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Abstract 
This paper presents a novel MILP-based method that addresses the simultaneous optimization of the 

off-line blending and the short-term scheduling problem in oil-refinery applications. Depending on the 

problem characteristics as well as the required flexibility in the solution, the model can be based on either a 

discrete or a continuous-time domain representation. In order to preserve the model’s linearity, an iterative 

procedure is proposed to effectively deal with non-linear gasoline properties and variable recipes for 

different product grades. Thus, the solution of a very complex MINLP formulation is replaced by a 

sequential MILP approximation. Instead of predefining fixed component concentrations for products, 

preferred blend recipes can be forced to apply whenever it is possible. The proposed optimization approach 

is oriented towards providing an effective and integrated solution for the blending and the scheduling of 

large-scale problems. In order to provide convenient solutions for all circumstances, different alternatives 

for coping with infeasible problems are presented. The new method is illustrated by solving several real 

world problems with very low computational requirements.  

 

1. INTRODUCTION 
The main objective in oil refining is to convert a wide variety of crude oils into valuable final products 

such as gasoline, jet fuel and diesel. The short-term blending and scheduling are critical aspects in this 

large and complex process. The economic and operability benefits associated with obtaining better-quality 
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and less expensive blends, and at the same time making a more effective use of the available resources over 

time, are numerous and significant. A wide variety of mathematical programming techniques have been 

extensively used for long-term planning as well as the short-term scheduling of refinery operations.  

For planning problems, most of the computational tools have been based on successive linear 

programming models, such as RPMS from Honeywell, Hi-Spec Solutions (Bonner and Moore, 1979) and 

PIMS from Aspen Technology (Betchel Corp., 1993). On the other hand, scheduling problems have been 

addressed through linear and non-linear mathematical approaches that make use of binary variables (MILP 

and MINLP codes) to explicitly model the discrete decisions to be made (Grossmann et al., 2002; Shah, 

1998). Short-term scheduling problems have been mainly studied for batch plants. Extensive reviews can 

be found in Reklaitis (1992), Pinto and Grossmann (1998), Kallrath (2003) and, Floudas and Lin (2004). 

Much less work has been devoted to continuous plants. Lee et al. (1996) addressed the short-term 

scheduling problem for the crude-oil inventory management problem. Nonlinearities of mixing tasks were 

reformulated into linear inequalities with which the original MINLP model was converted to a MILP 

formulation that can be solved to global optimality. This exact linear reformulation was possible because 

only mixing operations were considered (see Quesada and Grossmann, 1995). The objective function was 

the minimization of the total operating cost, which comprises waiting time cost of each vessel in the sea, 

unloading cost for crude vessels, inventory cost and changeover cost. Several examples were solved to 

highlight the computational performance of the proposed model. Moro et al. (1998) developed a mixed-

integer nonlinear programming planning model for refinery production. The model assumes that a general 

refinery is composed of a number of processing units producing a variety of input/output streams with 

different properties, which can be blended to satisfy different specifications of diesel oil demands. Each 

unit belonging to the refinery is defined as a continuous processing element that transforms the input 

streams into several products. The general model of a typical unit is represented by a set of variables such 

as feed flowrates, feed properties, operating variables, product flowrates and product properties. The main 

objective is to maximize the total profit of the refinery, taking into consideration sales revenue, feed costs 

and the total operating cost.  Kelly and Mann (2002) highlight the importance of optimizing the scheduling 

of an oil-refinery’s crude-oil feedstock from the receipt to the charging of the pipestills. The use of 

successive linear programming (SLP) was proposed for solving the quality issue in this problem. More 

recently, Kelly (2004) analyzed the underlying mathematical modeling of complex nonlinear formulations 

for planning models of semi-continuous facilities where the optimal operation of petroleum refineries and 

petrochemical plants was mainly addressed. 
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In addition, the off-line blending problem, also known as blend planning has been addressed through 

several optimization tools. The main purpose here is to find the best way of mixing different intermediate 

products from the refinery and some additives in order to minimize the blending cost subject to meeting the 

quality and demand requirements of the final products. The term quality refers to meeting given product 

specifications. Rigby et al. (1995) discussed successful implementation of decision support systems for off-

line multi-period blending problems at Texaco. Commercial applications such as Aspen BlendTM from 

AspenTech are also available for dealing with online blending optimization problems. Since these software 

packages are restricted to solving the blending problem, resource and temporal decisions must be made a 

priori either manually or by using a special method.  

To solve both sub-problems simultaneously, Glismann and Gruhn (2001) proposed a two-level 

optimization approach where a nonlinear model is used for the recipe optimization whereas a mixed-

integer linear model (MILP) is utilized for the scheduling problem. The proposed decomposition technique 

for the entire optimization problem is based on solving first the nonlinear model aiming at generating the 

optimal solution of the blending problem, which is then incorporated into the MILP scheduling model as 

fixed decisions for optimizing only resource and temporal aspects. In this way, the solution of a large 

MINLP model is replaced by sequential NLP and MILP models. Jia and Ierapetritou (2003) proposed a 

solution strategy based on decomposing the overall refinery problem in three subsystems: (a) the crude-oil 

unloading and blending, (b) the production unit operations, and (c) the product blending and delivery (see 

Figure 1). The first sub-problem involves the crude oil unloading from vessels, its transfer to storage tanks 

and the charging schedule for each crude oil mixture to the distillation units. The second sub-problem 

consists of the production unit scheduling, which includes both fractionation and reaction processes. 

Reactions sections alter the molecular structure of hydrocarbons, in general to improve octane number, 

whereas fractionation sections separate the reactor effluent into streams of different properties and values. 

Lastly, the third sub-problem is related to the scheduling, blending, storage and delivery of final products. 

In order to solve each one of these sub-problems in the most efficient way, a set of mixed-integer linear 

models (MILPs) were developed, which take into account the main features and difficulties of each case. In 

particular, fixed product recipes were assumed in the third sub-problem, which means that blending 

decisions were not incorporated into this model. The MILP formulation was based on a continuous time 

representation and on the notion of event points. The mathematical formulation proposed to solve each 

sub-problem involves material balance constraints, capacity constraints, sequence constraints, allocation 

constraints, demand constraints, and a specific objective function. Continuous variables are defined to 
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represent flowrates as well as starting and ending times of processing tasks. Binary variables are 

principally related to allocation decisions of tasks to event points, or to some specific aspect of each sub-

problem.  

              
Figure 1.  Illustration of a standard refinery system 

 

From the above review it can be seen that a variety of mathematical programming approaches are 

currently available to the short-term blending and scheduling problem. However, in order to reduce the 

inherent problem difficulty, most of them rely on special assumptions that generally make the solution 

inefficient or unrealistic for real world cases. Some of the common assumptions are: (a) fixed recipes for 

different product grades are predefined, (b) component and product flowrates are known and constant, and 

(c) all product properties are assumed to be linear. On the other hand, more general Mixed-Integer Non-

Linear Programming (MINLP) formulations are capable of considering the majority of the problem 

features. However, as pointed out by several authors solving logistics and quality aspects for large-scale 

problems is not possible in a reasonable time with current mixed integer non-linear programming (MINLP) 

codes and global optimization techniques (Kelly et al. 2002 ; Jia et al., 2003). The major issue here is 

related to non-linear and non-convex constraints with which the computational performance strongly 

depends on the initial values and bounds assigned to the model variables. Taking into account the major 

weaknesses of the available mathematical approaches, the major goal of this work is to develop a novel 

iterative mixed-integer linear programming (MILP) formulation for the simultaneous gasoline short-term 

blending and scheduling problem of oil refinery operations, which is generally agreed as being the most 
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important and complex subproblem. Its importance comes from the fact that gasoline can yield 60-70% of 

total refinery’s profit. On the other hand, the complexity arises from the large number of product demands 

and quality specifications for each final product, as well as the limited number of available resources that 

can be used to reach the production goals. Non-linear property specifications based on variable and 

preferred product recipes are effectively handled through the proposed iterative linear procedure, which 

allows the model to generate optimal, or near-optimal solutions with modest computational effort.  

 

2. PROBLEM STATEMENT  
The gasoline short-term blending and scheduling problem takes into account two major issues. The first 

one is related to aspects of production logistics, which mainly involves multiple production demands with 

different due dates, inventory pumping constraints for products and components, as well as different 

logistic and operating rules. Most of these features are part of typical scheduling problems and are usually 

modeled as discrete and continuous decisions in an optimization framework. On the other hand, the second 

issue is the production quality, which represents an additional difficulty for standard scheduling problems. 

This second issue is also known as the off-line blending problem and takes into account variable product 

recipes and property specifications such as minimum octane number, maximum sulfur and aromatic 

content, etc. The main objective is to produce on-spec blends at minimum cost, where product 

specifications are stringent and constantly changing in most of the markets. Product qualities are usually 

predicted through complex correlations that depend on the concentration and the properties of the 

components used in the blend. Depending on the product property, non-linear correlations may include 

linear, bilinear, trilinear and exponential terms. The general process topology corresponds to a multistage 

system composed of component storage tanks, blend headers and product storage tanks. Specifically, we 

assume that we are given the following items:  

 

1) A predefined scheduling horizon, typically 7 to 10 days. 

2) A set of intermediate products from the refinery (components). 

3) A set of dedicated storage tanks with minimum and maximum capacity restrictions. 

4) Initial stocks for components. 

5) Component supplies with known flowrates. 

6) Properties or qualities for components. 

7) Minimum and maximum flowrates between component tanks and blend headers. 
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8) A set of final products with predefined minimum and maximum quality specifications.  

9) A set of equivalent blend headers working in parallel that can be allocated to each final product.  

10) A set of correlations, mostly non-linear, for predicting the values of properties of each blend. 

11) Minimum and maximum component concentrations in final products. 

12) Preferred product recipes.  

 

The goal is to determine: 

a) The allocation of blenders to final products  

b) The inventory levels of components and products in storage tanks 

c) The volume fraction of components included in each product  

d) The total volume of each product  

e) The pumping rates for components and products 

f) The optimal timing decisions for production and storage tasks  

 

The objective is to maximize the production profit while satisfying the process constraints, final 

product demands and quality specifications. The objective function includes the total product value, the 

raw material cost, inventory cost and penalties for deviation from preferred recipes. Additional terms 

involving slack variables for handling infeasible solutions can also be incorporated into the objective 

function to provide effective solutions for all circumstances. The next section describes a simultaneous 

optimization approach for the blending and scheduling operations involved in this problem.  

 

3. PROPOSED OPTIMIZATION APPROACH  
The main features of the proposed approach can be summarized as follows:  

 

• A multiperiod optimization model is used that is able to deal with multiple product demands with 

different due dates and quality specifications.  

• Discrete or continuous time domain representations can be used, depending on the problem 

characteristics. The term “time slot” is used in this paper to represent a time interval with known 

duration and position for discrete time, and unknown duration and position for continuous time.  

•  Linear approximations are used together with an iterative procedure to get better predictions of all 

product properties, even those naturally non-linear such as the octane number.  
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• The production logistics and quality specifications are solved simultaneously.  

• Fixed or variable product recipes are specified, as well as minimum and maximum limits on component 

concentration.  

• Binary variables are used to represent allocation decisions, as well as any other logistic or production 

rule found in the problem. 

 

In order to describe the main model variables, Figure 2 illustrates a simple example of a gasoline 

blending and scheduling problem, which has traditionally been treated as two separate problems. The 

solution of the scheduling problem defines the way in which the products are processed with respect to 

time and available equipment. On the other hand, the solution of the blending problem defines how the 

available components are blended or mixed together to produce on-spec products with minimum cost.  

 

        
Figure 2. Illustration of the meaning of the principal model variables 
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each time slot t. Additional continuous and discrete variables can be included into the mathematical model 

to tackle particular problem characteristics and operating constraints.  

 

4. OFF-LINE BLENDING PROBLEM 
 

Before describing the proposed MILP formulation, we present in this section the main features of the 

iterative scheme for predicting product properties for the blending problem.  

 

A significant number of gasoline properties can be directly computed by using a volumetric average as 

shown in equation (1),   

 

tkpvprPR I
tpi

i
kitkp ,,                     ,,,,, ∀=∑                                (1) 

 

where vI
i,p,t is the volume fraction of component i in product p in time slot t, PRp,k,t defines the exact value 

of the property k for product p in time slot t and pri,k is the value of the property k for component i. The 

volume fraction variable vI
i,p,t is linked to the volumetric flowrate variables FI

i,p,t and FP
p,t through the non-

linear equality (2),  

 

tkpFFv I
tpi

P
tp

I
tpi ,,                     ,,,,, ∀=                    (2) 

 

Taking into account that volumetric flowrate variables are required to control inventory levels in tanks 

and volume fraction variables are needed to predict product properties, the general mathematical model for 

the integrated blending and scheduling problem comprises a set of constraints with bilinear terms, even if 

only linear product properties are considered. In order to preserve the linearity of the model, the original 

equality (1) can be expressed in an alternative way by multiplying it by FP
p,t 

 

tkpFvprFPR P
tp

I
tpi

i
ki

P
tptkp ,,                     ,,,,,,, ∀=∑                                 (3) 

 

Then, equality (2) can be incorporated into equation (3), yielding the equation (4)  
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tkpFprFPR I
tpi

i
ki

P
tptkp ,,                     ,,,,,, ∀=∑                                    (4) 

 

Subsequently, taking advantage of minimum and maximum product property specifications, constraint 

(4) can be replaced by constraint (5), in which the variable PRp,k,t is substituted by their respective 

minimum and maximum property values (prmin
p,k ; prmax

p,k ), which are known problem data.  

 

tkpFprFprFpr P
tpkp

I
tpi

i
ki

P
tpp,k ,,                     ,

max
,,,,,

min ∀≤≤ ∑                    (5) 

 

In this way, the variable vI
i,p,t is no longer required and the model remains linear. This linearization is 

valid only if properties computed volumetrically are considered in the blending problem. However, other 

gasoline properties can be approximated by adding minor changes to the previous equation. For instance, if 

the correlation for predicting a particular product property is based on a linear volumetric average plus 

additional non-linear terms, such as the case of the octane number, the non-linear part of the equation can 

be removed and replaced by a correction factor biasp,k,t , as shown in equation (6), 

 

tkpFbiasFprFprFbiasFpr P
tptkp

P
tpkp

I
tpi

i
ki

P
tptkp

P
tpp,k ,,                        ,,,,

max
,,,,,,,,

min ∀+≤≤+ ∑                 (6) 

 

Thus, nonlinear product properties can be approximated through the linear equation (6), which is 

composed of a volumetric average followed by a correction factor ‘bias’. As can be seen, this correction 

factor depends on the product, property and time slot, and it is iteratively calculated by using the procedure 

described below.  

 

On the other hand, it is worth mentioning that some product properties such as oxygen and sulfur 

content are blended gravimetrically, which means that component and product specific gravities are also 

taken into account for the prediction, as shown in equation (7). In this case, sgi and sgp,t define the specific 

gravity of component i and product p in time slot t, respectively. Given that sgp,t is a model variable that is 

not directly computed through the proposed linear approach and with the intention of maintaining the 

model’s linearity, the exact value of sgp,t can be substituted by an approximated specific gravity sgravp,t , 

which can be easily computed through the iterative procedure described below.  
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Therefore, the proposed linear approximation for gravimetric blending is as follows, 

 

tkpFpr
sgrav

Fsgpr
Fpr P

tpkp
tp

I
tpi

i
ii,k

P
tpkp ,,                   ,

max
,

,

,,

,
min
, ∀≤≤

∑
                                          (8) 

 

To illustrate the use of the iterative procedure and the proposed linear approximation, Figure 3 shows a 

comparison between the values of the linear volumetric average, the nonlinear original correlation and the 

proposed linear approximation for a real nonlinear product property such as the motor octane number. In 

this example, the blend of two components, A and B, is only considered. The final product property is a 

nonlinear function of component concentrations. As shown in Figure 3, if 40% of component A is blended 

with 60% of component B, the values of the volumetric average and the real nonlinear correlation are 88.5 

and 88.74, respectively. This difference arises because all non-linear terms involved in the exact motor 

octane correlation are not included in the linear volumetric average. In order to correct this discrepancy, the 

correction factor bias is calculated and used to yield a better property prediction in the next iteration. For 

this specific mixture of components the correction factor bias is equal to 0.24. The linear approximation 

comprising the volumetric average together with the correction factor bias will always predict the exact 

value of the property if the same component concentration is utilized the next iteration. Furthermore, it was 

observed that the proposed linear approximation tends to predict a very close value of the real property if 

component concentrations are not significantly changed in the next iteration as shown in Figure 3.  
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Figure 3. A non-linear property and the proposed linear approximation 

 

The proposed iterative procedure to solve simultaneously the blending and scheduling problem using 

only linear equations is shown in Figure 4.  The first step is to find an initial recipe for all products. If 

preferred product recipes are known they can be proposed as initial product recipes. Preferred recipes are 

the best alternative for blending because they satisfy all product specifications with minimum cost. 

However, the use of them strongly depends on the scheduling decisions, component inventories and 

product demands and for this reason, they should not be treated as fixed mixtures in a blending tool. On the 

other hand, if preferred recipes are not defined, one possibility for generating initial recipes is to solve the 

LP model including only linear product properties. Once initial recipes are generated, they provide the 

component volume fractions used in each blend, which can then be employed as fixed parameters in more 

realistic non-linear correlations. The value predicted by the non-linear correlation and the linear volumetric 

average are both used to calculate the correction factor ‘bias’ (see Figure 3). Given that we are dealing with 

a multiperiod optimization problem, the correction factor will be calculated for all non-linear properties, 

products and time intervals as the difference between the value predicted by the original non-linear 

equation and the linear volumetric average. The specific gravity of each product and time slot is also 

computed. After that, the LP model is solved that includes linear approximation with the parameter biasp,k,t, 
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for volumetric properties and the parameter sgravp,k,t, for gravimetric properties. The parameter bias will be 

equal to zero for all linear properties that can be computed volumetrically. For nonlinear properties this 

parameter will converge to a nonzero value that reflects the difference with the linear approximation. 

Subsequently, the solution of this problem is updated and the product recipes for those products meeting all 

specifications in a specific time interval are fixed. If different recipes are used for the same product in 

different time intervals, only those that are feasible will be fixed. This process is repeated until all product 

recipes meet the product specifications, i.e. all product recipes are fixed. The main objective of this 

iterative procedure is to progressively find feasible recipes for all products while optimizing all temporal 

and resource constraints in the scheduling problem. The proposed method can be conceptually interpreted 

as a successive LP method for the blending problem or a successive MILP model for the simultaneous 

blending and scheduling problem. Although we have been unable to theoretically prove that the proposed 

method converges to the optimal solution, it will be shown later in the paper that only few iterations are 

needed to get a very good solution for the blending and scheduling problem, which is particularly relevant 

for industrial applications. This has also been confirmed with our experience in solving real world 

problems.   

Generate initial product recipes

Compute non-linear properties (KNL) for all products and time interval
prp,k,t = gk(vi,p,t )      , where gk(vi,p,t ) is a non-linear correlation for predicting

product property k and vi,p,t  is the component volume fraction

Compute correction factor 'bias' and specific gravity  'sgrav'
biasp,k,t = g(vi,p,t ) - f(vi,p,t )   where f(vi,p,t ) is the linear volumetric average

sgravp,t =sgp,t   where sgp,t is the specific gravity of product p in time interval t

Solve LP Model (blending) or
MILP Model  (blending and scheduling)

(include all product properties, biasp,k,t and sgravp,t)

Compute non-linear properties (KNL) for all products and time intervals
prp,k,t = g(vi,p,t )

Fix product recipes for products on-spec

All products
on-spec

YES
Integrated solution for the blending

and scheduling problem

component volume
fractions in blends

component volume
fractions in blends
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Figure 4. Proposed iterative approach for simultaneous blending and scheduling 
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5. INTEGRATED BLENDING AND SCHEDULING MODEL  
A central aspect of any scheduling model is related to timing decisions. Mathematical formulations can 

be based on either a discrete or continuous time domain representation. The discrete time representation 

only allows processing tasks to take place at certain time points, which correspond to the boundaries of a 

set of predefined time slots. The main advantage of using a discrete time grid is that mass balance and 

inventory constraints are easier to handle but at the same time the solution loses flexibility, unless smaller 

time intervals are used, which may significantly decrease the computational performance of the method. In 

contrast, continuous time representations are capable of generating more flexible solutions in terms of 

timing decisions, although with higher CPU time requirements. Also, inventory and mass balance 

constraints are generally more difficult to model since they have to be checked at any time during the 

scheduling horizon in order to ensure that a feasible solution will be generated. Since the best choice of the 

time representation strongly depends on the problem characteristics and the desired solution quality, we 

developed a mathematical formulation for each type of representation assuming a common time grid for all 

resources working in parallel. Before presenting the proposed mathematical models the nomenclature is as 

follows, 

 

Nomenclature  

Indices  

d due dates of product demands 

i intermediates or components 

p final products or gasoline grades  

k properties or qualities 

t time slots 

Sets 

D set of product due dates  

I  set of intermediates to be blended  

P set of demanded final products 

K set of properties for intermediates and products 

KNL set of properties that are predicted with non-linear correlations 

T set of time slots 

Td set of time slots postulated for the sub-interval ending at due date d (continuous time) 
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Parameters 

h time horizon 

nB
t maximum number of blenders that can be working in parallel in time slot t 

st predefined starting time of time slot t  (discrete time representation) 

et predefined ending time of time slot t  (discrete time representation) 

ci cost of component i 

spi penalty cost for inventory of component i  

spp penalty cost for inventory of product p  

pltyR+
ip  penalty cost for excess of component i in product p  

pltyR-
ip penalty cost for shortage of component i in product p 

pltyS+
kp penalty cost for a deviation from the minimum specification for property k in product p 

pltyS-
kp penalty cost for a deviation from the maximum specification for property k in product p 

pltySH
i penalty cost for purchasing component i from third-party 

d demand due date  

ddpd demand of product p to be satisfied at due date d 

lmin
p minimum time slot duration when it is allocated to product p 

pp price of product p 

invi  initial inventory of component i 

invp  initial inventory of product p 

Vmin
i minimum storage capacity of component i  

Vmax
i maximum storage capacity of component i  

Vmin
p minimum storage capacity of product p  

Vmax
p maximum storage capacity of product p  

rcpmin
ip minimum concentration of component i in product p 

rcpmax
ip maximum concentration of component i in product p 

ratemin
p minimum flow rate of product p 

ratemax
p maximum flow rate of product p 

rcpip preferred concentration of component i in product p according to product recipe 

prik value of property k for component i 

prmin
pk minimum value of property k for product p 

prmax
pk maximum value of property k for product p 
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fi constant flowrate of component i  

biasp,k,t correction factor of the value of property k of product p in time slot t 

sgravp,t specific gravity of product p in time slot t 

Variables  

FI
i,p,t amount of component i being transferred to product p during time slot t 

FP
p,t amount of product p being blended during time slot t 

VI
i,t  amount of component i stored at the end of time slot t 

VP
p,t amount of product p stored at the end of time slot t 

vI
i,p,t  volume fraction of component i in product p at time t 

PRp,k,t  exact value of the property k for product p in time t 

St starting time of time slot t (continuous time representation) 

Et ending time of time slot t (continuous time representation) 

Ap,t binary variable denoting that product p is blended in time slot t 

DR-
i,p,t shortage of component i that is used for product p in time slot t according to the preferred  

                  product recipe 

DR+
i,p,t  excess of component i that is used for product p in time slot t according to the preferred product  

                  recipe  

DS-
k,p,t deviation from the minimum specification of property k for product p in time slot t 

DS+
k,p,t  deviation from the maximum specification of property k for product p in time slot t 

Si,t amount of component i to be purchased in time slot t  

 

6. DISCRETE TIME REPRESENTATION 
 

In this section we present an MILP model that assumes that the entire scheduling horizon is divided 

into a finite number of consecutive time slots that are common for all units and can be allocated to different 

products, i.e. blending tasks. The proposed model has the following features: 

 

1. A discrete time domain representation is used where the scheduling horizon is divided into a set of 

consecutive time slots.  

2. Equivalent blenders working in parallel are available for different product grades. 
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3. A particular product demand can be satisfied by one or more time slots whenever they are allocated to 

this product and finished before the product due date. 

4. Variable product recipes are considered and product properties are predicted by linear approximations. 

5. Constant flow rate of components is assumed during the entire scheduling horizon. 

6. Constant flow rate of products is assumed during the allocated time slot.   

 

Model constraints and variables are introduced below.  

 

Allocation constraint 

Constraint (9) defines through the binary variables Ap,t the final products p to be processed in time slot 

t. Given that a set of equivalent blenders are available to produce different gasoline grades simultaneously, 

nB
t specifies the maximum number of units that can be working in parallel during time slot t. 

 

t n A B
t

p
tp ∀≤∑                              ,                       (9) 

 

Product composition constraint 

Every final product or gasoline grade p is a blend of different components i, as expressed by constraint 

(10) 

 

tp F F P
tp

i

I
tpi ,                             ,,, ∀=∑                             (10) 

 

Note that a significant reduction in the number of continuous variables can be obtained if equation (10) 

is deleted from the model and FP
p,t is replaced by  ∑iFI

i,p,t.  However, in order to make the model easier to 

understand, FP
p,t has been included in all model equations.  

 

Minimum/maximum component concentration 

In order to satisfy product qualities and/or market conditions, upper and lower bounds can be forced on 

the component concentration for specific gasoline grades. Then, constraint (11) ensures that product 

composition will always satisfy the predefined component specifications. Parameters rcpi,p
min and rcpi,p

max 

define the minimum/maximum concentration of component i for product p, respectively, 
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It should be noted that a fixed recipe for a particular product p can also be taken into consideration by 

fixing the values of rcpip
min and rcpip

max to the predefined concentration of component i for product p. 

However, the use of fixed recipes should be avoided unless they are the only possibility to produce a 

particular product. As a better option, preferred recipes can be proposed as an initial solution of the 

proposed iterative procedure. In this way, the generation of infeasible solutions will be avoided.   

 

Minimum/maximum volumetric flowrates for products 

Constraint (12) specifies that minimum and maximum volumetric flow rates must be satisfied when 

product p is blended during time slot t. Due to the fact that a constant product flow rate is assumed in this 

work, the volumetric flow rate can be computed by multiplying the upper and lower flowrates by the time 

slot duration whenever product p is allocated to a particular time slot t (Ap,t =1). Moreover, since a discrete 

time representation is used, the time slot duration is a known parameter computed through the predefined 

starting st and ending times et of each time slot t. It should be noted that if product p is not processed during 

time slot t, (Ap,t =0), the volumetric flow rate will be also equal to zero.  
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Material balance equation for components 

Given that a discrete time representation allows the blending tasks to start and finish at the boundaries 

of the time slot allocated, inventory limits have only to be checked at the end of each time slot. Then, as 

expressed by constraint (13), the amount of component i being stored in tank at the end of time slot t is 

equal to the initial inventory of component i plus the component produced up to the end of time slot t  

minus the component transferred to blenders up to the end of time slot t, 
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where inii is the initial inventory of component i at time t=0, the parameter fi specifies the constant 

production rate of component i and et  defines the ending time of time slot t. Given that a discrete time 

representation is used, both parameters are known in advance.  

 

Component storage capacity  

Constraint (14) imposes lower/upper bounds Vi
min and Vi

max on the total amount of component i being 

stored in a storage tank during the scheduling horizon. Given that constant component flowrates are 

assumed, a perfect coordination between the production of components and final products is required to 

satisfy the storage constraints through the entire scheduling horizon. 
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Material balance equation for products 

Constraint (15) computes the amount of product p being stored in tank at the end of time slot t taking 

into account the initial inventory, production and demands of product p  

 

tpddFiniV
td

pd
tt

p
tpp

P
tp ,                        

'
',, ∀−+= ∑∑

≤≤
                                 (15) 

 

Product storage capacity  

A minimum safety stock and a finite storage capacity is assumed for final products  
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Minimum/maximum product qualities 

Assuming that properties are volumetrically computed, constraint (17) guarantees that the value of 

property k for product p in time slot t will always satisfy minimum and maximum product specifications. 

To maintain the model’s linearity, property k is not directly computed and bounds are only imposed on 

each property. Otherwise, non-convex bilinear equations would be generated in the model, which would 

then become non-linear. Although this linearization is only valid for properties volumetrically computed, 

the original equation (17) can be slightly modified as equation (17’) to account for real-world product 
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properties, as described in section 4 with the use of the parameter biasp,k,t. The best value of this parameter 

can be obtained through the proposed iterative procedure. In this way, the MILP mathematical model is 

able to effectively deal with the quality issue, including variable recipes and non-linear properties.  
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In turn, Equation (17’’) defines the proposed linear approximation for those product properties that are 

gravimetrically predicted.  
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Note that constraints (17), (17’) and (17’’) are only required for those gasoline grades that can be 

produced using variable recipes. If a fixed recipe is enforced, product properties must be satisfied in 

advance through the predefined component concentrations. 

 

Multiple product demands 

 

Refinery operations typically require that multiple demands for the same gasoline grade be satisfied 

during the entire scheduling horizon. Constraint (18) denotes that the total amount of product p available at 

the end of time slot t must be enough to satisfy all demands of this particular product.  
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Objective function (Maximize net profit) 

 

While satisfying all quality and logistic issues, the main objective of the scheduling problem is to 

maximize the net profit defined as the total product value minus the total component cost.  
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The formulation can also accommodate alternative objective functions. An example is equation (20), 

where penalties related to component and product inventories has been included in order to also reduce 

storage costs.  
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7. CONTINUOUS TIME REPRESENTATION 
 

The model introduced the previous section is based on a discrete time domain representation. To 

generate more flexible schedules capable of maximizing the plant performance without significantly 

increasing the model size, a continuous time formulation is presented in this section. However, special 

attention must be paid to the limited storage capacity since continuous time representation tends to make 

the modeling of inventory constraints more difficult. The main idea here is first to partition the entire time 

horizon into a predefined number of sub-intervals. The size of each sub-interval will depend on the product 

due dates. For instance, the first sub-interval will start at the beginning of the scheduling horizon and finish 

at the first product due date. The second one will be extended from the first up to the second product due 

date. A similar idea is applied to the next sub-intervals. Then, the number of sub-intervals will be equal to 

the number of product due dates. In this way, the starting and ending time of each sub-interval is known in 

advance.  

Once the sub-intervals are defined, a set of time slots with unknown duration are postulated for each 

one. The number of time slots for each sub-interval will depend on the sub-interval length as well as the 

grade of flexibility desired for the solution. Starting and ending time of time slots will be new continuous 

variables, allowing the production events to happen at any time during the scheduling horizon. Figure 5 

shows a diagram illustrating the main features of the proposed continuous time domain representation. In 

this case, four product demands with different due dates are to be satisfied, which means that 4 sub-

intervals are predefined. Then, nine time slots can be postulated for the entire scheduling horizon, where 
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two time-slots are defined for each one of the first three sub-intervals whereas three are postulated to the 

last one.  

   
Figure 5. Proposed continuous time representation  

 

The proposed model has the following features: 

 

1. A continuous time domain representation is used where the scheduling horizon is divided into sub-

intervals and a set of time slots with unknown duration and position are postulated for each one.  

2. Equivalent blenders working in parallel are available for different product grades 

3. A particular product demand can be satisfied by one or more time slots whenever they are allocated to 

this product and finished before product due date. 

4. Final product properties are based on a volumetric average and a correction factor computed through 

the proposed iterative process. 

5. A constant flow rate of components is assumed during the entire scheduling horizon 

6. A constant flow rate of product is assumed during the allocated time slot.   

 

When the mathematical model is based on a continuous time domain representation, starting and 

ending times for the time slots are new continuous decision variables. For that reason, part of the original 

constraints used for the discrete time representation must be updated in order to maintain the linearity of 

the model as well as to account new problem features. In this section we describe the set of constraints that 

must be modified as well as the new ones to be added. Constraints that are not required to change must be 

included into the model in the same way they were presented in the previous section, such as equations (9), 

(10), (11), (14), (15), (16), (17), (17’), (17’’), (18), (19).  

 

Product 
Due Dates D1 D2 D3 D4 

time 

T1 T2 T3 T4 T5 T6 T7 T8 T9 

SLOTS 
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Minimum/maximum volumetric flowrates for products 

Constraints (12’) and (12’’) replace original constraint (12) when a continuous time representation is 

used. When product p is not allocated to time slot t, the binary variable Ap,t is equal to zero and constraint 

(12’’) enforces the variable FPp,t to be equal to zero as well. On the other hand, Ap,t will be equal to one 

whenever product p is processed during time slot t. In this case, constraint (12’’) becomes redundant and 

constraint (12’) imposes minimum and maximum volumetric flow rates depending on the time slot 

duration.  
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Material balance equation for components 

To ensure that only feasible solutions are generated, the amount of component stored in tank has to be 

checked not only at the end but also at the beginning of each time slot. To make this possible, a new 

variable V’I
i,t is included into the model and the original equation (13) is replaced by constraints (13’) and 

(13’’).  The same idea for computing the inventory of components is applied to these new constraints.  
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Note that despite the fact that Et and St are model variables, both constraints remain linear because a 

constant production rate fi is assumed for the components.   

 

Component storage capacity  

An additional constraint (14’) is required to impose lower/upper bounds Vi
min and Vi

max on the total 

amount of component i being stored in tank at the beginning of time slot t. 
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Material balance equation for products 

Constraint (15’) computes the inventory of product p at the moment of satisfying the production 

demand dp. In this way, a minimum safety stock is guaranteed at any time during the scheduling horizon, 

even after a product delivery is carried out. 
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Constraint (16’) explicitly defines the lower bound on the new inventory variable.  
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Set of time slot timing constraints  

Instead of defining starting and ending times of time slots as fixed parameters, a continuous time 

representation models these decisions as additional continuous variables to be optimized. In order to allow 

more flexible solutions and avoid overlapping time slots, a correct order and sequence between postulated 

time slots must be established through the next set of constraints.  

 

Time slot duration 

Constraint (21) defines a minimum time slot duration when product p is allocated to time slot t. It is 

generally used to model an existing operating condition, but at the same time permits eliminating schedules 

using very short time slots, which are usually inefficient in practice.  
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To ensure that duration of a slot is zero if it is not used, equation (22) is included into the model.  
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Time slot sequencing 

Constraint (23) establishes a sequence between consecutives time slots t and t+1.  
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Sub-interval bounds 

The set Td comprises all time slots that are postulated for a sub-interval related to a particular due date 

d.  This sub-interval begins at the previous due date d-1 and finishes at due date d. Constraint (24) defines 

that time slots pre-allocated to this sub-interval must start after due date d-1 whereas constraints (25) 

imposes that them must end before due date d. The main goal of this assumption is that neither additional 

variables nor new constraints are required to establish which time slots can satisfy a specific product 

demand. As a result, more flexible schedules can be obtained without increasing the complexity of 

inventory constraints. 
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Time slot allocation 

Constraint (26) imposes an order for using the set of predefined time slots. In other words, a time slot 

t+1 can be only allocated to a product p whenever the previous time slot within the same sub-interval  has 

been used. 
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8. TREATMENT OF INFEASIBLE SOLUTIONS 
 

The short-term blending and scheduling of oil refinery operations is a very complex and highly-

constrained problem, where even feasible solutions are difficult to find in most of the cases. For that 

reason, in this section we present an additional set of variables and equations that define penalties that can 

be added to the objective function of the proposed model. These penalties relax some hard problem 

specifications that can generate infeasible solutions when real world problems are addressed.  
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Penalty for preferred recipe deviation 

 If a preferred combination of components is defined for a particular product through the parameter 

rcpip, the following constraints can be included in the model to try to use the desired recipe whenever it is 

possible,  
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where DR+
i,p,t and where DR-

i,p,t define the excess and the shortage of component i that is used in product p 

in time slot t, according to the preferred product recipe. Constraint (29) penalizes the slack variables DR+
i,p,t 

and DR-
i,p,t  in the objective to ensure that deviations from the preferred recipe are minimized  
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Penalty for minimum/maximum specification deviation  

If desired product qualities can not be fully achieved, and at the same time, they can partially be 

violated for certain products, the following constraints can be used in order to minimize the deviation,   
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where the continuous variables DS+
k,p,t and DS-

k,p,t define a value that, in some way, represents the deviation 

from the minimum and maximum specification for property k, respectively. If property k for product p is 

between minimum and maximum specification values, both variables will be equal to zero. The 

corresponding objective penalty terms are shown in Eq. (32) 
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Penalty for intermediate shortage 

A common source of infeasible solutions is the lack of a minimum amount of intermediate required to 

satisfy either predefined component concentrations or certain market specifications. In this case, 

intermediate products can be purchased at higher cost from a third-party. The continuous variable Si,t 

defines the amount of intermediate i needed in time slot t, which  allows to relax minimum inventory 

constraints.  
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The penalty term (34) is directly proportional to the component purchase cost,  
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It should be noted that for the case of infeasible specifications the stopping criterion of the iterative 

procedure should be that the relative change in the bias parameter be less or equal than a specified 

tolerance.  

 

10.  NUMERICAL RESULTS 
   
The proposed discrete and continuous time MILP models can be solved using the iterative procedure 

outlined in Figure 4 for the simultaneous blending and scheduling operations. The performance of the 

proposed MILP-based approach was tested with several real-world examples. The data are shown in Table 

2 and 3. The basis of the example comprises nine intermediate products or components from the refinery 

which can be blended in different ways to satisfy multiple demands of three gasoline grades with different 

specifications over a 8-day scheduling horizon. Twelve key component and product properties are taken 

into consideration for solving the blending problem, where the first eight can be predicted by a linear 

volumetric average whereas the remainder is based on non-linear correlations. All the information about 



27 

components such as cost, constant production rate, initial, minimum and maximum stocks and properties is 

shown in Table 2. Product data including price, requirements, inventory constraints, rate, recipe limits and 

specifications are given in Table 3. Dedicated storage tanks with limited capacities for components and 

products and three equivalent blend headers working in parallel are available in the refinery. The main goal 

is to maximize the total profit, considering component cost, product values and different penalties for 

component shortages and out-spec products.  

Four different examples were solved with the purpose of analyzing the strong interaction between 

blending and scheduling decisions. In order to guarantee that feasible solutions are found, slack variables 

for property deviations and intermediate shortages were included in all cases, which were null for all 

solutions generated. Example 1 is only focused on the blending problem and its solution is used as initial 

product recipes for the other. Examples 2, 3 and 4 are solved using the proposed model with the discrete 

and the continuous time domain representation. When the discrete time representation is used, the 

scheduling horizon is divided into six consecutive time intervals, where intervals 1, 3, 4 and 6 have 1-day 

duration whereas intervals 2 and 5 have 2-day duration. In order to make a direct comparison with the 

continuous time formulation, the time discretization is determined based on the product due dates. For the 

continuous time representation, one time slot with unknown duration is postulated for each one of the six 

subintervals defined by the product due dates.  
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Table 2. Component data 
 Component 
 C1 C2 C3 C4 C5 C6 C7 C8 C9 

Cost ($/bbL) 24.00 20.00 26.00 23.00 24.00 50.00 50.00 50.00 50.00 
Prod. rate (Mbbl/day) 15.00 33.00 20.00 14.00 18.00 10.00 0.00 0.00 0.00 
Initial stock (Mbbl) 48.00 20.00 75.00 22.00 30.00 54.00 12.00 20.00 15.00 
Min. stock (Mbbl) 5.0 5.0 5.0 5.0 5.0 5.0 0.0 0.0 0.0 
Max. stock (Mbbl) 100.00 250.00 250.00 100.00 100.00 100.00 100.00 100.00 100.00 
Property          
P1 93.00 104.00 104.90 94.80 87.40 118.00 87.30 95.20 93.30 
P2 92.10 91.90 91.90 81.50 86.10 100.00 79.50 85.80 81.90 
P3 0.7069 0.8692 0.6167 0.6731 0.6540 0.7460 0.7460 0.8187 0.7339 
P4 3.60 1.00 100.00 94.90 91.50 15.00 0.00 1.30 34.30 
P5 16.30 4.50 100.00 97.10 95.50 100.00 0.00 6.00 57.10 
P6 94.30 93.50 100.00 100.00 100.00 100.00 0.00 93.90 95.90 
P7 35.00 22.70 351.10 117.10 93.00 31.30 63.30 16.00 52.40 
P8 0.007 0.00 0.00 0.009 0.0002 0.05 0.0063 0.1805 0.057 
P9 0.00 88.60 0.00 2.30 0.20 0.00 43.98 65.30 21.30 
P10 0.00 0.1 61.30 48.90 36.00 0.00 1.04 0.60 33.30 
P11 0.00 3.30 0.00 1.10 0.10 0.00 3.33 0.90 0.80 
P12 0.00 0.00 0.00 0.00 0.00 15.40 0.00 0.00 0.00

 

Table 3. Product data  
 Product  
  G1   G2   G3  

Price ($/bbL) 31.00 31.00 31.00 
Requirement(Mbbl) MIN MAX LIFT MIN MAX LIFT MIN MAX LIFT 
Day 1 (Mbbl) 5.00 45.00 10.00 5.00 50.00 12.00 5.00 50.00 10.00 
Day 3 (Mbbl)    5.00 50.00 25.00    
Day 4 (Mbbl) 5.00 45.00 25.00 5.00 50.00 23.00    
Day 5 (Mbbl)          
Day 7 (Mbbl) 5.00 45.00 30.00       
Day 8 (Mbbl) 5.00 45.00 10.00    5.00 50.00 22.00 
Inventory (Mbbl) 5.00 150.00  5.00 150.00  5.00 150.00  
Rate (Mbbl/day) 5.00 45.00  5.00 50.00  5.00 50.00  
Recipe (%) MIN  MAX  MIN MAX MIN MAX 
C1 0.00 22.00 0.00 25.00 0.00 25.00 
C2 0.00 20.00 0.00 24.00 0.00 24.00 
C3 2.00 10.00 0.00 10.00 0.00 10.00 
C4 0.00 6.00 0.00 23.00 0.00 23.00 
C5 0.00 25.00 0.00 25.00 0.00 25.00 
C6 0.00 10.00 0.00 10.00 0.00 10.00 
C7 0.00 100.00 0.00 0.00 0.00 0.00 
C8 0.00 100.00 0.00 0.00 0.00 0.00 
C9 0.00 100.00 0.00 0.00 0.00 0.00 
Specifications MIN  MAX  MIN MAX MIN MAX 
P1 95.00  98.00  98.00  
P2 85.00  88.00  88.00  
P3 0.72 0.775 0.72 0.775 0.72 0.775 
P4 20.00 50.00 20.00 48.00 22.00 50.00 
P5 46.00 71.00 46.00 71.00 46.00 71.00 
P6 85.00  85.00  85.00  
P7 45.00 60.00 45.00 60.00 60.00 90.00 
P8  0.015  0.015  0.008 
P9  42.00  42.00  42.00 
P10  18.00  18.00  18.00 
P11  1.00  1.00  1.00 
P12  2.70  2.70  2.70 
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10.1. Example 1 (Blending problem) 

Example 1 deals with a single-period blending problem of three products (G1, G2, G3). The main goal 

is to find the best or ‘preferred’ recipe for each product that minimizes blend cost and simultaneously 

satisfies all quality specifications. Preferred recipes are proposed as the initial blends for the subsequent 

integrated blending and scheduling examples. For this particular problem, temporal, inventory and resource 

constraints coming from the scheduling problem are disregarded by assuming that enough resources, 

component stocks and time are available as needed to produce 1 Mbbl of each product once. In this way 

only a pure blending problem is taking into consideration. Component cost and properties, variable recipe 

limits and stringent product specifications are the central features to be considered for solving Example 1, 

where it is assumed that all scheduling decisions are made a priori. The proposed LP-based iterative 

procedure was used to find preferred recipes for all required products. As reported in Table 14 in Section 

11 on computational results, the problem involves 81 constraints and 127 continuous variables and its 

solution was found in 0.13 s. In this case, initial product recipes were generated taking into account only 

linear product properties. Then the iterative procedure was performed to update the initial recipes with the 

purpose of satisfying all product specifications. Preferred recipes for products G2 and G3 were found by 

executing just one iteration of the proposed procedure, whereas an additional iteration was needed to 

satisfy all specifications for product G1, since the maximum specification for property P8 was violated 

both in the initial recipe as in the first iteration (see Table 4). In order to generate feasible recipes, 

component concentrations for each product were updated by the LP model in each iteration, which 

gradually increased the blend cost. The recipe evolution for product G1 in terms of component 

concentration is presented in detail in Figure 5. Blend cost and product properties associated to each recipe 

are shown in Table 4. In addition to the exact values for each property predicted by nonlinear correlations, 

the approximations predicted by the proposed linear functions are also presented in Table 4. It should be 

noted that predictions of nonlinear properties tend to improve when the number of iterations is increased. 

Finally, best product recipes and ‘bias’ factors for all products are reported in Table 5.  
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Figure 5. Convergence to preferred recipe for product G1 (iterative procedure) 

 

 

 

Table 4. Iterative blending problem for product G1 
 Min. 

Spec. 
Initial recipe Iteration 1 Iteration 2 Max 

Spec. 
Blend cost ($/bbL)  29.30 29.97 29.99  
Quality  Value Value Approx.  Value Approx.  
P1 95.00 97.891 97.898 97.7737 97.893 97.8928  
P2 85.00 88.417 88.470 88.0493 88.438 88.4335  
P3 0.72 0.7418 0.7325  0.7324  0.775 
P4 20.00 34.455 35.418  35.409  50.00 
P5 46.00 46.00 50.80  50.833  71.00 
P6 85.00 96.460 91.797  91.780   
P7 45.00 60.00 60.00  60.00  60.00 
P8  0.0378 0.0152 0.0150 0.0150 0.0150 0.015 
P9  28.458 22.974  22.923  42.00 
P10  14.256 15.974  16.005  18.00 
P11  0.8964 1.00  1.00  1.00 
P12  1.1223 1.5684 1.5488 1.5687 1.5684 2.70 
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Table 5. Preferred product recipes  
 Product 
  G1   G2   G3  

Blend cost ($/bbL) 29.99 25.28 24.98 
Recipe (%)    
C1 22.00 25.00 25.00 
C2 20.00 23.947 24.00 
C3 2.00 16.794 1.372 
C4 4.847 25.00 16.636 
C5 25.00 9.259 25.00 
C6 10.00  7.992 
C7 5.198   
C8 0.958   
C9 9.997   
Quality    
P1 97.893 (bias =1.527) 98.4122 (bias = 1.5611) 98.2214 (bias=1.5208) 
P2 88.438 (bias = -0.659) 88.4594 (bias = -1.0439) 88.3310 (bias=-1.0861) 
P3 0.7324 0.7305 0.7289 
P4 35.409 41.3410 42.3734 
P5 50.833 54.5932 54.5475 
P6 91.780 97.0184 97.0150 
P7 60.00 60.00 64.2465 
P8 0.0150  0.0079 0.0072 
P9 22.923 21.6536 21.6966 
P10 16.005 17.2363 18.00 
P11 1.00 1.00 1.00 
P12 1.5687 1.4561 1.2597 

 

 

10.2. Example 2 (Blending and scheduling with limited production) 

In Example 2 preferred product recipes found in Example 1 were used as the initial solution for the 

proposed iterative MILP-based procedure. Despite using linear approximations, the proposed MILP model 

was capable of finding in just one iteration the same solution generated by nonlinear optimization tools. 

However, although the discrete and continuous time representations obtained the same profit in terms of 

component cost and product value (1,611,210 $), the continuous time representation is able to find a 

schedule that operates the blenders at full capacity for 2.67 days less than the discrete time representation, 

which can significantly reduce the total operating cost. Product schedules based on a discrete and 

continuous time representation are reported in Tables 6 and 7, respectively. Gantt charts and inventory 

evolution of components for both discrete and continuous time representations are shown in Figure 6. As 

shown in Table 14, the discrete time formulation involves 679 constraints, 9 binary variables, and 757 

continuous variables. The continuous time formulation comprises 832 constraints, 9 binary variables, and 

841 continuous variables. Both models were solved in 0.26 s. 
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Table 6. Product schedule (Example 2 - discrete time representation) 
Product Period Start End Prod Lift Inventory 

G1 T1 0.00 1.00 15.02 10.00 5.02 
 T2 1.00 3.00 0.00 0.00 5.02 
 T3 3.00 4.00 45.00 25.00 25.02 
 T4 4.00 5.00 0.00 0.00 25.02 
 T5 5.00 7.00 45.00 30.00 40.02 
 T6 7.00 8.00 45.00 10.00 75.02 

G2 T1 0.00 1.00 50.00 12.00 38.00 
 T2 1.00 3.00 50.00 25.00 63.00 
 T3 3.00 4.00 50.00 23.00 90.00 
 T4 4.00 5.00 0.00 0.00 90.00 
 T5 5.00 7.00 0.00 0.00 90.00 
 T6 7.00 8.00 0.00 0.00 90.00 

G3 T1 0.00 1.00 50.00 10.00 40.00 
 T2 1.00 3.00 0.00 0.00 40.00 
 T3 3.00 4.00 0.00 0.00 40.00 
 T4 4.00 5.00 0.00 0.00 40.00 
 T5 5.00 7.00 0.00 0.00 40.00 
 T6 7.00 8.00 50.00 22.00 68.00 

 

Table 7. Product schedule (Example 2 - continuous time representation) 
Product Period Start End Prod Lift Inventory 

G1         T1       0.00       1.00      45.00      10.00      35.00 
         T2       1.00       2.00       0.00       0.00      35.00 
         T3       3.00       4.00      45.00      25.00      55.00 
         T4       4.00       5.00       0.00      25.00      55.00 
         T5       5.00       5.33      15.02       0.00      40.02 
         T6       7.00       8.00      45.00      10.00      75.02 

G2         T1       0.00       1.00      50.00      12.00      38.00 
         T2       1.00       2.00      50.00       0.00      63.00 
         T3       3.00       4.00      50.00      23.00      90.00 
         T4       4.00       5.00       0.00      23.00      90.00 
         T5       5.00       5.33       0.00       0.00      90.00 
         T6       7.00       8.00       0.00       0.00      90.00 

G3         T1       0.00       1.00      50.00      10.00      40.00 
         T2       1.00       2.00       0.00       0.00      40.00 
         T3       3.00       4.00       0.00       0.00      40.00 
         T4       4.00       5.00       0.00       0.00      40.00 
         T5       5.00       5.33       0.00       0.00      40.00 
         T6       7.00       8.00      50.00      22.00      68.00 
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Figure 6. Gantt charts and evolution of component stocks (Example 2) 

 

10.3. Example 3 (Blending and scheduling with flexible production)  

This example evaluates in Example 2 the effect of predefining minimum and maximum requirements 

for each time interval. In this way the amount to be produced in each time interval becomes a model 

variable only restricted by minimum and maximum production rates. The amount of product to be lifted at 

specific due dates is still a hard constraint to be satisfied. This modification allows the model to increase 

the total production by almost 36%, i.e. from 400.02 Mbbl to 542.02 Mbbl, which represents increasing the 

total profit to 2,448,050 ($), which is almost 52% increase (see Table 13). Preferred product recipes are 

used for all products and one iteration is only executed. Product schedules based on a discrete and 

continuous time representation are shown in Tables 8 and 9, respectively. In this example we note that the 

continuous time representation needs 2.60 days less of total operating time to reach the same production 
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level as the discrete time model. Figure 7 shows Gantt-charts and evolution of component stock for 

Example 3. The discrete time formulation comprises 679 constraints, 18 binary variables, and 757 

continuous variables and its solution was found in 0.23 s. The continuous time formulation comprises 832 

constraints, 18 binary variables, and 841 continuous variables and its solution was generated in 0.26 s. (see 

Table 14). 

 

 

Table 8. Product schedule (Example 3 - discrete time representation) 
Product Period Start End Prod Lift Inventory 

G1         T1       0.00       1.00      45.00      10.00      35.00 
         T2       1.00       3.00      60.02       0.00      95.02 
         T3       3.00       4.00       0.00      25.00      70.02 
         T4       4.00       5.00       0.00       0.00      70.02 
         T5       5.00       7.00       0.00      30.00      40.02 
         T6       7.00       8.00      45.00      10.00      75.02 

G2         T1       0.00       1.00      50.00      12.00      38.00 
         T2       1.00       3.00       0.00      25.00      13.00 
         T3       3.00       4.00      50.00      23.00      40.00 
         T4       4.00       5.00       0.00       0.00      40.00 
         T5       5.00       7.00      60.00       0.00     100.00 
         T6       7.00       8.00      50.00       0.00     150.00 

G3         T1       0.00       1.00      50.00      10.00      40.00 
         T2       1.00       3.00      72.00       0.00     112.00 
         T3       3.00       4.00       0.00       0.00     112.00 
         T4       4.00       5.00       0.00       0.00     112.00 
         T5       5.00       7.00      10.00       0.00     122.00 
         T6       7.00       8.00      50.00      22.00     150.00 

 

 

 

Table 9. Product schedule (Example 3 - continuous time representation) 
Product Period Start End Prod Lift Inventory 

G1         T1       0.00       1.00      45.00      10.00      35.00 
         T2       2.80       3.00       9.00      10.00      44.00 
         T3       3.00       4.00      45.00      35.00      64.00 
         T4       4.00       4.80       4.00      35.00      68.00 
         T5       6.80       7.00       9.00      65.00      47.00 
         T6       7.00       8.00      38.02      75.00      75.02 

G2         T1       0.00       1.00      50.00      12.00      38.00 
         T2       2.80       3.00      10.00      37.00      23.00 
         T3       3.00       4.00      50.00      60.00      50.00 
         T4       4.00       4.80      40.00      60.00      90.00 
         T5       6.80       7.00      10.00      60.00     100.00 
         T6       7.00       8.00      50.00      60.00     150.00 

G3         T1       0.00       1.00      50.00      10.00      40.00 
         T2       2.80       3.00       0.00      10.00      40.00 
         T3       3.00       4.00      50.00      10.00      90.00 
         T4       4.00       4.80      40.00      10.00     130.00 
         T5       6.80       7.00      10.00      10.00     140.00 
         T6       7.00       8.00      32.00      32.00     150.00 
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Figure 7. Gantt charts and evolution of component stocks (Example 3) 

 

10.4. Example 4 (full re-blending and re-scheduling with limited production) 

Finally, this example deals with a modified version of the original Example 2 where the following 

changes are introduced: (1) Properties P1 and P2 are decreased by 1 for components C1, C2, C3 and C6, 

(2) the price of G3 is increased to 31.05 $/bbl, (3) component cost is increased to 27 $/bbl and 23 $/bbl for 

C1 and C2 and (4) production rates for C1 and C2 are reduced to 13 Mbbl/day and 31 Mbbl/day 

respectively.  All other data remain as in the original example. The main goal here is to analyze the effect 

of these changes in the blending and scheduling decisions. Detailed product schedules for discrete and 

continuous time representations for Example 4 are shown in Tables 10 and 11, respectively. Regarding the 

blending decisions, preferred recipes found in Example 1 are proposed as the initial solution. However, 

they have to be updated because some preferred recipes become infeasible because of the modifications 

introduced. Only one iteration is required to modify the infeasible recipes related to products G2 and G3. 
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Original preferred and updated recipes for these products are compared in Table 12. As shown, the new 

recipes satisfy all product specifications but at the same time, updated component concentrations increase 

the blending cost with which the profit is reduced from $2,448,050 to 1,234,490 ($). This difference mainly 

arises because component costs were increased and octane numbers were reduced. It should be noted that 

key properties such P1 and P2 are satisfied with a very small margin, which means that quality giveaway is 

also minimized through the proposed method. Computational requirements for this example are 

summarized in Table 14.  

 

Table 10. Product schedule (Example 4 - discrete time representation) 
Product Period Start End Prod Lift Inventory 

G1         T1       0.00       1.00      45.00      10.00      35.00 
         T2       1.00       3.00       0.00       0.00      35.00 
         T3       3.00       4.00       5.00      25.00      15.00 
         T4       4.00       5.00       0.00       0.00      15.00 
         T5       5.00       7.00      20.00      30.00       5.00 
         T6       7.00       8.00      10.00      10.00       5.00 

G2         T1       0.00       1.00      50.00      12.00      38.00 
         T2       1.00       3.00     100.00      25.00     113.00 
         T3       3.00       4.00      50.00      23.00     140.00 
         T4       4.00       5.00       0.00       0.00     140.00 
         T5       5.00       7.00       0.00       0.00     140.00 
         T6       7.00       8.00       0.00       0.00     140.00 

G3         T1       0.00       1.00      50.00      10.00      40.00 
         T2       1.00       3.00       0.00       0.00      40.00 
         T3       3.00       4.00       0.00       0.00      40.00 
         T4       4.00       5.00       0.00       0.00      40.00 
         T5       5.00       7.00       0.00       0.00      40.00 
         T6       7.00       8.00      50.00      22.00      68.00 

 

Table 11. Product schedule (Example 4 - continuous time representation) 
Product Period Start End Prod Lift Inventory 

G1         T1       0.00       1.00      16.00      10.00       6.00 
         T2       1.00       3.00       0.00      10.00       6.00 
         T3       3.00       4.00      45.00      35.00      26.00 
         T4       4.00       5.00       0.00      35.00      26.00 
         T5       5.00       5.20       9.00      35.00       5.00 
         T6       7.00       8.00      10.00      75.00       5.00 

G2         T1       0.00       1.00      50.00      12.00      38.00 
         T2       1.00       3.00     100.00      37.00     113.00 
         T3       3.00       4.00      50.00      60.00     140.00 
         T4       4.00       5.00       0.00      60.00     140.00 
         T5       5.00       5.20       0.00      60.00     140.00 
         T6       7.00       8.00       0.00      60.00     140.00 

G3         T1       0.00       1.00      50.00      10.00      40.00 
         T2       1.00       3.00       0.00      10.00      40.00 
         T3       3.00       4.00       0.00      10.00      40.00 
         T4       4.00       5.00       0.00      10.00      40.00 
         T5       5.00       5.20       0.00      10.00      40.00 
         T6       7.00       8.00      50.00      32.00      68.00 
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Table 12. Updated product recipes (Example 4) 
 Product 
  G2  G3  

  Preferred Updated Preferred Updated 
Blend cost ($/bbL)  25.28 26.92 24.98 26.67 
Recipe (%)      
C1  25.00 25.00 25.00 25.00 
C2  23.947 24.00 24.00 24.00 
C3  16.794 0.223 1.372 3.195 
C4  25.00 16.09 16.636 14.869 
C5  9.259 24.831 25.00 24.269 
C6   9.856 7.992 8.640 
Quality    
P1  97.8204 98.0235 97.6283 98.052 
P2  87.8588 88.0133 87.7294 88.0455 
P3  0.7305 0.7309 0.7289 0.7285 
P4  41.3408 40.831 42.3734 41.9724 
P5  54.5936 54.571 54.5476 54.6305 
P6  97.0184 97.015 97.015 97.015 
P7  60.00 60.00 64.2473 68.1274 
P8  0.0079 0.0081 0.0072 0.0074 
P9  21.6533 21.6837 21.6966 21.6546 
P10  17.2362 16.968 18.00 18.00 
P11  1.00 0.9938 1.00 0.9799 
P12  1.4562 1.5491 1.2597 1.3626 

 

 

11. COMPUTATIONAL RESULTS 

Different blending and scheduling problems were solved in the previous section in order to evaluate the 

efficiency of the proposed method. Example 1 dealt with a pure blending problem whereas examples 2, 3 

and 4 also accounted optimal scheduling decisions. Examples 3 and 4 correspond to modified versions of 

the original Example 2 where minimum and maximum requirements were relaxed (Example 3) and certain 

changes in component properties and cost and product prices were incorporated (Example 4). Table 13 

summarizes the results for examples 2, 3 and 4, while Table 14 provides the computational statistics on the 

four examples. As can be seen, the size of the MILP problems is not very large and involves a modest 

number of 0-1 variables. For this reason every single problem needs no more than 1 sec at CPU time with 

CPLEX 8.1, which highlights the computational efficiency of the proposed models and the iterative MILP 

procedure. In addition, a very small number of iterations were required to satisfy all product specifications 

in all the examples. The method found more economic solutions to a combined blending and scheduling 

problem almost one order of magnitude faster than it took to solve only the blending NLP problem with a 

predetermined schedule (see Table 14). The NLP model was solved on a Pentium IV PC using CONOPT 

in GAMS 21.2. As a general characteristic, it was observed that discrete time formulations usually have a 

better computational performance when compared to continuous models. On the other hand, continuous 
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formulations are able to generate more flexible schedules that significantly reduce the operating time of the 

available equipment.  

Table 13. Summary of results 
Example  Blend value Comp. stock 

production 
Comp. inventory 

build 
Total 
Profit 

Profit / BBL 

2 12,400,610 22,352,000 11,562,600 1,611,210 4.03 
3 16,802,610 22,352,000 7,997,440 2,448,050 4.52 
4  11,785,000 23,504,000 12,953,490 1,234,490 3.25 

 

Table 14. Model size and computational requirements 
Example Binary vars, cont. vars, constraints CPU time  Iterations  

1 - , 127,81 0.13 2 
2.(NLP model*) -, 919 ,772 1.25b - 

2.discrete 9 , 757, 679 0.26a 1 
2.continuous 9 , 841, 832 0.26a 1 

3.discrete 18 , 757, 679 0.23a 1 
3.continuous 18 , 841, 832 0.26a 1 

4.discrete 9 , 757, 679 0.23a 1 
4.continuous 9 , 841, 832 0.26a 1 

a Seconds on Pentium IV PC with CPLEX 8.1 in GAMS 21.2 - *All scheduling decisions are predefined 
b Seconds on Pentium IV PC with CONOPT in GAMS 21.2 

 

12.  CONCLUSIONS 

An integrated MILP-based approach has been proposed to optimize the gasoline short-term blending 

and scheduling problem. The method is able to deal with non-linear product properties and variable recipes 

through an iterative procedure that can be used on a discrete or a continuous time formulation. As shown in 

the examples, the proposed model can generate very good solutions in terms of profit with very low CPU 

time requirements.   
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