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ABSTRACT 
 

One of the greatest challenges in highly regulated industries, such as pharmaceuticals and agrochemicals, is the 
process of selecting, developing and efficiently manufacturing new products that emerge from the discovery 
phase. This process involves the performance of regulatory tests, such as environmental and safety tests, for the 
new products, and the plant design for manufacturing the products that pass all tests. In order to systematically 
address this problem, we consider the simultaneous optimization of resource-constrained scheduling of testing 
tasks in new product development, and design/planning of batch manufacturing facilities. A multiperiod 
mixed-integer linear programming (MILP) model that maximizes the expected net present value of multiple 
projects is proposed. The model takes into account multiple trade-offs and predicts which products should be 
tested, the detailed test schedules that satisfy resource constraints, design decisions for the process network, 
and production profiles for the different scenarios defined by the various testing outcomes. In order to solve 
larger instances of this problem with reasonable computational effort, a heuristic algorithm based on 
Lagrangean decomposition is proposed. The algorithm exploits the special structure of the problem and 
computational experience shows that it provides optimal or near optimal solutions, while being significantly 
faster than the full space method. The application of the model is illustrated with three example problems. 

 
 
Introduction 
A large number of candidate new products in the agricultural and pharmaceutical industry must undergo a set 
of tests related to safety, efficacy, and environmental impact, in order to obtain certification. Depending on the 
nature of the products, testing may last up to 5 years, and their scheduling should be made with the goal of 
minimizing the time to market and the cost of the testing. In order to be competitive, a company must have a 
number of promising products at different stages of the testing process, and at the same time must be prepared 
to produce a new product as soon as testing is successfully completed. Since the building of a new plant, the 
specification and procuring of equipment, and the validation process last more than two years, an investment 
decision for the manufacturing of the new product(s) must be made well before testing is completed. 
Furthermore, investment decisions become even more important as the pressures for reducing the costs of 
pharmaceutical products increase. Clearly, the timing of these decisions depends on the completion time of 
testing of new product(s), and the size of investment depends on the number of new products and their 
production levels. Thus, given these complex trade-offs, decisions on the testing of new products, and on the 
design and planning of manufacturing facilities should be optimized simultaneously.  
Although optimization methods for addressing problems separately in new product development1,2,3,4,5,6,7 and 
supply chain management8,9,10,11,12 have been reported in the literature, the integrated problem addressed in this 
paper does not appear to have been reported before. Currently there are no methods and tools to explicitly 
address this problem, and in practice, decisions are made on an ad-hoc basis. A new optimization model for 
addressing this design integration problem is presented in this paper. The proposed model is a large-scale 
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MILP that predicts, from a portfolio of potential new products, which products should be tested, the detailed 
test schedules, design decisions for the process network, and production profiles of existing and new products. 
Since the integration leads to a very large and hard MILP problem to solve, a solution method based on a 
heuristic Lagrangean decomposition is also proposed. 
 
 
Literature Review 
Schmidt and Grossmann3 proposed several optimization models for the optimal scheduling of testing tasks in 
the new product development process, and Jain and Grossmann4 extended these models to take into account 
resource constraints. Honkomp et al.5 addressed the problem of selecting process development projects from a 
pool of projects, and scheduling the use of limited resources to maximize the expected return from research 
and development operations. This problem is similar to the scheduling of testing tasks, as each process 
development project requires a specific sequence of tasks, each of which has a probability of failure. 
Subramanian et al.6 proposed a simulation-based framework for the management of the R&D pipeline, and 
Blau et al.7 developed a simulation model for risk management in the new product development process. The 
focus of these references, however, is the new product development process, and not the design and planning 
of manufacturing facilities. In most of these references it is assumed, for instance, that there are no capacity 
limitations, or that the production level of a new product is not affected by the production levels of other 
products. Furthermore, investment costs are not explicitly included in the calculation of Net Present Value 
(NPV) of projects. Papageorgiou et al.10 proposed an optimization-based approach for selecting from a set of 
candidate products the ones to be commercialized. Their approach includes a capacity planning strategy, but 
does not account for the testing tasks that need to be performed for certification.  
There is a large number of papers on batch design (Reklaitis13) that deal with detailed sizing and scheduling. 
Norton and Grossmann13 proposed a simplified high level, multiperiod planning investment model for 
processing networks with dedicated and flexible plants. This model is a multiperiod mixed-integer linear 
programming model, which for given forecasts of product demands and pricing, maximizes the net present 
value of processing network’s operations and expansion decisions over a long time horizon. In that model, it is 
assumed that products are known and that all products can be produced immediately. In contrast, in the 
problem addressed in this paper, from a given portfolio of potential products, only a few will be selected to be 
tested and produced if they pass all tests successfully. 
In this work we develop a new integrated scheduling and planning model that uses as a basis the scheduling 
model of Jain and Grossmann4, and the design/planning model of Norton and Grossmann13. Jain and 
Grossmann4 assumed that all potential products are to be tested. However, in this work one has to decide which 
products should be tested, since there might not be enough testing facilities, or not all products may be 
profitable. Therefore, the proposed model must select which products to test. In order to account for this 
decision we use disjunctive programming. If a product is selected to be tested, all the constraints that describe 
resource-constrained scheduling are active; if it is not selected, all variables referring to testing of this product 
are set to zero. In most planning models (e.g. Norton and Grossmann13) it is assumed that the level of sales is 
limited by plant capacity and demand (which is either known or uncertain within a fixed range). In new 
product development, however, the production of a potential product depends also on whether this product has 
been selected and has passed all tests. This is a discrete-state type of uncertainty, which has received little 
attention in the literature (Straub and Grossmann14). It is, therefore, necessary to extend planning models to 
account for discrete uncertainties, which will be done in this paper with the use of scenarios. 
 
 
Representation 
For the representation of testing schedules, we use Gantt charts from the perspective of resources to display the 
use of each resource over time, and activity-on-node directed graphs to display the optimal sequence of tasks. 
To illustrate, consider the example of a product X that requires four tests and resources from two categories. 
Tests 1 and 2 require resource A and tests 3 and 4 require resource B. There are also technological precedence 
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constraints: test 1 must finish before tests 3 and 4 begin. Using the proposed representations, a solution to this 
problem is presented in Figure 1. TX is the completion time of testing of product X. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Motivating Example 
To illustrate the issues associated with the problem in this paper, consider the example of an agrochemical 
company that currently sells products A and B, and has two potential products C and D in its R&D pipeline. 
Product A is broadly produced under constant demand forecasts, product B is gradually phased out due to 
competition of another firm with a similar product. Product C is a new product intended to replace B, and 
product D is another new product, which the company predicts will be very profitable. Forecasts of demand 
levels are given in Table 1. A horizon of 6 years divided into 18 four-month periods is considered.  
 
Table 1: Demand forecasts in tons/month for Example 1 

Product 1st yr 2nd yr 3rd yr 4th yr 5th yr 6th yr 
A 8 8 8 8 8 8 
B 8 8 6 6 4 4 
C - 6 8 10 12 12 
D - 4 4 6 8 8 

 
Every new product must pass successfully two toxicology tests and three field trials. All tests can either be 
performed within the company (utilizing existing resources), or outsourced at a higher cost. Product C has 
already passed toxicology and one of the field trial tests, while product D has just been discovered, and no test 
has yet been performed. The process development of D is anticipated to last much longer than the process 
development stage of product C (18 months compared to 8 months). Process development can be treated as 
one test that cannot be outsourced. Cost, duration, probability of success, resource requirement and 
technological precedences for each test are given in Table 2. Technological precedences are also given 
schematically in Figure 2.  
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Figure 1: Schedule Representation for Tests

 

Figure 2: Technological Precedence Constraints of Example 1
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Table 2: Testing Data of Example 1 
Product Test Resource 

Requirements 
Prob. of 
success 

Duration 
(months) 

Cost  
($103) 

Cost of out- 
sourcing ($103)  

Technological 
Precedences 

PDC Process Dev Group 1       8  1000 - - 
1 Toxic Group 1       6   600 1200 - 
2 Field Trial Group 1       4   400 800 - 

C 

3 Field Trial Group 0.95       8   200 400 2 
PDD Process Dev Group 1     18  2500 - - 

4 Toxic Group 0.9       4   800 1600 - 
5 Field Trial Group 0.85       6   600 1200 - 
6 Toxic Group 1       6   500 1000 4 
7 Field Trial Group 1       6   400 800 5 

D 

8 Field Trial Group 0.95       8  1200 2400 5,7 
 
The production network for all products is given in Figure 3. As can be seen for the production of A, raw 
material RA is converted into intermediate IA1 in unit P1, which in turn is then purified into intermediate IA2 
in unit P2, and IA2 is purified into product A in unit P4. The production of products B, C and D is quite 
similar, the only difference being that the first purification of products B and D takes place in unit P3 instead 
of unit P2. Note that although process development is not yet completed, the units that will be used for the 
production of new products are known from preliminary studies. Processes P1 and P4 may operate under four 
different production schemes (S1, S2, S3, S4), while processes P2 and P3 may operate under two different 
production schemes (S1, S2). Each scenario involves a different mode of operation (e.g. different inputs, 
outputs, turnovers). For simplicity, we assume that conversions and operational costs of different production 
schemes of the same process are equal. Conversion factors, initial capacities, expansion and operational costs 
for all processes are given in Table 3. Prices of raw materials and final products are given in Table 4. Income 
and all costs are discounted at a rate of 9% annually.  
 
 
 
 
 
 
 
 
 
 
 
Table 3: Process Network Data Example 1 
Process Conversion  

(all schemes) 
Initial Capacity 

(tons/month) 
Fixed Cost 

($103) 
Variable Cost 

($103⋅month/tons) 
 Operational Cost 
(for all schemes) 

($103/tons) 
P1 1/1.4 = 0.7143 20 450 140 1.8 
P2 1/1.5 = 0.6666 10 250 60 2.2 
P3 1/1.3 = 0.7692 10 240 80 1.4 
P4 1/1.2 = 0.8333 16 500 120 1.6 

 
If we try to decide which products to pursue, without considering resources, we might conjecture that both 
products are profitable. If we now look for the optimal schedule, design and planning policy, assuming that 
both products C and D are to be tested, and taking resources into account, we find a solution with NPV equal 
to $9,118,500. The Gantt charts of resources for products C and D are presented in Figure 4. Design decisions 
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Figure 3: Process Network of Example 1
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(expansions) are given in Table 5, and an analysis of costs and revenues is presented in Table 6. As it will be 
shown later in the paper, this solution is in fact suboptimal. 
 
Table 4: Prices of Raw Materials and Final Products for Example 1 

Raw 
Material 

Price  
($103/ton) 

Final 
Product 

Price 
($103/ton) 

RA 3 A 26 
RB 3.5 B 28 
RC 4.5 C 36 
RD 4 D 58 

 
Table 5: Design Decisions of Example 1 (Heuristic): Expansions (ton/month)   

Process 1st period 4th period 
P1 17.680 - 
P2 - 8.88 
P3 - - 
P4 - 6.044 

 
Table 6: Revenues and Costs ($103) of Example 1 (Heuristic) 
Sales Revenues 39,092.7 
Testing Cost 6,851.0 
Investment Cost 4,760.5 
Operational Cost 7,990.2 
Raw Material Cost 10,372.5 
Expected NPV 9,118.5 

 
 
 
 
 
 
 
 
 
 
 

Figure 4: Gantt Chart of Resources of Example 1 - Heuristic 

 
Problem Statement 
Given are a set of existing products, and a set of potential products that are in various stages of the company’s 
R&D pipeline. Each potential product is required to pass a series of tests. Failure to pass any of these tests 
implies termination of the project. Each test has a probability of success, which is assumed to be known, and 
an associated duration and cost which are known as well. Furthermore, only limited resources are available to 
complete the testing tasks and they are divided into different resource categories. If needed, a test may be 
outsourced at a higher cost, and in that case none of the internal resources are used. 
On the manufacturing side, a time horizon divided into several time periods is given. A network consisting of 
existing and new potential plants is considered. Each plant (existing or potential) consists of a set of processes, 
that can be dedicated or flexible. Flexible processes are typically batch processes that operate under different 
production schemes, using different inputs and/or producing different outputs. Each process can be expanded 
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only at the beginning of a time period. The network involves a set of chemicals (raw materials, intermediates 
and final products). The demand for both existing and potential final products is known. Raw materials and 
final products can be purchased and sold in different markets. 
There are three major decisions associated with the testing process. First, the selection of the subset of 
potential products that are to be tested. Second, the decision about outsourcing and the assignment of resources 
to testing tasks, and third, the sequencing of tests. The major decisions regarding design and planning are the 
following: first, the selection of the new plant(s) or the expansion of the existing plant(s)/processes, as well as 
their timing, to accommodate the new products. Second, the production levels of existing and new products 
during each time period. 
Since the outcome of testing is stochastic, production levels cannot be determined uniquely. If a potential 
product that has been selected passes all testing tasks, its production can begin. If not, it cannot be produced 
and thus, there is some unused capacity that can be used for another product. To anticipate the effect of testing 
outcomes a multiscenario approach is used. If n is the number of new products, there are |M|=2n scenarios, each 
corresponding to a different combination of testing outcomes. These scenarios are used in a two-stage 
stochastic programming15 approach. In the first stage, here-and-now decisions are made for the testing of new 
products and the investments needed. Given these decisions, production levels are determined at the second 
stage in a wait-and-see fashion. Thus, for a specific set of testing and investment decisions, different 
production levels are determined for each scenario. The objective function for the optimization is to maximize 
the net present value over a long-range horizon. Income from sales, along with investment, testing, operating 
and raw material costs are taken into account.  
In this paper resource constraints are enforced on exact requirements, and the option of outsourcing is used 
when existing resources are not sufficient. Thus, the schedule is always feasible, and rescheduling is needed 
only when a product fails a test. Resources are discrete in nature, and they can handle only one task at a time. 
Tests are assumed to be non-preemptive, and their probability of success is known a priori. The processing 
stages of the new products are assumed to be known, and the demands of both existing and potential products 
are deterministic. For any process type and production scheme, material balances are expressed linearly in 
terms of the “nominal” production rate of that scheme.  
 
 
Model 
We present the model by first discussing the equations for product selection and resource-constrained 
scheduling, next for the multiscenario design and planning of the process network, and finally for the 
integration of the two models. 
 
1. Product Selection and Resource-Constraint Model 
The major decision regarding the testing process is the selection of the potential products that will be tested. 
The indices, sets, parameters and variables used in the scheduling model are the following: 
Indices: 
k,k’ Tests 
r Resource Categories 
q Resources 
n Grid points for linearization of testing cost 
j  Chemicals 
Sets: 
J Set of chemicals 
JE Set of existing products (JE⊂J) 
JP Set of new products (JP⊂J) 
K Set of tests 
K(q) Set of tests that can be scheduled on unit q 
K(j) Set of tests of potential product j∈JP (K=∪j∈JP K(j) and ∩j∈JP K(j)=∅) 
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KK(k) Set of tests corresponding to the product that has k as one of its tests 
Q Set of resources 
R Set of resource categories 
QC(r) Set of resources of category r (Q=∪r∈R QC(r) and ∩r∈R QC(r)=∅) 
QT(k) Set of  resources that can be used for test k 
Parameters: 
dk Duration of test k 
pk Probability of success of test k 
ck, ĉ k Costs of test k when performed in-house and when outsourced 
Nrk Resources of category r needed for test k 
αn Grid points for linear approximation of testing cost 
A(k,k’) Matrix: akk’ is 1 if test k should be finished before k’ starts 
ρ Discount factor 
U Upper bound on the completion time of testing 
Binary Variables: 
zj 1 if product j is tested (defined only for j∈JP) 
ykk’ 1 if test k must finish before k’ starts and k∈K(j) and k’∈K(j) for some j∈JP 
ŷ kk’ 1 if test k must finish before k’ starts and k∈K(j) and k’∉K(j) for some j∈JP 

xk 1 if test k is outsourced  
kqx̂  1 if resource q is assigned to test k 

Continuous Variables: 
Ck Discounted cost of test k 
Tj Completion time of testing of potential product j∈JP 
sk Starting time of test k 
wk Exponent for discounted cost calculation of test k 
λkn Weight factors for linear approximation of discounting of cost of test k when performed in-house 
Λkn Weight factors for linear approximation of discounting of  cost of test k when outsourced 
 
To simplify the presentation we first assume that all potential products are to be tested. For each test k, the 
most important decisions are its start time (sk), whether the test should be outsourced or not (xk), the 
assignment of resources q to that test ( kqx̂ ), and its relative sequence to other tasks (ykk’ and ŷ kk’). The 
expected cost of completing test k, is determined by an outsourcing decision, and is a function of the 
probability of conducting the test, and its discounted cost: 
   ¬ xk      ∨  xk     (1) 
     Ck = ck e

-ρ sk ∏k’≠k pk’ yk’k   Ck = ĉ k e
-ρ sk ∏k’≠k pk’ yk’k 

Disjunction (1) involves nonlinear functions that can be linearized by first using the logarithmic transformation 
for the product of probabilities, and then a piecewise linear approximation (Schmidt & Grosmann3). Thus, 
applying the convex hull formulation (Balas16, Turkay and Grossmann17) to (1) the cost of performing test k is 
described by equations (2)-(6): 
Ck = ck (∑n e

 αn λkn ) + ĉ k (∑n e
αn Λkn ) ∀k∈K      (2) 

wk = -ρ⋅sk + ∑k’≠k ln(pk’) yk’k   ∀k∈K      (3) 

wk = ∑n αn (λkn + Λkn)   ∀k∈K      (4) 

∑n λkn = (1 – xk)    ∀k∈K      (5) 

∑n Λkn = xk    ∀k∈K      (6) 
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Constraints (7)-(9) are used for the sequencing and timing of tests: 
ykk’ = 1, yk’k = 0     ∀(k,k’)∈A     (7) 

sk + dk ≤ sk’ + U(1 – ykk’)  ∀j∈JP, ∀k∈K(j), ∀k’∈K(j)|k≠k’  (8) 

sk + dk ≤ Tj     ∀j∈JP, ∀k∈K(j)    (9) 

Constraints (10)-(12) are logic cuts, which although not necessary, strengthen the LP relaxation: 
ykk’ + yk’k ≤ 1     ∀j∈JP ∀k, k’∈K(j)|k<k’   (10) 

ykk’ + yk’k’’ + yk’’k ≤ 2   ∀j∈JP ∀k, k’, k’’∈K(j)|k<k’<k”  (11) 

yk’k + ykk’’ + yk’’k’ ≤ 2   ∀j∈JP ∀k, k’, k’’∈K(j)|k<k’<k”  (12) 

Constraint (13) ensures that if a task is not outsourced, then the required number of units from each category 
are assigned to that test: 
∑q∈(QT(k)∩QC(r)) kqx̂  = Nkr (1 – xk)  ∀k∈K, ∀r∈R     (13) 

In order to enforce resource constraints we use the following logical condition: if a test k is assigned to 
resource q, then for resource constraints to hold, any other test k’ is either not assigned to resource q or there 
is an arc between test k and k’: 

kqx̂   ⇒ ¬ qkx 'ˆ  ∨ ykk’ ∨ yk’k  ∀q∈Q, ∀k∈Κ(q), ∀k’∈(K(q)∩KK(k))|k<k’ (14) 

kqx̂  ⇒ ¬ qkx 'ˆ ∨ ŷ kk’ ∨ ŷ k’k  ∀q∈Q, ∀k∈Κ(q), ∀k’∈(K(q)\KK(k))|k<k’ (15) 

Using the transformations described in Raman and Grossmann18, we obtain the following constraints: 
kqx̂ + qkx 'ˆ – ykk’ – yk’k ≤ 1   ∀q∈Q, ∀k∈Κ(q), ∀k’∈(K(q)∩KK(k))|k<k’ (16) 

kqx̂ + qkx 'ˆ – ŷ kk’ – ŷ k’k ≤ 1  ∀q∈Q, ∀k∈Κ(q), ∀k’∈(K(q)\ KK(k))|k<k’ (17) 

As shown in Appendix A, constraints (16) and (17) are tighter than the ones proposed by Jain and Grossmann3. 
Finally, constraint (18) is needed to enforce the sequence between two tests that do not correspond to the same 
product (as constraint (8) is needed for tests of the same product): 
sk + dk – sk’ – U(1 - ŷ kk’) ≤ 0  ∀q∈Q, ∀k∈K(q),∀k’∈K(q)\KK(k)  (18) 

 
In the general case, however, one has to decide which products should be tested (zj), since there might not be 
enough testing facilities or not all products may be profitable. The proposed model, therefore, should select 
which products to test. This is equivalent to a disjunction, whose first term corresponds to the case where 
product j∈JP is tested (zj=True), and the second term to the case where product j is not tested (zj=False). In 
the first term, all the constraints that describe resource constrained scheduling for product j are active, while in 
the second term, all variables referring to the testing of product j are set to zero. Thus, constraints (2)-(13), and 
(16) are included in the first term, while in the second term variables sk, λkn, Λkn, wk, xk, kqx̂ , ykk’ and Tj are set 
to zero. Note that constraints (17) and (18) are not included in this disjunction because they contain variables 
ŷ kk’ that are used for the sequencing of tests that correspond to different products. 

    zj     ¬ zj 

Tj = 0,    xk = 0 ∀k∈K(j), kqx̂ = 0 ∀k∈K(j), ∀q∈Q 

(2) - (13), (16)  sk = 0 ∀k∈K(j), ŷ kk’ = 0  ∀k,k’∈K(j), λkn = 0 ∀k∈K(j), ∀n     (19) 

   wk = 0 ∀k∈K(j), ykk’ = 0  ∀k,k’∈K(j), Λkn = 0 ∀k∈K(j), ∀n 
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By applying the convex hull formulation18,19, and eliminating variables and redundant constraints (Appendix 
B), the disjunction in (19) is expressed as follows: 
CTEST = ∑k Ck = ∑k {ck (∑n e

 αn λkn )+ ĉ k (∑n e
αn Λkn )}      (20) 

wk = -ρ⋅sk + ∑k’≠k ln(pk’) yk’k  ∀k∈K        (21) 

wk = ∑n an (λkn + Λkn)  ∀k∈Κ        (22) 

∑n λkn = zj  – xk   ∀j∈JP, ∀k∈K(j)      (23) 

∑n Λkn = xk   ∀k∈K        (24) 

ykk’ = zj, yk’k = 0   ∀j∈JP, ∀k, k’∈K(j), ∀(k,k’)∈A     (25) 

sk + dk zj – sk’ – U (zj - ykk’) ≤ 0 ∀j∈JP, ∀k, k’∈K(j)      (26) 

sk + dk zj ≤ Tj   ∀j∈JP, ∀k∈K(j)      (27) 

ykk’ + yk’k ≤ zj   ∀j∈JP, ∀k, k’∈K(j)| k<k’     (28) 

ykk’ + yk’k’’ + yk’’k ≤ 2zj  ∀j∈JP, ∀k, k’, k’’∈K(j)|k<k’<k’’    (29) 

yk’k + ykk’’ + yk’’k’ ≤ 2zj  ∀j∈JP, ∀k, k’, k’’∈K(j)|k<k’<k’’    (30) 

∑q∈(QT(k)∩QC(r)) xkq = Nkr (zj – xk) ∀j∈JP, ∀k∈K(j), ∀r∈R      (31) 

xkq + xk’q – ykk’ – yk’k ≤ zj  ∀q∈Q, ∀j∈JP, ∀k∈(Κ(q)∩K(j)), ∀k’∈(K(q)∩KK(k)∩K(j))|k<k’ (32) 

0 ≤ Tj ≤ U⋅zj   ∀j∈JP        (33) 

Tj, sk, λkn, Λkn ≥ 0,  wk ≤ 0,   ykk’, ŷ kk’, xk, kqx̂ , zj ∈{0,1}   (34) 

Note that constraints (23) and (25)-(32) are now a function of zj, whereas in constraints (5), (7)-(13) and (16) 
this value was set to one. Furthermore, we can impose bounds on the binaries ŷ kk’. If k∈K(j), and k’∉KK(k) 
and product j is not tested then ŷ kk’ and ŷ k’k are zero (and vice versa), which are enforced by: 
0 ≤ ŷ kk’ ≤ zj   ∀q∈Q, ∀j∈JP, ∀k∈K(j)∩K(q), ∀k’∈K(q)\KK(k)   (35) 

0 ≤ ŷ kk’ ≤ zj   ∀q∈Q, ∀j∈JP, ∀k’∈K(j)∩K(q), ∀k∈K(q)\KK(k)   (36) 

In practice, a company may have a specified policy for some new products, or the sales policy of the company 
may require that a new product must be launched, for instance, to maintain market share. In other cases, when 
the company has two new similar products and limited resources, only one may be pursued. Such types of 
constraints can easily be modeled with the corresponding binary variables zj. For example: 
Product A must be tested:     zA = 1    (37.1) 

From a set JP*⊆JP at most N products can be tested:  ∑j∈JP* zj ≤ N   (37.2) 

Product A cannot be tested if B is not tested:   zA ≤ zB     (37.3) 

Thus, the proposed MILP model that describes resource-constrained scheduling with product selection 
comprises of equations (17), (18), (20) to (36), and possibly some type of constraint in (37). 
 

2. Multiscenario Design/Planning Model 
As explained above, in order to address the effect of the stochastic nature of testing, we use a multiscenario 
design/planning model. The indices, sets, parameters and variables used in this model are the following: 
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Indices: 
t             Time periods 
p  Plants 
i  Processes 
s             Production schemes 
j   Chemicals 
l             Markets 
m  Scenarios 
Sets: 
T  Set of time periods 
P  Set of plants 
PN  Set of potential new plants (PN⊂P) 
I  Set of processes 
I’   The subset of processes for which a restriction on the number of expansions applies 
I(p)  Set of processes of plant p 
J  Set of chemicals 
Ij(j)        Set of processes that consume chemical j 
Oj(j)      Set of processes that produce chemical j 
PS(i)    Set of production schemes of process i 
J(i,s)  Chemicals involved in production scheme s of process i  
Parameters: 
HTOT  Time horizon 
Pm  Probability of occurrence of scenario m  
Ht  Duration of period t 
HTt  Total time until the end of period t (HTt = ∑t’=1…t Ht’) 
Q0i   Existing capacity of process i at time t=0 
QEL

it/QEU
it Lower/upper bound to the expansion of process i in period t 

ρis  Dimensionless relative production rate coefficient for scheme s of process i 
µijs  Material balance coefficients of chemical j, scheme s, process i 
HPit  Maximum time for which process i is available during period t 
aNpt  Fixed cost for building new plant p, in period t  
αEit  Fixed cost for expansion of process i in period t 
βit  Variable cost for expansion of process i in period t 
δist        Unit operating cost of process i under scheme s during period t ($⋅month/kg) 
γjlt       Price of sale of chemical j in market l during time period t ($/kg) 
ϕjlt       Price of purchase of chemical j in market l during time period t ($/kg) 
aL

jlt / aU
jlt  Lower/upper bound of availability of raw material j in market l during period t (kg/month) 

dL
jlt / dU

jlt  Lower/upper bound of demand of finished product j in market l during period t (kg/month) 
fmj  Demand factor – 1 if product j passes all tests in scenario m 
CIt  Upper bound on capital investment during period t 
NEXPi  Maximum allowable number of expansions for process i 
Binary Variables: 
yEit         1 if process i is expanded at the beginning of period t 
yNPpt     1 if new plant p is built at the beginning of period t  
Continuous Variables: 
Qit  Capacity of process i during period t (kg/month) 
QEit   Capacity expansion of process i at period t (kg/month) 
θistm  “Nominal” production of scheme s of process i in period t for scenario m (kg) 
Wijtm  Total amount of product j produced in process i during period t for scenario m (kg) 
PPjltm   Purchases of product j from market l during period t for scenario m (kg) 
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SSjltm   Sales of product j in market l during period t for scenario m (kg) 
 
First, we consider the simple case of a process network of an existing plant that involves only existing 
products, and thus, does not involve different scenarios. The major decisions are the type and timing of 
investments (yEit). As a basis, we use the model proposed by Norton and Grossmann12 (constraints (38)-(50)). 
Decisions referring to the timing and the size of expansions, are described by constraints (38)-(41), and the 
cost of investment is calculated by equation (42): 
yEitQEL

it ≤ QEit ≤ yEitQEU
it   ∀i∈I, ∀t∈T    (38) 

Qit = Qit-1 + QEit    ∀i∈I, ∀t∈T    (39) 

∑t yEit ≤ NEXPi     ∀i∈I’    (40) 

∑i(αEit yEit+βit QEit) ≤ CIt   ∀t∈T    (41) 

CINVEST = ∑i∑t (αEit yEit + βit QEit )      (42) 

The mass balance of chemical j, at each time period t is expressed by equation (43). Equation (44) determines 
the amount of chemical j, consumed/produced in process i, during period t. Constraint (45) is used to express 
capacity limitations, and constraints (46) and (47) to express market conditions: 
∑l PPjlt + ∑i∈O(j) Wijt = ∑l SSjlt + ∑i∈I(j) Wijt ∀j∈J, ∀t∈T    (43) 

Wijt = ∑s∈PS(i) µijs ρis θist    ∀i∈I, ∀j∈J(i,s), ∀t∈T  (44) 

∑s∈PS(i) θist ≤ Qit HPit    ∀i∈Ι, ∀t∈Τ   (45) 

aL
jlt⋅Ht ≤ PPjlt  ≤ aU

jlt⋅Ht     ∀j∈J, ∀l∈L, ∀t∈T  (46) 

dL
jlt⋅Ht ≤ SSjlt  ≤ dU

jlt⋅Ht    ∀j∈J, ∀l∈L, ∀t∈T  (47) 

The income from sales, the cost of purchasing raw materials and the operational cost are calculated from 
equations (48)-(50): 
Income = ∑j ∑l ∑t γjlt SSjlt       (48) 

CPURCH = ∑j ∑l ∑t ϕjlt PPjlt       (49) 

COPER = ∑i ∑s∈PS(i) ∑t (δist ρis θist)       (50) 

Production amounts of chemicals are determined in terms of the nominal production rate θist. θist is not 
necessarily equal with the actual production (or the consumption) of a chemical j. Process capacity is 
expressed linearly in terms of the  nominal production of a reference scheme of this process. Note that in this 
model variables θist, Wijt, PPjlt and SSjlt are not indexed by scenario m. 
In order to model the alternative of building a new plant for the production of the new product(s), we postulate 
a superstructure where a set of processes have zero capacity at time t=0 and they are only expanded if it has 
previously been decided to build a new plant. The condition that a process i∈I(p) can only be expanded after 
plant p has been built is enforced by: 
yEit ≤ ∑t’≤ t yNPpt’      ∀p∈PN, ∀i∈I(p), ∀t∈T  (51) 

Constraints (40) and (41) are now written as follows: 
∑p αNpt yNPpt + ∑i(αEit yEit+βit QEit) ≤ CIt  ∀t∈T    (52) 

CINVEST = ∑p∑t αNpt yNPpt + ∑i∑t (αEit yEit + βit QEit )     (53) 

 



 12

The design/planning model consisting of constraints (38)-(39) and (42)-(53) assumes that all final products can 
be produced. In new product development, however, we do not know a priori whether a new product will pass 
all tests successfully, and thus, whether its production can begin. We only know its probability of passing all 
tests. This implies that the income from sales, and the corresponding costs (purchase of raw materials and 
operational costs) of potential products are stochastic. To account for the stochastic nature of the problem, we 
use scenarios based on the outcomes of testing. As explained in the Problem Statement, if we have n different 
potential products, there are |M|=2n different combinations (scenarios) of testing outcomes and for each 
combination we can calculate its probability of occurrence. The probability of a product j∈JP to pass all tests 
is Pj = ∏k∈K(j) pk, where pk is the probability of test k being successful. In general, if scenario m corresponds to 
the case where potential products j1, j2, … jk pass and products jk+1, jk+2, … jn fail, the probability of occurrence 
of scenario m will be Pm = Pj1⋅Pj2⋅ …⋅Pjk⋅(1-Pjk+1)⋅(1-Pjk+2)⋅… ⋅(1-Pjn) with ∑m∈M Pm = 1. Hence, the 
corresponding variables PPjltm, SSjltm, Wijtm, and θistm are indexed also by scenarios. 
If product j passes testing in scenario m, then its sales SSjltm must be bounded by dL

jlt and dU
jlt, but if it fails, its 

sales are zero, implying that its production (and the corresponding purchasing and operational costs) is also 
zero. To account for that, we introduce a parameter fmj, which is 1 if in scenario m product j passes testing, and 
zero if it fails. For existing products fmj is always one. Constraints (43) to (50) that describe production 
planning are now written as follows: 
∑l PPjltm + ∑i∈O(j) Wijtm = ∑l SSjltm + ∑i∈I(j) Wijtm ∀j∈J,∀t∈T,∀m∈M   (54) 

Wijtm = ∑s∈PS(i) µijs ρis θistm   ∀i∈I,∀ j∈J(i,s),∀t∈T,∀m∈M (55) 

∑s∈PS(i) θistm ≤ Qit HPit    ∀i∈I,∀t∈T,∀m∈M  (56) 

aL
jlt Ht  ≤ PPjltm  ≤ aU

jlt Ht    ∀j∈J,∀l∈L,∀t∈T,∀m∈M (57) 

dL
jlt Ht  fmj ≤ SSjltm  ≤ dU

jlt Ht  fmj   ∀j∈J,∀l∈L,∀t∈T,∀m∈M (58) 

Income = ∑m Pm{∑j ∑l ∑t γjlt SSjltm}       (59) 

CPURCH = ∑m Pm{∑j ∑l ∑t ϕjlt PPjltm}      (60) 

COPER = ∑m Pm{∑I ∑s∈PS(i) ∑t (δist ρis θist)}     (61) 

where Pm is the probability of occurrence of scenario m. 

The modified MILP model for Design and Planning consists of equations (38)-(39) and (51)-(61) with 
Qit, QEit, θistm, Wijtm, PPjltm, SSjltm ≥ 0,  yEit, yNPpt ∈{0,1}      (62) 

 

3. Integration of Testing with Design/Planning 
The major challenge in this work is to integrate the scheduling of tests with the design and planning of the 
manufacturing facilities. The testing process affects production in two different ways, and it is this testing-
production interaction that prevents the problem to be decomposed into two stages, making the integration of 
the two models necessary. On the one hand, the testing outcome determines whether a new product is ever 
going to be introduced into the market. On the other hand, testing completion time determines the earliest 
possible time of commercialization.  
The goal of this integration is to obtain a set of constraints that coordinate the production of new products after 
the testing is completed. This is not a trivial task because scheduling is represented with a continuous time 
domain, while for the design/planning model a discrete time representation is used (i.e. investment decisions 
are considered at fixed times like every 6 months). The integration is made by introducing a boolean variable 
zIjt that is True if testing of potential product j is completed within time period t. This is accomplished by the 
following disjunction: 
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       zj              ¬ zj 

   ∨t     zIjt           ∨         Tj = 0    (63) 

           HTt-1 ≤ Tj ≤ HTt 

where HTt-1 is the beginning of time interval t.  
Using the convex hull formulation18,19 disjunction (63) is expressed in mixed integer form as (Appendix C): 
∑t zIjt = zj   ∀j∈JP     (64) 

Tj = ∑t Tj
t   ∀j∈JP     (65) 

HTt-1 zIjt ≤ Tj
t ≤ HTt zIjt  ∀j∈JP,∀t∈T    (66) 

The condition that no sales take place before testing is completed is imposed by constraints (67) and (68): 
Sjltm ≤ djlt

U fmj Ht ∑t’≤ t  zIjt’ ∀j∈JP, ∀l∈L, ∀t∈T, ∀m∈M  (67) 

Sjltm ≤ (HTt - Tj
t) djlt

U fmj  ∀j∈JP, ∀l∈L, ∀t∈T, ∀m∈M   (68) 

As is shown in Figure 5, constraint (67) does not allow sales before testing is completed, while constraint (68) 
is used to adjust sale levels during the time period that the introduction of the new product takes place. 
  
 

 

 

 

 
The objective of the integrated model is the maximization of the Net Present Value of multiple projects: 
Max NPV =  Income – CTEST – CINVEST – CPURCH – COPER   (69) 
The integrated MILP model then consists of (17), (18), (20)-(37), (38)-(39), (51)-(62) and (64)-(69), which in 
general leads to a very large scale optimization model. 
 
 
Remarks 
Before addressing the question of how to solve efficiently the proposed model and illustrating its application, it 
is worth to note the two following points. First, in order to develop a general model that can be applied in all 
cases of new product development, we did not include some industry-specific issues. In the pharmaceutical 
industry, for example, the market-production of a new drug begins only after the completion of qualification 
runs that they are also needed for FDA approval. These runs may turn out to be important, since the amounts 
produced during these runs are not sold and the whole process may be quite expensive. The process 
development stage that usually runs in parallel with testing is also very important. Nevertheless, the proposed 
model is flexible for accommodating such issues. Qualification runs, for example, can be modeled as testing 
tasks that should be performed after the completion of all the other tasks. The process development stage can 
be modeled as a testing task that requires a specific kind of resources (process development group), and where 
outsourcing is not allowed.  
Second, constraint (68) is used for the adjustment of sales during the period of introduction, and has the 
general form Sales(kg)≤Demand(kg/month)⋅Time(month), where Time is the time between the testing 
completion and the end of the time interval during which testing is completed. The production of a new drug, 
however, is not bounded in a similar manner (Production≤Capacity⋅Time), since this introduces the bilinear 
term Capacity⋅Time. From the material balance of the final products we get Sales=Production, but since 

 TjTest Scheduling:
Continuous Domain

Design/Planning:
Discrete Domain

Adjust
No Sales

Figure 5: Integration of Testing with Design/Planning
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production time is not explicitly bounded, the production may begin earlier, i.e. we may have the equality 
Demand⋅T1=Capacity⋅T2, where T2 is greater that T1. When a process is used for the production of many 
products, this simplification does not introduce any error, because we can assume that during each time period 
the process is first used for the production of the existing products, and then (after testing has been completed) 
for the production of the new product. Moreover, given an optimal solution, we can check whether the capacity 
constraints hold during the interval of new product introduction and correct accordingly. If there are processes, 
however, that are used only for the production of new drugs, this simplification may lead to suboptimal 
solutions. To overcome this difficulty we can use a stricter formulation, where we do not allow sales before the 
end of the time interval during which testing is completed. This is accomplished by using constraint (70) 
instead of constraints (67) and (68):  
Sjltm ≤ djlt

U⋅fmj⋅Ht⋅∑t’<t  zIjt’   ∀j∈JP,∀l∈L,∀t∈T,∀m∈M (70)  
Note that the summation over t’ for binaries zIjt is made for t’< t, whereas in (67) is made for t’≤ t. This means 
that in (70) non-zero sales are allowed only if testing is completed within an earlier time interval. 
Third, the proposed model can be easily extended to account for construction times. This can be done by (i) 
discounting the NPV back to the actual time of investment, and (ii) by adding a constraint that does not allow 
any expansions if there is not enough time. If, for instance, an investment decision for a process is for the 2nd 
year, and the construction time is 6 months, then the investment for the NPV is discounted at 1.5 years, and not 
at 2 years. In addition, a single constraint that does not allow any expansion of that process before the 6th 
month is added (i.e. for 6-month periods we should add yEit = 0 for t=0 ). Constraint (52) must also be 
modified. If τi is the number of periods needed for the expansion (or construction) of process i, then constraint 
(52) reads: 
∑p αNp,t+τi yNPp,t+τi  + ∑i(αEi,t+τi yEi,t+τi +βi,t+τi QEi,t+τi) ≤ CIt ∀t∈T  (52’) 

The model can also accommodate discrete sizes in capacity, by introducing the following two constraints:  
Σz yEitz = yEit       ∀i∈I, ∀t∈T (71) 

QEit = Σz yEitz QSiz      ∀i∈I, ∀t∈T (72) 

where z is the index for the discrete sizes, yEitz is a binary variable that is 1 if z is the size of the expansion of 
process i, that takes place at the beginning of period t, and QSiz are the expansion sizes of process i.  
Fourth, by extending the notion of scenario, the effect of testing on sales can be taken into account. In the 
pharmaceutical industry, the results of clinical trials determine the group of patients for which the new drug is 
appropriate. It may be found, for example, that due to combined action with other drugs, the new drug is 
appropriate only for a subset of the initial set of potential patients. This aspect can be modeled extending the 
notion of scenarios. Consider, for instance, the case of only one new product with three different testing 
outcomes (scenarios). The first scenario has probability 0.3 and corresponds in the case where testing was  
successful on more types of patients and sales can be as large as the initially estimated upper bound dU

jlt. The 
second scenario has probability 0.4 and corresponds to the case where the testing was successful on fewer 
types of patients and thus sales cannot be greater that 70% of dU

jlt. The third scenario with probability 0.3 
corresponds to testing failure. We can then define P1 = 0.3, P2 = 0.4, P3 = 0.3, and f1A = 1, f2A = 0.5, and f3A = 0, 
where parameter fmj corresponds to the maximum percentage of sales of product j that can be materialized in 
scenario m.  Thus, by increasing the number of scenarios, but without changing the formulation (constraints 
(67) and (68) remain the same), we have captured the dependence of sales on testing outcomes. The equations 
describing the scheduling of tests need not be changed, because scheduling is affected only by pass/failure 
events, and thus we are interested in the lumped probability of passing.  
Finally, in the proposed model we assume that each process i, is available HPit units of time, during each time 
period t, where HPit < Ht. This assumption is made in order to account for setup times and plant shutdowns. 
The reason for this rough approximation is that in new product development it is not only the product, but also 
the process that is being developed. This means that exact processing times and cleaning procedures for the 
new products are not known accurately at the time that some first, high-level investment decisions have to be 
made. 
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Solution Method 
In this section we discuss a Lagrangean decomposition19,20,21 scheme, since the proposed MILP model is 
potentially very expensive to solve. As the number of new products, tests, resources, processes and time 
periods becomes larger, the number of binary variables increases and the problem becomes intractable with a 
full space method. Therefore, for the proposed models to have practical application, a more efficient solution 
method is needed. In this work, we propose an approach that exploits the special structure of the problem. If 
y1={zj, xk, kqx̂ , ykk’, ŷ kk’}, y2={yEit, yNPpt}, y3={zIjt}, x1={Tj, Tj

t, sk, -wk, λkn, Λkn}, x2={Qit, QEit, θistm, Wijtm, Pjltm, 
Sjltm ∀j∉JP}, and x3={Sjltm ∀j∈JP}, the structure of the incidence matrix of the constraints is as the one 
presented in Figure 6a. Submatrix (S1) consists of the testing and linking constraints (16), (18), (20)-(37) and 
(64)-(66), submatrix (S2) consists of the design/planning constraints (38)-(39), and (51)-(62), and submatrix 
(S3) includes the linking constraints (67) and (68), or constraint (70), if the stricter formulation is used. If we 
treat constraints (S1) and (S3) as one group of constraints, the structure of the incidence matrix can be 
rearranged into the matrix of Figure 6.b, where submatrix (S1’) corresponds to the union of constraints (S1) 
and (S3) in Figure 6a, and y13 corresponds to the union of y1 and y3. The incidence matrix is now partitioned 
into two submatrices. The testing and linking constraints are included in submatrix (S1’), and the 
design/planning constraints in submatrix (S2’). 
 
 

 

 

 

 

 

 

 

 

 

 

Τhe proposed model (P) can then be written as follows: 
(P) Max NPV = c1

T x1 + c2
T x2 + c3

T x3 + d2
T y2  

 s.t.  A1
13  y13 + B1

1 x1 + B1
3 x3 ≤ b1  (S1’) 

  A2
2  y2 + B2

2 x2 + B2
3 x3 ≤ b2  (S2’) 

  x1, x2, x3 ≥ 0,   y13,  y2 ∈{0,1} 

The only variables that have nonzero entries in both (S1’) and (S2’) are x3 (Sjltm ∀j∈JP), which appear in 
constraints (67) and (68) (or (70)) in (S1’), and in constraints (43) and (47)-(48) in (S2’). Thus, if we duplicate 
x3 we get problem (P*) where constraints (S1’) and (S2’) have no variables in common: 
 
(P*) Max NPV = c1

T x1 + c2
T x2 + c3

T x3 + d2
T y2   

 s.t.  A1
13  y13 + B1

1 x1 + B1
3 x3A ≤ b1  (S1’) 

  A2
2  y2 + B2

2 x2 + B2
3  x3B ≤ b2  (S2’) 

  x3A=x3B      (S3’) 

 

(a) 

Figure 6: Structure of Incidence Matrix of the Constraints 

(b) 

 y1          x1        y3   x3      y2          x2  

 
 
    (S3) 

 

(S1) 

 

(S2) 

 y13            x1           x3       y2         x2  

 

(S1’) 

 

(S2’) 
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  x1, x2, x3A, x3B ≥ 0,   y13, y2 ∈{0,1} 

By dualizing (S3’), we add the term λT (x3B - x3A) to the objective, where λ are the Lagrange multipliers. In this 
way we get a problem which can be decomposed into two independent problems (P1) and (P2): 
(P1) Max NPV1 = c1

T
 x1 – λT x3A  

s.t.  A1
13  y13 + B1

1 x1 + B1
3 x3A ≤ b1  (S1’) 

 x1, x3A, ≥ 0,   y13 ∈{0,1} 

(P2) Max NPV2 = c2
T x2 + c3

T x3B + d2
T y2 + λT x3B 

s.t. A2
2
 y2 + B2

2 x2 + B2
3 x3B ≤ b2  (S2’) 

  x2, x3B ≥ 0,   y2 ∈{0,1} 

Problems (P1) and (P2) are used in an iterative scheme, where they are solved independently. Their solution 
(NPV1+NPV2) provides an upper bound to the objective of (P) and a feasible set of binary values, which are 
then used to solve (P) with fixed binaries, providing a lower bound in the objective of (P). The initial values 
for Lagrange multipliers are obtained from the solution of (P) as a relaxed LP. Problem (P) when solved with 
the integer requirement relaxed is called (LRP), and when solved as LP with fixed binaries is called (RP). λjltm 
are the multipliers of (S3’) which are updated with the subgradient optimization procedure by Fischer21.  
The algorithm is as follows: 
0. Initialize: Select KMAX, ε, r, αk. Set UB=+∞, LB=-∞. Solve (LRP) to obtain λ1.  

For k =1..KMAX 

1. Solve (P1) and (P2) at λk. Set ZUBk=NPV1+NPV2. If ZUBk<UB then UB=ZUBk. 

2. Solve (RP) for fixed binaries determined from Step1. Set ZLBk=NPV 

If ZLBk>LB then LB=ZLBk.  

If k=KMAX or (UB-LB)<ε or LB remained the same for more than 2 iterations Stop. Return current LB and 

corresponding solution. 

3. k=k+1 

Update αk if LB has remained unchanged for r iterations. 

λk+1=λk + tk (x3B
k - x3A

k), tk=αk (ZUBk-LB)/|| x3B
k - x3A

k||2. Return to Step 1. 

In the above, KMAX is the maximum number of iterations, tk is a scalar stepsize that should gradually converge 
to zero, x3A

k and x3B
k are the optimal solutions of problems (P1) and (P2) at step k, αk is a scalar chosen 

between 0 and 2, that is reduced by a factor of two whenever ZUBk has failed to decrease in a specified number 
of r iterations, and || x3B

k - x3A
k ||2 is the sum of squared deviations of constraints (S3’), denoted with Dev in the 

schematic diagram of the algorithm given in Figure 7. The algorithm stores the solution that corresponds to the 
best lower bound, but it can be modified to store all solutions found. 
Due to the duality gap22, the upper and lower bounds will not necessarily converge. Therefore, the predicted 
solution that corresponds to the current lower bound is not guaranteed to be optimal, although the upper bound 
provides a valid estimation of the maximum error. Our computational experience, however, has shown that 
very often the optimal solution is found in fewer than five iterations. Furthermore, as will be shown, 
computational times are significantly smaller than the full space method. 
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Examples 
In this section, we present three examples that illustrate the use of the proposed model. First, we revisit the 
motivating example, and next we study two examples that are closer to real-world applications. 
 
Example 1 
In the motivating example we saw that when resource constraints are not taken into account both new 
products C and D are selected. However, it is not only the resource constraints, but also the existing plant 
capacity, and various economic constraints (e.g. availability of capital) that make this problem quite 
difficult. Resource constraints, for instance, either lengthen testing completion times, or make testing 
more expensive (due to outsourcing), or both. If on the other hand, we consider unused existing capacity 
we may decide that no additional investment is needed for a new product. Moreover, availability of 
capital coupled with limited existing capacity may pose restrictions on expansion policy, and thus restrict 
the maximum number of new products. Applying the proposed optimization model that takes into account 
all these issues, we find that due to resource constraints only product C is selected. Product D is not 
selected because it is not profitable. The optimal NPV for this alternative is $9,519,800, i.e. higher than 

 Select KMAX, ε, r, a1 
Set UB =+∞, LB= -∞ 
Solve (LRP) to find λ1

|UB-LB|<ε? 
 LB unchanged for 2 itrs?

 k=KMAX ? 

Solve (RP) with fixed binaries:
ZLBk = NPV 
If ZLBk > LB then LB =ZLBk 

Solve (P1) and (P2): 
ZUBk = NPV1+NPV2 
If ZUBk < UB then UB = UBk 

k=k+1 

Update λk: 
λk+1 = λk + tk (Dev) 
tk = αk(ZUBk-LB)/∑(Dev)2

αk+1 = αk/2 if ZLBk=ZLBk-r 

For k =1..K

Return LB & 
Corresponding 
Solution 

YES

NO

Figure 7: Flowsheet of Lagrangean Decomposition Heuristic Algorithm 
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the one from the heuristic ($9,118,500). The Gantt chart, the design decisions and an analysis of costs and 
revenues are given in Figure 8, and Tables 7-8. 
 
Table 7: Design Decisions of Example 1: Expansions (ton/month) 

Process 1st period 2nd-18th period 
P1 6.8 - 
P2 - - 
P3 - - 
P4 - - 

 
Table 8: Revenues and Costs ($103) of Example 1 (Model) 
Sales Revenues 28,350.7 
Testing Cost 4,658.1 
Investment Cost 1,402.0 
Operational Cost 5,945.3 
Raw Material Cost 6,826.3 
Expected NPV 9,519.0 

 
Furthermore, let us assume that there are also restrictions on the capital available for investment during each 
period. In our example, if we require that no more than $1,000,000 is spent on investments during each time 
period, the optimal policy would be to pursue only product D, and the expected NPV would be $9,096,900. 
The solutions of the cases described above are given on Table 9. 
 
 
 
 
 
 
 
 
 
 

Figure 8: Gantt Chart or Resources of Example 1 – Optimal Solution 
 
Even in this simple example, it is not straightforward to see why capital limitations lead to selection of product 
D instead of product C. This happens because C needs high levels of production in order to achieve high 
profits (note that demand for C is much higher than demand for D). In the unrestricted case, the investment 
needed for C can be made, but when we impose capital limitations, only limited investment is allowed and in 
this case product D is selected because it has larger marginal profit. In a more complex problem it would not 
be possible to have such insight, and even if it were possible, it would be very hard to determine the point at 
which product D becomes as profitable as product C. 
 
Table 9: Optimal Solutions of Example 1 for different cases  

Case Additional Constraints NPV ($103) Selected Products 
1.Heuristic - 9,118.5 C, D 
2. Proposed Model - 9,519.8 C 
3. Proposed Model Capital Restriction 9,096.9 D 
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Example 2 
For the second example, we have used testing data similar to the one presented in example 4 of Jain and 
Grossmann4, and a simplification of the production network described in Pinto et al22. Consider the case where 
a biotechnology firm produces recombinant proteins in a multipurpose protein production plant. Products A, B, 
D, and E are currently sold, and products C and F are in the company’s R&D pipeline. Both potential products 
must pass successfully ten tests before they gain FDA approval. These tests can be performed either in-house, 
or outsourced at double cost. When performed in-house, they can be conducted in only one specific laboratory. 
Duration, costs, probability of success, resource requirements and technological precedences for each test are 
given in Table 10. 
 
Table 10: Testing Data of Example 2 
Product Test Cost 

($104) 
Cost of out-

sourcing ($104) 
Duration 
(months) 

Prob. 
of success 

Resource 
Requirement 

Technological 
Precedences 

C 1 80 160 5 1 Lab1 - 
 2 80 160 4 1 Lab2 - 
 3 50 100 4 1 Lab3 - 
 4 10 20 1 0.84 Lab4 3,7 
 5 490 980 3 0.98 Lab1 1 
 6 111 222 6 1 Lab2 2 
 7 60 120 1 0.95 Lab3 3 
 8 1740 3480 7 1 Lab4 3,4,7 
 9 620 1240 9 1 Lab1 1,5 
 10 10 20 1 1 Lab2 2,6 
F 11 160 320 3 1 Lab1 15,19,20 
 12 1130 2260 1 0.87 Lab2 16,20 
 13 10 20 1 0.91 Lab3 16,17,20 
 14 130 260 3 1 Lab4 18 
 15 530 1060 2 1 Lab1 19,20 
 16 90 180 1 1 Lab2 20 
 17 117 234 3 1 Lab3 16,20 
 18 400 800 3 1 Lab4 - 
 19 570 1140 5 1 Lab3 - 
 20 230 460 3 1 Lab4 - 

 
Products A, B and C are extracellular, while D, E and F are intracellular. All proteins are produced in the 
fermentor P1. Intracellular proteins are then sent to the homogenizer P2 for cell suspension, then to extractor 
P3 and lastly to the chromatographic column P4 where selective binding is used to further separate the product 
of interest from other proteins. Extracellular proteins after the fermentor P1 are sent directly to the extractor 
P3, and then to the chromatograph P4. In reality, a microfilter is used before the homogenizer and ultrafilters 
are used before the extractor and the chromatograph, but in order to keep the production network simple we 
will consider only the basic processes of such a plant. The fermentor, extractor, and chromatographic column 
operate under six different production schemes, while the homogenizer operates under three different 
production schemes (one for each protein). The production network is shown in Figure 9, and the process data 
for plant design is given in Table 11. For simplicity, operating costs and conversions for all operating schemes 
of the same process are assumed equal. The time horizon is 6 years. Four 6-month and four 12-month time 
periods are considered for the investment in manufacturing facilities. Capacity expansions cannot be greater 
than 4 ton/month, and each process cannot be expanded more than four times. Investment costs must be less 
than $15,000,000 during any period. An annual discount rate of 9% has been used. All production schemes 
have the same relative capacity (ρis = 1 ∀i,s). The forecast of demand for existing and potential products is 
given in Table 12. The prices of raw materials and final products are given in Table 13. We consider the four 
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following scenarios: in scenario 1 both C and F pass, in scenario 2 C passes and F fails, in scenario 3 C fails 
and F passes, and in scenario 4 both C and F fail. 
 
Table 11: Process Design Data of Example 2 

Process Conversion 
(all schemes) 

Initial Capacity 
(kg/month) 

Fixed Cost 
($103) 

Variable Cost 
($103⋅month/kg) 

Operating  
(all schemes) ($103/kg) 

P1 1/1.3=0.7692 10 4,500 1,100 18 
P2 1/1.2=0.8333 6 4,000 800 14 
P3 1/1.4=0.7143 8 3,500 1,000 16 
P4 1/1.1=0.9091 8 5,000 1,200 14 

 
Table 12: Demand forecasts (kg/month) for Example 2 
Product 1st yr 2nd yr 3rd yr 4th yr 5th yr 6th yr 
A 3 3 3 3 3 3 
B 3 3 3 4 4 4 
C 4 4 4 4 4 4 
D 5 5 5 5 5 5 
E 4 4 2 2 0 0 
F 6 6 6 6 6 6 

 
Table 13: Prices of Chemicals ($103/kg) for Example 2 
Raw Material Price  Product Price 

A1 40 A 300 
B1 50 B 350 
C1 60 C 550 
D1 50 D 450 
E1 60 E 400 
F1 70 F 700 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The optimal solution has a NPV of $95,986,500. It was found that only product F is profitable to pursue, and 
that process P1 should be expanded twice and processes P2, P3 and P4 should be expanded once. The Gantt 
chart for the resources is shown in Figure 10, and the capacity of the processes (design decisions) is given in 
Table 14. Production levels are presented in Figures 11 to 15. Since product C is not selected for testing, 
scenarios 1 and 3 are equivalent (F passes), and scenarios 2 and 4 are equivalent (F fails). Finally, a breakdown 
of the expenses and revenues is given in Table 15.  
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Table 14: Design Decisions of Example 2 – Capacity of Process Network (kg/month) 
Process Initial 0-6 month 7-12 month 13 - 18 month 18-72 month 
P1 10 14 14 18 18 
P2 6 6 6 10 10 
P3 8 8 11.429 11.429 11.429 
P4 8 8 10.39 10.39 10.39 

 
Table 15: Costs and Revenues of Example 2 
Revenues $276,996,000 
Costs  
     Testing $31,456,000 
     Investment $37,759,000 
     Operational $41,351,000 
     Raw Materials $71,444,000 
NPV $94,986,000 

 
The model anticipates that the optimal policy is to test only product F. In this example, capacity and 
investment limitations play a major role. Since the initially installed capacity is insufficient, investment for the 
production of both existing and new products is needed. Due to the testing uncertainty, and since the price of 
product C is similar to the prices of the existing products, it is better not to make additional investments for 
product C that may not be redeemed. Product F is chosen because the expected revenues outweigh 
investments, due to its high price. Note also, that due to capital limitations, process expansions are made 
gradually: process P1 is expanded at the beginning of the first and third period, processes P3 and P4 are 
expanded at the beginning of the 2nd period, and process P2 is expanded at the beginning of the 3rd period.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Production Level of Product A 
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Figure 10: Gantt Chart of Resources of Example 2
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Figure 12: Production Level of Product B 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Production Level of Product D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14: Production Level of Product E 
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Figure 14: Production Level of Product E 

 
As shown in Figures 11 to 15, product F is the most profitable, and thus, if it passes testing, its production 
meets the demand and begins as soon as testing is completed. Product B is the next more profitable product. In 
the scenario where F does not pass testing, its production is always as large as its demand. If F passes, its 
production is slightly smaller after the 3rd year (when its demand increases) due to capacity limitations. Product 
D is also profitable, but since its production requires the use of P2, which is a bottleneck for the production of 
products D, E and F, its production decreases when the production of F begins. In the scenario where F does 
not pass testing, its production is as large as its demand after the necessary capacity expansions are made. 
Finally, A is produced only when there is available capacity; i.e. after expansions and before the increase of B 
production. Product E is not produced at all when F passes testing, but it is produced if F fails. 
Solution in full space using CPLEX 7.0 on a Pentium III at 667MHz requires 57 sec. The proposed 
decomposition technique required 38 sec for five iterations (the optimal was found after three iterations), and 
obtained the same solution.  
 
Example 3 
Consider a pharmaceutical firm that produces drugs A, C and E, and has three new drugs B, D and F in 
different stages of its R&D pipeline. Each new drug, in order to gain FDA approval, should pass successfully 
the twelve tests shown in Figure 16. Note that these tests are different for each product; e.g. test 9 for product 
B (denoted by B9) is different from test 9 for product D (denoted by D9). Most of the R&D work for drug B 
has already been conducted, drug D is a newer product, and product F has just been synthesized in the lab. 
Thus, product B has passed successfully tests 1 to 8, product D has passed successfully tests 1 to 4, while no 
testing has yet been performed for product F. The process development stage of products B, D and F is 
expected to last 6, 12 and 20 months respectively. The resources are four different groups of scientists that are 
able to perform different tests. Testing data is given in Table 16 (process development is treated as a testing 
task that cannot be outsourced). The cost of outsourcing is assumed twice as large as in-house cost.  
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Table 16: Testing Data of Example 3 
 Duration Probability of success Cost ($103) Resource Requirement 
Test B D F B D F B D F B, D & F 
PrDev 6 12 20 1 0.975 0.95 4000 9000 12000 Process Devel. Group 
1 3 2 3 0.97 1 1 1000 800 800 Chemical Group A 
2 2 2 2 1 1 1 500 500 400 Chemical Group A 
3 1 1 1 0.95 1 0.9 1200 1300 1500 Chemical Group A 
4 4 5 6 1 0.98 1 1100 1200 1000 Clinical Tries Group 
5 7 6 8 1 0.98 0.98 2500 2000 1800 Clinical Tries Group 
6 6 6 6 1 1 1 500 800 600 Chemical Group B 
7 3 2 2 0.95 0.9 0.95 1200 800 1000 Chemical Group B 
8 4 4 5 0.98 1 1 2000 2400 2200 Clinical Tries Group 
9 4 5 5 0.95 0.975 0.95 2000 1800 2500 Clinical Tries Group 
10 3 4 6 0.99 0.99 0.88 500 700 600 Chemical Group B 
11 5 3 3 1 1 1 800 1000 800 Chemical Group B 
12 2 1 2 0.95 0.9 0.975 700 600 700 Chemical Group A 

 
The production network is given in Figure 17. Note that for the production of intermediate ID3 a new plant is 
needed. This means that processes P3, P4 and P7 can only be built and expanded if new plant NP is decided to 
be built. Alternatively, intermediate ID3 can be purchased. Moreover, process P5 does not exist at t=0, but it 
can be built within the existing site, which means that the additional fixed investment is smaller. The process 
design data is given in Table 17. The fixed cost for new plant NP is $5,000,000. Demand forecasts for the final 
products are given in Table 18. Prices for raw materials, intermediate ID3 and final products, which for 
simplicity are assumed to be constant, are given in Table 19. 
A time horizon of 8 years, divided into six 6-month periods (years 1-3), and five 12-month periods (years 4-8), 
has been used. Each process cannot be expanded more than 5 times and each expansion cannot be greater than 
4 tons/month. In order to be competitive the company has decided that at least two new products should be 
pursued, even if this is not the optimum at the present moment. An annual discount rate of 9% is used. 
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Table 17: Process Design Data of Example 3 
Process Conversion 

 
Initial Capacity 

(tons/month) 
Fixed Cost 

($103) 
Variable Cost 

($103month/ton) 
Operational 

Cost 
($103/ton) 

P1 0.833 2 600 400 8 
P2 0.8RC1+0.6RC2→IC1 2 500 250 8 
P3 0.833 0 400 350 8 
P4 0.909 0 300 450 8 
P5 0.909 0 800 280 6 
P6 0.909 5 1000 1000 S7:6, S8&S9: 4 
P7 0.6ID1+0.7ID2→ID3 0 400 400 4 
P8 S11: 0.833, S12:0.769 4 1000 500 3 
P9 0.833 10 400 1500 6 
P10 0.909 4 1200 1000 10 

 
Table 18: Demand Forecasts (ton/month) for Example 3 
Product 1st yr 2nd yr 3rd yr 4th yr 5th yr 6th yr 7th yr 8th yr 
A 4 4 4 4 4 4 4 4 
B 2 2 3 3 3 4 4 4 
C 4 3.5 3 2.5 2.5 2 2 1.5 
D 0 2.5 3 3.5 3.5 4 4 4.5 
E 3 3 3.5 3.5 3.5 4.0 4.0 4.0 
F 0 0 2 2.5 2.5 3 3 3.5 

 
Table 19: Prices of raw materials, intermediate ID3, and final products ($103/ton) for Example 3 
RA 10 RD2 10 B 220 
RB 15 ID3 80 C 300 
RC 10 RE 18 D 400 
RC 10 RF 20 E 240 
RD1 20 A 180 F 260 

 
The optimal solution yields a NPV of $135,024,600. Products B and D are selected for testing. Outsourcing is 
used only for test B11. The new plant is decided not to be built, which means that for the production of D 
intermediate ID3 is purchased, although at a rather high price. Investment is made on processes P1, P2, P6, P8, 
P9 and P10. The Gantt chart for the resources is given in Figure 18, the capacity of processes is given in Table 
20 (highlighted cells correspond to expansions), and a breakdown of costs and revenues is given in Table 21.  
 
 
 
 
 
 
 
 
 
The problem was solved in almost 14 min using CPLEX 7.0 on a PIII 667MHz. Using the proposed heuristic 
Lagrangean scheme, we found a solution with a NPV of $134,834,900 (0.14% smaller than the optimal), in 
almost 4 min, and 6 major iterations.  

 Process Dev/ment B Process Development D Process Development
Clinical Tries B9 D5 D8 D9
Chemical Tests A B12 D12
Chemical Tests B B10 D6 D7 D10 D11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
TB = 7months

TD = 24months
Figure 18:  Gantt Chart of Resources for Example 3
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Table 20: Design Decisions of Example 3 - Capacity of Processes Network (ton/month) 
Process Initial 0 – 6 month 7-12 month 13-24 month 25-36 month 37-96 month 
P1 2 6 10 10 10 10 
P2 2 5.808 5.808 5.808 5.808 5.808 
P6 5 8.4 12.36 12.36 12.36 12.36 
P8 4 4 4 4 4.8 4.8 
P9 10 10 14 14 18 18 
P10 4 4 4 4 6 6 

 
Table 21: Costs and Revenues of Example 3 
Revenues $248,743,300 
Costs  
     Testing $24,458,100 
     Investment $36,651,900 
     Operational $20,480,400 
     Raw Materials $32,128,300 
NPV $135,024,600 

 
 
Computational Results 
In this section we summarize the computational results for Examples 1 (case 2), 2 and 3. In examples 1 and 2, 
the Lagrangean decomposition heuristic obtained the optimal solution after five and three iterations 
respectively, while in example 3 it obtained a solution that was suboptimal by only 0.14% after six iterations. 
In all examples the heuristic was terminated because the LB remained unchanged for 2 iterations. Figure 19 
shows the duality gap as a function of the number of iterations, while Figure 20 shows the convergence of 
upper and lower bounds for examples 2 and 3. In order to construct these figures we deactivated the option for 
early termination, and run the heuristic for ten iterations. Note that as the problem size increases, the proposed 
heuristic outperforms the full space method.  
 
Table 22: Computational Results 
 Example 1 Example 2 Example 3 
Binary Variables  236 354 612 
Continuous Variables 9,372 7,456 32,184 
Constraints 8,255 6,825 30,903 
Full Space Method    
     LP Relaxation 11,040,717 113,983,858 146,567,730 
     Optimal Solution 9,518,951 94,986,475 135,024,622 
     CPU Time (sec) 8.9 57.2 836.6 
     Nodes 222 1656 24627 
Decomposition Heuristic    
     Best Solution 9,518,951 94,986,475 134,834,914 
     Major iterations for best solution 5 3 6 
     CPU Time (sec) 20.5 37.6 252.4 
     Upper Bound 9,895,477 95,083,790 135,877,141 
     Relative Duality Gap 3.96% 0.10% 0.77% 
     % of CPU s for P1 17.2 20.1 36.7 
     % of CPU s for P2 52.0 60.9 53.1 
     % of CPU s for RP 30.8 10.0 10.2 
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Figure 19: Lagrangean Decomposition – Duality Gap 
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Figure 20: Lagrangean Decomposition – Convergence of Upper and Lower Bounds 

 
 
Conclusions 
The problem of simultaneous planning for new product development and batch manufacturing facilities has 
been addressed in this paper. This type of problem is important in highly regulated industries, such as 
pharmaceutical, biotechnology and agrochemical, where a new product is required to pass a number of tests. 
The proposed MILP model integrates a continuous scheduling model for testing with a discrete model for 
design/planning into a single framework for simultaneous optimization. A two-stage stochastic optimization 
approach is adopted to account for the uncertainty in the outcome of the tests. Since the resulting MILP model 
is rather hard to solve due to its size, an iterative heuristic based on Lagrangean decomposition was developed. 
Computational experience shows that the proposed algorithm provides optimal or near optimal solutions, and 
is considerably faster than the full space method. 
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APPENDIX A: Tightness of resource allocation constraints 
Jain and Grossmann4 used the following logical condition, to derive the resource constraints (see Figure 21, 
with k=3 and k’=2): if a test k is not outsourced and is assigned to resource q, then for resource constraints to 
hold, any other test k’ is either outsourced or is not assigned to resource q or there is an arc between tests k 
and k’: 
¬xk ∧ kqx̂  ⇒ xk’ ∨ ¬ qkx 'ˆ ∨ ykk’ ∨ yk’k  ∀q∈Q, ∀k∈Κ(q), ∀k’∈(K(q)∩KK(k)),k<k’ (A1) 

¬xk ∧ kqx̂  ⇒ xk’ ∨ ¬ qkx 'ˆ ∨ ŷ kk’ ∨ ŷ k’k  ∀q∈Q, ∀k∈Κ(q), ∀k’∈(K(q)\KK(k)),k<k’ (A2) 

Using the transformations described in Raman and Grossmann20, we obtain the following constraints: 
kqx̂ + qkx 'ˆ – ykk’ – yk’k – xk – xk’ ≤ 1  ∀q∈Q, ∀k∈Κ(q), ∀k’∈(K(q)∩KK(k)),k<k’ (A3) 

kqx̂ + qkx 'ˆ – ŷ kk’ – ŷ k’k – xk – xk’ ≤ 1  ∀q∈Q, ∀k∈Κ(q), ∀k’∈(K(q)\KK(k)),k<k’ (A4) 

It should be noted, however, that if a test uses resource q, then it cannot be outsourced and, conversely, if it is 
outsourced it cannot use resource q, which means that the above logical condition can be simplified into the 
one proposed in this paper: if a test k is assigned to resource q, then for resource constraints to hold, any 
other test k’ is either not assigned to resource q or there is an arc between test k and k’. 
Constraints (A3) and (A4) can be rearranged as: 

kqx̂ + qkx 'ˆ – ykk’ – yk’k ≤ 1+ xk + xk’        (A5) 

kqx̂ + qkx 'ˆ – ŷ kk’ – ŷ k’k ≤ 1+ xk + xk’        (A6) 

It is clear that (A5) is a relaxation of (16), and that (A6) is a relaxation of (17). Thus, the formulation proposed 
in the present paper is tighter. 
 

 

 
 

Figure 21: Graph-based Representation for Resources

Lab Lab

1

2

3

Lab Lab

1

2

3

Lab Lab

1

2

3



 30

APPENDIX B: Derivation of mixed-integer equations from disjunction in (19) 
If we group constraints of the first term of disjunction (19) into “less or equal” inequalities and equalities, and 
move all variables in LHS and constants in RHS, we get the following disjunction for every potential product 
j∈JP: 
      zj               ¬ zj  

Ck - ck (∑n ean λkn ) + ĉ k (∑n ean Λkn )= 0 ∀k∈K(j)          Tj = 0 

wk + ρsk - ∑k’≠k ln(pk’) ⋅ yk’k = 0   ∀k∈K(j)          Ck = 0 ∀k∈K(j) 

wk - ∑n an (λkn + Λkn) = 0  ∀k∈K(j)          λkn = 0  ∀k∈K(j),∀n 

∑n λkn + xk  = 1    ∀k∈K(j)          Λkn = 0  ∀k∈K(j),∀n 

∑n Λkn - xk = 0    ∀k∈K(j)          sk = 0 ∀k∈K(j) 

∑q∈(QT(k)∩QC(r)) kqx̂ + Nkr xk = Nkr  ∀k∈K(j),∀r∈R     ∨   wk = 0 ∀k∈K(j)          (B1) 

ykk’ = 1, yk’k = 0     ∀(k,k’)∈A          ykk’ = 0 ∀k, k’∈K(j) 

sk - sk’ +Uykk’ ≤ U- dk   ∀k∈K(j),∀k’∈K(j)         xk = 0 ∀k∈K(j) 

sk - Tj ≤ -dk     ∀k∈K(j)          xkq = 0   ∀k∈K(j),∀q∈Q 

ykk’ + yk’k ≤ 1     ∀k, k’∈K(j)|k<k’ 

ykk’ + yk’k’’ + yk’’k ≤ 2   ∀k, k’, k”∈K(j)|k<k’<k” 

yk’k + ykk’’ + yk’’k’ ≤ 2   ∀k, k’, k’’∈K(j)|k<k’<k” 

kqx̂ + qkx 'ˆ – ykk’ – yk’k ≤ 1 ∀q∈Q,∀k∈(Κ(q) ∩K(j)),∀k’∈(K(q)∩K(j))|k<k’ 

Using matrix notation, disjunction (B1) can be written as follows: 

      zj       ∨       ¬zj  

Ax = c     x = 0  (B2) 

Bx ≤ d 

where x = [Tj Ck sk wk λkn Λkn ykk’ xk kqx̂ ]T. 

Using the convex hull formulation18, 19, disjunction (B2) can be expressed by constraints (B3) to (B7): 
x = x1 + x2    (B3) 

Ax1 = czj    (B4) 

Bx1 ≤ dzj    (B5) 

x1 ≤ Uzj     (B6) 

x2 = 0(1-zj)    (B7) 

Equation (B7) implies that x2 is always zero, which, in turn, implies that x = x1. Thus, we get: 
Ax = czj    (B4’) 

Bx ≤ dzj     (B5’) 

x ≤ Uzj     (B6’) 
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If we now re-write constraints (B4’) and (B5’) in expanded form ∀j∈JP, we get:  
Ck - ck (∑n ean λkn ) + ĉ k (∑n ean Λkn )= 0 ∀k∈K       (B8) 

wk + ρsk - ∑k’≠k ln(pk’) ⋅ yk’k = 0   ∀k∈K       (B9) 

wk - ∑n an (λkn + Λkn) = 0  ∀k∈K       (B10) 

∑n λkn + xk  = zj    ∀j∈JP,∀k∈K(j)      (B11) 

∑n Λkn - xk = 0    ∀k∈K       (B12) 

∑q∈(QT(k)∩QC(r)) kqx̂ + Nkr xk = Nkr zj ∀j∈JP,∀k∈K(j),∀r∈R     (B13) 

ykk’ = zj , yk’k = 0     ∀j∈JP,∀k, k’∈K(j),∀(k,k’)∈A    (B14) 

sk - sk’ +Uykk’ ≤ (U - dk) zj  ∀j∈JP,∀k, k’∈K(j)|k≠k’     (B15) 

sk - Tj ≤  - dk zj     ∀j∈JP,∀k∈K(j)      (B16) 

ykk’ + yk’k ≤  zj     ∀j∈JP,∀k, k’∈K(j)|k<k’    (B17) 

ykk’ + yk’k’’ + yk’’k ≤  2zj   ∀j∈JP,∀k, k’, k’’∈K(j) |k<k’<k”    (B18) 

yk’k + ykk’’ + yk’’k’ ≤  2zj   ∀j∈JP,∀k, k’, k’’∈K(j)|k<k’<k”   (B19) 

kqx̂ + qkx 'ˆ – ykk’ – yk’k ≤  zj  ∀j∈JP,∀q∈Q,∀k∈(Κ(q)∩K(j)),∀k’∈(K(q)∩K(j))|k<k’ (B20) 

If potential product j∈JP is not selected, then zj=0 and, thus, constraints (B17) forces ykk’=0 ∀k∈K(j). Setting 
ykk’=0 into (B20), forces kqx̂ = 0 ∀q∈Q, ∀k∈K(j). Moreover, setting zj=0 and kqx̂ = 0 ∀q∈Q, ∀k∈K(j) into 
(B13), forces xk = 0  ∀k∈K(j). If, in addition, we plug zj = 0 and xk = 0 into (B11) and (B12), we get λkn = 0 
and Λkn = 0 ∀k∈K(j), ∀n. For λkn = 0 and Λkn = 0 ∀k∈K(j), ∀n (B10) gives wk = 0 ∀k∈K(j). Finally, if we 
plug wk = 0 and ykk’ = 0 into (B9) we get sk = 0 ∀k∈K(j). Thus, from (B6’) only Tj = 0 is not implied when zj 
= 0, and therefore, instead of adding (B6’) we can only add the following inequality: 
Tj ≤ Uzj  ∀j∈JP  (B21) 

Constraints (B8) to (B21) correspond to constraints (20)-(34) of the proposed model. 
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APPENDIX C: Derivation of mixed-integer equations from disjunction in (63) 
First, we re-formulate the inner disjunction of (63) using the convex hull formulation: 
     zIjt  
  ∨t                (C1) 
           HTt-1 ≤ Tj ≤ HTt 
Disjunction (C1) is equivalent to constrains (C2) to (C4): 
Tj = ∑t Tj

t   ∀j∈JP   (C2) 

∑t zIjt = 1   ∀j∈JP   (C3) 

HTt-1 zIjt ≤ Tj
t ≤ HTt zIjt  ∀j∈JP,t  (C4) 

Thus, disjunction (63) can now be written as follows: 
  zj              ¬ zj 

Tj = ∑t Tj
t     ∨      Tj = 0  (C5) 

∑t zIjt = 1   

HTt-1 zIjt ≤ Tj
t ≤ HTt zIjt  

Using the convex hull formulation18, 19, disjunction (B5) is expressed in mixed integer form as follows: 
Tj = Tj

1 + Τj
2   ∀j∈JP   (C6) 

Tj
1 = ∑t Tj

t   ∀j∈JP   (C7) 

∑t zIjt = zj   ∀j∈JP   (C8) 

HTt-1 zIjt ≤ Tj
t ≤ HTt zIjt  ∀j∈JP, ∀t∈T  (C9) 

Tj
1 ≤ Uzj   ∀j∈JP   (C10) 

Tj
2 = 0(1-zj )   ∀j∈JP   (C11) 

Since, from (C11), Tj
2 is always zero, (C6) implies that Tj = Tj

1, ∀j∈JP, and we can simplify constraints (C6) 
to (C11) as follows: 
Tj = ∑t Tj

t   ∀j∈JP   (C7’) 

∑t zIjt = zj   ∀j∈JP   (C8’) 

HTt-1 zIjt ≤ Tj
t ≤ HTt zIjt  ∀j∈JP, ∀t∈T  (C9’) 

Tj ≤ Uzj    ∀j∈JP   (C10’) 

Furthermore, if zj = 0, (C9’) implies that Tj
t = 0 ∀t∈Τ. If Tj

t = 0 ∀t∈T, then (C7’) implies that Tj = 0. 
Constraint (C10’), therefore, is redundant (*). Thus, the convex hull formulation of disjunction (65) consists 
of constraints (C7’) to (C9’) which correspond to constraints (64)-(68) of the model. 
 
 
 
 

* This means that constraint (B21) of the previous derivation is also redundant. 
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