to undergo few but very long testing tasks (Phase I, II, III 
clinical trials). Moreover, the precedences between clinical trials are fixed and the only unspecified precedences 
are those between clinical tests and investment or marketing tasks. The combinatorics of the problem, therefore, 
is not a complicating factor. Due to the length of the scheduling horizon, however, the planning for resources 
and the decisions regarding the allocation of resources are very important. As will be shown this leads to very 
loosely constrained problems with large linear programming (LP) relaxation gaps. To enhance the solution of the 
proposed model we have to both reduce the combinatorics and tighten the LP relaxation. This is accomplished 
by the following methods. 
 
 
6.1.  Fixing of Additional Precedences in the Technological Precedence Graph 
 
Consider the example where a potential product X has to undergo the five tests of Figure 3, where the duration 
of each test is 5 months. The probability of success of tests 1, 4 and 5 is 1, while the probability of success of 
tests 2 and 3 is 0.75 and 0.6, respectively.  

1
2 3

4
5

 
Figure 3: Graph of technological precedences. 

 
Binaries y12, y23, y35, y14 and y45 are fixed through constraint (2) to be equal to 1, binaries y21, y32, y53, y41 and y54 
are fixed through (2) to be equal to 0 and the remaining sequencing binaries are free. Constraint (4) for pair 
(3,1) , thus, reads: 

s3+5 ≤ s1 + 20(1-y31) (25) 
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where we have assumed that the big-M parameter U is equal to 20. Constraint (25) is satisfied by s3=10, s1=0 
and y31=0.25. In fact, this solution will be the optimal solution of the LP relaxation due to the fact that the 
objective function pushes binary y31 to be as large as possible in order to lower the expected cost of test 1 
(because of the low probability of success of test 3). Note also that constraint (4) for pair (1,3) is satisfied by 
s1=0, s3=10 and any value of y13. 
 
As shown, some of the free sequencing binaries that we intuitively expect to take integer values due to the 
existing technological precedences (i.e. y13=1 and y31=0) obtain fractional values in the optimal LP solution. The 
reason for this is that, unlike other scheduling problems, the probabilities of success enter the objective function 
and push sequencing variables ykk’ to take large values if the probability of success of test k is low. Fortunately, 
this can be avoided by preprocessing and, specifically, by fixing all the free sequencing variables that are 
implied by the given technological precedences, i.e. the precedence k→k” (k must finish before k” starts) is 
implied when there is no technological precedence for pair (k,k”), but there are technological precedences 
between pairs (k,k’) and (k’,k”), specifically k→k’ and k’→k”.  
 
To derive all implied precedences we construct the acyclic activity-on-node directed graph, D, of the originally 
given technological precedences. Note that the nodes of an acyclic digraph can always be topologically labeled, 
i.e. the heads of the arcs are numbered higher than the tails of the arcs (Ahuja et al., 1993). Let n(v) be the label 
of node v, and assume that a topological labeling is available for digraph D. Then, for any implied precedence 
k→k” we will have n(k)<n(k”), because the existing technological precedences k→k’ and k’→k” (i.e arcs (k,k’) 
and (k’,k”)) imply n(k)<n(k’) and n(k’)<n(k”). Thus, if a topological labeling is available, we need only to 
examine ordered triplets (k,k’,k”) with n(k)<n(k’)<n(k”) and the preprocessing algorithm derives all implied 
precedences in one iteration. If A is the set of technological precedences (i.e. k→k”⇔ (k,k’)∈A), and |Kj| is the 
cardinality of the set of tests of product j, the preprocessing algorithm (FIS) for the fixing of implied sequences 
is as follows: 
 
For all products j∈J, 
     For k∈K(j)|n(k) = 1 … |Kj|-2 
          For k’∈K(j)|n(k’) = n(k)+1 … |Kj|-1 
               For k”∈K(j)|n(k”) = n(k’)+1 … |Kj| 
                    If ((k,k’)∈A  AND  (k’,k”)∈A), then (k,k”)∈A 

 
For the precedence graph of Figure 3, the FIS procedure identifies three additional precedences and the new 
precedence graph is the one shown in the right side of Figure 4. 

1
2 3

4
5 1

2 3

4
5

(a) Original technological precedences (b) Additional technological precedences  
Figure 4: Application of FIS procedure on Example of Figure 4. 
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6.2.  Tightening of Time Horizon 
 
Constraints (4), (5) and (4*) of the proposed model are big-M constraints that yield poor LP relaxations. The 
original big-M factor U is an upper bound on the completion time of all products. It is usually calculated by 
solving the LP relaxation of the problem, choosing the greatest completion time among all products and 
increasing this value by a safety factor to ensure that no feasible solutions are cut-off. Since the various 
candidate products are in different stages of the R&D pipeline, their completion time may vary significantly, and 
thus we can calculate a tighter, product-specific upper bound Uj by adding a safety factor SF to the value of Tj of 
the LP solution.  

Uj = Tj
LP + SF  

where Tj
LP is the completion time of product j at the optimal LP relaxed solution. Moreover, the big-M 

parameters of constraints (4), (5) and (4*) can be further reduced by calculating the Earliest Start Time (EST), 
Latest Start Time (LST) and Latest Finish Time (LFT) of all tests and using these values to calculate tighter big-
M parameters.  
 
In the general case with variable test duration, the EST, LST and LFT of the tasks depend on the graph of the 
technological precedences and the minimum duration dk

MIN of tests, which is given by, 

kNdd
r

MAX
rkrk

MAX
k

MIN
k ∀−= ∑δ   

If a topological labeling of the nodes of the graph of the technological precedences is available, we can calculate 
the EST of tests in an increasing order, and thus calculate the EST of all tests in one iteration. Similarly, we can 
calculate the LFT of all tests in decreasing order in one iteration, and given the LFT we can easily calculate the 
LST. The procedure for the calculation of EST, LST and LFT of tasks is the following: 
 
Time Windows Calculations (TWC) 
For all j∈J 
     For all k∈K(j) [in increasing order] 
          ESTk = max {0, maxk’|(k’,k)∈A {ESTk’ + dk’

MIN } } 
For all j∈J 
     For all k∈K(j) [in decreasing order] 
          LFTk = min {Uj, mink’|(k,k’)∈A {LFTk’ - dk’

MIN } } 
For all k 
     LSTk = LFTk – dk

MIN  
 
Thus, we can now replace parameter U in constraints (4) and (4*) by the difference (LFTk-ESTk’) which is 
always smaller: 

AkkkKKkkyESTLFTsds kkkkkkk ∉∈∀∀−−+≤+ )',(|)(',)1)(( '''  (4) 

)(\)('),(),()1)(( ''' kKKqKkqKkQNQEqyESTLFTsds kkkkkkk ∈∀∈∀∈∀−−+≤+ U  (4*) 

We can also calculate the Latest Installation Time (LIT) of a resource unit q∈QN as the maximum LST among 
the tests that can be assigned in resource unit q: 
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LITq = maxk {LSTk| k∈K(q)}  ∀q∈QN  
 
Therefore, constraint (5) can be tightened as follows: 

)(,)1)(( qKkQNqxESTLITbs kqkqqk
∈∀∈∀−−−≥  (5) 

Moreover, although satisfied in every integer solution, the addition of constraint (26) tightens the LP relaxation: 

QNqwLITb qqq ∈∀≤  (26) 
 
To illustrate the effect of the tightening of constraint (4), consider the pair of tests 3 and 4 of the example of 
Figure 3. When the original upper bound U=20 is used, constraint (4) reads: 

s3 + 5 ≤ s4 + 20(1-y34)  

In the LP relaxation we get a solution where s3=10, s4=10 and y34=0.75, because the objective pushes variable 
y34 to be as large as possible in order to reduce the expected cost of test 4 (due to the small probability of success 
of test 3). Note that binary y34 cannot be fixed to 0 by the FIS procedure. Assuming U=20 we can easily 
determine EST4 = 5 and LFT3 = 15 which means that constraint (4) can be written as: 

s3 + 5 ≤ s4 + (15-5)(1-y34)  
which yields a solution s3=10, s4=10 and y34=0.5 which is tighter than the previously found solution (s3=10, 
s4=10 and y34=0.75). 
 
 
6.3.  Fixing of Sequencing Binaries based on EST, LST and LFT 
 
In the previous example we saw that by reducing the big-M parameters we tighten the LP relaxation but we still 
obtain an LP solution with a fractional value for binary y34 (y34=0.5). Based on the time-windows calculations 
and using logic inference, however, we can fix binary y34 to 0. As seen in the previous section, EST3=10 and 
LFT4=15, which means that task 4 cannot be scheduled after task 3 because the sum of the durations of the two 
tasks (i.e. d3+d4=10) is larger than the time window (i.e. LFT4-EST3=5) within which the two tasks should take 
place. Similarly, since the LFT of test 1 is smaller than the EST of test 3 we can conclude  that test 3 will always 
be scheduled after test 1, i.e. y13=1. Hence, for all pairs of tests we can perform the two checks of Figure 5, 
which are similar to “edge finding” techniques of Constraint Programming (Hentenryck, 1989; Hooker, 2000): 

If (dk+dk’) > (LFTk’ - ESTk) then ykk’=0 

If LFTk ≤ ESTk’ then ykk’=1 AND yk’k’ = 0 
 
The second inference is very useful for tests of different products that can be scheduled in the same resource unit, 
because the FIP procedure cannot fix any of those sequencing binaries. Since the time required for this check is 
very short, we perform the two tests for all pairs of tests: 
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Fixing of Binaries from Time Windows (FB-TW) 
For all k∈K,  
     For k’≠k 
          If (dk

MIN + dk’
MIN) > (LFTk’ – ESTk) then ykk’ = 0 

          If LFTk ≤ ESTk’ then (k,k’)∈A 
 
Note that the tightening of big-M parameters based on the (TWC) procedure and the fixing of sequencing 
binaries with the (FB-TW) procedure are complementary. If U = 20, for example, the tightening of the big-M 
parameters reduces binary y34 to 0.5, while (FB-TW) procedure fixes binary y34 to 0. If the upper bound U is 
equal to 25, however, the tightening of big-M parameters still reduces the maximum value of binary y34 to 0.66 
(from 0.8), while (FB-TW) does nothing.  
 

ESTk

ESTk’

LFTk

LFTk’

dk
MIN + dk’

MIN

ESTk LFTk’

(dk+dk’)>(LFTk’ - ESTk) ⇒ ykk’=0

ESTk

ESTk’

LFTk

LFTk’

dk
MIN

dk’
MIN

dk
MIN

dk’
MIN LFTk ≤ ESTk’ ⇒ ykk’=1 ∧ yk’k’ = 0 

 
Figure 5: Logic implication based on EST and LFT of tests. 

 
 
6.4.  Reformulation of Constraints (12), (15) and (16) 
 
Since the RHS of (15) is always non zero and we want to discount the resource-utilization cost cqkq only when 
unit q is assigned to test k, we need to have two terms in the LHS of (15). In the current formulation the two 
terms are the summation of λ2

kqnαkn (which is non-zero when xkq=1) and the slack variable slkq (which is non-zero 
when xkq=0). The formulation of constraints (15) and (16) and the fact that assignment variables xkq have 
fractional solutions close to 0.5 in the optimal LP solution leads to large LP relaxation gap. The reason is that the 
summation in the LHS of constraint (12) is less than 1 and the slack variable slkq can take non-zero values 
[constraint (16)], which means that the discounting factor of the RHS of constraint (15) is equal to the sum of the 
slack variable slkq and a linear combination of the lowest grid points of the linearization scheme. An alternative 
way of formulating the LHS of constraint (15) is to define a new set of linear weights that are activated when 
xkq=0. Thus, constraint (15) is re-written as: 

)(,)ln(
)('

'
22 qKkqypsr

kKKk
kkkk

n
nkqn

n
nkqn ∈∀∀+⋅−=+ ∑∑∑

∈

αλαλ  (27) 

where: 

)(,2 qKkqxkq
n

kqn ∈∀∀=∑λ  (12) 
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)(,12 qKkqxkq
n

kqn ∈∀∀−=∑λ  (28) 

Since the RHS of (26) is the same as the RHS of (14), we can add the following |N| constraints that give much 
tighter LP relaxations: 

nqKkqkqnkqnkn ∀∈∀∀+= ),(,221 λλλ  (29) 

Any LP feasible solution of (28) and (29) is also feasible for (16); we only need to calculate slkq from 

∑=
n

nkqnkqsl αλ 2 and replace it into (16). The opposite, however is not true because constraint (29) is in general 

not satisfied by the LP solutions of (M). Replacing equations (14) and (15) with equations (27)-(29) we get a 
tighter and much faster model. Note also that variables wq and Nrk automatically take integer values in a feasible 
solution: 

ykk’, xkq∈ {0,1}, wq, λ1
kn, λ2

kqn, 2
kqnλ , λ3

qn∈[0,1],  sk, Tj, Nkr, ujm, Nrk, CT1, CT2, CT3, INCj ≥ 0 (30) 

The reformulated MILP model (M*) consists of equations (1) – (14), (17) – (24) and (26) – (30). The tightness 
of the proposed reformulation is illustrated in Appendix A through an example. 
 
 
6.5.  Fixing of Linearization Variables 
 
As shown in Appendix A, because the discounted cost of a test is lower when non-adjacent approximation points 
are used (and preferably the two extreme ones), the discounting factor of a test in an LP solution is often 
approximated by two non-adjacent points. While the reformulation of equations (27) – (29) tightens the LP 
relaxation, it does not completely eliminate the non-adjacency phenomenon (see Appendix A). In order to 
further tighten the LP relaxation we can fix or restrict some of the linearization weights. To do so, we first 
calculate the Greatest Discounting Factor (GDF) and the Lowest Discounting Factor (LDF) of every test, i.e. the 
greatest and lowest values of the RHS of equations (14) and (26): 

GDFk = -rESTk + Σk’|(k’,k)∈A ln(pk’) 

LDFk = -rLSTk + Σk’∈P(k) ln(pk’) 
where P(k) is the set of tests that can be scheduled before test k: 

P(k) = {k’∈KK(k)| (k,k’)∉A AND (dk
MIN+dk’

MIN)<(ESTk’+LFTk) } 

 
Let ν(k)∈N be the smallest grid point that is greater than the GDF of test k. This implies that GDFk can be 
expressed as a linear combination of αν and αν+1: 
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Since the discounting factor of test k will always be smaller than GDFk, the linearization weights for all n<ν(k) 
will be zero, and furthermore, the maximum value of the weight of grid point ν(k) will be equal to the one above.  
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)(,01 knkkn νλ <∀∀=  (31.1)  
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Similarly, if ν’(k)∈N is the largest grid point that is smaller than the LDFk, LDFk can be expressed as a linear 
combination of αν’(k)-1 and αν’(k): 
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Since the discounting factor of test k will always be greater than LDFk, the linearization weights for all n>ν’(k) 
will be zero and the maximum value of the weight of point ν’(k) will be given by the weight of αν’(k) above. 
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)(',01 knkkn νλ >∀∀=  (31.4) 

Since linearization weights and 2
kqnλ 2

kqnλ  are linked to linearization weights λ1
kn through constraint (29), 

constraints (31.1) – (31.4) imply that similar constraints hold for the sum ( +2
kqnλ 2

kqnλ ). A graphic representation 

of constraints (31.1) – (31.4) is shown in Figure 6. The effect of the addition of constraints (31.1) – (31.4) is 
illustrated in Appendix B through an example. 
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Figure 6: Constraints on linearization factors. 

 
 
6.6.  Logic Cuts 
 
To enhance the solution of the MILP, we consider two major types of logic cuts (Hooker et al., 1994). These cuts 
are redundant in the sense that they are not necessary for the formulation and they do not cut-off any integer 
feasible solution. However, they serve to tighten the LP relaxation and reduce the size of the branch and bound 
tree. First we consider the cuts proposed by Schmidt and Grossmann (1996) that forbid cycles of two (k→k’→k) 
and three tests (k→k’→k”→k).  

ykk’ + yk’k ≤ 1   ∀k,∀ k’∈KK(k)| k<k’       (32.1) 

ykk’ + yk’k’’ + yk’’k ≤ 2  ∀k,∀ k’, k’’∈KK(k)|k<k’<k’’      (32.2) 
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yk’k + ykk’’ + yk’’k’ ≤ 2  ∀k,∀ k’, k’’∈KK(k)|k<k’<k’’      (32.3) 
Schmidt and Grossmann proposed a model in which all these cuts are added a priori, but the number of these 
cuts in large problem becomes prohibitively large (e.g. for a problem with two products, 90 total tests and ten 
resource units the number of cuts is 78,765, whereas the original equations in the model are only 10,156). Since 
only few of these cuts are violated, we can use cuts in (32.1) – (32.3) in a branch and cut scheme (Johnson et al., 
2000), where in each node we add only the cuts that are violated.  
 
A second class of logic cuts enforces sequences that cannot be fixed by procedure FIS. Specifically, if there are 
no technological precedences or sequences fixed by procedures (FIS) and (TW-FS) among tests k, k’, k”, 
binaries ykk’, yk’k”, ykk”, yk’k, yk”k’, and yk”k will be free. However, when binaries ykk’ and yk’k”, for example, are fixed 
to 1 at some node of the branch and bound tree, binary ykk” should also be equal to 1. In the existing formulation, 
however, there are no constraints preventing binary ykk” from having values smaller than 1. Nevertheless, we can 
add a new class of cuts that force binary ykk” to be equal to 1 whenever ykk’ and yk’k” are equal to 1 at some node 
of the branch and bound tree: 

ykk” ≥ ykk’ + yk’k” – 1  ∀k,∀ k’, k’’∈KK(k)|k<k’<k’’      (33.1) 
For any triplet of tests we should also add the following cuts: 

yk”k ≥ yk”k’ + yk’k – 1  ∀k,∀ k’, k’’∈KK(k)|k<k’<k’’      (33.2) 

ykk’ ≥ ykk” + yk”k’ – 1  ∀k,∀ k’, k’’∈KK(k)|k<k’<k’’      (33.3) 

yk’k ≥ yk’k” + yk”k – 1  ∀k,∀ k’, k’’∈KK(k)|k<k’<k’’      (33.4) 

yk’k” ≥ yk’k + ykk” – 1  ∀k,∀ k’, k’’∈KK(k)|k<k’<k’’      (33.5) 

yk”k’ ≥ yk”k + ykk’ – 1  ∀k,∀ k’, k’’∈KK(k)|k<k’<k’’      (33.6) 
The number of these cuts is very large (O(n3)), but since only a few of them are violated we can again use them 
in a branch and cut scheme where we add only the cuts that are violated. Alternatively, at each node of the 
branch-and-bound tree we can perform symbolic fixing of the variables whose values are implied by the cuts in 
(33.1) – (33.6). 
 
 
6.7.  Complete Preprocessing 
 
In summary, the complete preprocessing procedure (PRE_PR) that is applied in the improved model (M*) and 
includes all the methods described in the previous sections is as follows: 
1. Apply FIS procedure: Fix sequencing binaries 
2. Solve (M*) as LP: Calculate Uj. Repeat until there is no improvement in the objective. 
3. Apply TWC procedure: Calculate big-M parameters 
4. Apply FB-TW procedure: Fix additional sequencing binaries 
5. Repeat 1-4 with the new information 
6. Calculate GDF and LDF for all tests: Add constraints (31.1) – (31.4) 
7. Solve (M*) as LP: Add violated logic cuts in (32) and (33); repeat until no improvement in LP relaxation 
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7.  Decomposition Heuristic 
 
The improvements described in the previous paragraph reduce the computational requirements by a factor of 3 or 
4, but this is not enough for some large real-world problems. Thus, in this section we present a heuristic 
decomposition algorithm that yields considerable computational improvements over the full space method. The 
main idea is to solve one scheduling problem for each product, and then use the individual schedules to solve a 
reduced MILP problem for the simultaneous testing of all products. Consider the example shown in Figure 7, 
where products 1 and 2 are tested. When tested separately, the completion times for products 1 and 2 is 17 and 9 
months, respectively. When tested simultaneously the optimal schedules are longer due to the resource 
constraints; the completion times for products 1 and 2 are 22 and 10 months, respectively. In terms of the graph 
of the sequences, this means that the graph that depicts the solution of a subproblem is “stretched” to 
accommodate more tests scheduled in the same resources. The “stretching” is done by the inclusion of some new 
sequences (thick lines of Figure 7). In the individual schedule of product 1, for instance, there is no precedence 
between tests 4 and 5. In the simultaneous schedule, however, test 5 is delayed (because resource 1 is used for 
tests 15 and 11 of product 2 as well) and thus there is a new precedence between tests 4 and 5. Note, also, that all 
the sequences defined in the subproblems are preserved in the simultaneous solution.  
 

Lab1 1 5 9
Lab2  2 6 10
Lab3 7
Lab4 3 4 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Time
Tc = 17 months (months)

Lab1 1 15 11 5 9
Lab2  16 12 2 6 10
Lab3 19 7 17 13
Lab4 20 18 4 14 8

Outsourced 3
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Time

Tf = 10 months (months)
Tc = 22 months

Lab1 15 11
Lab2  16 12
Lab3 19 17 13
Lab4 20 18 14

0 1 2 3 4 5 6 7 8 9 Time
Tf = 9 months (months)

(a) Gantt Charts (b) Graphs of Sequence of Tests
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Figure 7: Decomposition Heuristic 

 
In general, we expect that in the simultaneous testing the optimal schedules of the subproblems will be 
“stretched” to accommodate tests of other products in the same resource units. In other words, we expect that 
any precedence present in the optimal solution of a subproblem will be preserved in the optimal solution of the 
entire problem, and, in addition, some new precedences will be determined. Thus, in the proposed heuristic we 
first solve all subproblems separately, we fix the sequencing variables ykk’ for which ykk’ = 1 in the optimal 
solution of a subproblem, we leave free the remaining binaries, and then we solve the simultaneous testing 
problem with some fixed precedences. If (Mj) is the MILP model for the scheduling of tests of product j, the 
proposed decomposition scheme is as follows: 
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1. Apply Preprocessing algorithm (PRE_PR). 
2. For each product j∈J, solve the corresponding subproblem (Mj). 
3. Add (k,k’)∈A if ykk’=1 in the optimal solution of (Mj). 
4. Apply (PRE_PR) in the amended precedence graph. 
5. Solve (M*) with fixed precedences from steps 3 and 4. 

 
 
 
8.  Computational Results 
 
In this section we solve three examples using (a) model (M), (b) model (M*), (c) preprocessing algorithm 
(PRE_PR) combined with model (M*), and (d) the proposed decomposition heuristic. The size of the problem 
ranges from 1 to 3 products and from 10 to 28 tests. The data for the three examples are given in Appendix C. 
The number of products, tests and resources are given in Table 6. In order to test our models and algorithm in the 
more difficult instances, we have assumed that all tests have variable resource requirements (i.e. variable costs 
and processing time). The computational effort for the solution of more realistic examples, where only few of the 
tests have variable resource requirements, costs and processing time will be often significantly lower. 
 
Table 6: Basic features of Examples 1, 2 and 3. 

Example 1 2 3 
Products 1 2 3 
Total Tests 10 20 28 
Tests per product P1:10  P1:10, P2: 10 P1:10, P2:10, P3:8 
Resource Categories 2 6 6 
Existing units per category A:2, B:2 A:2, B:2, C:1, D:1, E:2, F:2 A:2, B:2, C:2, D:2, E:2, F:2 
New units per category A:1, B:1 A:1, B:1, C:1, D:1, E:1 A:1, B:1, C:1, D:1, E:1, F:1 
Outsourcing allowed A, B A, B, C, D, F A, B, C, D, E, F 

 
In Example 2, in order to develop two new products P1 and P2 we can use 10 existing resource units and we can 
install 5 new units. Each new product has to undergo ten tests. The resource unit Gantt chart of the optimal 
solution is shown in Figure 8. As shown, the testing of product P1 lasts 86 months, while the testing of product 
P2 lasts 134 months. A resource unit of type D (unit D2) is installed after 61 months. The optimal net present 
value is $44,650,000. 
 
A1 P1 - 1 P1 - 6 P1 - 7 P1 - 10 P2 - 19
A2 P2 - 13 P2 - 15 P1 - 9 P2 - 18 P2 - 20
B1 P2 - 12 P1 - 3 P2 - 14 P2 - 17 P2 - 19 P2 - 20
B2 P2 - 12 P1 - 3 P1 - 5 P1 - 8 P2 - 19 P2 - 20
C1 P1 - 1 P1 - 2 P2 - 15 P2 - 17 P2 - 18
D1 P2 - 13 P1 - 8 P1 - 10
D2* P1 - 8 P1 - 10
E1 P2 - 11 P1 - 3 P1 - 5 P2 - 19
E2 P2 - 12 P1 - 3 P2 - 15 P2 - 17
F1 P1 - 2 P1 - 4 P1 - 7 P2 - 18
F2 P2 - 12 P2 - 13 P1 - 7 P2 - 18

10 20 30 40 50 60 70 80 90 100 110 120 130 t (months)

* Unit D2: Installed at t = 61  months Test of product P1 Test of product P2  
 

Figure 8: Resource unit Gantt chart of optimal solution of Example 2. 
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The model and solution statistics for examples 1, 2 and 3 are given in Tables 7, 8 and 9, respectively. For the 
decomposition heuristic the model statistics (number of constraints, continuous and binary variables) refer to the 
final MILP model and the CPU time includes the total time needed for preprocessing, the solution of the 
subproblems and the solution of the reduced model for the simultaneous testing. All runs were performed on a 
Pentium III 1000 MHz PC using GAMS 20.7 / CPLEX 7.5. The default CPLEX options and a relative optimality 
of 1% as termination criterion have been used for all models. For the largest problem solved, 3.3% of the total 
time needed by the decomposition algorithm was spent in the preprocessing stage, 1.4% in solving the individual 
subproblems and 95.3% in solving the final MIP. 
 
Table 7: Model and Solution statistics of Example 1. 

Model (M) (M*) (M*) & Pre. 
Constraints 1,368 2,088 2,116 
Continuous variables 1,082 1,802 1,802 
Binary variables 170 170 131 
LP Relaxation ($106) 46.50 40.98 36.75 
Objective ($106) 32.18 32.18 32.18 
CPU seconds 47.0 14.8 3.1 
Nodes 6,528 535 287 

 
Table 8: Model and Solution statistics of Example 2. 

Model (M) (M*) (M*) & Pre. Decomposition 
Constraints 2,765 4,322 4,398 4,428 
Continuous variables 2,328 3,885 3,885 3,885 
Binary variables 507 507 310 195 
LP Relaxation ($106) 80.41 70.56 56.13 52.74 
Objective ($106) 36.15 44.65 44.52 44.53 
CPU seconds 18,000 * 8,336.4 29.1 9.4 
Nodes 1,014,083 336,873 1,520 135 

* Terminated after 18,000 CPU secs. 
 
Table 9: Model and Solution statistics of Example 3. 

Model (M) (M*) (M*) & Pre. Decomposition 
Constraints 5,130 7,614 7,710 7,750 
Continuous variables 3,611 6,095 6,095 6,095 
Binary variables 930 930 522 473 
LP Relaxation ($106) 241.18 223.02 199.78 197.69 
Objective ($106) 90.28 * 146.03 ** 167.79 167.79 
CPU seconds 18,000 18,000 5,029.4 184.0 
Nodes 194,909 72,995 116,163 5,683 

* Terminated after 18,000 CPU secs (best bound = 192.73) 
** Terminated after 18,000 CPU secs (best bound = 192.46) 
 
Comparing models (M) and (M*), we see that model (M*) is larger in terms of number of constraints (due to the 
inclusion of constraints in (28)) and number of continuous variables (due to the replacement of slkq variables by 

2
kqnλ variables) but has a tighter LP formulation. Thus, in Example 1 it is faster than model (M), in Example 2 it 

obtains the optimal solution while (M) does not, and in Example 3 it yields a better solution with the same 
computational effort. As shown in Tables 7, 8 and 9, the addition of the preprocessing algorithm (PRE_PR) 
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reduces computational requirements significantly. The LP relaxation gap is closed and the computational effort 
for all examples is significantly smaller compared to model (M) and model (M*) without the preprocessing 
algorithm. Finally, the proposed decomposition algorithm coupled with the preprocessing algorithm is faster 
than the best full space model. Note that the efficiency of the decomposition algorithm becomes greater as the 
problem size increases. 
 
 
 
Conclusions 
 
A new MILP optimization model for the scheduling of testing tasks in new product development has been 
proposed. The proposed model allows for installation of new resources to handle more effectively the testing of 
new potential products by eliminating bottlenecks and reducing the outsourcing. The model also considers the 
amount and type of resources allocated to tests as a decision variable. The proposed model represents real-world 
situations more accurately than the previously reported models, and it allows the construction of more flexible 
schedules. In order to provide a basis for stochastic optimization approaches or for at least effectively solve 
multiple scenarios of real-world problems, several computational enhancements have been proposed. A graph-
theoretic procedure was used to fix some of the free sequencing binaries and to compute the earliest start time 
(EST), latest start time (LST) and latest finish time (LFT) of tests. Based on EST, LST and LFT of tests, we 
calculate tight big-M parameters and fix some additional sequencing binary variables. A reformulation that 
yields a smaller LP relaxation gap, the addition of constraints that restrict linearization weights and logic integer 
cuts were also proposed. Finally, a heuristic decomposition algorithm was proposed for the solution of large 
problems.  
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Nomenclature 
 
Sets: 
J New products → Index j 
K Tests → Indices k, k’, k’’ 
Q Resource units [Q=QE∪QN∪QD] → Index q  
R Resource categories → Index r 
N Grid points for linearization of discounted cost → Index n 
M Points for piece-wise income linear function → Index m 

 22



K(j) Tests of product j 
K(q) Tests that can be scheduled on resource unit q 
KK(k) Test that belong to the product that test k belongs 
Q(r) Resource units of category r 
R(k) Resource categories needed for test k 
Parameters: 
A |K|*|K| matrix; the (n*m)th element is 1 if there is a technological precedence between tests n and m 
dk

MAX Parameter for the calculation of the duration of test k 
δkr Parameter for the calculation of the duration of test k 
pk Probability of success of test k 
cfk Fixed cost of test k 
cqkq Cost of using resource unit q for test k 
cbq Cost of installing resource unit q∈QN 
Nrk

MIN Minimum amount of resource units of category r needed for test k 
Nrk

MAX Maximum amount of resource units of category r needed for test k 
an Grid points for linear approximation of testing cost 
gjm Grid points for income function 
ρ Discounting exponent 
U Upper bound on the completion time of testing 
ESTk Earliest start time of test k 
LSTk Latest start time of test k 
LFTk Latest finish time of test k 
LITq Latest installation time of resource unit q 
Binary Variables: 
ykk’ 1 if test k must finish before k’ starts 
xkq 1 if resource unit q is assigned to test k 
Continuous Variables: 
Nrk Number of resource units of category r assigned to test k 
Tj Completion time of testing of potential product j∈J 
sk Starting time of test k 
dk Duration of test k 
bq Installation time of resource q∈QN 
wq ∈[0,1]:1 if resource unit q∈QN is installed 
λ1

kn ∈[0,1]: Linearization weight for fixed cost of test k 
2
kqnλ   ∈[0,1]: Linearization weights for the resource-dependent cost of test k 

2
kqnλ  ∈[0,1]: Linearization weights for the resource-dependent cost of test k 

3
qnλ  ∈[0,1]: Linearization weight for the cost of installation of resource unit q∈QN 

slkq Slack variable; it is non-zero when resource unit q is not assigned to test k 
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ujm Variable for the calculation of income of product j 
CT1 Total fixed cost of tests  

t cost 
e units 

ppendix A: Effectiveness of Reformulation of (12), (15) and (16) 

4, where test 3 must 

 test 3 starts as soon as test 2 finishes, at t=10 months, and assuming a discounting exponent r=0.0075 (annual 

000 e-0.0075⋅10+ln0.75 = 1,000 e-0.36 = $696 (A1) 

= 0.28 (0.0) + 0.72(-0.5) + 0(-1.0) =  λ2
31 a1 + λ2

32 α2 + λ2
33 α3

olution should be: 

(A2) 

CT2 Total resource-dependen
CT3 Total cost for installing resourc
INC Total income 
 
 
 
A
 

o illustrate the effectiveness of the proposed reformulation consider the example of Figure T
start after the completion of test 2 whose probability of success is 0.75. Test 3 requires resource unit A or 
resource unit B and the cost of assigning unit A or unit B to test 3 is equal to $1,000. Let further assume that the 
discounting factor is approximated by the three points of Figure A1: (0,1), (-0.5, e-0.5) and (-1.0, e-1.0).  
 
If
discounting of 9%) the real discounted, expected resource cost for test 3, regardless of which resource unit is 
used, is:  

CT2 = 1,
Using the linearization of Figure A1, the exponent -0.36 can be expressed as the following linear combination, 
where we have dropped the index q from the weights λ2

kqn because both A and B resource units have the same 
cost: 

-0.36 
and thus the approximated expected, discounted cost of test 3 in an integer s

CT2 = 1,000 (0.28e0 + 0.72e-0.5 + 0e-1.0) = 1,000 (0.28 + 0.437) = $717 
 

Approximation of Discounting Factor

0.25

0.5

0.75

1

-1 -0.5 0Exponent

r

Exact
Linear Aprox.
Aprox. Points

 
Figure A1: Linear approximation of discounting factor. 
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 the LP relaxation, however, we obtain a solution where binaries xYA and xYB are equal to 0.5, which means that 

Σn λ n αn + sl3A = -0.36 ⇒ λ Α2 α2 + λ Α3 α3 = -0.36 ⇒ 0,28(-0.5) + 0.22(-1.0) = -0.36 

 

ence, the discounted cost of test 3 in an optimal LP solution using constraints (15) and (16) will be: 

CT2 = cq3A Σn λ n exp(αn) + cq3B Σn λ n exp(αn) = 2⋅1,000(0.28e  + 0.22e ) = $501.5 (A3) 

ince the discounting exponent of test 3 in the LP optimal solution is -0.36 and the summation of λ1
kn in 

In
the sum Σn λ2

kqn is also equal to 0.5. Thus, constraint (15) for test 3 and resource units A and B reads as follows: 

2 2 2
3A 3 3

Σn λ2
3Bn αn + sl3B = -0.36 ⇒ λ2

3B2 α2 + λ2
3B3 α3 = -0.36 ⇒ 0,28(-0.5) +  0.22(-1.0) = -0.36

 
H

2 2 -0.5 -1.0
3A 3B

which is considerably smaller than the actual ($696) or approximated expected, discounted ($717) cost. 
 
S

constraint (12) is equal to 1, the summation of 2λ +kqn
2λ  in the LHS of (27) should also be equal to 1 due to 

constraint (29) and this implies that there are only  to express the discounting exponent of test 3.  
 

kqn

 two ways

ase 1: As a linear combination of α1 and α2

 0.72(-0.5) 
C
 -0.36 = λ1

31 α1 + λ1
32 α2 = 0.28(0.0) +

 ⇒ 0,22.0,28.0,0,5.0,0 2
13

2
33

2
23

2
13 ==== AAAA λλλλ 2

33
2

23 == AA λλ  

      0,22.0,28.0,0,5.0,0 2
33

2
23

2
13

2
33

2
23

2
13 ====== BBBBBB λλλλλλ   

 ⇒ C  $6T2 = cq3A Σn λ2
3An exp(αn) + cq3B Σn λ2

3Bn exp(αn) = 2⋅1,000(0.5e-0.5) = 06.5    (A4) 

ase 2: As a linear combination of α1 and α3

 0.36(-1.0) 

 
C
 -0.36 = λ1

31 α1 + λ1
33 α3 = 0.64(0.0) +

 ⇒ 0,0,5.0,36.0,0,14.0 2
3

2
33

2
23

2
13 === AAA λλλλ 2

33
2

231 === AAA λλ  

      0,0,5.0,36.0,0,14.0 2
33

2
23

2
13

2
33

2
23

2
13 ====== BBBBBB λλλλλλ  

⇒ CT2 = cq3A Σn λ2
3An exp(αn) + cq3B Σn λ2

3Bn exp(αn) = 2⋅1,000(0.14e0+0.36e-1.0) = $544.9 (A5) 
 

hus, the discounted cost of test 3 in the LP solution using the reformulation of constraints (27)-(29) is higher 

able A1: Summary of results for s3=10. 
Linear Combination Discounted Cost 

T
than the discounted cost of the LP solution with constraints (15) and (16) ($518) for both cases. A summary of 
the results is given in Table A1. 
 
T

 
Exact (nonlinear) - 696 
Approx. in integer solution 0.28α1 α2

5) & (16)  2 ) 5  
e 1)  

2 (0. 6 3) 

 + 0.72 717 
Approx. in LP solution with (1  (0.28α2 + 0.22α3 01.5
Approx. in LP solution with (27)-(29) (cas 2 (0.5α2) 

α
606.5 

Approx. in LP solution with (27)-(29) (case 2) 14α1 + 0.3 544.9 
 

hen the reformulation is used one would expect to always obtain an LP solution where the linear combination W
of points α1 and α3 (case 2) is used, because the objective is to minimize cost. This, however, does not always 
happen. More specifically, the linear combination of points α1 and α2 (case 1) may be the optimal LP solution if 
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the fixed cost cf3 of test 3 is high compared to the resource-utililization cost (cq3A or cq3B). To illustrate, assume 
that the fixed cost of test 3 is $5,000. This implies that if the discounting factor in the RHS of equation (13) is 
expressed as a linear combination of the two adjacent points α1 and α2 the discounted fixed cost will be: 

CT1 = 5,000(0.28e0 + 0.72e-0.5) = 5,000⋅0.7167 = $3,583.5 (A6) 
me points α1 and α3 the discounted fixed

 + 0.36e-0.5) = 5,000⋅0.7724 = $3,862 (A7) 

hus, the total costs in the LP solution for test 3 for the two cases are: 

s α1 and α2 will be used in both constraints (14) and (28). 

whereas if it is expressed as a linear combination of the two extre  cost 
will be much higher: 

CT1 = 5,000(0.64e0

 
T
Case 1: CT1 + CT2 = 3.583.5 + 606.5 = $4,189 

Case 1: CT1 + CT2 = 3,862 + 544.9 = $4,406.9 

Since the total testing cost for case 1 is smaller, point
The optimal LP solutions for the discounted resource-utilization cost of test 3 are shown in Figure A2. 
 

1.0                           0.5                           0.0

0.28(-0.5)

Eq.’s (15), (16) : -0.36=  λ2
3A2 a2 + λ2

3A3 a3
⇒ CT2 = $501.5

0.36(-1.0) 

Eq.’s (27)-(29) & cfk < Σq cqkq: -0.36=  λ2
3A1 a1 + λ2

3A3 a3
⇒ CT2 = $544.9

0.72(-0.5) 

Eq.’s (27)-(29) & cfk > Σq cqkq: -0.36 =  λ2
3A1 a1 + λ2

3A2 a2
⇒ CT2 = $606.5

-0.36

-0.36

-0.36

0.22(-1.0)

0.64(0.0) 

0.28(0.0)

Exact:    CT2 = 1000e-0.36=$697.7

 
Figure A2: LP solutions for the two formulations. 

 

ppendix B: Application of Fixing of linearization Weights 

 when the fixed cost cfk  

.28e0 + 0.72e-0.5) = 1,000⋅0.7167 =$716.7 

 
 
A
 

 Appendix A we showed that constraints (27)-(29) yield tighter LP solutions, especiallyIn
is larger than the resource-utilization cost Σq cqkq of test k. If the fixed cost of test 3 is $1,000 instead of $5,000, 
for instance, the fixed cost using points α1 and α2 is: 

-0.36 = 0.28(0.0) + 0.72(-0.5) ⇒ CT1 = 1,000(0
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while using points α1 and α3 is: 

-0.36 = 0.64(0.0) + 0.36(-1.0) ⇒ CT1 = 1,000(0.64e0 + 0.36e-0.5) = 1,000⋅0.7724 = $772.4 

 

α3 will be used. 

1) – (31.4). Applying constraints (A) 

A ln(pk’) ⇒ GDF3 = -0.0075⋅10 + ln(0.75) ⇒ GDF3 = -0.36 

values into constraints (31.1) 

Hence, the addition of constraints (31.1) – (31.4) forces λ1
33 to zero, and because of constraint (29) terms 

The total discounted cost for test 3 will be: 
Case 1: CT1 + CT2 = 716.7 + 606.5 = $1,323.2

Case 1: CT1 + CT2 = 772.4 + 544.9 = $1,317.3 

which means that in the optimal LP solution points α1 and 
 

al LP solution, however, can be eliminated by constraints (31.This optim
and (B) for test 3 we get: 

GDF3 = -rEST3 + Σk’|(k’,3)∈

SDF3 = -rLST3 + Σk’∈P(3) ln(pk’) ⇒ LDF3 = -0.0075⋅10 + ln(0.75) ⇒ LDF3 = -0.36 

which means that we have ν(3)=1 and ν’(3)=2 and by plugging the corresponding 
– (31.4) we get: 

28.01
31 ≤λ  72.01

32 ≤λ  01
33 =λ  

( 2
33 Aλ + 2

33 Aλ ) and ( 2
33Bλ + 2

33Bλ ) are also forced to zero; i.e. -0.36 is expressed as a linear combination of points 

α1 and 2.  

e can calculate EST4=5 and LST4=10 which give: 

F3 = -0.038 

 

ppendix C: Example Data 

; in example 2, products P1 and P2 are tested, and in Example 3, products 

5

 α
 
For test 4 w

GDF4 = -rEST4 + Σk’|(k’,3)∈A ln(pk’) ⇒ GDF4 = -0.0075⋅5 ⇒ GD

SDF4 = -rLST4 + Σk’∈P(3) ln(pk’) ⇒ LDF4 = -0.0075⋅10 ⇒ LDF3 = -0.075 

Thus, ν(4)=1 and ν’(4)=2 and constraints (31.1) – (31.4) become: 
1 924.041 ≤λ  15.01

32 ≤λ  01
33 =λ  

 
 
A
 
In Example 1 only product P1 is tested
P1, P2 and P3 are tested. The data for all tests are given in Tables C1, C2 and C3. A test k requires a resource 
category r if and only if the corresponding δkr entry is non-zero. For all pairs (k,r)|δkr>0 we have Nrk

MIN=1. The 
cost of outsourcing is 80% higher. 
 

: Income data for Examples 2 and 3. Table C1
m gjm (months) fjm ($10 /month)  
1 0 10 INCP1

MAX = $300,000,000 
2 24 10 INC MAX = 50,000,000 P2 $3
3 48 10 INCP3

MAX = $400,000,000 
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Table C2: Resource classes and units for Examples 2 and 3. 
Category Existing Units New Units / Cost ($105) Outsourcing 
 Example 2 Example 3 Example 2 Example 3 Example 2 Example 3 
A A1, A  A YES 2 A1, A2 3 / 80  A / 80 YES 
B 

0 
  

2 

B1, B2 B1, B2 B3 / 60 B3 / 60 YES YES 
C C1 C1, C2 C2 / 100 C3 / 10 YES YES 
D D1 D1, D2 D2 / 120 D3 / 120 YES YES 
E E1, E2 E1, E2 E3 / 90 E3 / 90 NO YES 
F F1, F F1, F2  F3 / 80 YES YES 

 
Table C3: T data f ples 2 and 3. 

 Test d MAX p cf   Precedences r∈R(k) cqkr δkr Nrk
MAX

esting or Exam
k k k

 k (months)  ($105) k’|(k’,k)∈A  ($105)   
1 16 1 20  A/C 7/8 1/2 1/2 
2 18 0. 8 C  2 1

0  B 3/  2 2  
2,  

A  5/ 0 3  2  
3, B 5  3  2  

0  4, 

P1 

1  
12  1 3  

12 A  1  2 1  
11, 13 

0  
A  7  2  1  

1  
1  

P2 

1  

22 
21
2  

B  8  1 1  

P3 

0  A 4/  3  2  

8 25 1 /F 9/10 /3 /1 
3 20 .95 30 2 /D/F 5/11 /4/1 /1/2
4 24 1 50 3 A/F 5/4 2/1 2/2 
5 30 0.75 80  B/E 5/6 2/1 1/2 
6 24 0.9 60  A/C 7/3 0/2 2/2 
7 22 1 100  /D/F 15/1 /2/2 /1/3
8 20 1 50 6 /D/F /8/10 /1/2 /3/1
9 18 .85 20 5 A/C 7/3 1/0 1/2 

10 22 1 40 7, 8 A/D 9/10 0/2 1/3 
11 15 0.6 40  C/E 7/13 1/2 2/1 
12 20 0.8 50 11 B/E/F /14/15 /1/3 /1/2
13 25 1 60 /D/F 8/12/19 /1/3 /2/1
14 30 1 70  12, B/D 8/9 1/2 3/1 
15 28 .95 80 13 A/C/E 12/11/10 1/0/2 2/3/1 
16 24 1 90 14 /D/F /9/8 /1/3 /3/1
17 20 1 

0  
20 4, 15 B/C/E 6/5/4 2/1/2 1/1/2 

18 22 .98 40 6, 17 A/C/F 3/6/9 1/0/3 2/1/2 
19 16 1 10 17, 18 A/B/E 8/6/4 2/1/1 1/3/1 
20 35 1 12 18, 19 A/B/D 2/14/16 1/3/2 1/2/1 
21 20 0.9 25  A/B 8/6 1/2 2/2 
22 25 1 30  B/C 10/5 2/2 2/3 
23 30 1 30 C/D 8/10 3/2 1/3 
24 32 0.8 60 , 23 D/E 4/7 1/2 2/3 
25 25 0.9 70 2, 23 E/F 9/6 2/2 2/1 
26 24 1 45 23, 24 A/E 6/2 3/2 2/2 
27 18 1 50 25, 26 /C/D /6/5 /2/2 /2/3
28 28 .95 40 26, 27 /E/F 10/8 /2/1 /2/1
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