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Abstract 

Optimization models for the production scheduling of power-intensive processes such as air separation 
can help realizing significant economical savings. However, if the electricity is procured in the day-
ahead or real-time market, the forecast for the hourly electricity prices contains a significant amount of 
uncertainty. In this work, we apply robust optimization to the uncertain electricity prices using an 
uncertainty set that features multiple ranges and can account for correlated data. We describe how the 
robust counterpart is constructed and provide a case study that shows the differences in the solutions for 
the deterministic and the robust schedule. 
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Introduction
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The profitability of power-intensive processes, such as 
air separation plants, is largely dependent on the ability to 
quickly adapt to changes in the electricity prices. With 
increasing volatility in the electric power market due to 
deregulation and an increasing share of renewable 
energies, the need for a smart energy management is even 
more pressing. In recent work (Mitra et al., 2011), we 
describe an optimization model for continuous power-
intensive processes that facilitates reducing operating 
expenses due to electricity. Applying the methodology for 
weekly liquid production planning of different under-
utilized air separation plants shows savings of the order of 
10 % and more when compared to a simple set point 
heuristic. In the case study, the electricity prices are 
assumed to be known with certainty, which is accurate for 
time-of-use (TOU) pricing where on-peak, off-peak and 
mid-peak prices are usually negotiated for an entire season 

of the year. However, for more volatile pricing schemes, 
such as day-ahead or real-time pricing, the electricity 
forecast contains uncertainty, which we need to address.  

Background 

One common approach to deal with parameter 
uncertainty is the framework of stochastic programming, 
which has been applied for a medium-size air separation 
unit by Ierapetritou et al. (2002). However, stochastic 
programming problems tend to become large with an 
increasing number of scenarios and are hard to solve. 
Furthermore, schedules are optimized for the expected 
total cost and usually do not explicitly “protect” against 
various realizations of the uncertain parameters. 

In contrast to that, the framework of robust 
optimization focuses on a computationally tractable 



  
 
description of an uncertainty set, against which the 
solution is “robustified”. The robustness of the schedule 
for air separation plant requires special attention when 
slow plant dynamics in terms of switching behavior are 
considered. In the case of a weekly schedule for air 
separation plants, operational constraints such as minimum 
downtime (in the order of 24 hours for larger plants) and 
minimum uptime (48-60 hours) can considerably reduce 
the degrees of freedom once a shutdown is performed. 
Furthermore, operating personnel favor robust schedules 
with respect to anticipated swings in electricity prices. 

Li and Ierapetritou (2008) study the impact of three 
different uncertainty sets proposed in the robust 
optimization literature for process scheduling under 
bounded parameter uncertainty: Soyster's worst case 
approach (1973), Ben-Tal and Nemirovski (1999) as well 
as Bertsimas and Sim (2003). While Soyster's formulation 
is considered to be too conservative, Ben-Tal and 
Nemirovski's (1999) approach introduces nonlinearities. 
Therefore, they identify the polyhedral uncertainty set of 
Bertsimas and Sim (2003) to be most promising because it 
provides a computationally tractable linear formulation, 
which also allows controlling the degree of conservatism. 
Bertsimas and Sim's (2003) approach assumes that each 
uncertain parameter will be either at its nominal or worst-
case value and that the total number of parameters that 
take their worst-case values is restricted.  

In the context of uncertain electricity prices, Conejo et 
al. (2010) use Bertsimas and Sim’s polyhedral uncertainty 
set to optimize the demand response for electricity 
consumers using a rolling-horizon algorithm. 
Unfortunately, the polyhedral uncertainty set has two 
disadvantages when applied to electricity prices. First, the 
prices will either take their nominal or their worst-case 
values, which is not the case for electricity prices in 
reality. Second, the number of parameters, which will take 
their respective worst-case value (also referred to as 
“budget of uncertainty”), is hard to choose correctly. The 
budget of uncertainty is a modeling parameter and 
describes the degree of conservatism. However, for 
electricity prices its appropriate value cannot be easily 
derived from historical data. 

Recently, Duzgun and Thiele (2010) use multiple 
ranges for a more detailed modeling of the realizations of 
the uncertain parameters in the context of R&D project 
selection. They introduce bins with different parameter 
ranges and assume that each parameter will fall in one bin, 
attaining its respective worst case within the bin. The 
number of parameters for each bin is restricted and a 
modeling decision, e.g. observed from historical data. 

In this work, we utilize the uncertainty set by Duzgun 
and Thiele (2010) to build a computationally tractable 
uncertainty set for electricity prices based on historic price 
data. We modify their model to also account for 
correlations in the observed data. The resulting uncertainty 
set is integrated in the operational planning model for air 
separation plants that is described in Mitra et al. (2011) 
and a case study is solved to show the impact. 

Problem Statement 

Given is a power-intensive process that produces a set 
of products g ∈ G, which can be partitioned into Storable 
and Nonstorable products. The plant has different 
operating modes m ∈ M depending on the equipment that 
is running and is subject to hourly-varying electricity 
prices eh (hour h ∈ H). A price forecast is given for the 
horizon of a week. Furthermore, historical data for each 
individual hour of the week is available. The problem is to 
find a weekly production plan for the power-intensive 
process, such that operational costs due to power 
consumption are minimized while satisfying various 
operational constraints of the plant. At the same time, the 
probabilistic data should be used to control the financial 
risk associated with the obtained weekly production 
profile. 

Process Representation 

We represent the plant with a set of modes m ∈ M, 
each one having a distinct feasible space of operation. In 
every hour, the plant operates in exactly one mode. 
Furthermore, the dynamics of the plant require additional 
logic constraints that e.g. ensure minimum stay 
relationships (minimum up-/downtime) or forbid certain 
transitions between modes. Additionally, mass balances 
for the Storable products have to be enforced to account 
for inventory levels. The power consumption PW h  in 
hour h is approximated by a linear correlation between the 
operational decision variables xm,g

h  of the plant using 
correlation coefficients !m,g  as shown in Eq. (1b). Note 
that the operational decision variables can be continuous 
(e.g. production levels) as well as discrete (e.g. state of the 
plant in terms of modes). The exact derivation of all 
equations can be found in Mitra et al. (2011).  For the 
purpose of this paper, we state the deterministic problem 
of finding the schedule with minimum costs that satisfies a 
pre-defined demand for a given forecast of hourly 
electricity prices eh  the following way: 

min
PWh , xm,g

h
 eh
h
! PW h     (1a) 

s.t. PW h = !m,g
m,g
! xm,g

h     (1b) 

xm,g
h ! X      (1c) 

Note that the operational constraints of the problem 
are summarized in the set of constraints X  as described in 
Eq. (1c). 

Robust Optimization 

The general idea of robust optimization is to robustify 
the solution of an optimization problem with respect to 
uncertainty in the problem data that can be in cost 
coefficients, in the constraint matrix or the right-hand side 



  

(Bertsimas and Sim, 2004). In our case, we consider 
uncertainty in the cost coefficients eh . We assume that the 
uncertainty for eh  is bounded in the interval 
[E(eh )! êh, E(eh )+ êh ] , where E(eh )  is the nominal 
(expected) value for the electricity price at hour h and êh  
the expected maximal deviation from the nominal value. 
All eh  are part of the uncertainty set E , whose exact 
structure is a degree of freedom for the modeler. The 
robust optimization problem of the deterministic problem 
in (1) with uncertain cost coefficient can be written as: 

min
PWh , xm,g

h
 max
eh!E

 eh
h
" PW h    (2a) 

s.t. Constraints (1b)-(1c)   (2b) 

Uncertainty Set  

The appropriate selection of the uncertainty set E  is a 
non-trivial task due to concerns regarding tractability and 
conservatism. As stated earlier, we study the influence of 
the uncertainty set described by Duzgun and Thiele (2010) 
that features multiple ranges for a more detailed modeling 
of the realizations of the uncertain parameters. It has the 
advantage that it allows to tune the degree of conservatism 
according to historical data while providing a formulation 
that is tractable. The formulation is the following: 

min
PWh , xm,g

h
 max
eh ,wk

h
 eh
h
! PW h    (3a) 

s.t. Constraints (1b)-(1c)   (3b) 
ek
hwk

h ! ek
h ! ek

hwk
h,  "h # H,k # K   (3c) 

eh = ek
h,  !h " H

k"K
#     (3d) 

wk
h =1,  !h " H

k"K
#     (3e) 

wk
h ! "k

h
# ,  $k % K     (3f) 

wk
h ! {0,1},  "h ! H,k ! K    (3g) 

It is assumed that the uncertainty space can be split up 
into multiple ranges k ! K . The ranges represent relative 
deviations from the mean value for each individual 
parameter eh . Each eh  falls in exactly one bin k (see Eq. 
(3c)-(3e)). The number of parameters per bin is limited by 
the parameter !k  as stated in Eq. (3f). The binary variable 
wk

h  describes whether eh  falls into bin k (Eq. (3g)). The 

lower and upper bounds ek
h  and ek

h are constructed with 
respect to the relative deviations of the hourly prices from 
their corresponding mean values. Based on the analysis of 
historical data for a given season of the year, we generate 
the bins for the relative deviations of the hourly prices for 
a whole week and define the allowed observations per bin 
accordingly. 

In formulation (3), we do not account for correlations 
in the random variables across different hours. However, 
in reality these correlations exist, i.e. if the electricity price 
is already high in the morning of a summer day it is likely 
to increase throughout the day. Therefore, similarly to 

Bertsimas and Sim (2004), we introduce the uncertain 
variables ci , with i ! I  being the set of independent 
random variables. The electricity prices can be rewritten as 
eh = ci

i
! ! i

h , with the parameter ! i
h  describing the 

influence of ci  on the hourly price eh . We formulate the 
robust optimization problem over the uncertainty set of the 
independent random variables C , which is analogously 
described to E  with the following set of equations: 

min
PWh , xm,g

h
 max
ci ,zi,k

 ci! i
h

i
!

h
! PW h    (4a) 

s.t. Constraints (1b)-(1c)   (4b) 
ci,kzi,k ! ci,k ! ci,kzi,k,  "i # I,k # K   (4c) 

ci = ci,k,  !i " I
k"K
#     (4d) 

zi,k =1,  !i " I
k"K
#     (4e) 

zi,k ! "k
i#I
$ ,  %k # K     (4f) 

zi,k ! {0,1},  "i ! I,k ! K    (4e) 

Similarly to wk
h , the binary variables zi,k  indicate 

whether ci  falls into bin k or not. In the LP relaxation of 

formulation (9)-(14) zi,k is relaxed as 
0 ! zi,k !1,  "i # I,k # K    (4g) 

Robust Counterpart 

In order to derive the robust counterpart of 
formulation (4), the linear relaxation of the inner 
maximization is investigated. As shown by Duzgun and 
Thiele (2010), the integer variables zi,k  will take integer 
variables in the solution of the linear relaxation. The key 
idea of the proof is the assignment polytope structure that 
can be found in Eqns. (4e)-(4f). Furthermore, zi,k  will 
take its maximum value in its range since the power 
consumption PW h is nonnegative. Therefore, it follows 
that ci = ci,k

k!K
" zi,k for all i and the robust counterpart can be 

written as: 
min  ! i + "k!k + #i,k

i,k
"

k
"

i#I
"    (5a) 

s.t. Constraints (1b)-(1c)   (5b) 
! i +"k +#i,k ! ci,k

h"H
# $ i

hPW h,  $i " I,k " K  (5c) 

!k,  "i,k ! 0, "i # I,k # K    (5d) 
In this formulation (5), ! i is the dual multiplier for Eq. 

(4e), !k  is the dual multiplier for Eq. (4f) and !i,k stems 
from the upper bound constraint in the LP relaxation of 
Eq. (4g). 



  
 

Case Study Setup 

Air separation plant 

The air separation plant that we consider has two 
liquefiers that produce the storable products (liquid 
oxygen, nitrogen and argon) and does not have a pipeline 
customer. If the second liquefier ramps up production, the 
plant is 4 hours in a transitional state in which almost no 
product is produced. Furthermore, once the plant is shut 
down, it has to stay offline for at least 24 hours. After a 
start-up, which takes 4 hours, the plant has to run for at 
least 48 hours. We use industrial data provided by Praxair 
to conduct the case study. 

We assume that the plant’s liquid product inventory is 
at 40% at the beginning of the week, and the same value is 
used for the target inventory at the end of the week. Every 
6 hours a constant pre-defined amount of product is 
removed from the storage tank. The demand is equivalent 
to 72% capacity utilization. 

Electricity Data 

In this case study we analyze electricity data on an 
hourly basis for the PJM day-ahead market (Ott, 2003). In 
Figure 1, we can see the distribution of the relative 
deviations from their hourly seasonal average for the 
spring seasons 2005-2007. The graph was generated 
considering 13 weeks of the spring season for each year. 

 

Figure 1.   Distribution of relative deviations 
from nominal values (“1”) in electricity prices 

for a typical week in spring. 

To account for correlations in electricity prices, we 
have to use a dimension-reduction technique. We choose 
Nonnegative Matrix Factorization (NMF, Berry et al., 
2007), which performs a low-rank approximation of the 
data matrix A in the following way:  

A !U  V      (6) 
The columns of U represent transformations of the 

variables in A. V describes the relative contributions of the 

original variables to the transformed variables. Each row 
of V is scaled to unit length. All entries in U and V are 
nonnegative, which is of particular importance when the 
dual of the inner maximization in (4) is taken. Since the 
data matrix A represents the relative deviation from the 
nominal (forecasted) value E(eh ) , we can construct our 
coefficients ! i

h  as follows: 
! i
h = vi,hE(e

h )     (7) 
For our case study, we reduce the 168 hours of a week 

to 10 independent random variables. The distribution in 
the transformed variables is shown in Figure 2. 

 

Figure 2.   Distribution of deviations in the 
transformed variables 

The frequencies for each bin (scaled by the number of 
independent random variables, here 10) are taken as the 
input for the !k  parameters in our uncertainty set model.  

Results 

We solve the deterministic and the robust 
optimization problem, and can observe that both solutions 
behave similarly with a few exceptions that we will 
explain in the following. Figure 3 shows the nominal 
values for the electricity prices of one week as well as 
minimum and maximum values. Here the nominal values 
are the means for each hour of the spring of 2008. As we 
can see in Figure 4, the power consumption is 
countercyclical to the electricity prices in both solutions. 
During the night, when electricity is cheap, the second 
liquefier is activated (above 0.7 relative power 
consumption). During the first 48 hours, there are only 
slight differences between the two solutions with respect 
to the timing of the start-up of the second liquefier. For the 
following three days, the main difference is the shutdown 
of the second liquefier in the robust solution to reduce the 
exposure to the market volatility on Wednesday morning 
(hour 55). Over the weekend, we can observe that the 
robust solution delays the start-up of the second liquefier 
on Friday night (hour 117), and keeps it running during 



  

Saturday while exploiting the lower volatility during hours 128-143. 
 

 

Figure 3.   Electricity prices for a typical week in spring 2008 (mean, max and min values) 

 

Figure 4.   Power consumption profiles for deterministic and robust solution

From the profiles it is not immediately obvious which 
solution should be implemented. Hence, we compare the 
two solutions with respect to 2000 electricity profiles that 
were randomly generated based on the relative deviations, 
which were observed in 2005-2008 data. In Figure 5, we 
can see that both solutions perform similarly with the 
robust solution having slightly smaller tails. 

 

Figure 5.   Comparison of cost distributions for 
randomly generated electricity profiles. 

In Table 1, we can observe that the standard deviation 
decreases by 2%, while the mean of the robust solution 
increases by 0.1% (i.e. the “price of robustness”). 

Table 1.   Cost comparison for randomly 
generated electricity profiles.  

 Deterministic Robust Difference  
Mean $121,430 $121,550 +0.10% 

Standard 
deviation $10,098 $9,896 -2.01% 

Computational Results 

The model statistics are shown in Table 2. It is 
interesting to note that the problem size does not increase 
significantly. With | I |=10  (number of uncertain 
parameters) and |K |=10  (number of bins), we introduce 
only 100 new constraints and 120 new continuous 
variables. The number of binary variables does not change. 
We use CPLEX 12.2.0.1 within the GAMS modeling 
environment (Brooke et al., 2010) to solve the resulting 
MILP problems on a MacBook Pro with a 2.53 Ghz Intel 
Core i5 and 4GB RAM. The CPU time required increases 
from 6 s (deterministic) to 16 s (robust). 

Table 2.   Model statistics for case study. 

 Deterministic Robust 
# Constraints 42,163 42,263 
# Variables 29,401 29,521 

# Binary   3,528   3,528 
CPU time 6 s 16 s 



  
 

Conclusion 

We have applied robust optimization to the scheduling 
of power-intensive processes under uncertain electricity 
prices. The uncertainty set featured multiple ranges and 
accounted for correlated data. For an illustrative case study 
with an air separation plant, we observed that the robust 
solution behaved similarly to the deterministic solution 
with a few exceptions. The differences caused the robust 
solution to have a 2% lower standard deviation in the cost 
distribution that was calculated for randomly generated 
electricity profiles. At the same, the mean of the robust 
solution increased by only 0.1%. While these numbers 
suggest that the robust solution might be worth it to 
implement, the results can also be interpreted in a way that 
the deterministic solution itself is a somewhat “robust” 
solution. Hence, it would be interesting to study the 
performance of the deterministic and the robust solution 
within a rolling horizon scheme as suggested by Conejo et 
al. (2010).  
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