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 
Abstract-- This two-paper series proposes a novel 

deterministic optimization approach for the Unit Commitment  
problem (UC), more specifically for the Security Constrained 
Unit Commitment problem (SCUC) addressing thermal 
generating units. In the first part, a suitable mathematical 
programming model is presented, which contemplates all the 
inherent constraints and a single set of binary variables, i.e. the 
on/off status of each generator at each time period, leading to a 
convex Mixed Integer Quadratic Programming (MIQP) 
formulation. This gives rise to a very difficult optimization 
problem, hard to solve through deterministic approaches for 
high-dimensional instances. To overcome this challenge, an 
effective solution methodology based on valid integer cutting 
planes is proposed, and implemented through a Branch and Cut 
search for finding the optimal solution. In the second of this two-
paper series, the application of the model and proposed approach 
is illustrated with several examples of different dimensions and 
characteristics. 
 

Index Terms-- Energy optimization, Unit Commitment 
problem, deterministic optimization, Branch and Cut algorithm 

I.  NOMENCLATURE 

Indexes 
i    unit index 
t    time period index 
Constants 
I    total number of thermal generating units 
T    length of the planning time horizon 
ai, bi, ci  coefficients of the fuel cost function of unit i  
Dt    power load demand for time period t 
Rt    spinning reserve required at time period t 
pi

L    minimum power generation of unit i 
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pi
U    maximum power generation of unit i 

TUi    minimum uptime of unit i 
TDi    minimum downtime of unit i 
Tini

i   initial status of unit i 
DRi    ramp-down limit of unit i 
URi    ramp-up limit of unit i 
Hsci    hot start cost of unit i 
Csci   cold start costs of unit i 
Tcold

i   cold start hours of unit i 
Dci    shut-down cost of unit i 
costUP   upper bound for the objective function 
 abs   absolute tolerance for global optimalityߝ
 rel   relative tolerance for global optimalityߝ
At

opt1   objective value of the optimal solution of problem 
P1 for time period t 

At
opt2   objective value of the optimal solution of problem 

P2 for time period t 
At

LO   lower bound for the number of committed units at 
time period t 

At
UP   upper bound for the number of committed units at 

time period t 
Variables 
ui,t   binary variable representing the on/off status of 

unit i at period t 
pi,t   power output of unit i in period t 
cui,t   start-up cost of unit i in period t 
cdi,t   shut-down cost of unit i in period t 
At    auxiliary variable for computing integer cutting 

planes 
 

II.  INTRODUCTION 

ELIABLE and secure production of electric power is 
fundamental for both suppliers and users. The increasing 

electricity demand raises the need to study carefully the 
possible alternatives when it is planned to install new 
generation plants or to expand existing ones. However, 
besides the target of profitability pursued by the supplier 
companies, the greatest concern currently focuses on reducing 
the fossil fuels consumed for power generation, while at the 
same time mitigating CO2 emissions. This trend has led to the 
study of combined methods of production, through the 
integration of conventional generation sources with other, 
preferably from renewables, while still ensuring profitability 

A Branch and Cut Search for the Deterministic 
Optimization of the Thermal Unit Commitment 

Problem. Part I: Methodology 
Marian G. Marcovecchio, Augusto Q. Novais, Ignacio E. Grossmann 

R



 2

([1]-[2]). 
Electricity supply systems are admittedly very complex. 

Diverse factors are involved, like fluctuations and 
uncertainties in load and prices. In addition, the contingencies 
that may arise in the generation process must be considered in 
order to prevent or reduce the risks of blackouts or insufficient 
provision ([3]-[4]). 

Traditionally, the power network was vertically integrated 
and governed by a utility system operator who was familiar 
with the system characteristics and costs, and decided the 
production plan in order to meet demand while minimizing the 
generation costs. 

In the past decade, this business model has changed from a 
highly regulated and vertically integrated industry to one that 
is deregulated and horizontally integrated where a larger 
number of issues come into play. Thus, the Generation 
Companies (GENCOs) seek to maximize their own profit and 
present their bids to the Independent System Operator (ISO), 
which in turn analyzes the cost of the offers and decides the 
production plan, minimizing the generation cost. Various 
market structures can emerge depending on the specific 
relations and exchanges of information between the GENCOs, 
and the characteristics of the ISO ([5]). 

Additionally, the planning of the generation and 
distribution of electric power is typically based on three 
different classes of decisions defined according to the length 
of the planning time horizon: long-term decisions (capacity, 
type and number of power generators); medium term decisions 
(scheduling of the existing units for the planning horizon); 
short-term decisions (programming of the power that each 
committed unit must produce to meet the real-time electricity 
demand). These three levels of decision are usually referred to 
as Power Expansion, Unit Commitment (UC) and Economic 
Dispatch, respectively. In particular, the Unit Commitment 
problem has been more widely studied due to its practical 
importance. ([6]-[7]). 

The UC problem can be formulated as a mathematical 
programming problem for the generation and distribution of 
electric power under either of two alternative models: Security 
Constrained Unit Commitment (SCUC) for a highly regulated 
industrial setup, and Price-Based Unit Commitment (PBUC) 
for a deregulated one. In SCUC, the on/off status and 
production levels for given power generators are determined 
in order to meet a time-varying expected demand of electricity 
over a given time horizon, while operating constraints and 
system reserve are satisfied and the cost of production is 
minimized. On the other hand, in the PBUC the decisions are 
taken according to financial risks under no obligation of 
satisfying the expected demand; that is, a PBUC is established 
by each GENCO and the objective is to maximize its own 
profit. 

An optimal solution for the UC problem can have a 
significant economic impact. However, solving the UC 
problem is very difficult since it is NP hard due to the 
combinatorial nature of the set of feasible solutions. For real-
world instances the underlying optimization problem can be 
very expensive to solve. 

A large effort has therefore been spent over the last decades 
to develop efficient methods capable of solving the UC 
problem for real instances, or at least for obtaining good 
solutions in reasonable computational times. 

This two-paper series focuses on thermal UC problem 
under security constraints (SCUC). The methods proposed in 
the literature to solve this problem are both deterministic and 
heuristic. Approaches based on deterministic methods include: 
priority list ([8]-[9]), integer mathematical programming 
(linear and nonlinear) ([10]-[11]), Branch-and-Bound search 
([12]), dynamic programming ([13]), Lagrangian relaxation 
([14]-[16]), decomposition techniques ([17]-[18]) and others. 
However, few deterministic methods have been proposed that 
guarantee global optimality. Reference [12] developed a 
Branch-and-Bound algorithm for solving the UC problem. The 
method does not assume priority ordering, but it is based on 
the assumption that a unit with nonzero start-up cost will cycle 
at most once in a period of 24 hours. The algorithm is used to 
solve a 19-unit system, for a time horizon of 24 hours, 
guaranteeing global optimality within a tolerance of 0.7%. 
Reference [17] employed Benders decomposing method to 
address the hydrothermal power system: the master problem 
contains only integer variables and determines the Unit 
Commitment of thermal plants; the sub-problem includes only 
continuous variables for the economic dispatch. The sub-
problem is further decomposed in thermal and hydro systems. 
A system consisting of 30 hydro and 20 thermal plants is 
solved, guaranteeing global optimality within a 2% tolerance. 
Reference [10] proposed a mixed-integer linear formulation 
for the thermal Unit Commitment, which requires a single set 
of binary variables. The quadratic cost function is 
approximated by a set of piecewise linear functions with four 
segments. Once, the MILP problem is solved, the economic 
dispatch is run to evaluate exactly the quadratic cost. A base 
10-unit system and its variants with up to 100 units are solved, 
within 0.5% of global optimality for the MILP problem. 
However, the actual global optimality tolerance for the 
original integer quadratic programming problem is neither 
determined nor analyzed. Also, the case studies addressed do 
not include ramp constraints. 

As, for heuristic approaches, the most widely used are: 
artificial neural networks ([19]), genetic algorithms ([20]-
[21]), evolutionary programming ([22]-[23]), simulated 
annealing ([24]-[25]), fuzzy systems ([26]), particle swarm 
optimization ([27]-[28]), tabu search ([29]) and hybrid 
methods ([30]).  

References [6], [7] and [31] give complete reviews for 
contributions on deterministic and heuristic methodologies for 
solving the UC problem. Nevertheless, the methods proposed 
so far are not sufficiently flexible for solving to optimality real 
world problems in acceptable computational times.  

In the first of this two-paper series a deterministic 
optimization approach is proposed for the thermal SCUC 
problem. The problem can be stated as follows. Given is a 
number of thermal power generators (each with different 
operating and production characteristics) and a specified time-
variant demand over the planning time horizon. The problem 



 3

is then to determine the start-up and shut-down schedules and 
power production for each unit in order to minimize the 
operational cost while meeting demand. 

The mathematical model addressed is a convex mixed-
integer quadratic programming problem (MIQP) having a 
single set of binary variables representing the status of the 
each generator at each time period. The continuous relaxation 
of the MIQP for the SCUC problem is convex, since all 
constraints are linear and the objective function is quadratic 
and convex. However, due to the presence of the integer 
variables, the problem might become computationally 
expensive to solve as the problem size increases. 

A computational strategy that takes advantage of the 
particular characteristics of the UC problem is proposed for its 
solution in this paper. It consists of valid integer cutting planes 
and a Branch and Bound search incorporating the proposed 
cuts, which results in a particular Branch and Cut algorithm 
for the UC problem. 

In this paper and its companion [32], the proposed 
deterministic approach is described and implemented to solve 
several published case studies. Although the UC problem is 
NP-hard, the results show that the proposed technique is 
capable of finding the optimal solution for real-world sized 
instances in reasonable computational time ([32]). 

The paper is organized as follows. Section III presents a 
detailed description of the mathematical formulation for the 
SCUC problem. Section IV describes the proposed 
deterministic optimization approach. The steps to construct the 
proposed integer cutting planes are firstly outlined in Section 
IV.A. Then, in Section IV.B a particular implementation of the 
general Branch-and-Bound framework is described. Finally, 
Section V outlines the general conclusions of the present 
work. The second part of this two-paper series ([32]) presents 
the computational results that illustrate the performance of the 
proposed technique. 
 

III.  MATHEMATICAL PROBLEM FORMULATION  

The thermal SCUC problem is formulated as the following 
MIQP model. 

Consider a set of I thermal generating units and a specified 
time-varying demand over T time periods defining the 
planning time horizon, with  the units being indexed with 
i=1,...,I and the time periods with t=1,...,T. The definition of 
the parameters and variables can be found in the 
Nomenclature Section. 

The objective function to be minimized is the operating 
cost, which includes fuel consumption calculated by a 
quadratic function with fixed charges, and fixed start-up and 
shut-down costs:  
min cost=∑ ∑ ൣ൫ܽ௜ݑ௜,௧ ൅ ܾ௜݌௜,௧ ൅ ܿ௜݌௜,௧

ଶ ൯ ൅ ௜,௧ݑܿ ൅ ܿ݀௜,௧൧்
௧ୀଵ

ூ
௜ୀଵ                             

 (1)  (1) 
The constraints to be satisfied are given by (2) to (20).  
System power balance for each period: 

D୲ ൑ ∑ p୧,୲
୍
୧ୀଵ                      t=1,...,T  (2) 

Spinning reserve is guaranteed by the available capacity of 
active units: 

D୲ ൅ R୲ ൑ ∑ p୧
୙u୧,୲

୍
୧ୀଵ             t=1,...,T (3) 

The generation power limits of each unit at each time 
period are imposed by: 
u୧,୲p୧

୐ ൑ p୧,୲ ൑ p୧
୙u୧,୲        i=1,...,I;  t=1,...,T  (4) 

Note that when the unit is offline (u୧,୲ ൌ 0ሻ, the previous 
constraint forces the corresponding power output to be 0. 
Therefore, generation limits are only imposed when the unit is 
online. 

Requirements of minimum up and down times are 
mathematically modelled by the sets of constraints (5)-(10).  

The on-off status of a unit i in its earliest periods of 
operation might be determined by its initial status and its 
minimum up and down times (TDi and TUi, respectively), 
according to the following conditions: 
u୧,୲ ൌ 0         i: Tini

i<0;  t=1,..., (TDi+Tini
i) (5) 

u୧,୲ ൌ 1         i: Tini
i>0;  t=1,..., (TUi -T

ini
i) (6) 

where Tini
i is an integer number indicating the initial status 

of unit i, i.e. the number of periods that unit i has been 
switched off (Tini

i<0) or turned on (Tini
i>0).  

Constraints (7) model the unit minimum-up time for the 
general case. If unit i is started-up at time period t (t ൒ 2), 
then (7) imposes that the unit must remain online for the 
following (TUi-1) time periods.  Equation (8) considers the 
case in which the unit is started-up at the first time period.  
u୧,୲ െ u୧,୲ିଵ ൑ u୧,୲ା୨      i=1,...,I; t=2,...,T; j=1,...,(TUi-1) (7) 

u୧,ଵ ൑ u୧,ଵା୨  i: Tini
i<0;  j=1,...,(TUi-1) (8) 

Constraints (9) and (10) model the unit minimum down-
time. Equations (9) consider the general case: if unit i is shut 
down at time period t (t ൒ 2), then this constraint enforces 
unit i to stay offline for the following (TDi-1) time periods. If 
the unit i is shut down at the first time period, (10) ensures that 
its minimum down-time is satisfied.  
u୧,୲ା୨ ൑ u୧,୲ െ u୧,୲ିଵ ൅ 1	  
 i=1,...,I;  t=2,...,T;  j=1,...,(TDi-1) (9) 
u୧,ଵା୨ ൑ u୧,ଵ  i / Tini

i>0;  j=1,...,(TDi-1) (10) 
The ramp rate limits are modelled by (11) and (12). 

p୧,୲ିଵ െ DR୧u୧,୲ିଵ െ p୧
୙ሺ1 െ u୧,୲ሻ ൑ p୧,୲   

 i=1,...,I;  t=2,...,T (11) 
p୧,୲ ൑ p୧,୲ିଵ ൅ UR୧u୧,୲ିଵ ൅ p୧

୙ሺ1 െ u୧,୲ିଵሻ     
 i=1,...,I;  t=2,...,T  (12) 

The ramp rate limits must be applied over unit i at time 
period t only if the unit is online at that period and was online 
also at time period (t-1). Equations (11) and (12) ensure that 
the ramp rate limits are imposed only in that case. Otherwise, 
they guarantee that power output is not incorrectly limited.  

The start-up cost for each unit is time-dependent and this 
dependence is typically modelled as an exponential function. 
When the time span is discretized, evaluating the exponential 
function on the discrete points is equivalent to evaluate a 
piecewise constant function. Usually, this start-up cost 
dependence is simplified by assuming a low cost if the 
generator was down for a short period of time and a higher 
value otherwise. In practice this assumption is acceptable to 
represent real cases.  

Specifically, the start-up cost function is usually defined as: 
cui,t=Hsci if downtime≤(TDi+Tcold

i), and cui,t=Csci otherwise. 
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This cost function can be modelled by equations (13)-(17).  
For the general case, (13) constrains variable cui,t to be 

greater or equal to Hsci if unit i is started-up at time period t 
(t ൒ 2). Equation (14) considers the case in which the unit is 
turned on at the first time period.  
൫u୧,୲ െ u୧,୲ିଵ൯Hsc୧ ൑ cu୧,୲     i=1,...,I;  t=2,...,T (13) 

u୧,ଵHsc୧ ൑ cu୧,ଵ i / Tini
i<0 (14) 

If instead the unit i is turned on at the time period t and the 
downtime at that moment is greater than (TDi+Tcold

i), (15) and 
(16) impose cui,t to be greater or equal than Csci value. 
Equation (15) models this requirement for t>(TDi+Tcold

i), 
while (16) takes into account the initial status for 
t≤(TDi+Tcold

i): 

ቀu୧,୲ െ ∑ u୧,୲ି୨୨ஸ୘ୈ౟ା୘౟
ౙ౥ౢౚାଵ ቁ Csc୧ ൑ cu୧,୲     

 i=1,...,I;  (TDi+Tcold
i) < t ≤ T (15) 

൫u୧,୲ െ ∑ u୧,୲ି୨୨ழ୲ ൯Csc୧ ൑ cu୧,୲  
 i / Tini

i<0; (TDi+Tcold
i+Tini

i+1)<t≤(TDi+Tcold
i) (16) 

Equation (17) is necessary to ensure that variable cui,t takes 
value 0 when the unit i is not turned on at the time period t:  
0 ൑ cu୧,୲  i=1,...,I;  t=1,...,T (17) 

Thus, (13) and (14) ensure that if the unit i is turned on at 
the time period t, then at least the cost Hsci is incurred. If the 
downtime is greater than (TDi+Tcold

i), constraints (15) and 
(16) raise the minimum value for the startup cost to Csci. 
Equation (17) is necessary to prevent that variable cui,t takes 
negative values when the unit i is not turned on at the time 
period t. Finally, since variables cui,t are only involved in 
equations (13)-(17), the optimization procedure will ensure 
that the cost assumed by variable cui,t will be exactly 0, Hsci or 
Csci, for each case.  

Some units can incur in a shut-down cost when they are 
turned off. This is modeled by (18) for the general case (t ൒
2); (19) computes the cost for shutting down unit i at the first 
time period of the planning time horizon considering the initial 
status of the units. Constraint (20) prevents variable cdi,t taking 
negative values if the unit i is not shut down at the time period 
t. 
൫u୧,୲ିଵ െ u୧,୲൯Dc୧ ൑ cd୧,୲	    i=1,...,I;  t=2,...,T (18) 

൫1 െ u୧,ଵ൯Dc୧ ൑ cd୧,ଵ i / Tini
i>0 (19) 

0 ൑ cd୧,୲  i=1,...,I;  t=1,...,T  (20) 
Analogously to the start-up cost and since variables cdi,t 

only appear in equations (18)-(20), after optimization cdi,t will 
assume exactly either of the values 0 or Dci. 

Finally, the specification on the variables is as follows: 
0 ൑ p୧,୲  i=1,...,I;  t=1,...,T  (21) 
u୧,୲ ∈ ሼ0,1ሽ  i=1,...,I;  t=1,...,T  (22) 

The thermal SCUC problem can be mathematically 
represented by the MIQP model given by equations (1)-(22). 
The mathematical programming model for I thermal 
generating units and T time periods for the planning time 
horizon involves: IxT binary and 3(IxT) continuous variables. 
All constraints are linear, and the objective function is convex 
since it is quadratic with positive coefficients. The main 
difficulty for solving this problem is due to the presence of 
binary variables. In fact, solving this problem becomes very 

hard when the number of units and time periods attain non 
trivial values. Thus, numerous methods have been proposed 
for addressing the SCUC problem, mainly heuristic 
techniques. In this two-paper series, the thermal SCUC will be 
tackled by a deterministic optimization approach, which is 
described in detail in the following sections. 

 

IV.  DETERMINISTIC OPTIMIZATION APPROACH 

The solution of the SCUC problem will be addressed 
through a deterministic optimization approach in which the 
global optimal solution is found within a specified tolerance 
for global optimality. The proposed methodology consists of a 
Branch and Cut implementation: appropriate integer cutting 
planes are defined and a branch and cut search is developed 
that exploits the characteristics of the proposed cuts.  

A.  Integer cutting planes 

The proposed integer cutting planes are quite simple but 
highly efficient. They are based on the idea of finding valid 
lower and upper bounds for the number of committed units at 
each time period. By implementing them, the relaxation gap of 
the MIQP is considerably reduced, and consequently the 
global optimality for adjusted tolerance can be reached in 
reasonable computational times. 

Next, the steps to construct the cuts are described. An upper 
bound for the objective function, costUP, is assumed to be 
available. If a feasible solution of the problem is known, then 
its objective value is an appropriate upper bound; otherwise, a 
large enough value is chosen. The absolute and relative 
tolerances for global optimality are denoted as: ߝabs and ߝrel, 
respectively.  

Step 1:  
For each time period t, the two following NLP problems 

are solved: 
P1:   minA୲                  P2:   maxܣ௧ 
s.t.: Equations (2) to (21) 
A୲ ൌ ∑ u୧,୲

୍
୧ୀଵ     t=1,...,T (23) 

cost ൌ ∑ ∑ ൣ൫a୧u୧,୲ ൅ b୧p୧,୲ ൅ c୧p୧,୲
ଶ ൯ ൅ cu୧,୲ ൅ cd୧,୲൧୘

୲ୀଵ
୍
୧ୀଵ ൑

															cost୙୔-εୟୠୱ  (24) 
0 ൑ u୧,୲ ൑ 1    i=1,...,I;  t=1,...,T  (25) 

A୲ ∈ ൣA୲
୐୓, A୲

୙୔൧   t=1,...,T (26) 
Equation (23) defines the variable At that is minimized (P1) 

and maximized (P2); it computes the sum of the states of the 
units for each time period. Equation (24) imposes an upper 
bound,  (cost୙୔-εୟୠୱ), for the operating cost. Equation (25) 
relaxes the discrete requirements of the variables u.  

Initially: At
LO=0 and At

UP=I, both values being adjusted as 
the cuts are computed. 

Step 2: 
For each time period t, set:  
A୲
୐୓ ൌ ඃA୲

୭୮୲ଵඇ      and       A୲
୙୔ ൌ උA୲

୭୮୲ଶඏ 
where At

opt1 and At
opt2 are the objective value of the optimal 

solutions for problems P1 and P2, respectively.  
Note that the global optimal solutions can be found for P1 

and P2 since they are convex NLP problems where the integer 
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variables have been relaxed to be continuous.  
Step 3: 
The inequalities: 

A୲
୐୓ ൑ ∑ u୧,୲

୍
୧ୀଵ  (27) 

∑ u୧,୲
୍
୧ୀଵ ൑ A୲

୙୔ (28) 
are valid integer cutting planes for the relaxed problem, 

since they only exclude feasible points of the relaxed problem 
with some variables ui,t at non-integer values. At the same 
time, the cuts eliminate feasible solutions for the original 
MIQP that do not improve the upper bound costUP at least by 
 .absߝ

 
If the binary variables were not relaxed to be continuous, 

the variable At would represent the number of units that are 
committed at time period t, and P1 and P2 would find the 
minimum and maximum number of units that are required at 
time period t to satisfy all the original constraints, while the 
cost is decreased at least by ߝabs. However, as the original 
binary variables ui,t are considered continuous, the optimal 
values of At, i.e. At

opt1 and At
opt2, are not necessarily integer for 

the general case, but the real number of online units must 
indeed be integer. Therefore, At

opt1 and At
opt2 are bounds for At, 

but they are not as tight as possible. After the rounding in Step 
2, At

LO and At
UP represent valid inequalities that eliminate non 

integer solutions. 
The proposed integer cutting planes lead to 2 linear 

constraints for each time period, (27) and (28). However, for 
practical purposes, the cuts are implemented by adding (23) to 
the relaxed problem and adjusting the bounds At

LO and At
UP as 

the cuts are being computed and updated.  
In practice the cuts are generated sequentially. That means 

that the cuts are calculated and the bounds At
LO and At

UP are 
updated at the relaxed problem, as well as at problems P1 and 
P2. Therefore, they modify the feasible region for the 
computation of the subsequent cuts. In fact, the cuts become 
progressively tighter as the feasible region of the relaxed 
problem is being reduced. 

Clearly, A୲
୐୓ ൑ A୲

୙୔ will be true for each period of time, 
since At

LO and At
UP are lower and upper bounds for the number 

of committed units, respectively, provided that the relaxed 
problem is feasible to reduce the upper bound of the objective 
function by the required tolerance. On the other hand, if the 
global optimal solution of the MIQP problem is found, and the 
integer cutting planes are sequentially updated using its 
objective value as upper bound costUP, then as long as 
problems P1 and P2 are feasible, the value for each pair of 
parameters: At

LO and At
UP should become identical, i.e. 

A୲
୐୓ ൌ A୲

୙୔. Furthermore, once the global optimum is found 
and an improvement on the objective function of ߝabs is 
required, the MIQP will be infeasible, which will then provide 
the termination criterion. The same conclusion can also be 
achieved while sequentially updating  the cuts, i.e. P1 and P2 
will eventually become infeasible, since the relaxed problem 
and P1 and P2 have the same feasible region. 

For integer programming techniques that implement 
effective searches for good solutions, the crucial point for 
reaching convergence is proving that the found solution is 

actually the optimal or, otherwise, that it satisfies a specified 
tolerance for global optimality. For an algorithm based on 
branch and bound search that means that improving the lower 
bound is a major issue. The proposed integer cutting planes 
were designed with the aim of tightening the lower bound 
produced by the relaxed problem, which will reduce the 
relaxation gap, and consequently will accelerate the algorithm 
convergence. Their efficacy will be illustrated in the 
companion paper [32].  

The proposed cuts will be combined with an appropriated 
branch-and-bound search, as it is described in the following 
subsection. 

B.  Branch and Cut search 

The cuts proposed in the previous section have 
demonstrated to be highly efficient in reducing the relaxation 
gap, as will be shown in the companion paper [32]. To take 
advantage of this reduction technique, an appropriate Branch-
and-Bound search is defined by incorporating at each node the 
cuts for improving the lower bounds. Hence, a particular 
Branch-and-Cut is developed for the SCUC problem. 

The standard Branch-and-Bound search ([33]) can be 
applied without either linearization or under estimation, since 
the relaxed problem of the SCUC model is convex. Therefore, 
at each node of the tree, the lower bound is obtained by 
solving the relaxed problem, i.e. by letting the binary variables 
be continuous and solving the resulting convex quadratic 
programming problem (QP). 

Thus, the basic procedure for a Branch-and-Bound search 
is adopted and properly adapted to solve the SCUC problem. 
Below, the proposed implementation of the standard algorithm 
which defines the proposed Branch-and-Cut search to solve 
the SCUC problem is specified.  

Integer cutting plane implementation: In order to 
implement the proposed cuts, (23) is added to the relaxed 
problem and so only T variables (At) and T linear constraints 
are required to apply the cuts. The bounds for the variables At 
are modified to tighten the cut approximation. Therefore, no 
new constraint or variable is needed to adjust the cuts.  

At the root node, the cuts will be initialized by estimating 
the value of the bounds At

LO and At
UP in an analytic way, in 

order to avoid an excessive computational cost. Specifically, 
At

LO is initialized as the minimum number of units that, being 
committed and operating at their upper level, would be 
sufficient to satisfy the demand plus the spinning reserve at 
time period t, when no other constraint is considered. That is, 
for each period of time the upper generation limits for each 
unit are considered, with the highest ones being chosen and 
added until the load and spinning reserve of each time period 
is met. The number of units that are necessary to consider 
during this simple procedure constitutes a valid lower bound 
for the committed unit at each time period. A similar 
procedure is followed to initialize the upper bounds At

UP, by 
considering the lower generation limits for each unit instead, 
and choosing the lowest among them. Only the allowed 
operating levels for each unit are taken into account to 
compute the initial values of the bounds At

LO and At
UP, while 
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other constraints and even the cost are simply disregarded. 
Applying this analytic procedure, valid bounds are obtained, 
although they are not as tight as they would be if they were 
calculated by solving problems P1 and P2, which would 
require solving 2T convex optimization problems.  

Update of integer cutting planes: Two cuts are updated at 
each node of the search tree. They are selected alternatively as 
the ones corresponding to the time period having the largest 
difference (At

UP -At
LO). This selection criterion is adopted since 

these two cuts are the ones with greatest potential to provide a 
more accurate approximation for the feasible region of the 
MIQP problem. As usual, each new node inherits its parent’s 
updated cuts. If either P1 or P2 become infeasible at a given 
node, then the node is fathomed since it will not contain any 
solution of the MIQP problem that improves the upper bound 
of the objective function costUP at least by ߝabs. Even though 
QP or NLP solvers occasionally declare infeasible a problem 
that is actually feasible, P1 and P2 did not present this 
difficulty and their feasibility was well determined in all cases. 
With the purpose of avoiding incorrect eliminations, this result 
was confirmed with a number of additional tests not reported 
here. Each time infeasibility was detected, it was checked by 
solving a linear problem, where the nonlinear convex cost 
function is replaced by several linear underestimations. It was 
found that in all cases where the NLP problem was declared 
infeasible, the linear problem test confirmed it.  

Branching variable selection: The branching is performed 
over the binary variables, and as usual, two child nodes are 
generated by fixing the selected branching variable at their 
integer values: 0 and 1. The new nodes are added to the 
waiting node list. The branching variable selection is carried 
out by following a priority order that is established for each 
node, according to the current values of the binary variables at 
the relaxed problem optimal solution and the fixed charge 
costs. Firstly, the time period to perform the branching is 
chosen as the first having at least one unit with a non integer 
value. Next, the unit is selected among the ones having non-
integer value for the chosen time period at the relaxed 
solution, as the one with largest fixed charge cost: ai. The 
criterion adopted to select the time period of the branching 
variable among the first ones of the time horizon is based on 
the observation that this choice could allow subsequent 
periods for the chosen unit to be determined. In fact, if the 
branching is performed on a variable whose value of the 
associated unit for the previous period was already fixed at the 
current node, then in one of the two new child nodes, not only 
the state of the unit in the branching period will be fixed, but 
also the states of the unit in as many subsequent periods as the 
unit minimum up or down time dictates. On the other hand, 
the unit for the branching is chosen according to the values of 
the charge cost. This is due to the significant influence these 
terms exert on the final operating cost, considering that the 
branching might determine the startup of the unit at the chosen 
period in one of the child nodes. 

Lower bounding: The lower bound of the global objective 
function is computed at each node by solving the relaxed 
problem. In case of branching, each new node will inherit its 

parent’s lower bound until the node itself is analyzed. The 
natural criterion for choosing the next node to be analyzed 
from the waiting list is also adopted here, namely the node 
with lowest lower bound. However, the relaxed problem is 
solved requiring that the cost be decreased by at least ߝabs, i.e. 
the upper bound (costUP- ߝabs) is imposed on the objective 
variable. Even though this bound does not affect the minimum 
reached by the relaxed problem, this problem could become 
infeasible because the current node might not contain any 
solution of the MIQP problem that meets such requirement 
and the node will be eliminated. This is equivalent to 
eliminating all nodes whose lower bound is greater than 
(costUP- ߝabs).  

It should be noted that for the technique proposed here it is 
not necessary to solve the relaxed problem at each node. In 
fact, since the feasible region of the relaxed problem is the 
same as that of P1 and P2, the feasibility of the relaxed 
problem can be determined when the cuts are updated. In this 
way, solving the relaxed problem can be avoided, which saves 
on execution time. In this case, neither the lower bound for 
each node would be known, nor the global one. This does not 
affect the stopping criterion of the algorithm nor its 
convergence. In effect, the tolerance for global optimality is 
achieved when there are no nodes on the waiting list, i.e., after 
all generated nodes have been discarded ensuring that the 
relaxed problem is infeasible to improve the upper bound at 
least by ߝabs. In this case, the criterion for selecting a node 
from the waiting list to continue the search should be different, 
since the lower bound for each node is no longer available. 
However, since the algorithm has shown to have modest 
execution times even when the relaxed problem is solved at 
each iteration, this variant was not implemented. 

Upper bounding: The initial upper bound is calculated after 
solving the relaxed problem. According to the obtained 
solution, the binary variables that are close to 0 or 1 are fixed 
at the corresponding value. Thus, the number of binary 
variables to optimize is considerably reduced. Then, a local 
search is carried out by optimizing the binary variables that 
are still free and the continuous ones. By implementing this 
procedure, good initial solutions can be obtained with a low 
computational requirement.  

With the aim of improving the upper bound in the branch-
and-cut tree, a local search is carried out in those nodes whose 
depth is multiple of a pre-specified integer number. In order to 
prevent spending too much computational time, a reasonable 
limit of time is imposed for the local search. As it was 
mentioned before, in case that a better solution of the original 
MIQP problem is found, all cuts are updated using the new 
upper bound.  

 
The general steps of the proposed branch are cut are shown 

in Fig. 1, where RP denotes the relaxed problem, and sd is the 
search depth, i.e. an integer number for choosing the nodes 
where a restricted local search will be performed.  
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Fig.1. Branch and Cut scheme. 

 
In the second part of this two-paper series [32], the 

efficiency of the proposed integer cutting planes will be 
illustrated. Then, the proposed optimization approach will be  
implemented to solve two thermal unit commitment case 
studies widely used in the literature as a test bed for different 
methodologies.  

V.  CONCLUSIONS 

In this two-series paper, a deterministic optimization 
approach for solving the SCUC problem is proposed. Firstly, 
in this first part, the MIQP model representing the generation 
and distribution of electric power with thermal generating 
units is formulated. The model takes into account all the 
constraints of the system, units and demand. The objective 
function to be minimized is the operational cost. The model 
includes binary variables associated to the status of each unit 
at each time period.  

The proposed optimization approach consists of a Branch-
and-Cut search. Suitable integer cutting planes, specific for the 
SCUC problem, were developed. Unlike other integer cutting 
planes, the ones proposed here can be implemented by initially 
adding only T variables and T linear constraints to the relaxed 
problem. In order to tighten the cut approximation, the bounds 
of the added variables are suitably adjusted by solving two 
Quadratic Programming models for each time period. The 
performance of the proposed cuts are properly exemplified in 
the companion paper [32]. The examples showed that the cuts 
are highly efficient for reducing the relaxation gap. 

A particular implementation of the general Branch-and-
Bound framework was proposed for the SCUC problem. 

Specifically, criteria for updating the integer cutting planes 
and selection of branching variables were defined.  

In the second part of this two-paper series, the performance 
of the proposed methodology in solving the MIQP are tested 
with two case studies and their variants, which are widely 
addressed in the literature as test problems.  

The proposed B&C search tackles a very complex problem 
and unlike most of the methodologies presented in the 
literature that address the SCUC problem, it offers guarantee 
of global optimality within a specified tolerance. Furthermore, 
as it can be seen from the results of  the companion paper [32], 
the computational requirements of the B&C approach remain 
at an acceptable level for the case studies addressed. 
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