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Abstract

Power-intensive processes can lower operating expenses when ad-
justing production planning according to time-dependent electricity
pricing schemes. In this paper, we describe a deterministic MILP
model that allows optimal production planning for continuous power-
intensive processes. We emphasize the systematic modeling of opera-
tional transitions, that result from switching the operating modes of
the plant equipment, with logic constraints. We prove properties on
the tightness of several logic constraints. For the time horizon of one
week and hourly changing electricity prices, we solve an industrial case
study on air separation plants, where transitional modes help us cap-
ture ramping behavior. We also solve problem instances on cement
plants where we show that the appropriate choice of operating modes
allows us to obtain practical schedules, while limiting the number of
changeovers. Despite the large size of the MILPs, the required solution
times are small due to the explicit modeling of transitions.

1 Introduction

The profitability of industrial power-intensive processes is affected by the
availability and pricing of electricity supply. Nowadays, two major trends
increase the complexity of managing power-intensive processes. First, dereg-
ulation in the 1990s introduced hourly as well as seasonal variations. Sec-
ond, the environmental pressure to reduce CO2 emissions and diminishing
natural resources lead to an increasing share of renewable energies, which
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intensifies the aforementioned problem. These trends have added a consid-
erable amount of uncertainty and variability in the daily operating expenses
of power-intensive industries, which in turn affect their competitiveness.

One important component of the current and future power system is
the concept of Demand Side Management (DSM), consisting of Energy Ef-
ficiency (EE) and Demand Response (DR). A report released by The World
Bank (Charles River Associates, 2005) defines DSM as the “systematic util-
ity and government activities designed to change the amount and/or timing
of the customer’s use of electricity for the collective benefit of the society, the
utility and its customers.” While EE aims for permanently reducing demand
for energy, DR focusses on the operational level (Voytas et al., 2007). The
official classification of DR by the North American Electric Reliability Cor-
poration (NERC) distinguishes between dispatchable and non-dispatchable
programs (see Figure 1).

Dispatchable DR programs include any kind of demand response that is
according to instructions from a grid operator’s control center. They are di-
vided into capacity services, such as load control and interruptible demand,
and ancillary services, such as spinning and nonspinning reserves as well as
regulation. The control actions, which balance the electricity supply and
demand, differ on the time scale and usually range from a few seconds to
an hour. Hence, participation in one of these dispatchable DR programs
requires the process to be highly flexible, while process feasibility and safety
have to be maintained. Nowadays, chemical companies, which operate flex-
ible processes like chlor-alkali synthesis, market already a few percent of
their total load as operative capacity reserve (e.g. in Germany (Paulus and
Borggrefe (2011)). The potential of ancillary services for aluminum produc-
tion was recently evaluated in a case study by ALCOA (Todd et al., 2009).
However, both processes, chlor-alkali synthesis and aluminum production,
are examples of capital-intensive processes that are operated at a high level
of capacity utilization. Thus, these processes usually only shift production
on a minute level around a predefined setpoint.

In contrast to dispatchable DR programs, non-dispatchable DR pro-
grams do not involve instructions from a control center. Instead, the elec-
tricity consumption of industrial customers is influenced by the market price
of electricity. Typical examples of time-sensitive electricity prices are time-
of-use (TOU) rates and real-time prices (RTP). While TOU rates are usu-
ally specified in terms of on-peak, mid-peak and off-peak hours, real-time
prices vary every hour and are quoted either on a day-ahead or hourly basis.
Other pricing models exist but strongly depend on the characteristics of the
regional market (NERC study (Voytas et al., 2007).

Non-dispatchable DR programs allow industrial customers to perform
production planning based on predefined hourly prices. At first glance it
may seem that production planning due to price fluctuations is only at-
tractive for processes that are operated significantly below the process ca-
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Figure 1: Illustration of DR applications for chemical processes
according to the classification of DR programs by NERC (Voytas
et al., 2007); reduced diagram.

pacity, and therefore have operational flexibility. However, major demand
drops due to economic changes, such as the 2008 recession, can lead to
over-capacities, which in turn make a systematic production planning more
attractive. Promising examples can be found in the industrial gases sector
(cryogenic air separation plants) and in the cement industry.

The purpose of this paper is to describe a general model that helps
decision-makers for power-intensive production processes to optimize their
production schedules with respect to operating costs that are due to fluc-
tuations in electricity prices, which are in turn caused by non-dispatchable
DR programs.

2 Literature Review

The economic potential for DSM of industrial processes in developed coun-
tries has been recognized by numerous institutions and authors (World Bank
report (Charles River Associates, 2005), NERC study (Voytas et al., 2007),
Klobasa (2006), Gutschi and Stigler (2008), Paulus and Borggrefe (2011)).
In these publications, we can find a list of various chemical processes where
the consumption of electricity is due to different unit operations: grinding
(cement), compression (air separation), electrolysis (chlor-alkali, aluminum)
and drying (paper pulp production). Figure 1 illustrates possible DR ap-
plications for these processes. In chemical engineering, two different lines
of research address optimizing operations of these processes according to
time-sensitive pricing.
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The first line of research proposes a control approach. For the eco-
nomic optimization of air separation plants, Zhu et al. (2010) developed
a model based on heat and mass balances, including nonlinear thermody-
namics. Huang (2010) proposed the application of economically-oriented
nonlinear model predictive control. While these approaches have the advan-
tage of providing an accurate process representation, they cannot readily
incorporate discrete decisions such as equipment shutdowns and startups
and corresponding operational constraints such as enforcing a minimum up-
or downtime. Furthermore, the resulting NLP problems tend to be large,
and therefore problems of only 24-48 hours time horizon can be efficiently
solved. The problems become even harder to solve when parallel production
lines or whole process networks are included.

The second line of research comes from the area of planning and schedul-
ing. An initial approach by Daryanian et al. (1989) shows the economic
benefit of demand response for air separation plants, but does not consider
discrete operating decisions such as equipment shutdowns and startups. Ier-
apetritou et al. (2002) as well as Karwan and Keblis (2007) extend the
methodology to incorporate discrete operating decisions. However, their
models do not capture the transient behavior between different operating
modes. Moreover, some of their logic constraints show room for improve-
ment with respect to the tightness of the linear relaxation.

For continuous paper pulp production, Pulkkinen and Ritala (2008) de-
velop a scheduling model to determine the number of operating units and
production levels for each time period. They use stochastic constraints to
handle uncertainty in model parameters, introducing nonlinearities. How-
ever, their optimization procedure is not rigorous in the sense that heuristic
methods such as simulated annealing and genetic algorithms are employed.
Furthermore, the model does not include a detailed description of plant
dynamics in terms of transitions and logic constraints.

For cement plants, Castro et al. (2009, 2011) extend the MILP formu-
lation of the Resource Task Network (RTN) to incorporate hourly changing
electricity prices. In their paper from 2009, Castro and co-workers pro-
pose a discrete time formulation (DT) that cannot be solved to optimality
within a reasonable amount of time for some case studies, although the final
gap is small. Additionally, the obtained schedules may contain a signifi-
cant number of changeovers. Castro and co-workers also show a continuous
time formulation (CT), which is unfortunately computationally intractable.
In their paper from 2011, Castro and co-workers develop an aggregate for-
mulation (AG) and a rolling horizon formulation (RH). While AG and RH
can be solved considerably faster and yield schedules with fewer transitions
than DT, the obtained schedules may be suboptimal under power restric-
tions. Furthermore, AG seems to only adequately work in a setting with
time-of-use (TOU) prices, since it aggregates periods with the same price
level.
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In this paper, we first introduce the generic problem statement for a con-
tinuous power-intensive process in section 3. In section 4, we generalize the
approaches proposed by Ierapetritou et al. (2002) and Karwan and Keblis
(2007). We discuss the concept of transitional modes to allow for a more
detailed modeling of transitional behavior that is due to plant dynamics.
Furthermore, we enhance the computational efficiency of their formulations
by improving the formulation of logic constraints. In section 5, we apply the
proposed methodology to a variety of power-intensive processes. We solve
an industrial case study on air separation plants where transitional modes
help us capture ramping behavior, as well as problem instances on cement
plants that are reported in Castro et al. (2009, 2011). We show that the
appropriate choice of operating modes allows us to solve the cement prob-
lem instances with a discrete time model to optimality within a reasonable
amount of time, while limiting the number of changeovers.

The focus of this paper is to obtain an efficient deterministic formula-
tion that can handle transient plant behavior. Therefore, we do not consider
uncertainty in electricity prices explicitly. However, it should be mentioned
that our formulation can be used as a basis to also incorporate uncertainty
in electricity prices, e.g. in a rolling horizon fashion (e.g. Karwan and
Keblis (2007)) or with a stochastic programming approach (e.g. Ierapetri-
tou et al. (2002)). Furthermore, note that seasonal electricity tariffs, e.g.
time-of-use (TOU) contracts, contain no uncertainty for the timespan of the
operational planning (usually a few days or a week). Hence, the determin-
istic optimization model allows to obtain the optimal production plan for
seasonal electricity tariffs.

3 Generic Problem Statement

Given is a set of products g ∈ G that can be produced in different continu-
ously operated plants or production lines p ∈ P . While some products can
be stored on-site (g ∈ Storable), other products must be directly delivered
to customers (g ∈ Nonstorable). The plants have to satisfy demand for the
products that can be specified on a weekly, daily or hourly basis. The costs
of production vary for every hour h ∈ H and are related to electricity costs,
which also undergo seasonal changes. We assume that a seasonal electric-
ity price forecast for a typical week is available on an hourly basis. The
problem is to determine production levels, modes of operation (including
start-up and shut-down of equipment), inventory levels and product sales
on an hourly basis, so that the given demand is met. The objective is to
minimize the operating costs that are mostly due to energy expenses.
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4 Model Formulation

The traditional way of modeling a process involves heat and mass balances
for each individual equipment, which requires the detailed description of the
system’s performance (e.g. thermodynamics, kinetics). The disadvantage of
this approach is that the model can become prohibitively hard to solve due
to its nonlinearities and its size for longer time horizons.

An alternative approach is to model the plant in a reduced space, e.g. the
product space. To determine the feasible region of the plant in the product
space, either a sequence of steady-state simulations or the insights of flex-
ibility theory by Swaney and Grossmann (1985), Grossmann and Floudas
(1987) and Ierapetritou (2001) can be used. While it is still useful to have
a detailed plant model based on heat and mass balances, we shift the com-
putational burden of evaluating the feasible region to offline computations
to obtain a surrogate model. A similar idea is employed by Sung and Mar-
avelias (2007) for batch planning and scheduling.

In absence of a detailed plant model, the surrogate model can also be
built from historic plant data. The evaluation of the production levels for the
feasible region must be performed according to the chosen time discretization
∆t, which is usually on an hourly basis due to the hourly price changes of
non-dispatchable DR programs.

The model can be classified into three sets of constraints. The first set
deals with the previously mentioned surrogate description for the feasible
region in the product space. The second set contains constraints for tran-
sitions between different operating points and modes. The third and last
set describes the mass balances that capture inventory relationships and
demand.

4.1 Production Modes and Feasible Region

To describe the feasible region of a power-intensive plant, the unit operations
that consume electricity have to be first identified. The equipment operation
involves discrete as well as continuous operating decisions. A discrete oper-
ating decision refers to the state of an equipment, e.g. “off”, “production
mode” or “ramp-up transition”. A continuous operating decision refers to
production levels, i.e. flowrates of material.

To distinguish discrete operating decisions of a plant, we formally intro-
duce the concept of a mode:

A mode is a set of operating points, for which the same discrete operat-
ing decisions are active (i.e. selection of running equipment). The operating
points vary in terms of the continuous variables in the product space. The
feasible region of each mode is approximated by a convex region consisting
of known operating points. In addition, the energy consumption is approx-
imated by a correlation for the entire feasible region of a mode. In any
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Figure 2: Feasible region with distinct operating modes.

given time period only one mode can be active, in other words the modes
are disjoint. However, modes may overlap in the product space while usu-
ally exhibiting different correlations. In Figure 2, a plant can be seen that
produces two products (A and B) having three distinct production modes.

We assume that offline computations or plant measurements provide
the data that describes the disjunctive set of modes for the feasible region.
We can formulate constraint (1) to describe the disjunction between the
modes m ∈M for each plant p and every hour h (see nomenclature section).
Each term of the disjunction is defined in terms of the binary variable yhp,m,

which when true (yhp,m = 1) defines the term that applies in the disjunction.
The data for all modes is represented as a collection of operating points
(slates). xp,m,i,g are the extreme points i of mode m of plant p in terms
of the products g. These extreme points have to be determined a-priori by
using an appropriate tool such as MATLAB (The MathWorks Inc., 2010) or
PORTA (Christof and Lobel, 1997). The convex combination of the extreme
points, with weight factors λhp,m,i, determines the production Prhp,g at hour
h for each plant p and product g.
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∑
i∈I

λhp,m,ixp,m,i,g = Prhp,g ∀g∑
i∈I

λhp,m,i = 1

0 ≤ λhp,m,i ≤ 1

yhp,m = 1


∀p ∈ P, h ∈ H (1)

The disjunction (1) is reformulated using the convex hull (Balas (1985))
to allow for solving the program with an MILP solver. The convex hull
reformulation can be written with constraints (2) - (7). Note that M2,p,g,m

is the maximum production of product g in mode m.

∑
i∈I

λhp,m,ixp,m,i,g = P̄r
h
p,m,g ∀p ∈ P,m ∈M, g ∈ G, h ∈ H (2)∑

i∈I
λhp,m,i = yhp,m ∀p ∈ P,m ∈M,h ∈ H (3)

0 ≤ λhp,m,i ≤ 1 ∀p ∈ P,m ∈M, i ∈ I, h ∈ H (4)

Prhp,g =
∑
m∈M

P̄r
h
p,m,g ∀p ∈ P, g ∈ G, h ∈ H (5)

P̄r
h
p,m,g ≤ M2,p,g,my

h
p,m ∀p ∈ P,m ∈M, g ∈ G, h ∈ H (6)∑

m∈M
yhp,m = 1 ∀p ∈ P, h ∈ H (7)

4.2 Transitions

Due to the hourly changing electricity prices, it might be economically de-
sirable to run the plant at different time-dependent operating points. If the
operating point is changed, a transition occurs. Transitions deserve special
attention because they are closely related to the system dynamics. There
are two major types of transitions:

1. Transitions between operating points of different modes - these tran-
sitions are described first and are the major focus of this section

2. Transitions between operating points that are both part of the same
mode - these transitions are described at the end of this section (rate
of change constraints)

4.2.1 Transitions between operating points of different modes

A typical case of a transition between operating points of different modes is
the start-up of a plant. During the first few hours the plant might produce
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Figure 3: State graph of a plant with one production and one tran-
sitional ramp-up mode. The edges indicate the direction of the
allowed transitions and operational constraints of the system.

a specified amount of off-spec product until a steady-state is reached. Fur-
thermore, the plant cannot be turned off immediately after. The dynamics
of the plant in terms of switching behavior can be visualized with a state
graph as shown in Figure 3. Each node represents the state of the system.
The edges represent the direction of the allowed transitions and show the
operational constraints.

We can model the ramp-up characteristics using three modes: “off”,
“ramp-up transition” and “production mode”. In the given example, the
plant can switch from “off” to “ramp-up transition” immediately, but has
to stay in the “ramp-up transition” mode for 6 hours. Then, a transition
occurs to the mode “production mode”, in which the plant has to stay at
least 24 hours. The plant can switch from “production mode” to mode
“off” immediately, but if the plant is shut down, the plant has to stay in the
mode “off” at least 48 hours. All transitional constraints faced by the plant
operator, who decides on a sequence of states as a control input, have to be
expressed in terms of logic constraints.

4.2.1.1 Switch variables constraints To model the transitional con-
straints efficiently, we introduce the binary transitional variable zhp,m,m′ ,
which is true if and only if a transition from state m to state m′ at plant p
occurs from time step h− 1 to h. Hence, the logic relationship to express is
the following:

(yh−1p,m ∧ yhp,m′)⇔ zhp,m,m′ ∀p ∈ P,m ∈M,m′ ∈M,h ∈ H (8)

Using propositional logic (Raman and Grossmann, 1991), the following
constraints can be derived for the “⇐” direction:

yh−1p,m ≥ zhp,m,m′ ∀p ∈ P,m ∈M,m′ ∈M,h ∈ H (9)

yhp,m′ ≥ zhp,m,m′ ∀p ∈ P,m ∈M,m′ ∈M,h ∈ H (10)
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In a similar fashion, the constraint for the “⇒” direction can be derived:

yh−1p,m + yhp,m′ − 1 ≤ zhp,m,m′ ∀p ∈ P,m ∈M,m′ ∈M,h ∈ H (11)

Note that the constraints (9) - (11) are also used in Ierapetritou et al.
(2002) and Karwan and Keblis (2007) to model an equivalent relationship
for air separation plants. However, as shown by Sahinidis and Grossmann
(1991) as well as by Erdirik-Dogan and Grossmann (2008), the logic relation-
ship (8) can be more effectively modeled by the following set of constraints:

∑
m′∈M

zhp,m′,m = yhp,m ∀p ∈ P, h ∈ H,m ∈M (12)∑
m′∈M

zhp,m,m′ = yh−1p,m ∀p ∈ P, h ∈ H,m ∈M (13)

The reformulation (12)-(13) requires the same number of variables but
fewer constraints ((2 ∗ |M |) ∗ |P | ∗ |H| vs 3|M |2 ∗ |P | ∗ |H|). Furthermore, its
relaxation is tighter. Note that the logic is expressed differently, for more
details see the aforementioned references, where the modes are equivalent
to tasks in batch scheduling.

4.2.1.2 Minimum Stay Constraint Some modes have a minimum
time that the plant has to stay in that particular mode, depending on the
previous mode that was active before the plant switched. An example can be
found in Figure 3, where the plant has to stay for six hours in mode ”ramp-
up transition” after it switched from mode ”off”. Formally, this behavior
can be expressed by the following logic relationship:

zhp,m,m′ ⇒ yh+θp,m′ ∀(p,m,m
′) ∈ AL,∀h ∈ H, θ ∈MinStay(m,m′)

Let AL be the set of allowed transitions of plant p from mode m to mode
m′. Some of the allowed transitions require a minimum stay constraint. For
these transitions, let MinStay(m,m′) be the associated placeholder, which

describes a set that contains the elements
{

0, 1, ...,Kmin
m,m′ − 1

}
to model the

duration of the minimum stay constraint. Kmin
m,m′ is the minimum amount

of time the plant has to stay in mode m′ after a transition from mode
m. Examples for substitutes of MinStay(m,m′) include the set TT (to
model the duration of a transition), the set UT (minimum uptime for a
production mode) and the set DT (minimum downtime after a shut-down).
Note that MinStay(m,m′) is the empty set for transitions that do not
require a minimum stay constraint. The previous logic statement can be
converted into the following constraint:
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yh+θp,m′ ≥ z
h
p,m,m′ ∀(p,m,m′) ∈ AL,∀h ∈ H, θ ∈MinStay(m,m′) (14)

Note that Ierapetritou et al. (2002) (constraints (8) and (9) in their
paper) and Karwan and Keblis (2007) (constraint (11) in their paper) used
a different constraint for the same relationship. With our nomenclature their
constraint can be written as:

Kmin
m,m′−1∑
θ=0

∑
m′′∈M,m′′ 6=m′

yh+θp,m′′ ≤ K
min
m,m′(1− zhp,m,m′) ∀(p,m,m′) ∈ AL,∀h ∈ H

(15)
We show in appendix I that despite fewer number of constraints, formu-

lation (15) is weaker in the LP relaxation compared to that of constraint
(14).

4.2.1.3 Maximum Stay Constraint If the duration that a mode can
be operated is restricted, one has to express a maximum stay constraint. An
example can be found for an auxiliary equipment that cannot be operated
longer than a specified amount of time. Once a transition occurs from mode
m to m′, the plant cannot stay in mode m′ after Kmax

m,m′ number of hours.

However, the maximum stay constraint only applies if no transition zhp,m,m′

from mode m to m′ is active between h + Kmin
m,m′ and h + Kmax

m,m′ . The
corresponding logic relationship is:

(zhp,m,m′ ∧ ¬z
h+Kmin

m,m′

p,m′′,m′ ∧ ... ∧ ¬z
h+Kmax

m,m′

p,m′′,m′ )⇒ ¬y
h+Kmax

m,m′+1

p,m′

∀(p,m,m′) ∈ AL,m′′ ∈M,m′′ 6= m′, ∀h ∈ H

This logic statement can be reformulated to the following constraint:

1−y
h+Kmax

m,m′+1

p,m′ ≥ zhp,m,m′−
Kmax

m,m′∑
θ=Kmin

m,m′

∑
m′′,m′′ 6=m′

zh+θp,m′′,m′ ∀(p,m,m
′) ∈ AL,∀h ∈ H

(16)

4.2.1.4 Transitional Mode Constraints As seen in the state graph
in Figure 3, the transition from “off” to “ramp-up transition” is coupled
with the transition to “production mode” after 6 hours. More formally, let
(p,m,m′,m′′) ∈ Trans be the set of transitions from mode m to mode m′′,
which require the plant to stay in the transitional mode m′ for a certain spec-
ified time Kmin

m,m′ , as defined before. Aside from a minimum stay constraint
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Figure 4: Illustration of transitions involving transitional mode m′

and minimum stay constraint for mode m′. Following the ter-
minology of Figure 3, the plant has to stay Kmin

m,m′ (six) hours in
mode m′ (ramp-up transition) and switches thereafter in mode m′′

(production mode).

for the transitional mode m′, the transition from m to m′ and the transition
from m′ to m′′ have to be coupled, which is conceptually visualized in Figure
4. In terms of propositional logic, we can express it as follows:

z
h−Kmin

m,m′

p,m,m′ ⇔ zhp,m′,m′′ ∀(p,m,m′,m′′) ∈ Trans,∀h ∈ H

This can be written as:

z
h−Kmin

m,m′

p,m,m′ − zhp,m′,m′′ = 0 ∀(p,m,m′,m′′) ∈ Trans,∀h ∈ H (17)

4.2.1.5 Forbidden Transitions Since the logic relationship (8) implies
¬(yh−1p,m ∧yhp,m′)⇔ ¬zhp,m,m′ ∀p,m,m′, h, it is sufficient to fix zhp,m,m′ to zero
for transitions that are not allowed (denoted by the set DAL):

zhp,m,m′ = 0 ∀(p,m,m′) ∈ DAL,∀h ∈ H (18)

The concept of the zhp,m,m′ variables is very useful to describe systems
with slow dynamics, i.e. where the impact of transitions on later time peri-
ods has to be modeled. However, if the systems dynamics are fast and there
are no minimum stay restrictions, then the zhp,m,m′ variables can be avoided.
Thus, forbidden transitions have to be modeled in a slightly different way.

Let us denote the set of all combinations for possible transitions of plant
p from mode m to mode m′ by (p,m,m′) ∈ PT . We can partition PT into
two disjoint subsets: The subset of allowed transitions AL and the subset
of disallowed transitions DAL. Note that AL ∩DAL = ∅.
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To model forbidden transitions, one of the following logic relationships,
which are equivalent since AL and DAL are disjoint sets and can be trans-
lated by negating, has to be satisfied.

yhp,m′ ⇒
∨

m:(p,m,m′)∈AL

yh−1p,m ∀p ∈ P,m′ ∈M,∀h ∈ H (19)

yhp,m′ ⇒
∧

m:(p,m,m′)∈DAL

¬yh−1p,m ∀p ∈ P,m′ ∈M,∀h ∈ H (20)

These logic statements (19) and (20) can be expressed by the corresponding
constraints (21) and (22):

∑
m:(p,m,m′)∈AL

yh−1p,m ≥ yhp,m′ ∀p ∈ P,m′ ∈M, ∀h ∈ H (21)

yh−1p,m + yhp,m′ ≤ 1 ∀(p,m,m′) ∈ DAL,∀h ∈ H (22)

Constraint (21) has the advantage that fewer constraints in total are
needed (|M | ∗ |P | ∗ |H| instead of |M | ∗ |M ′| ∗ |P | ∗ |H| (M ′ = disallowed
m′)) and it is furthermore tighter than constraint (22). The proof can be
found in appendix II.

Note that Ierapetritou et al. (2002) do not consider the case of forbidden
transitions. Karwan and Keblis (2007) model forbidden transitions using
constraint (22).

4.2.2 Transitions between operating points that are both part of
the same mode

4.2.2.1 Rate of change constraints From a control perspective, we
have assumed so far that for a given discrete operating decision, each point
of the feasible region is reachable within the given time discretization. How-
ever, for transitions between operating points that are both part of the
same mode, the rate of change might be restricted by a parameter rp,m,g.

To model these restrictions in terms of the production variables P̄r
h
p,m,g, the

following constraints on the production levels from hour h to hour h+ 1 can
be formulated:

P̄r
h+1
p,m,g − P̄r

h
p,m,g ≤ rp,m,g ∀p ∈ P,m ∈M, g ∈ G, h ∈ H (23)

Note that rp,m,g is specified in [mass/∆t], where ∆t is the chosen time
discretization (e.g. one hour).
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4.3 Mass balances

A mass balance has to be enforced to describe the relationship between pro-
duction levels, inventory levels and satisfied demand. The demand can be
specified on an hourly, daily or weekly basis. The products G can be par-
titioned into two sets: the storable products Storable and the non-storable
products Nonstorable.

The amount of each product g that is stored at each plant p for each
hour h is denoted by INV h

p,g and the hourly outputs for each product are

described by Shp,g. The mass balance for the storable products is:

INV h
p,g + Prhp,g = INV h+1

p,g + Shp,g ∀p ∈ P, g ∈ Storable, h ∈ H (24)

The inventory levels INV h
p,g are constrained by the outage levels (INVL

p,g,

lower bound) and by the storage capacities (INVU
p,g, upper bound):

INVL
p,g ≤ INVh

p,g ≤ INVU
p,g ∀p ∈ P, g ∈ Storable, h ∈ H (25)

If a product g cannot be stored, the inventory level is simply INVh
p,g =

0, ∀h and the mass balance becomes:

Prhp,g = Shp,g ∀p ∈ P, g ∈ Nonstorable, h ∈ H (26)

We have to satisfy demand, that is usually specified on an hourly basis:

Shp,g ≥ dh,hourlyp,g ∀p ∈ P, g ∈ G, h ∈ H (27)

However, it is also possible to specify demand for the storable products
on a daily or weekly basis (dweeklyp,g , ddailyp,g ), e.g. if the exact sales points for
the products are unknown:

∑
h∈Hweek

Shp,g ≥ dweeklyp,g ∀p ∈ P, g ∈ Storable (28)

∑
h∈Hday

Shp,g ≥ ddailyp,g ∀day, p ∈ P, g ∈ Storable (29)

Note that stockouts are not allowed, but the extension can easily be made
by introducing slack variables in the demand constraints with corresponding
penalty terms in the objective function. Furthermore, the notation used
above assumes that every plant p has its own demand. However, it is also
possible to aggregate demand of the customers for multiple plants. Due to
space limitation the corresponding equations are omitted.
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4.4 Objective Function

The objective function minimizes the total cost that consists of produc-
tion cost, inventory cost and transition cost for every hour h. Hence, we
need a correlation between the power consumption and the production lev-
els P̄r

h
p,m,g. We denote by Φp,m,g the coefficients that have to be determined

by a multivariate regression. The inventory cost coefficients are denoted
by δp,g and the cost coefficients related to transition cost are described by
ζp,m,m′ . Hence, the objective function can be written as follows:

OBJ =
∑
p,h

ehp(
∑
m,g

Φp,m,gP̄r
h
p,m,g)+

∑
p,g

δp,g
∑
h

INVh
p,g+

∑
p,m,m′

ζp,m,m′
∑
h

zhp,m,m′

(30)

4.5 Power Availability Restrictions

If the available power is restricted, e.g. due to a contracted power curve,
the previously defined correlation between the power consumption and the
production levels P̄r

h
p,m,g can be used to model the following constraint,

where PWh
max is the maximum power consumption at hour h:∑

p,m,g

Φp,m,gP̄r
h
p,m,g ≤ PWh

max ∀h ∈ H (31)

5 Case Studies

5.1 Air separation plants

The first case study is on air separation plants, which produce liquid oxygen
(LO2), nitrogen (LN2) and argon (LAr) as well as gaseous oxygen (GO2) and
nitrogen (GN2). All liquid products can be stored on-site in storage tanks.
In contrast to that, the gaseous products must be provided to industrial
on-site customers according to previously negotiated contracts on an hourly
basis and cannot be stored if the air separation plant is in proximity to the
consumer. Therefore, plants that are connected to a gas pipeline have fewer
degrees of freedom in their daily operation.

In our case study, we optimize two different air separation plants that
supply the liquid merchant market without on-site customers. Thus, the
power consumption for cryogenic air separation is mostly due to the com-
pressors that are required to provide cooling for liquefaction by exploiting
the Joule-Thompson effect. Hence, each operating mode can be related to
a liquefier in the air separation plant. If the plant ramps up production, a
transitional mode is active in which a specified amount of off-spec product
is generated and vented. If the plant has a second liquefier installed and
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switches its operation from one to two liquefiers, the plant also undergoes a
transitional mode for a few hours.

5.1.1 Model Formulation

The feasible region for each mode is modeled with constraints (2) - (7). The
switch variables constraints (12) and (13) are used to link mode variables
yhp,m and transitional variables zhp,m,m′ . Minimum stay constraint (14) is used
to enforce a minimum uptime once the plant is switched on, a minimum
downtime once the plant is switched off and transition times for transitional
modes. Constraints (17) and (18) are used to express logic relationships
between different modes. The mass balance for the storable liquid products
(LO2, LN2, LAr) is expressed by constraints (24) and (25), the mass balance
for the non-storable gaseous products (GO2, GN2) is described by constraint
(26). The demand for all products is specified on an hourly basis using
constraint (27).

5.1.2 Objective function

For air separation plants, Karwan and Keblis (2007) as well as Ierapetritou et
al. (2002) suggest linear objective functions. The structure of our linear cor-
relation is the same as the one reported by Ierapetritou et al. (2002), namely
between the equivalent liquid rate for liquid production, the gaseous oxygen
production, the gaseous nitrogen production and the power consumption.
Startup costs are described with respect to the energy consumption of the
corresponding transitional modes.

The equivalent liquid rate, P̄r
h
p,LIQ, is defined as follows, with conversion

parameters α̂LN2, α̂LO2, α̂LAR:

P̄r
h
p,m,LIQ = α̂LN2P̄r

h
p,m,LN2 + α̂LO2P̄r

h
p,m,LO2 + α̂LARP̄r

h
p,m,LAR (32)

A multivariate regression, based on a given set of operating points, was
applied to obtain the model parameters for each operating mode of each
plant. Note that the statistical significance of this cost model can be mea-
sured by several metrics. Student’s t-test for a 95% confidence interval
reported t-values greater than 2 for all parameters of every plant configu-
ration. Also, the R2 value, the standard deviation in the residual and the
overall F-test were analyzed. With fitting parameters αp,m, βp,m, γp,m and
the hourly electricity prices at each plant p (ehp), the expenses for electricity
can be formulated based on (30) as:

OBJ = (
∑
p,m,h

ehp(αp,mP̄r
h
p,m,LIQ + βp,mP̄r

h
p,m,GO2 + γp,mP̄r

h
p,m,GN2)) (33)
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Note that storage technology allows to keep the liquid products without
additional cooling and negligible losses. Hence, we neglect inventory cost.
The transitional cost term of (30) is removed because transitional cost are
implicitly modeled by a higher energy consumption in transitional modes,
which reflects the efficiency losses during mode transitions. Therefore, equa-
tion (33) is the objective function of our optimization model, which we intend
to minimize.

5.1.3 Results

Based on real industrial data, we modeled two different air separation plants:
a plant with one liquefier (P1) and a plant with two liquefiers (P2). We
tested the computational performance of our model for five different cases
(A-E) that differ in the demand that is specified for the liquid products on
a six hour basis (which is similar to assume that a certain number of tanker
trucks arrive within that time window) for a time horizon of one week (168
hours). The electricity price forecast of the real-time prices (see Figure 5)
was given on an hourly basis. Due to confidentiality issues we cannot disclose
the actual LO2 and LN2 demands and production levels. Therefore, scales
are omitted, but the total demand is reported as a function of the plants’
production capacity in Table 1.

For the same demand data, we solved the problem using time intervals
of one hour for two different setups: for a non-cyclic schedule and a cyclic
schedule. An optimal non-cyclic schedule might suggest to shut down the
plant at the end of the week. This is an undesirable situation if the de-
cision maker can assume that the market conditions will be similar in the
following week, because a shut-down hinders successful operations in the
following week, e.g. due to minimum downtime restrictions. In contrast to
the non-cyclic schedule, the cyclic schedule also satisfies all mass balances
and transitional constraints in a cyclic manner throughout the week.

Table 1: Savings of the optimal noncyclic schedules for all test cases
as function of the demand/capacity ratio

case demand/ savings
capacity

P1A 82% 4.58%

P1B 74% 12.02%

P2E 95% 3.76%

P2D 85% 4.90%

P2C 72% 7.44%

P2B 51% 13.78%

To assess the economic impact of our optimization model, we compare
our solutions for the noncyclic schedules with a heuristic: we assume con-
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Figure 5: Electricity prices and energy consumption profiles for
optimal cyclic schedules of plants P1 and P2 (test case B).

stant operation throughout the week and find a set point that locally min-
imizes the energy consumption while satisfying the demand constraints. In
Table 1 we can see that for both plants the potential savings increase with
decreasing demand that is reported in percent of the total production ca-
pacity. For test cases A and B the realized savings are mostly due to plant
shutdowns, which is illustrated in Figure 5 for the electricity consumption
profiles of plants P1 and P2 for test case B. We can also see that the electric-
ity consumption is reduced during hours of high electricity prices - due to
higher operational flexibility plant P2 can produce 5.2% cheaper than plant
P1. The corresponding inventory profiles for plant P1 are reported in Figure
6 and the inventory profiles for plant P2 are shown in Figure 7. The lower
bound corresponds to the outage level and the upper bound is the storage
tank capacity. We can clearly observe how the demand is served from the
storage tank during plant shutdowns.

For test cases C, D and E no shutdowns are reported since the storage
tank capacity is not large enough to store the products required for the
minimum downtime of the plant. Nevertheless, savings are observed that
are due to the presence of plant P2 second liquefier that is turned on during
hours of low electricity prices and turned off during hours of peak prices.

In Table 2 the problem sizes are reported. The problem sizes differ signif-
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Figure 6: Optimal LO2 and LN2 inventory profiles for plant P1,
test case B, cyclic schedule

Figure 7: Optimal LO2 and LN2 inventory profiles for plant P2,
test case B, cyclic schedule

19



Table 2: Problem sizes for two air separation plants
plant type of schedule # constraints # variables # binary

P1 noncyclic 22508 16129 1512

P1 cyclic 22513 16129 1512

P2 noncyclic 44173 29401 3528

P2 cyclic 44185 29401 3528

icantly for the two plants since plant P1 has only three operating modes, in
contrast to plant P2, which has six operating modes (including transitional
modes). However, the problem sizes for the cyclic and noncyclic schedules
differ only slightly, because the implementation for the noncyclic schedule
includes a few redundant constraints that could be filtered with conditional
statements. However, the pre-solve operations of the MILP solver eliminate
those constraints reliably.

Table 3: Computational results for test cases A-E, plants P1 and
P2. cyc: cyclic schedule, ncyc: noncyclic schedule, RMIP gap%
shows the tightness of the linear relaxation.

case cyc/ RMIP MIP CPU times(s) RMIP final gap%
ncyc CPLEX XPRESS CPLEX XPRESS gap% CPLEX XPRESS

P1A ncyc 88416 90129 90129 2 3 1.9006% 0.0000% 0.0000%

P1A cyc 89197 90448 90448 3 26 1.3831% 0.0000% 0.0000%

P1B ncyc 72806 74932 74932 4 5 2.8372% 0.0000% 0.0000%

P1B cyclic 73305 76011 76011 15 27 3.5600% 0.0588% 0.0000%

P2B ncyc 67659 70017 70017 135 47 3.3678% 0.0995% 0.0118%

P2B cyc 67173 72027 72027 844 462 6.7391% 0.0977% 0.0936%

P2C ncyc 98645 100796 100837 7 10 2.1340% 0.0955% 0.0740%

P2C cyc 99726 101280 101242 6 8 1.4974% 0.0684% 0.0085%

P2D ncyc 113521 114715 114715 4 4 1.0408% 0.0076% 0.0000%

P2D cyc 115173 116125 116122 5 6 0.8172% 0.0079% 0.0016%

P2E ncyc 128019 128054 128054 4 4 0.0273% 0.0000% 0.0000%

P2E cyc 130186 130186 130186 4 4 0.0000% 0.0000% 0.0000%

The computational results can be found in Table 3. We solved all test
cases with the commercial solvers CPLEX 12.2.0.1 and XPRESS 21.01 (both
with default settings, no parallel computing features were used) in GAMS
23.6.2 on a Intel i7 (2.93GHz) machine with 4GB RAM, using a termination
criterion of 0.1% optimality gap. Except for test case P2B, all test cases
can be solved within less than 30 seconds. CPLEX and XPRESS perform
similarly, except for test cases A and B with advantages on both solvers.
We can observe that with increasing demand the problems become easier
to solve since operational flexibility decreases. This can be seen in terms of
CPU time and also in terms of the tightness of the LP relaxation (RMIP).
For cases P1A and P2E with the highest demands the initial gap is in fact
0 %. Furthermore, the cyclic schedule is harder to obtain when compared
to the non-cyclic schedule.
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5.2 Cement plant

Castro et al. (2009 and 2011) study the case of cement plants, where the
final processing stage is a power-intensive grinding operation. Based on the
resource task network (RTN) formulation, Castro and co-workers present
solution methods that most importantly differ in their time representation
(see literature review). One of the time representations they use is a discrete
formulation with a one-hour time grid. They outline three major issues with
this approach. First, due to the time discretization the obtained schedules
might be slightly suboptimal because changeovers cannot take place between
two time points. Second, due to solution degeneracy the obtained schedules
might have a large number of undesirable changeovers. Third and lastly,
the presence of shared storage adds even more symmetry to the problem.
Altogether these issues lead to the observation that the discrete time formu-
lation of Castro et al. cannot be solved to optimality within a reasonable
time. However, they report only a small final gap in all their test cases.

In the following we will describe how our framework can be used to
model the cement plant with a discrete time formulation that can be solved
to optimality within a reasonable amount of time, while limiting the number
of changeovers.

5.2.1 Model Formulation

We make the same basic assumptions that are reported in Castro et al.
(2009) and use the same model parameters. We model the parallel lines as
individual manufacturing facilities denoted by index p. In all cases, we use
constraints (2) - (6) to define the feasible region of the operating modes.
However, the main challenge is the appropriate definition of the operating
modes. This ”procedure” can be seen as choosing how and which of the
capacity constraints of plant p are projected in the product space for each
mode.

5.2.1.1 Single Product Modes (model SPM) The most intuitive
way to define the operating modes is to have one mode for each product.
The concept is illustrated for two products in the left part of Figure 8, where
each node represents a single product mode (“Mode P1” and “Mode P2”).
The feasible region of each mode m is the interval [0, ρmaxp,g ], where ρmaxp,g is the
maximum processing rate of production line p of product g. This approach
is very similar to the DT formulation of Castro et al. since we only allow
for transitions at the predefined event points (every hour). Obviously, the
number of modes in model SPM scales linearly with the number of products
|G|.
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Figure 8: Different choices of defining modes and corresponding
feasible regions for a cement plant with two products. SPM: model
with single product modes, CHM: model with convex hull (one
mode), TM: model with transitional modes, single product modes
and zero production mode.

5.2.1.2 Convex Hull Mode (model CHM) The feasible region for
each production line p can also be described with only one mode, as illus-
trated in the middle part of Figure 8 by “Mode P1, P2”. “Mode P1, P2” is
the convex hull of all maximum production levels for each product and the
origin. In other words, all capacity constraints of plant p are projected in
the product space for one single mode. The feasible region of model CHM
for two products is also shown in the middle part of Figure 8. Note that this
definition of the feasible region allows for product transitions at any point
in time and there are no restrictions on the batch processing time. Hence,
we can obtain the lowest possible production costs. The drawback of this
feasible region is that we cannot limit the number of transitions that are
occurring since the transitions are not linked to any binary variables.

5.2.1.3 Transitional Modes (model TM and extensions) If we
want to combine SPM with the ability to allow for transitions at any point in
time, we need to introduce ideas from model CHM, e.g. transitional modes
that account for changeovers between two products. In the right part of
Figure 8, model TM is illustrated with the state graph for two products. As
one can see in the upper right corner of , model CHM is used for each pair of
products to derive the corresponding feasible region of the transitional mode
(“Mode P1|P2”). More formally, the feasible region of the transitional mode
m of production line p that accounts for the transition from product g to
g′ is the convex combination of the origin, ρmaxp,g and ρmaxp,g′ . We modify the
feasible region of the single product modes (“Mode P1” and “Mode P2”) as
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Figure 9: Scalability of different choices for operating modes for
cement plants as a function of the number of products |G|, here
illustrated for three products. In the lower part of the figure, the
number of modes and transitional variables per production line is
reported. SPM: model with single product modes, CHM: model
with convex hull (one mode), TM: model with transitional modes,
single product modes and zero production mode.

well. In order to avoid batch interruptions that may result from a definition
of the feasible region as in SPM, we define the feasible region for each prod-
uct g as a single point, namely [ρmaxp,g ]. Therefore, we have to introduce a
“Mode 0” corresponding to a shutdown of the plant, which only contains [0]
in the feasible region. We also define transitional modes (“Mode 0|P1” and
“Mode 0|P2”) to allow for production ramp-ups at any point in time. The
feasible region of these transitional modes is the interval [0, ρmaxp,g ]. We use

the switch variables constraints (12) and (13) to link mode variables yhp,m and

transitional variables zhp,m,m′ . Forbidden transitions are implemented with
constraint (18). To ensure the coupling of transitions between transitional
and single product modes as well as shutdown, transitional and production
modes, constraint (17) is applied. In Figure 8, for each transitional mode
the two transitions with dashed lines as well as the two transitions with solid
lines are coupled as previously described in section 4.2.4.

With the setup of modes in model TM, we can limit the number of
transitions in different ways:

1. Model TM+MS, where we utilize the minimum stay constraint (14)
to enforce a minimum uptime once the plant is switched on and a
minimum downtime once the plant is switched off (e.g. at least two
subsequent time periods).

2. Model TM+RT, which restricts the total number of transitions that
occur.
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3. Model TM+MSRT, which is the combination of both aforemen-
tioned methods.

Alternatively, changeover costs can be introduced, which we do not fur-
ther explore in this paper.

In Figure 9, we illustrate how the number of modes increases depending
on the number of products |G| with the case of three products. We observe
that despite model TM growing (|G|2 − |G|)/2 + 2|G|+ 1 in the number of
modes as a function of the number of products |G|, the computational results
show favorable CPU times. Note that the restricted power availability can
be described in terms of equation (32).

5.2.2 Mass balances for shared storage constraints

To model the shared storage and the associated mass balances we need ad-
ditional constraints. Xh

st,g is a binary variable that indicates which product

g is stored in storage st at hour h. Storehp,st,g keeps track how much of
product g is transferred from production line p to storage tank st in hour h.
Therefore, independent of the operating modes, the material transfers are
tracked on an hourly basis. The shared storage constraints can be written
as:

Prhp,g =
∑
st∈ST

Storehp,st,g ∀p ∈ P, g ∈ G, h ∈ H (34)

INV h
st,g + Shst,g ≤ INV U

stX
h
st,g ∀st ∈ ST, g ∈ G, h ∈ H (35)

∑
g

Xh
st,g = 1 ∀st ∈ ST, h ∈ H (36)

INV h−1
st,g +

∑
p

Storehp,st,g = INV h
st,g + Shst,g ∀st ∈ ST, g ∈ G, h ∈ H (37)

In addition, we use constraint (27) to enforce the hourly specified demand
for each product. The objective function is based on (30). The terms for
inventory cost and transition cost are neglected, analogous to the papers by
Castro and co-workers (2009, 2011).

5.2.3 Results

We compare the different model choices for the operating modes with respect
to the known issues of the discrete time scheduling model of Castro et al.
(2009): potentially suboptimal solutions, including a small final gap since
optimality cannot be proven within a reasonable amount of time, as well as
large number of changeovers. All test cases were solved with the commercial
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solver GUROBI 4.0.0 (with default settings, no parallel computing features
were used) in GAMS 23.6.2 on a Intel i7 (2.93GHz) machine with 4GB
RAM, using a termination criterion of 10−6 optimality gap (as in Castro
et al. (2009)). GUROBI was found to be more efficient than CPLEX and
XPRESS on these problems. Our computational results for test cases Ex5-
Ex10 (the ”harder” problem instances) are reported in Table 4.

5.2.3.1 Single Product Modes (model SPM) The first observation
is that model SPM yields exactly the same suboptimal objective values as the
discrete time formulation of Castro et al. (2009), except for Ex8. Moreover,
the number of binary variables, which indicate the status of the equipment
and the storage tanks, is the same. Despite the newer hard- and software,
we cannot solve the test cases to optimality within 2 hours neither (except
Ex7).

5.2.3.2 Convex Hull Mode (model CHM) On the contrary, model
CHM yields the same optimal objective values as the ones reported in Castro
et al. (2011) for all test cases. Since each production line has only one
operating mode, the problem size is significantly smaller and CHM can be
solved in less than 20s for all test cases. Unfortunately, the number of
transitions cannot be controlled with model CHM, which leads to schedules
that are hard to implement.

5.2.3.3 Transitional Modes (model TM and extensions) The com-
putational results show that the ability to obtain the optimal solution due
to the introduction of transitional modes in conjunction with the tightness
of the linear relaxation are key to the success of model TM.

Test cases Ex5-7 and Ex9 can be solved to optimality in less than 30s,
yielding the same objective value as CHM. For test case Ex8, TM yields a
slightly suboptimal solution within 420s. This is due to the fact that TM
implicitly assumes a batch processing time of at least one hour, but Ex8
(restricted power availability) requires a few batches with batch processing
times less than 1 hour. If we use the convex hull mode instead of the
previously described transitional mode for production ramp-ups, we can
allow for batch processing time less than one hour and we obtain the optimal
objective value within 36s (model TMb).

For test case Ex10, the optimal solution of TM requires 4079s. We
can speed up the solution process if we strengthen the relaxation of TM
by adding the objective value that we computed with model CHM as a
lower bound. The corresponding model TMS can be solved within 118s
(including 17s from CHM).

We use model TM+MS to enforce a minimum uptime once the plant
is switched on and a minimum downtime once the plant is switched off, both
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Table 4: Computational results for cement production. SPM: single prod-
uct modes, CHM: convex hull mode, TM: model with transitional modes,
single product modes and zero production mode, TMS: TM strengthened
with bound from CHM. Extensions: +MS: minimum stay constraints on
up- and downtime, +RT: restricted number of transitions, +MSRT: both
aforementioned restrictions. *=Castro et al. (2011), Intel Core2 Duo T9300
(2.5 Ghz), 4GB RAM, Windows Vista Enterprise, CPLEX 11.1 with default
options; **=maximum computational time; a=17s required to solve CHM
already included.

Case Model constr. vars. bin. RMIP MIP CPUs Gap%

Ex5 Castro DT 6739 10953 2016 26738 26780 7200* 0.04
SPM 12433 12097 2016 26738 26780 7200** 0.02
CHM 6385 8401 1008 26738 26758 1 0
TM 58389 59473 13776 26738 26758 5 0
TM+MS 62421 59473 13776 26738 26791 15 0
TM+RT 58390 59473 13776 26738 26758 5 0
TM+MSRT 62422 59473 13776 26738 26791 19 0

Ex6 Castro DT 8423 14155 2520 43250 43259 7200* 0.02
SPM 13609 14617 2520 43250 43259 7200** 0.02
CHM 7561 10921 1512 43250 43250 1 0
TM 59565 61993 14280 43250 43250 4 0
TM+MS 63597 61993 14280 43250 43250 8 0
TM+RT 59566 61993 14280 43250 43250 16 0
TM+MSRT 63598 61993 14280 43250 43250 44 0

Ex7 Castro DT 10780 18534 3528 68282 68282 19.9* 0
SPM 19489 22681 3528 68282 68282 1 0
CHM 10417 17137 2016 68282 68282 1 0
TM 88423 93745 21168 68282 68282 8 0
TM+MS 94471 93745 21168 68282 68282 8 0
TM+RT 88424 93745 21168 68282 68282 12 0
TM+MSRT 94472 93745 21168 68282 68282 11 0

Ex8 Castro DT 12464 21736 4032 101139 104622 7200* 0.22
SPM 20665 25705 4032 104375 104607 7200** 0.09
CHM 11593 20161 2520 104375 104375 5 0
TM 89599 96769 21672 104375 104502 420 0
TMb 89599 99793 21672 104375 104375 36 0
TMb+MS 95647 99793 21672 104570 104891 350 0
TMb+RT 89600 99793 21672 104375 104375 115 0
TMb+MSRT 95648 99793 21672 104570 104891 852 0

Ex9 Castro DT 13810 24092 4704 87817 87868 7200* 0.06
SPM 29569 32257 4704 87817 87868 7200** 0.06
CHM 13441 22681 2688 87817 87817 2 0
TM 149845 184969 32928 87817 87817 23 0
TM+MS 159925 184969 32928 87817 87838 32 0
TM+RT 149846 184969 32928 87817 87817 32 0
TM+MSRT 159926 184969 32928 87817 87838 101 0

Ex10 Castro DT 16840 29650 5880 86505 86582 7200* 0.09
SPM 41665 42841 5880 86505 86582 7200** 0.04
CHM 16465 28225 3360 86505 86550 17 0
TM 232924 331633 47208 86505 86550 4079 0
TMS 232924 331633 47208 86550 86550 118a 0
TMS+MS 248044 331633 47208 86550 86550 401a 0
TMS+RT 232925 331633 47208 86550 86550 734a 0
TMS+MSRT 248045 331633 47208 86550 86550 870a 0
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for at least two subsequent time periods. Despite the additional constraints,
we can obtain the same optimal objective value as CHM for Ex6, Ex7 and
Ex10. For Ex5, Ex8 and Ex9 the objective is slightly larger. In all cases,
the optimization runs terminate in less than 6 minutes.

As previously mentioned, another possibility to limit the number of oc-
curring transitions is restricting the total number of transitions (model
TM+RT). Thus, we have to find an appropriate value for the total num-
ber of allowed transitions. One possibility is counting the number of orders
and estimate the number of batches required to fulfill each order. Ramping
up production, production of a single batch and shutting down production
requires 4 transitions. If we assume that each order needs between 1 and 2
batches, reasonable values for the total number of transitions can be found
in the range [4×no.orders, 8×no.orders]. In Table 5, we report the pa-
rameter values for the number of allowed transitions that we used for our
computational experiments.

Table 5: Parameter values for the maximum number of allowed
transitions for models TM+RT and TM+MSRT that we used in
our computational experiments as a function of the number of
orders.

case Ex5 Ex6 Ex7 Ex8 Ex9 Ex10

# of orders 9 9 17 18 21 22

# of allowed transitions 70 70 120 140 150 150

The computational results for model TM+RT show that we can obtain
the optimal solution with the same objective as CHM in less than 2 minutes
for all test cases except Ex10, which takes less than 8 minutes to solve.

Combining the minimum up- and downtime constraints with the restric-
tion of the total number of transitions leads to model TM+MSRT, which
can produce even more practical schedules. For the number of allowed tran-
sitions, we use again the values reported in Table 5. The obtained objective
values are the same as for model TM+MS, the solution times are longer
than the ones reported for model TM+MS but smaller than 15 minutes. In
Figure 10 we show a practical schedule obtained with model TM+MSRT for
Ex10. One can see that the schedule avoids production during hours of peak
prices and has a comparable number of batches to the schedule obtained by
the rolling horizon approach in Castro et al. (2011).

6 Conclusions

In this paper, we have presented a model for the optimal operational pro-
duction planning for continuous power-intensive processes that participate
in non-dispatchable demand response programs. We described a determinis-
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Figure 10: Cement production: optimal schedule and storage pro-
files for problem instance Ex10 using model TMS+MSRT. The
optimal schedule avoids production during hours of peak prices
(brown vertical blocks). M1-M3 are the three parallel production
lines, S1-S4 are the four storage tanks, P1-P5 indicate the five
different products.
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tic MILP model that allows an accurate and efficient modeling of transitions
between operating modes using a discrete time representation. Properties
on the tightness of several logic constraints were proved. We successfully ap-
plied the model to two different real-world air separation plants that supply
to the liquid merchant market, as well as cement plants.

In the air separation case study, the operational optimization model pro-
duced savings of more than 10% when compared to a simple heuristic. We
also learned that operational flexibility, in terms of production and storage
capacity, is the key to lower operating expenses. For the same demand pro-
file, a plant with two liquefiers was able to save 5% on costs when compared
with a single liquefier plant.

We observed in the case of the cement plant that the introduction of
transitional modes resulted in a large-scale model. Nevertheless, the model
was superior compared to a smaller model that only had single product
modes, and thus lacked the capability of limiting the number of occurring
transitions, and could not be solved to optimality. Despite the large size
of the MILP model with transitional modes, the required solution times to
obtain the optimal solution were small for all test cases. Furthermore, the
obtained schedules were practical to implement because we were able to
limit the number of occurring transitions.
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Nomenclature

Sets

• P (index p): The set of plants or production lines

• M(p) (index m), abbreviated as M : The set of modes, depending on
plant p

• I(p,m) (index i), abbreviated as I: The set of extreme points that
relate to mode m of plant p

• G (index g): The set of products. For air separation plants it is
{LO2, LN2, LAr, GO2, GN2}.

• Storable ⊆ G: The subset of products that are storable. For air
separation plants it is {LO2, LN2, LAr}.
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• Nonstorable ⊆ G: The subset of products that are not storable. For
air separation plants it is {GO2, GN2}.

• ST : The set of shared storage tanks

• H (index h): The set of hours of a week in the operational model

• Hx ⊆ H: Subset of hours, where x can stand for e.g. a certain day

• MinStay(m,m’) a placeholder for the sets UT , DT and TT

• UT (p), abbreviated as UT : The set of hours that a plant p has stay
online, once it was started

• DT (p), abbreviated as DT : The set of hours that a plant p has stay
offline, once it was shut down

• TT (p), abbreviated as TT : The set of hours that a plant stays in an
transitional mode

• Trans(p,m,m′,m′′): The set of possible transitions for plant p from
mode m to a production mode m′′ with the transitional mode m′ in
between

• AL(p,m,m′): The set of allowed transitions for plant p from mode m
to another mode m′

• DAL(p,m,m′): The set of disallowed transitions from modem to mode
m′ of plant p

Variables

Binary variables

• Xh
st,g: Indicates which product g is stored in storage st at hour h (for

shared storage)

• yhp,m: Determines whether plant p operates in mode m in hour h

• Zhp,m,m′ : Indicates whether there is a transition from mode m to mode
m′ at plant p from hour h− 1 to h

Continuous variables

• P̄r
h
p,m,g: Production amount of product g in mode m at plant p in hour

h

• Prhp,g: Total production of product g at plant p in hour h
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• λhp,m,i: Variable for the convex combination of slates i to describe the
feasible region of the plant m of mode m in hour h

• INV h
p,g: Inventory level of product g at plant p in hour h

• Shp,g: Sales of product g from plant p in hour h

• Storehp,st,g: Keeps track how much of product g is transferred from
production line p to storage tank st in hour h (for shared storage)

• OBJ: Objective function variable

Parameters

• α̂LN2, α̂LO2, α̂LAR: Conversion parameters for equivalent liquid rate

• αp,m, βp,m, γp,m: Cost coefficients for mode m of plant p

• δp,g: Cost coefficient for inventory of product g at plant p

• ζp,m,m′ : Cost coefficient for transitions from mode m to m′ at plant p

• ehp : Electricity prices for plant p in hour h

• xp,m,i,g: Extreme points of the convex hull of the feasible regions

• M2,p,g,m,o: BigM constant for bounds on production for plant p (i.e.
max. production of product g of option o in mode m)

• Kmin
m,m′ : Number of hours the plant has to stay in mode m′ after a

transition from mode m

• Kmax
m,m′ : Number of hours the plant can stay at most in mode m′ after

a transition from mode m

• rp,m,g: Maximum rate of change for product g at plant p in mode m

• ddailyp,g , dweeklyp,g : Daily/weekly demand for the products g of plant p. For
air separation plants, it is the demand for the liquid products.

• dh,hourlyp,g : Hourly demand for the products g of plant p in hour h. For
air separation plants, it is the demand for the gaseous products.

• INVU
p,st,g: Tank capacity of tank st for product g at plant p

• PWh
max: Maximum power consumption at hour h (under restricted

power availability)
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Appendices for Proofs

I. On the tightness of constraint (14) for the minimum stay
relationship

We prove that constraint (14) is tighter in the LP relaxation than constraint
(15). If we add over index θ all Kmin

m,m′ constraints of constraint (14) we get
the following inequality:

Kmin
m,m′−1∑
θ=0

yh+θp,m′ ≥ K
min
m,m′z

h
p,m,m′ ∀(p,m,m′) ∈ AL, h ∈ H (38)

We can substitute each yh+θp,m′ using the equality constraint (7), by yh+θp,m′ =

1−
∑

m′′∈M,m′′ 6=m′ y
h+θ
p,m′′ and get:

Kmin
m,m′−

Km,m′−1∑
θ=0

∑
m′′∈M,m′′ 6=m′

yh+θp,m′′ ≥ K
min
m,m′z

h
p,m,m′ ∀(p,m,m′) ∈ AL,∀h ∈ H

(39)
Note that there are exactly Kmin

m,m′ different yh+θp,m′ variables involved. By
rearranging the equation we get the surrogate constraint:

Kmin
m,m′−1∑
θ=0

∑
m′′∈M,m′′ 6=m′

yh+θp,m′′ ≤ K
min
m,m′(1− zhp,m,m′) ∀(p,m,m′) ∈ AL,∀h ∈ H

(40)
which is exactly the constraint proposed by Ierapetritou et al. (2002)

and Karwan and Keblis (2007). Therefore, the set of constraints (14)
implies constraint (15). Furthermore, let us consider the following non-
integral point: assume one of the yh+θp,m′′ in constraint (15) is 1. zhp,m,m′ =

(1 − 1
Kmin

m,m′
) is feasible for constraint (15), but it is infeasible in constraint

(14) if MinStay(m,m′) is nonempty. Hence, constraint (14) is tighter. �

II. On the tightness of constraint (21) for forbidden transitions

We prove that constraint (21), which we rewrite here as

yhp,m′ −
∑

m:(p,m,m′)∈AL

yh−1p,m ≤ 0 ∀p ∈ P,m′ ∈M,∀h ∈ H (41)

is tighter in the LP relaxation than constraint (22),

yh−1p,m + yhp,m′ ≤ 1 ∀(p,m,m′) ∈ DAL,∀h ∈ H
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Note that both constraints are equivalent for integer values since AL and
DAL are disjoint sets. The key to the proof is equality constraint (7), which
results from the disjunction of modes. We can rewrite (7) for a given m′ in
the following way:∑

m∈M
yhp,m =

∑
m∈AL

yhp,m +
∑

m∈DAL
yhp,m = 1 ∀p ∈ P, h ∈ H (42)

If we add over index m all K constraints (K = number of forbidden
transitions for m′) of constraint (22) we get the following inequality:∑

m∈DAL
yh−1p,m +Kyhp,m′ ≤ K ∀p ∈ P,m′ ∈M, ∀h ∈ H (43)

Using equality (42) we can rewrite (43) as

∑
m∈DAL

yh−1p,m +Kyhp,m′ ≤ K(
∑
m∈AL

yh−1p,m +
∑

m∈DAL
yh−1p,m ) ∀p ∈ P,m′ ∈M,h ∈ H (44)

⇔ yhp,m′ −
∑

m:(p,m,m′)∈AL

yh−1p,m −
K − 1

K

∑
m∈DAL

yh−1p,m ≤ 0 ∀p ∈ P,m′ ∈M,h ∈ H (45)

If we compare the resulting inequality (45) with constraint (41), we can
see that the additional term −K−1

K

∑
m∈DAL y

h−1
p,m makes (45) weaker com-

pared to (41) because yh−1p,m are binary (nonnegative). �
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