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Abstract 
The relationship between discrete- and continuous-time State Task Network (STN) representations 
is studied. We show that the continuous-time model of Maravelias and Grossmann (2003) is a 
generalization of the discrete-time model of Shah et al. (1993). More specifically, discrete-time 
models can be shown to be a special case of continuous-time models if two restrictions are 
imposed on the latter: a) fixed time grid, and b) processing times fixed multiples of the duration of 
the time period of the time grid. 
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1. Introduction 
 
The purpose of this research note is to formally study the relationship between discrete-time and 
continuous-time State Task Network (STN) MIP formulations. The STN (Kondili et al., 1993) and its 
equivalent Resource Task Network (RTN) (Pantelides, 1994) representation were proposed as general 
formulations for the scheduling of complex plants. In the original discrete-time formulation (Kondili et 
al., 1994; Shah et al., 1993), the time horizon is divided into N intervals of equal duration, common for all 
units, and tasks must begin and finish exactly at a time point, which means that the duration of the 
intervals must be equal to the greatest common factor of the constant processing times. The disadvantage 
of discrete-time models is that variable processing times can be handled only as discrete approximations, 
and that the number of intervals may be so large that the resulting model is too hard to solve.  
 
To overcome these limitations several researchers have proposed continuous-time STN/RTN-based 
formulations (Schilling and Pantelides, 1996; Ierapetritou and Floudas, 1998; Mockus and Reklaitis, 
1999; Castro et al., 2001; Lee et al., 2001; Giannelos and Georgiadis, 2002; Maravelias and Grossamnn, 
2003). In continuous-time models the time horizon is divided into time intervals of unequal and unknown 
duration. Continuous-time representations account for variable processing times and require significantly 
fewer time intervals, leading to smaller problems. However, since time points are not fixed, big-M 
constraints that match a time point with the start (or finish) of a task are necessary resulting in poor LP 
relaxations. Moreover, the number of intervals needed to accurately represent the optimal solution is 
unknown, and an expensive iterative procedure is needed. 
 
Continuous-time models are more accurate and can in principle yield better solutions. In practice, 
however, often yield substantially suboptimal solutions, either due to their poor LP relaxation or due to 
the fact that the number of intervals is unknown. Hence, discrete-time models remain popular for 
industrial problems, keeping the debate over the effectiveness of the two formulations open. 
 
Since discrete and continuous time models have been developed independently, an interesting question is 
whether one can in fact algebraically show that discrete models can be derived as a special case of 
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continuous models. The reason for posing this question is not only of theoretical interest, but also because 
by establishing such a relationship one can think of applying unified solution techniques to both types of 
representations. In this paper we study the relationship between the continuous and discrete time 
representations. Specifically, we formally show that discrete-time can be derived as a special case of 
continuous-time models. The models of Maravelias and Grossmann (2003) and Shah et al. (1993) are 
used as bases of the analysis and are presented in sections 2 and 3, respectively. The derivation of the 
model of Shah et al. (1993) from the model of Maravelias and Grossmann (2003) is presented in section 
4. 
 
 
2.  Continuous-time STN Model 
 
A compact form of the continuous-time model of Maravelias and Grossmann (2003) is used for the 
analysis. Redundant and tightening constraints that were added to improve the performance of LP-based 
branch-and-bound method and tighten the LP relaxation are omitted. 
 
We describe model (M1) in the next section. A common, continuous partition of the time horizon is used 
to account for all possible plant configurations and resource constraints other than those on units. 
Assignment constraints are expressed through task binaries Wsin and Wfin. Binary Wsin is 1 if task i starts 
at time point n, and binary Wfin is 1 if task i finishes at or before time point n. The start time, Tsin, of task i 
is always equal to time point Tn and thus time matching constraints are used only for finish time, Tfin, of 
task i. The batch size of task i that starts at, is being processed at, and finishes at or before time point n is 
denoted by Bsin, Bpin and Bfin, respectively. The amount of state s at time point n is denoted by Ssn and the 
amount of resource r consumed by various tasks at time point n is denoted by Rrn. The amount of state s 
consumed (produced) by task i at time point n is benoted by BI

isn (BO
isn). The details and derivation of the 

proposed model can be found in Maravelias and Grossmann (2003). 
 
2.1. Assignment Constraints 
 
Constraint (1) is the main assignment constraint and enforces the condition that not more than one task 
can be processed in a unit at any time, where I(j) is the subset of tasks that can be assigned to unit j. 
Constraint (2) enforces the condition that all tasks that start must finish, while constraints (3) and (4) 
enforce the condition that not more than one task can start or finish on a specific unit at any time: 
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2.2. Batch-size Constraints and Material Balances  
 
Constraints (5) and (6) impose upper and lower bounds on the batch sizes Bsin and Bsin, while constraint 
(7) enforces variables Bsin and Bfin to be equal for the same task. The amount of state s consumed, BI

isn, 
and produced, BO

isn, by task i at time n is calculated through constraitns (8) and (9), respectively, where 



O(s)/I(s) is the set of tasks producing/consuming state s, and ρis is the mixing ratio of state s. Constraint 
(10) is the mass balance and the capacity constraint for state s at time n, where Cs is the storage capacity: 
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2.3. Resource Constraints 
 
The amount of renewable resource r required by task i that starts at n, RI

rn, is calculated by constraint (11). 
The same amount, RO

rn, is “released” when task i finishes and is calculated by constraint (12). The total 
amount of resource r required at time n is calculated and bounded not to exceed the maximum availability 
Rr

MAX by (13): 
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2.4. Calculation of Duration and Finish Time 
 
The duration, Din, and the finish time, Tfin, of a task are calculated through constraints (14), and (15) and 
(16), respectively. If task i does not start at time point n, its finish time Tfin is constrained to be equal to 
Tfin-1 via constraint (17). The elimination of start times, Tsin, is accomplished through constraint (18), 
where H is the scheduling horizon.  
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2.5. Activation of Wfin Binary Variables 
 
The time matching between time points and finish times is achieved through constraints (19), (20) and 
(21). Note that in the general case a task may finish at or before a time point n [constraint (20)], whereas a 



task must finish exactly at a time point [constraint (20)] if it produces a state for which zero-wait policy 
applies, where ZWI is the subset of tasks that produce a zero-wait state: 
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2.6. Time ordering 
 
Equations (22) – (24) define the start and the end of the time horizon and enforce an ordering among time 
points: 
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Continuous-time model (M1) consists of constraints (1) - (25), where (18) is used to eliminate Tsin. 

Wsin, Wfin∈{0,1}, Bsin, Bpin, Bfin, Ssn, Tn, Tfin, Din, BI
isn, BO

isn,RI
irn, RO

irn, Rrn ≥ 0 (25) 
 
 
3. Discrete-time STN Model 
 
The discrete-time model (M2) of Shah et al. (1993) is used for the analysis. To keep the notation uniform 
and make the derivation easier, we use task decoupling to drop index j from variables, we use the index n 
for time periods (instead of t), the index r for resources (instead of u), the assignment binary Wsin (instead 
of Wijt) and the continuous variables Bsin, Ssn and Rrn (instead of Bijt, Sst and Uut, respectively). Constraint 
(26) is the unit allocation constraint that enforces that at most one task is processed at unit j at any time 
point, where τi is the fixed processing time of task i. Constraint (27) is a batch-size constraint (note that 
we use the original constraint of Kondili et al. (1993)). Constraint (28) is the material balance equation 
and capacity constraint for state s at time n, and constraint (29) is the utility constraint. Time points Tn are 
fixed parameters in discrete-time models, but we have included constraint (30) for comparison with 
continuous-time models. 
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The discrete-time model (M2) consists of constraints (26) - (31). 

Wsin ∈{0,1}, Bsin, Ssn, Rrn ≥ 0 (31) 
 
 
4. Discrete-time as a Special Case of Continuous-time Representation 
 
In this section we show that model (M2) is a special case of (M1). More specifically, we show that model 
(M2) is obtained from (M1) if: 
A) the time grid is fixed, and  
B) the processing times of all tasks are constant multiples of the interval of the fixed time grid.  
 
4.1. Assumptions 
 
The assumption of fixed time grid with equal time intervals means that variables Tn of model (M1) are 
fixed, and given by equation (30). The assumption that processing times τi are constant multiples of the 
duration of the uniform time intervals implies the following: 
 
If task i starts at time n, its duration Din is equal to τi, otherwise is zero. Thus, Din is always given by: 

niWsD iniin ∀∀= ,τ  (32) 

Constraint (32) can also be derived from (14) for αi=τi and βi=0. 
Since the time grid and the processing times are fixed, if task i starts at time point n, it will necessarily 
finish at time point n+τi. Thus, binary Wfin is always given by:  
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Moreover, since task i cannot finish before τi, we have Wfin=0 for n<τi. 
Similarly, the batch size of task i that finishes at time point n, will be given by:  
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i
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and Bfin=0 for n<τi. 
Constraint (34) can also be derived from (5)-(7) and (33). 
Task i is processed at time point n if and only if it has started before n but after n-τi (note that no two 
batches of task i can start after n-τi and before n, due to constraints (1) and (33)). This is expressed via 
constraint (35): 

∑
−≤

+−≥

=
1'

1'
'

nn

nn
inin BsBp

τ

 (35) 

A description of the reductions that can be applied to model (M1) if we apply constraints (32) – (35) 
follows. 
 
4.2. Derivation 
 
4.2.1. Time Ordering 
Constraints (22)-(24) can be replaced by equation (30); variables Tn become parameters as in (M2). 



 
4.2.2. Assignment Constraints 
Constraint (26) of (M2) is obtained if we replace Wfin from (33) into (1):  
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Moreover, if no tasks that finish after H are allowed to start (i.e. Wsin = 0, ∀n>|N|-τi), constraint (2) is 
trivially satisfied. Constraints (3) and (4) are weaker than constraint (26) because their LHS is always 
smaller than the LHS of (26) and thus are trivially satisfied. Hence, constraints (1) – (4) of (M1) reduce to 
constraint (26) of (M2). 
 
4.2.3. Batch-size Constraints and Material Balances 
Constraint (5) is the same as (27). If we replace Wfin from (33) and Bfin from (34) into (6), we obtain 
constraint (27) for n≥τi, and thus, constraint (6) is dropped:   
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If we replace Bfin from (34) into (9), and substitute (8) and (9) into (10) we obtain constraint (28) of (M2):  
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Hence, constraints (5) – (10) reduce to constraints (27) and (28) of model (M2). 
 
4.2.4. Resource Constraints 
If we substitute (11) and (12), where RO

irn is a function of Wsin and Bsin due to (33) and (34), into (13) we 
obtain constraint (36): 
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To calculate Rrn as a function of variables Wsin and Bsin only (as in constraint (29)), we express constraint 
(36) for n, n-1, n-2, …1, and add them up: 
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Terms γirWsin’ and δirBsin’ with n’<n-τi, also cancel out: 
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which is equivalent to constraint (29): 
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Constraints (11) – (13) of (M1), therefore, reduce to constraint (29) of (M1). 
 
4.2.5. Calculation of Duration and Finish Time 
 
Constant processing times imply that constraint (14) is replaced by (32).  Constraints (15) - (17) are used 
to impose the condition that if Wsin=1 then Tfin=Tsin+Din, otherwise Tfin = Tfin-1. In discrete-time models 
Din=τiWsin and Tsin=Tn, and thus these constraints are written: 
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Constraint (18) is redundant both for discrete- and continuous-time models and can be dropped if Tsin is 
replaced by Tn in all constraints. 
 



4.2.6. Activation of Wfin Binary Variables 
Constraints (19) and (20) (or (21) for tasks that produce zero-wait states) are used to enforce the 
following condition: if a task that started before point n finishes between Tn-1 (or Tn if i∈ZWI) and Tn, 
then Wfin-1=1, i.e. they are used to enforce that the “correct” Wfin binary is one. In discrete-time models, 
however, binary variables Wfin are uniquely defined by (33), constraints (19) – (21) are trivially satisfied, 
and therefore can be removed.  
 
4.3. Reduced Model 
 
After the addition of constraints (31) – (34) and the reductions described above, the reduced model (M3) 
consists of constraints (25) – (30), (32) – (35) and (37)-(39): 
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Wsin, Wfin∈{0,1}, Bsin, Bpin, Bfin, Ssn, Tn, Tfin, Din, BI
isn, BO

isn,RI
irn, RO

irn, Rrn ≥ 0 (25) 
 
If we remove constraint (30), that includes only parameters Tn, the incidence matrix of the reduced model 
(M3)has the structure shown in Figure 1, where constraints (26) – (29) are grouped into subset (I), which 
is equivalent to model (M1), and constraints (32) – (35) and (37) – (39) into subset (II).  
 



Ssn Rrn Wsin Bsin Din Wfin Bfin Bpin Tfin

(26)
(27)
(28)
(29)
(32)
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(34)
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(37)-(39)

(I)

(II)

 
Figure 1: Incidence matrix of reduced model (M3). 

 
There are two important observations: 
• Variables Wfin, Din, Bfin, Bpin and Tfin do not appear in any constraint of subset (I).  
• For any solution of subset (I), we can find variables Wfin, Din, Bfin, Bpin and Tfin that satisfy constraints 

(32) – (35) and (37) – (39).  
Constraints (32) – (35) and (37) – (39), and variables Wfin, Din, Bfin, Bpin and Tfin, therefore, do not affect 
the solution of subset (I), i.e. the solution of model (M2). A closer look at constraints (32) – (35) and (37) 
– (39) reveals that these are used only for the “calculation” of variables Din, Wfin, Bfin, Bpin and Tfin, 
respectively. In other words, instead of solving model (M3) as is, we can solve subset (I) independently, 
and then use equations (32) – (35) and (37) – (39) to calculate variables Din, Wfin, Bfin, Bpin and Tfin.  
 
Hence, we have showed that when the two restrictions of fixed time grid and fixed processing times are 
imposed on the continuous-time model (M1) of Maravelias and Grossmann (2003), it reduces into model 
(M3), which is equivalent to the discrete-time model (M2) of Shah et al. (1993). The only difference 
between models (M2) and (M3) is that the additional variables Din, Wfin, Bfin, Bpin and Tfin are defined.  
 
 
4. Conclusions 
 
We have shown in this research note that the discrete-time model of Shah et al. (1993) can be derived as a 
particular case of the continuous time model of Marevelias and Grossmann (2003) when a uniform time 
grid is used with constant processing times. Aside from being of result of theoretrical interest, one 
interesting implication of this relationship is that one might envisage applying a solution method 
developed for one representation to the other. An example, would be to apply the hybrid MILP/Constraint 
Programming method by Maravelias and Grossmann (2004) for continuous time problems to discrete 
time representations. 
 
 
Nomenclature 
Indices 
i  Tasks 
j  Equipment units 
r  Resource categories (utilities) 
s  States 
n  Time points 
Sets 
I(j)  Set of tasks that can be scheduled on equipment j 
I(s)  Set of tasks that use state s as input 



O(s)  Set of tasks that produce state s 
ZWI  Set of tasks that produce at least one ZW-state 
Parameters 
H  Time horizon 
αi/τi  Fixed duration of task i 
βi  Variable duration of task i 
γir  Fixed amount or utility r required for task i 
δir  Variable amount of utility r required for task i 
ρis  Mass balance coefficient for the consumption/production of state s in task i 
S0s  Initial amount of state s 
Cs   Storage capacity for state s 
RMAX

r  Upper bound for utility r 
BMIN

i / BMAX
i Lower/upper bounds on the batch size of task i 

Binary Variables 
Wsin  =1 if task i starts at time point n  
Wfin  =1 if task i finishes at time point n  
Continuous Variables 
Tn  Time that corresponds to time point n (i.e. start of period n; finish of period n-1) 
Tsin  Start time of task i that starts at time point n 
Tfin  Finish time of task i that starts at time point n 
Din  Duration of task i that starts at time point n 
Bsin  Batch size of task i that starts at time point n 
Bpin  Batch size of task i that is processed at time point n 
Bfin  Batch size of task i that finishes at or before time point n 
BI

isn/ BO
isn  Amount of input/output state s for task i at time point n 

Ssn  Amount of state s available at time point n 
RI

irn  Amount of utility r consumed at time point n by task i 
RO

irn  Amount of utility r released at or before time point n by task i 
Rrn  Amount of utility r utilized at time point n 
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