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Abstract We describe a decomposition algorithm that combines Benders and scenario-
based Lagrangean decomposition for two-stage stochastic programming investment
planning problems with complete recourse, where the first-stage variables are mixed-
integer and the second-stage variables are continuous. The algorithm is based on
the cross-decomposition scheme and fully integrates primal and dual information
in terms of primal-dual multi-cuts added to the Benders and the Lagrangean mas-
ter problems for each scenario. The potential benefits of the cross-decomposition
scheme are demonstrated with an illustrative case study for a facility location prob-
lem under disruptions, where the underlying LP relaxation is weak, and hence, multi-
cut Benders decomposition converges only slowly. If the LP relaxation is improved
by adding a tightening constraint, the performance of multi-cut Benders decomposi-
tion improves but the cross-decomposition scheme stays competitive and outperforms
Benders for the largest problem instance.

Keywords Cross-decomposition · Two-stage stochastic programming · Investment
planning

1 Motivation

Two-stage stochastic programming investment planning problems (Birge and Lou-
veaux, 2011) can be hard to solve since the resulting deterministic equivalent pro-
grams can lead to very large-scale problems. There are two main approaches, which
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can be seen as complementary techniques to address the resulting computational chal-
lenge: First, sampling methods (Linderoth et al, 2006) and scenario reduction tech-
niques (Heitsch and Romisch, 2003) can be used to limit the number of required sce-
narios. Second, decomposition schemes, such as Benders decomposition also known
as L-shaped method (Benders, 1962; Geoffrion, 1972; Van Slyke and Wets, 1969) or
Lagrangean decomposition (Guignard and Kim, 1987; Caroe and Schultz, 1999) can
be applied to exploit decomposable problem structure. In the following we focus on
decomposition schemes, which have been successfully applied for solving two-stage
stochastic programming problems.

Benders decomposition solves the original problem with iterations between a
master problem and subproblems, which are obtained by fixing complicating vari-
ables, the investment decisions. Dual information from the subproblems, which de-
scribes the sensitivity of the second-stage decisions with respect to the first-stage de-
cisions, is fed back to the master problem, which in turn guides the primal search.
The convergence rate of Benders decomposition is good if the underlying relax-
ation is tight (Magnanti and Wong, 1981; Sahinidis and Grossmann, 1991). However,
initially the bound provided by the Benders master problem might be weak and a
large number of iterations are potentially required. Therefore, tightening techniques
to speed-up the convergence of Benders, such as multi-cuts (Birge and Louveaux,
1988), pareto optimal cuts (Magnanti and Wong, 1981) and cut bundle generation
methods (Saharidis et al, 2010) (among others) have been proposed.

Lagrangean decomposition applied to stochastic programming problems is a spe-
cial form of Lagrangean relaxation, which also decomposes the original problem
into scenarios, but relaxes the so-called non-anticipativity constraints that enforce the
same investment decisions across scenarios (Caroe and Schultz, 1999). Therefore,
Lagrangean decomposition provides a good relaxation since the Lagrangean dual is
very similar to the original problem. However, the classical Lagrangean decomposi-
tion approach suffers from two weaknesses. First, it might be hard to generate good
first-stage feasible solutions from the Lagrangean dual subproblems through heuris-
tics. Second, the update of the multipliers by subgradient optimization (Held and
Karp, 1971; Held et al, 1974; Fisher, 1981) or cutting planes (Cheney and Goldstein,
1959; Kelley, 1960) can be a bottleneck that slows down the overall convergence
of the algorithm. Techniques to speed up convergence of the multiplier update in-
clude (among others) the bundle method (Lemarechal, 1974; Zowe, 1985; Kiwiel,
1990), the volume algorithm (Barahona and Anbil, 2000) and the analytic center cut-
ting plane method (Goffin et al, 1992). There are also strategies to combine bounds
from subgradient optimization with cutting planes (Mouret et al, 2011; Oliveira et al,
2013), and to update the multipliers based on dual sensitivity analysis (Tarhan et al,
2013).

However, while there are many papers that focus on improvements for one or the
other method, it seems that only few research efforts address combining the com-
plementary strengths of the two decomposition schemes. First proposed by Van Roy
(1983), the cross-decomposition algorithm is a framework that unifies Benders and
Lagrangean relaxation, which can be seen as duals of each other. The cross-decomposition
algorithm iterates between the primal and dual subproblems, where each of the sub-
problems yields the input for the other one. Convergence tests are used to determine
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when the iteration between primal and dual problems needs to be augmented with
the solution of a primal or dual master problem in order to prevent cycling of the
algorithm and restore convergence. Holmberg (1990) generalizes the idea of cross-
decomposition and introduces a set of enhanced convergence tests. One of the main
ideas in cross-decomposition is to avoid solving the master problems since the solu-
tion of these problems, potentially MIPs, is regarded as a hard task. Some variations
of the method, e.g. mean value cross-decomposition (Holmberg, 1997a,b) in which a
new solution is obtained by averaging over a set of solutions from previous iterations,
even completely eliminate the use of master problems at the cost of potentially slow
convergence.

To the best of our knowledge, there is almost no work that uses a scheme like
cross-decomposition for stochastic programming problems. Interestingly, only 49 re-
sults are found by a Google Scholar search on ”cross-decomposition” + ”stochastic
programming” as of January 18th 2014. Thereof, only two publications seem to ac-
tively combine Benders and Lagrangean decomposition in a somewhat similar way
to our proposed scheme for stochastic programming problems. On the one hand,
Cerisola et al (2009) use dual information obtained from a component-based La-
grangean dual relaxation in a nested Benders approach for the unit commitment prob-
lem. On the other hand, Sohn et al (2011) derive a mean value cross-decomposition
approach for two-stage stochastic programming problems (LP) based on Holmberg’s
scheme (1992), in which the use of any master problem is eliminated and apply the
algorithm to a set of random problem instances. They claim to solve the instances
faster than Benders and ordinary cross-decomposition. But from their presentation it
is hard to judge to what extent their algorithm might avoid cycling behavior.

At the same time, there are two paradigm shifts that have occurred over the last
20 years that influence the way we might perceive cross-decomposition:

1. MIP solver improvements and faster computers lead to significantly lower
CPU times for MIP problems.1 Therefore, there is no longer the need to avoid
solving master problems in cross-decomposition schemes. While the Benders
(primal) master problems is a potentially hard MIP problem, it needs to be solved
anyway in the regular Benders approach. Furthermore, the Lagrangean dual mas-
ter problem is an LP or QP (with stabilization) if cutting planes are employed.
Hence, we would like to solve both master problems to obtain primal and dual
guidance on our search. At the same time, we would like to strengthen each mas-
ter problem with information obtained from both subproblems.

2. Growing grid computing infrastructure is leading to even more paralleliza-
tion. Hence, it is desirable to use these computing resources to compute strong
lower as well as upper bounds that rely on parallelization. Benders primal sub-
problems and Lagrangean dual subproblems are both well-suited for solution in
parallel.

Hence, in this paper, we describe an enhanced version of the cross-decomposition
scheme for two-stage stochastic investment planning programs with complete re-
course, in which first-stage investment decisions are mixed-integer and second-stage

1 Although, the importance of a good formulation should not be neglected. See Bixby and Rothberg
(2007) and Lima and Grossmann (2011) for further details and examples.
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decisions are continuous. Once investment decisions are fixed, the problem decom-
poses into scenarios, which are solved as Benders primal subproblems. The La-
grangean dual subproblem for each scenario is obtained by dualizing non-anticipativity
constraints. Both, the primal and the dual subproblem are solved in parallel. The pri-
mal search is guided by a multi-cut Benders master problem, which is augmented
with optimality cuts obtained from the Lagrangean dual subproblems. The dual search
is guided by a disaggregated version of the Lagrangean dual master problem, which
is bounded with primal information obtained in previously solved Benders primal
subproblems.

2 Problem Statement

We consider a two-stage stochastic programming problem (SP) of the following form:

(SP) min TC = cT x+∑
s∈S

τsdT
s ys (1)

s.t. A0x ≤ b0 (2)
A1x + B1ys ≤ b1 (3)

Bsys ≤ bs ∀s ∈ S (4)
x ∈ X (5)
ys ≥ 0 ∀s ∈ S (6)

The objective function (1) minimizes the total expected cost TC, which consists
of investment cost (cT x) and expected operational cost (∑s∈S τsdT

s ys), where τs is the
probability for scenario s ∈ S with ∑s∈S τs = 1. The first-stage decisions, x are mixed-
integer and correspond to discrete choices for investments and associated capacities:

X =
{

x = (x1,x2)
T : x1 ∈ {0,1}n , x2 ≥ 0

}
(7)

All second-stage decisions, ys, which correspond to operational decisions in sce-
nario s, are continuous. In equation (2), constraints on the investment decisions are
specified, e.g. logic constraints on the combination of investments. Equation (3) links
the investment decisions with operational decisions, e.g. if capacity is expanded, ad-
ditional operational decisions are available. In equation (4), operational constraints
are specified.

Note that the problem naturally decomposes into scenarios once the investment
decisions x are fixed. Furthermore, we can explicitly formulate so-called non-anticipativity
constraints, which are derived by duplicating the investment decisions for each sce-
nario (xs) and enforcing equality constraints across all scenarios. We use the for-
mulation by Caroe and Schultz (1999) and re-write problem (SP) in the follow-
ing way (SPNAC), where equation (12) represents the non-anticipativity constraints,
(x1 = x2 = ...= xn), with a suitable matrix H = (H1, ...,H|S|):
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(SPNAC) min TC = ∑
s∈S

τs(cT xs +dT
s ys) (8)

s.t. A0xs ≤ b0 (9)
A1xs + B1ys ≤ b1 (10)

Bsys ≤ bs ∀s ∈ S (11)

∑
s∈S

Hsxs = 0 (12)

xs ∈ Xs ∀s ∈ S (13)
ys ≥ 0 ∀s ∈ S (14)

In (13), Xs is defined analogously to X:

Xs =
{

xs = (x1,s,x2,s)
T : x1,s ∈ {0,1}n , x2,s ≥ 0

}
∀s ∈ S (15)

Corollary 1 Problems (SP) and (SPNAC) are equivalent.

Proof Trivially, by substituting non-anticipativity constraints (12). ⊓⊔

3 Ingredients of the Decomposition Algorithm

In the following, we describe the ingredients for our cross-decomposition scheme
that is based on Benders and Lagrangean decomposition, which both exploit the de-
composable problem structure. For clarity of the presentation, we assume complete
recourse, which means that all scenarios are feasible, independent of first-stage deci-
sions. This assumption can be relaxed, but requires an adequate handling of infeasible
primal subproblems in the decomposition algorithms as per including primal feasi-
bility cuts and addressing dual unboundedness.

3.1 Subproblems

3.1.1 Benders (Primal) Subproblem

Once the first-stage decisions x are fixed, each scenario s can be solved individually.
In order to facilitate full primal-dual integration, it is important that we assign the
investment cost in the Benders primal subproblems in the same way we assign the
investment cost in the Lagrangean dual subproblem. Therefore, we build our Ben-
ders primal subproblems from (SPNAC) but remove the explicit non-anticipativity
constraint. If we refer to a given vector of investment decisions x̂k in iteration k, we
assume that it is feasible according to constraints (9) and (12). The Benders subprob-
lem (BSPk) based on (SPNAC), can be written in two ways for each scenario s: a
primal formulation (BSPpk

s) and a dual formulation (BSPdk
s ), which are equivalent

since (BSPk
s ) is an LP that can be solved with zero duality gap. We present both in

the following.
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(BSPpk
s) min τs(cT x̂k +dT

s ys) (16)
s.t. B1ys ≤ b1 −A1x̂k (17)

Bsys ≤ bs (18)
ys ≥ 0 (19)

Let us be the dual multiplier associated with constraint (17) and vs be the dual
multiplier of constraint (18). Then, the dual of (BSPpk

s) can be written as:

(BSPdk
s ) max τscT x̂k +(A1x̂k −b1)

T us −bT
s vs (20)

s.t. −uT
s B1 − vT

s Bs ≤ τsds (21)
us,vs ≥ 0 (22)

Let ŷk
s be the optimal solution of (BSPpk

s) and (uk
s ,v

k
s) be the solution of (BSPdk

s ).
Let us define z∗k

P,s, in the following way (equivalence due to strong duality):

z∗k
P,s = τs(cT x̂k +dT

s ŷk
s) = τscT x̂k +(A1x̂k −b1)

T uk
s −bT

s vk
s ∀s ∈ S, k ∈ K (23)

With z∗k
P = ∑s∈S z∗k

P,s, we obtain a valid upper bound on (SPNAC)’s objective func-
tion value TC since (BSPk) is a restriction of (SPNAC):

TC ≤ z∗k
P ∀k ∈ K (24)

3.1.2 Lagrangean (Dual) Subproblem

A valid relaxation of (SPNAC) can be obtained by formulating the Lagrangean dual
for (SPNAC), in which the non-anticipativity constraints (12) are dualized in order to
apply the framework of Lagrangean decomposition (Guignard and Kim, 1987; Caroe
and Schultz, 1999). The Lagrangean Dual (LDk) is formulated in the following with
given fixed Lagrange multipliers µk for each scenario s, denoted as (LDk

s).

(LDk
s) min ∑

s∈S
τs(cT xs +dT

s ys)+µkHsxs (25)

s.t. A0xs ≤ b0 (26)
A1xs + B1ys ≤ b1 (27)

Bsys ≤ bs ∀s ∈ S (28)
x ∈ X (29)
ys ≥ 0 ∀s ∈ S (30)

Let (x̃k
s , ỹ

k
s) be the optimal solution of (LDk

s). Let us define z∗k
LD,s in the following

way:
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z∗k
LD,s = τs(cT x̃k

s +dT
s ỹk

s)+µkHsx̃k
s (31)

With z∗k
LD = ∑s∈S z∗k

LD,s, we obtain a valid lower bound on (SPNAC)’s objective
function value TC since (LDk) is a relaxation of (SPNAC):

z∗k
LD ≤ TC ∀k ∈ K (32)

3.1.3 Lagrangean (Primal) Subproblem

The previously described Lagrangean dual subproblem yields a solution, in which
some of the original non-anticipativity constraints (12) are most likely violated. There-
fore, a primal solution needs to be obtained, which also provides a valid upper bound.
In the framework of Lagrangean decomposition, ”some heuristic” needs to be applied
to generate a first-stage feasible xk, which is used in (SPNAC) in order to obtain the
primal solution. We would like to highlight that the Lagrangean primal subproblem
for scenario s is equivalent to the Benders subproblem for scenario s in its primal
form (BSPps).

3.2 Master problems

3.2.1 Benders (Primal) Master Problem (update of first-stage variables)

Dual optimality cuts from Benders primal subproblems Using the dual solution (uk
s ,v

k
s)

from (BSPk
s ), we can derive two types of dual optimality cuts for (SPNAC). The opti-

mality cuts are based on weak duality, which means that the value of any dual feasible
solution of the subproblems (BSPk

s ) (across all scenarios s) is a lower bound on the
optimal value of the primal (SPNAC) and (uk

s ,v
k
s) stays feasible in (BSPdk

s ) even
when x̂k is replaced by another x. The first cut (33) is the well-known Benders cut
(Benders, 1962)

TC ≥ ∑
s∈S

τscT x+∑
s∈S

(A1x−b1)
T uk

s −∑
s∈S

bT
s vk

s ∀k ∈ K (33)

The second cut, presented in equations (34)-(35) is the Benders multi-cut (Birge
and Louveaux, 1988), where θs is the objective function value for scenario s.

TC ≥ ∑
s∈S

θs (34)

θs ≥ τscT x+(A1x−b1)
T uk

s −bT
s vk

s ∀s ∈ S, k ∈ K (35)

While the multi-cut version (34)-(35) provides faster convergence due to increased
strength of the dual information, it increases the problem size compared to the single-
cut version (33). Note that we do not provide feasibility cuts since we assume com-
plete recourse, as previously stated.
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Lagrangean dual bounds for the Benders primal master problem We notice that the
Lagrangean dual (LDs) is a relaxation of the primal problem for scenario s. Hence, we
can derive a valid lower bound for θs based on the previously obtained information
from the Lagrangean dual:

z∗k
LD,s ≤ θs +µkHsx ∀s ∈ S, k ∈ K. (36)

The proof that (36) is a valid inequality for the Benders primal master problem
can be found in Appendix A.1.

No-Good Cut If the complicating variables, x, are all binary variables, we can also
formulate a no-good cut (Balas and Jeroslow, 1972) to exclude previously visited
solutions from the solution space:

∑
l∈Lk

1

xl − ∑
l∈Lk

0

xl −|Lk
1|+1 ≤ 0 ∀k ∈ K (37)

In equation (37), Lk
0 and Lk

1 are defined as follows (where xl is the lth component
of x):

Lk
0 = {l : xl = 0 in iteration k} (38)

Lk
1 = {l : xl = 1 in iteration k} (39)

Formulation of the Benders (primal) master problem Using the multi-cut version
(34)-(35) for the optimality cuts and the Lagrangean dual bounds (36) presented in
(43) below, we write the Benders master problem (BMPk+1) that yields the next
primal vector x̂k+1 as follows:

(BMPk+1) min ηBMP (40)

s.t. ηBMP ≥ ∑
s∈S

θs (41)

θs ≥ τk
s cT x+(A1x−b1)

T uk
s −bT

s vk
s ∀s ∈ S, k ∈ K (42)

θs ≥ z∗k
LD,s −µkHsx ∀s ∈ S, k ∈ K (43)

A0x ≤ b0 (44)

x ∈ X , ηBMP ∈ R1, θs ∈ R1 ∀s ∈ S (45)

If X has only integer variables, we can add the no-good cut (37) with the sets Lk
0

and Lk
1 defined by (38)-(39) to (BMPk+1). Let z∗k+1

BMP be the optimal objective function
value of (BMPk+1). Note that (BMPk+1) is a relaxation of (SPNAC) that provides a
lower bound to (SPNAC):

z∗k+1
BMP ≤ TC ∀k ∈ K (46)

Note that by adding equation (43) to the Benders master problem, we strengthen
its formulation, and we can guarantee that the lower bound obtained from the Benders
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master problem is at least as tight as the best known solution from the Lagrangean
dual since

z∗k′
LD = ∑

s∈S
z∗k′

LD,s −µk′ ∑
s∈S

Hsx︸ ︷︷ ︸
=0

≤ ∑
s∈S

θs ≤ z∗k+1
BMP ∀ k ∈ K, k′ ∈ K, k′ ≤ k. (47)

3.2.2 Lagrangean (Dual) Master Problem (multiplier update)

Once the Lagrangean dual subproblems are solved, a new solution for the Lagrangean
multipliers µ needs to be generated for the next iteration of the algorithm based on
the information obtained in the subproblems. The most commonly used method to
update the Lagrangean multipliers is the subgradient method (Held and Karp, 1971;
Held et al, 1974; Fisher, 1981). Unfortunately, the convergence of the subgradient
method is not very reliable, especially when dealing with large-scale problems. One
alternative to the subgradient algorithm are cutting planes, similar to the ones used in
the Benders master problem. We present in the following the Lagrangean dual master
problem, which is also referred to as ”cutting plane method” and can be formally
derived from the Dantzig-Wolfe primal master problem (Guignard, 2003; Frangioni,
2005).

Typical cutting plane The typical form of the cutting plane (Cheney and Goldstein,
1959; Kelley, 1960) is as follows:

TC ≤ ∑
s∈S

τs(cT x̃k
s +dT

s ỹk
s)+µ ∑

s∈S
Hsx̃k

s ∀k ∈ K, (48)

in which (x̃k
s , ỹ

k
s) is the solution of the kth Lagrangean dual subproblem of scenario s

(LDk
s).

Disaggregated version of the cutting plane (multi-cut) In many publications that em-
ploy a cutting plane approach for Lagrangean decomposition, the cutting plane as de-
scribed in equation (48) is used. However, it is also possible to derive a disaggregated
version of the cutting plane for the case in which the Lagrangean relaxation decom-
poses into a set of independent subproblems (Guignard, 2003; Frangioni, 2005), in
which κs is the variable associated with the objective function value in scenario s:

TC ≤ ∑
s∈S

κs (49)

κs ≤ τs(cT x̃k
s +dT

s ỹk
s)+µHsx̃k

s ∀s ∈ S, k ∈ K (50)

The disaggregated version of the cutting plane is analogous to the multi-cut ver-
sion of the Benders cut, which seems intuitive since Benders decomposition and La-
grangean relaxation can be seen as duals of each other. It can also be shown that
(50) is an inner approximation of the convex hull of the non-complicating constraints
for scenario s. Therefore, we obtain a tighter approximation of the convex hull of
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all non-complicating constraints by intersecting these approximations (50) across all
scenarios s instead of building the approximation of the convex hull for the entire set
of non-complicating constraints (Frangioni, 2005).

Note also that similarly as for the Benders multi-cut, there might be a tradeoff
between tightness of the cuts and problem size.

Benders primal bounds for the Lagrangean master problem Analogously to (36), it is
further possible to derive additional bounds from the Benders primal subproblems for
the objective function value κs of each scenario s in the Lagrangean master problem
since we will use the disaggregated version of the Lagrangean master problem:

κs ≤ z∗k
P,s +µHsx̂k ∀s ∈ S, k ∈ K (51)

The proof that (51) is a valid inequality for the Lagrangean dual master problem
is given in Appendix A.2.

Formulation of the Lagrangean Dual Master Problem Using the multi-cut version
(49)-(50) of the cutting planes and the upper bounds from the Benders primal sub-
problem (51) presented in (55) below, the Lagrangean dual master problem (LMPk+1),
which yields the next Lagrangean multipliers µk+1, can be formulated as:

(LMPk+1) max ηLMP +
δ
2
∥µ − µ̄∥2

2 (52)

s.t. ηLMP ≤ ∑
s∈S

κs (53)

κs ≤ τs(cT x̃k
s +dT

s ỹk
s)+µHsx̃k

s ∀s ∈ S, k ∈ K (54)

κs ≤ z∗k
P,s +µHsx̂k ∀s ∈ S, k ∈ K (55)

ηLMP ∈ R1, µ ∈ R(|S|−1)×n, κs ∈ R1 ∀s ∈ S (56)

where |S| is the number of scenarios and n the number of dualized first-stage
variables.

The objective function (52) contains the additional quadratic stabilization term
δ
2 ∥µ − µ̄∥2

2 that defines a trust-region for the update of the Lagrangean multipliers
(Lemarechal, 1974; Zowe, 1985; Kiwiel, 1990; Frangioni, 2002). The stabilization
requires initial values and update strategies for the penalty δ , which defines the size
of the trust region, and the stabilization center µ̄ . For a detailed overview on the
stabilization techniques, we refer to the previously mentioned work.

Let z∗k+1
LMP be the optimal objective function value of (LMPk+1). Note that the valid

inequalities (55) make the Lagrangean master problem bounded. Furthermore, they
guarantee that the Lagrangean master problem will yield a bound at least as tight as
the best known primal upper bound, obtained from the Benders subproblems:

z∗k+1
LMP ≤ ∑

s∈S
κs ≤ ∑

s∈S
z∗k′

P,s +µ ∑
s∈S

Hsx̂k′

︸ ︷︷ ︸
=0

= z∗k′
P ∀k ∈ K, k′ ∈ K, k′ ≤ k. (57)
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Fig. 1 Algorithmic flow (bold arrows) and flow of information (thin arrows) for our cross-decomposition
scheme with multi-cuts.

3.3 Initialization scheme

In Benders decomposition as well as in Lagrangean decomposition, an initial guess
for the first-stage primal variables / Lagrangean multipliers needs to be provided.
The solution of (SPNAC)’s LP relaxation is usually hard due to a large number of
scenarios. We notice that a good guess might speed up convergence and can poten-
tially be derived based on in-depth problem knowledge. A generic initialization is the
following one:

x̂k=0 = 0 (58)
µk=0 = 0 (59)

In general, this initialization is reasonable since it corresponds to making no in-
vestments (as a baseline guess) and assuming that the value transferred to each sce-
nario by making an investment is zero. Note that this initialization will be primal
feasible since we have complete recourse. Furthermore, initial values for the trust-
region penalty δ and for the stabilization center µ̄ need to be specified. Typically, µ̄
is set to µk=0.

4 The proposed algorithm

The proposed algorithm, which is illustrated in Fig. 1, consist of the following steps:
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1. Initialization
k = 0, K={0}, x̂k=0 = 0, µk=0 = 0, LB =−∞, UB = ∞, set ε ≥ 0,
Go to step 2

2. Benders primal subproblem
For given x̂k, solve (BSPpk

s), ∀s ∈ S in parallel
Store (uk, vk), and generate sets Lk

0, Lk
1 if X has only binary variables

If z∗k
P <UB, set UB = z∗k

P

3. Lagrangean dual subproblem
For given µk, solve (LDk

s), ∀s ∈ S in parallel
Store solution x̃k

s , ỹk
s and z∗k

LD,s
Go to step 4

4. Lagrangean (Dual) Master problem
For given x̃k

s , ỹk
s , z∗k

P,s, ∀s ∈ S, k ∈ K, solve (LMPk+1)

Store solution for Lagrangean multipliers µ and set them as µk+1

Update δ and µ̄ according to update strategies
Go to step 5

5. Benders (Primal) Master problem
For given (uk, vk), (Lk

0,L
k
1), z∗k

LD,s, ∀s ∈ S, k ∈ K, solve (BMPk+1)

Store solution for first-stage primal investment decisions x and set them as x̂k+1

Set LB = z∗k+1
BMP

Go to step 6
6. Check Convergence (Optimality)

If UB−LB ≤ ε: Stop.
Else set k = k+1 and include in K; go back to Step 2.

5 Discussion

5.1 Comments on the primal and dual bounds

One of the potential strengths of the proposed algorithm is that it guarantees to pro-
vide a lower bound, which is at least as tight as the best lower bound obtained from
the Lagrangean dual, while having a mechanism to generate first-stage solutions that
are feasible regarding the first-stage constraints (in contrast to using a heuristic as in
Lagrangean decomposition). Note that primal-dual information exchange in terms of
bounds for each scenario s is facilitated by the fact that both subproblems, the Ben-
ders primal and the Lagrangean dual, have the same investment cost terms for each
scenario s.

Furthermore, we use a multi-cut approach for both, the primal Benders and dual
Lagrangean master problem to derive primal and dual bounds for each scenario s.
While we expect tight bounds, the computational performance needs to be carefully
investigated for each case individually. We anticipate to see an impact for cases in
which the Benders algorithm converges slowly due to a weak underlying linear re-
laxation. At the same time, the effort that an additional Lagrangean iteration adds to
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the total computational time needs to be compared with the number of saved Benders
iterations and associated computational time.

5.2 Comments on the original cross-decomposition

In the original cross-decomposition algorithm (Van Roy, 1983; Holmberg, 1990) the
master problems are seen as a fall-back option in case one of the convergence tests
fails. Otherwise, the solution of the master problems is avoided as much as possible.
Therefore, no strengthening techniques such as multi-cuts or valid inequalities (i.e.
valid inequalitites (36) and (57)) are introduced.

Note that the convergence tests used in the original cross-decomposition scheme
(Van Roy, 1983; Holmberg, 1990) are no longer needed since we solve both master
problems in each iteration and therefore can guarantee convergence as proved in Ap-
pendix A.3. Furthermore, Holmberg (1990) does not explicitly consider the case of a
decomposable structure and associated difficulties in the exchange of primal and dual
variables.

6 Illustrative Case Study

In order to provide some insight into the potential of the proposed algorithm, we ap-
ply the cross-decomposition scheme to a facility location problem with distribution
centers (DCs) under the risk of disruptions. In the problem, demand points need to
be satisfied from a set of candidate DCs in order to minimize the sum of investment
cost and expected transportation cost. The so-called capacitated reliable facility loca-
tion problem (CRFLP) is formulated as a two-stage stochastic program. First-stage
decision involve the selection of DCs and their capacities. Second-stage decisions are
the demand assignments to DCs in scenarios, which are defined by combinations of
active and disrupted locations. Penalties are applied to unsatisfied demands, such that
the second-stage subproblems have full recourse.

Two versions of the model are presented in Appendix B: (CRFLP) and (CRFLP-
t). The second model (CRFLP-t) includes a redundant set of constraints that improves
its linear relaxation. The equations of model (CRFLP) and (CRFLP-t) have the same
structure as the generic ones described in formulation (1)-(6). Due to its large size,
the problem is hard to solve with a fullspace approach and requires decomposition
techniques to enable an efficient solution. Furthermore, the problem is numerically
challenging because the scenarios with several simultaneous disruptions have very
small probabilities.

6.1 Description of implementation

We implement the fullspace model, the classical multi-cut Benders decomposition
(Birge and Louveaux, 1988) and our cross-decomposition algorithm, as previously
described in section 4, in GAMS 24.1.2 (Brooke et al, 2013).
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For the decomposition schemes, we employ parallel computing in two different
ways: First, Benders and Lagrangean subproblems are solved in parallel as groups of
50 scenarios using the GAMS grid computing capabilities (Bussieck et al, 2009) on
the 8 processors of an Intel i7-2600 (3.40 GHz) machine with 8 GB RAM. We choose
to solve the subproblems as groups of scenarios to reduce the overhead in data trans-
fer. Second, the Lagrangean and Benders master problems are solved by allowing
GUROBI to use the processors as parallel threads. For the fullspace implementation,
we also use GUROBI with parallel threads.

To cope with the numerical difficulties that arise due to small scenario probabil-
ities, we use additional solver settings of GUROBI 5.5. We set quad 1 (for quad
precision) and numericfocus 3 (for high attention to numerical issues) in all sub-
and master problems. The optimality tolerances for reduced costs are set to 10−7.
For the Lagrangean master problem, we use barhomogeneous 1 to detect infeasi-
bilities with the barrier method employed to solve the QPs of the Lagrangean master
problem. Additionally, all MILPs are solved to optimality (with respect to the numer-
ical tolerances) with the optcr=0 setting in GAMS. Benders decomposition and the
cross-decomposition algorithm are terminated when the relative difference between
the upper and lower bound is less than 10−7.

For the Lagrangean master problem, the multipliers are bounded below and above
according to their interpretation, the maximum penalties that can be incurred in a
scenario. Additionally, the Lagrange multipliers are scaled with their corresponding
scenario probabilities in order to maintain the same order of magnitude among the
variables of the problem.

The update strategies for the penalty term δ (initial value δ = 1) and for the
stability center µ̄ are rather simple for our illustrative case study. In each itera-
tion, the trust-region parameter δ is updated according the following rule: δ k+1 =
max{ 1

2 δ k,10−10}. The initial stability center µ̄ = 0 is never updated. Note that more
elaborate update schemes, as described by Kiwiel (1990) and Frangioni (2002), could
additionally improve the strength of the Lagrangean cuts, and hence the performance
of the overall cross-decomposition algorithm.

6.2 Computational Results

In the following, we compare the three methods (fullspace model, multi-cut Ben-
ders and cross-decomposition algorithm) for different instances of the two problem
formulations, (CRFLP) and (CRFLP-t), presented in Appendix B.

6.2.1 Comparison of methods for (CRFLP)

In Table 1, we report the problem sizes of the fullspace model for (CRFLP) for 3 in-
stances with different number of candidate locations for DCs. With an increase in the
number of DCs, the number of scenarios, whose generation is described in Appendix
B, and the number of constraints and variables increases as well. The resulting opti-
mization problems are large-scale, especially in terms of continuous variables. Note
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that the number of binary variables is not as large since only one binary variable per
DC is required.

Table 1 Sizes of the resulting fullspace optimization problems for (CRFLP) in terms of constraints and
variables.

DCs (N) Scenarios Constraints Variables Binary Var.
10 639 38,992 345,084 10
11 1025 63,564 603,751 11
12 1587 99,996 1,012,534 12

As we can see in Table 2, the resulting fullspace models are hard to solve. While
all of them can be solved to optimality, it takes 722 minutes (more than 12 hours) to
solve the largest instance with 12 candidate DCs.

Interestingly, multi-cut Benders decomposition fails in solving the problem in-
stances faster than the fullspace method. Only for the smallest instance with 10 can-
didate DCs, Benders decomposition obtains the optimal solution, which takes 2,871
minutes (almost two days). For the larger instances with 11 and 12 candidate DCs,
the algorithm is terminated after a time limit of 4,000 minutes, with a remaining opti-
mality gap of 12.2% and 18.8%, respectively. In these cases, the optimality gap does
not close after a large number of iterations (239 and 130, respectively).

In contrast, the cross-decomposition algorithm solves all three instances to opti-
mality, and outperforms the fullspace model in terms of runtime by 48% and 34% for
10 and 12 candidate DCs, respectively. For 11 candidate DCs, the fullspace model
and the cross-decomposition algorithm require nearly the same amount of time.

As it was shown by Magnanti and Wong (1981) as well as Sahinidis and Gross-
mann (1991), the performance of Benders decomposition depends on the strength
of the underlying LP relaxation. From Table 2, one can observe that the LP relax-
ation provides poor bounds, which explains the bad performance of the multi-cut
Benders decomposition. Hence, we can make the preliminary conclusion that cross-
decomposition is less affected by the weak LP relaxation due to the presence of strong
cuts that originate from the Lagrangean dual.

6.2.2 Effect of tightening constraint: comparison of methods for (CRFLP-t)

As presented in Appendix B, a tightening constraint that improves the LP relaxation
of (CRFLP) is known. However, the tightening constraint (86) significantly increases
the problem size for the fullspace model, denoted by (CRFLP-t), as one can see in
Table 3.

In the following, we discuss the computational impact of constraint (86) and
the resulting model (CRFLP-t). As one can see in Table 4, the solution time of the
fullspace model for (CRFLP-t) increases significantly compared to the solution time
of (CRFLP)’s fullspace model (Table 2). At the same time, the LP relaxations for
all instances of (CRFLP-t) are much tighter than (CRFLP)’s LP relaxation. Hence,
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Table 2 Computational results for (CRFLP)

DCs (N) Fullspace Benders Cross
10 Objective ($) 1,003,707.23 1,003,707.23 1,003,707.23

LP relaxation ($) 520,311.87 - -
Optimality gap (%) 0 0 0

Iterations (#) - 440 21
Runtime (min) 33 2871 17

11 Objective ($) 1,003,632.26 1,007,279.28 1,003,632.26
LP relaxation ($) 495,055.02 - -

Optimality gap (%) 0 12.2 0
Iterations (#) - 239 37

Runtime (min) 167 4000a 182
12 Objective ($) 1,004,855.83 1,028,650.66 1,004,855.83

LP relaxation ($) 479,563.62 - -
Optimality gap (%) 0 18.8 0

Iterations (#) - 130 36
Runtime (min) 722 4,000a 474

a: terminated after 4000 min time limit.

Table 3 Sizes of the resulting fullspace optimization problems (CRFLP-t) (with tightening constraint).

DCs (N) Scenarios Constraints Variables Binary Var.
10 639 383,413 345,084 10
11 1025 666,264 603,751 11
12 1587 1,110,915 1,012,534 12

multi-cut Benders decomposition solves all instances faster than the fullspace model
(speed-up of 78% and more in terms of runtime) since stronger cuts are generated in
the subproblems.

In comparison with Benders decomposition, cross-decomposition always takes
fewer iterations due to its strong Lagrangean bounds. However, the gains in terms of
iterations and stronger lower bounds come with the price of additional computational
time that is required to solve the Lagrangean dual subproblems and the Lagrangean
master problem in each iteration. For 10 and 11 candidate DCs, cross-decomposition
is 4 and 2 minutes slower than Benders decomposition, respectively.

As the problem size increases, the strong bounds obtained by the Lagrangean part
of the cross-decomposition become more powerful and have a bigger impact. For
the largest instance (12 candidate DCs), cross-decomposition achieves a reduction
around 63% in both runtime and number of iterations compared to Benders decom-
position.

In Fig. 2, the convergence of the lower and upper bounds for Benders decom-
position and cross-decomposition is shown for the largest instance (12 candidate
DCs) of the (CRFLP-t). While Benders decomposition takes 65 iterations, the cross-
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Table 4 Computational results for (CRFLP-t).

DCs (N) Fullspace Benders Cross
10 Objective ($) 1,003,707.231 1,003,707.231 1,003,707.231

LP relaxation ($) 1,000,314.99 - -
Optimality gap (%) 0 0 0

Iterations (#) - 13 12
Runtime (min) 61 2.5 6.5

11 Objective ($) 1,003,632.26 1,003,632.26 1,003,632.26
LP relaxation ($) 995,531.18 - -

Optimality gap (%) 0 0 0
Iterations (#) - 38 20

Runtime (min) 328 42 44
12 Objective ($) 1,004,855.83 1,004,855.83 1,004,855.83

LP relaxation ($) 996,777.36 - -
Optimality gap (%) 0 0 0

Iterations (#) - 65 24
Runtime (min) 2,015 435 158

Fig. 2 Convergence of multi-cut Benders decomposition and cross-decomposition for instance with 12
candidate DCs of the (CRFLP-t).

decomposition scheme requires only 24 iterations. One can clearly see that the lower
bounds obtained from the cross-decomposition scheme always dominate the lower
bounds obtained from Benders decomposition.
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7 Conclusion

We have described a cross-decomposition algorithm that combines Benders and scenario-
based Lagrangean decomposition for two-stage stochastic MILP problems with com-
plete recourse, where the first-stage variables are mixed-integer and the second-stage
variables are continuous. The algorithm fully integrates primal and dual information
with multi-cuts that are added to the Benders and the Lagrangean master problems for
each scenario. Computational results for an illustrative case study on a facility loca-
tion problem under the risk of disruptions show evidence of the conceptual strength of
the cross-decomposition such as a reduction of iterations and stronger lower bounds
compared to pure multi-cut Benders decomposition. While the computational times
per iteration increases due to the solution of the Lagrangean dual subproblem and
master problem, cross-decomposition seems to be especially advantageous compared
to Benders decomposition if the underlying LP relaxation is weak, as suggested by the
facility location problem. Despite the promising potential of the cross-decomposition
scheme, more computational experiments should be conducted in order to fully assess
its advantages in different types of problems.
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A Appendix: Proofs

A.1 Derivation of (36) as valid inequality for (BMP)

Proposition 1 Equation (36) is a valid inequality that does not cut off the optimal solution of (SPNAC)
from (BMP).

Proof Let z∗k
LD,s = τs(cT x̃k

s +dT ỹk
s)+µkHsx̃k

s be the solution of the Lagrangean dual for scenario s (LDk
s),

for a given Lagrangean multiplier µk, k ∈ K. We can then formulate the following inequality using the
definition of the objective function of (LDk

s ):

z∗k
LD,s ≤ τs(cT xs +dT ys)+µkHsxs ∀s ∈ S, k ∈ K (60)

Since (LDk
s) is a relaxation for scenario s of (SPNAC), the following inequality holds (a proof can be

found in Karuppiah and Grossmann (2008), where xs is replaced by the original x, which is defined as per
(SPNAC).

z∗k
LD,s ≤ τs(cT x+dT ys)+µkHsx ∀s ∈ S, k ∈ K (61)
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The inequality (61) obviously also holds for the minimization over ys:

z∗k
LD,s ≤ min

ys

{
τs(cT x+dT ys)+µkHsx

}
∀s ∈ S, k ∈ K (62)

which can be reformulated using strong duality:

z∗k
LD,s ≤ max

us ,vs

{
τscT x+(A1x−b1)

T us −bT
s vs +µkHsx

}
∀s ∈ S, k ∈ K (63)

With (uk′
s ,v

k′
s ) as the optimal solution in the k′th Benders subproblem, we can rewrite (63) as:

z∗k
LD,s ≤ τscT x+(A1x−b1)

T uk′
s −bT

s vk′
s +µkHsx ∀s ∈ S, k ∈ K, k′ ∈ K (64)

which can be reformulated in the following way by applying (35):

z∗k
LD,s ≤ θs +µkHsx ∀s ∈ S, k ∈ K (65)

which proves that (36) is a valid inequality. ⊓⊔

A.2 Derivation of (51) as valid inequality for (LMP)

Proposition 2 Equation (51) is a valid inequality for the Lagrangean dual master problem (LMP).

Proof Using Minkowski’s Theorem, we can express the primal variables (x,y)T in the following way
using the disaggregated expression in terms of scenarios s:

(x,y)T = ∑
s∈S

∑
k∈K̄

ᾱk
s (x̄

k
s , ȳ

k
s )

T (66)

with ∑k∈K̄ ᾱk
s = 1, ∀s ∈ S, 0 ≤ ᾱk

s ≤ 1, where (x̄k
s , ȳ

k
s) are all the extreme points of the convex hull of

the set of non-complicating constraints Zs of (SPNAC), which is assumed to be compact, and include all
but the non-anticipativity constraints:

Zs = {A0xs ≤ b0, A1xs +B1ys ≤ b1, Bsys ≤ bs, xs ∈ X , y ≥ 0} (67)

While not all of the extreme points are known, we can consider a subset K ⊂ K̄, which can be con-
structed according to previous solutions from the Lagrangean dual (x̃k

s , ỹ
k
s) (Frangioni, 2005). The set of

solutions from the Lagrangean dual is augmented with |K| previous solutions from the Benders primal
problem (x̂k, ŷk

s), which are also feasible in Zs but are not necessarily extreme points of Zs. Therefore, (66)
can be rewritten as:

(x,y)T = ∑
s∈S

(
∑
k∈K

α̃k
s (x̃

k
s , ỹ

k
s )

T + ∑
k∈K

α̂k
s (x̂

k, ŷk
s )

T

)
(68)

with ∑k∈K α̃k
s +∑k∈K α̂k

s = 1. With this, we can formulate a restricted version of the Dantzig-Wolfe
primal master problem (Guignard, 2003; Frangioni, 2005) of (SPNAC):

min
α ∑

s∈S

(
∑
k∈K

α̃k
s τs(cT x̃k

s +dT ỹk
s)+ ∑

k∈K
α̂k

s τs(cT x̂k +dT ŷk
s)

)
(69)

s.t. −∑
s∈S

(
∑
k∈K

α̃k
s (Hsx̃k

s )+ ∑
k∈K

α̂k
s (Hsx̂k)

)
= 0 (µ) (70)

∑
k∈K

α̃k
s + ∑

k∈K
α̂k

s = 1 (κs) ∀s ∈ S (71)

α̃k
s , α̂k

s ≥ 0 ∀s ∈ S, k ∈ K (72)

Note that we can replace the objective (69) in the following way, using the previously obtained objec-
tive function values:
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min
α ∑

s∈S

(
∑
k∈K

α̃k
s z∗k

LD,s + ∑
k∈K

α̂k
s z∗k

P,s

)
(73)

The restricted Dantzig-Wolfe primal master problem yields an upper bound on the Dantzig-Wolfe
primal master problem. With the dual variables (µ ,κs), which are both unrestricted, the Lagrangean dual
master problem can be written as:

max
κ,µ ∑

s∈S
κs (74)

s.t. κs ≤ z∗k
LD,s +µHsx̃k

s ∀s ∈ S, k ∈ K (75)

κs ≤ z∗k
P,s +µHsx̂k ∀s ∈ S, k ∈ K (76)

from which we can extract equation (76) as valid inequalities since we derived the Lagrangean master
problem (LMP) in (74)-(76) (without quadratic trust-region stabilization term). ⊓⊔

A.3 Proof of convergence for the enhanced cross-decomposition with primal dual
multi-cuts

Proposition 3 The algorithm converges to the optimal solution of (SPNAC) within ε-tolerance in a finite
number of steps.

Proof The algorithm relies on Benders decomposition with multi-cuts to obtain lower and upper bounds.
The Benders primal master problem is modified by adding equation (36). However, by proposition 1,
equation (36) is a valid inequality that does not cut off the optimal solution. Therefore, we will find the
optimal solution within ε-tolerance in a finite number of steps according to the convergence proof by Birge
and Louveaux (1988). ⊓⊔

B Appendix: Model for illustrative example

B.1 Problem Description

We applied the cross-decomposition scheme to a facility location problem with unreliable facilities. The
reliable facility location problem (RFLP) was introduced by Snyder and Daskin (2005). Their formulation
minimizes the sum of investment cost and expected transportation costs in a network subject to facility
disruptions. Besides the DC candidate locations, a fictitious facility that is always available is included to
model penalties for unsatisfied demands. The problem assumes that all facilities have the same associated
probability (q) of being disrupted.

The (RFLP) formulation has been adapted by Garcia-Herreros et al (2014) to include the capacity de-
sign of facilities. In this setting, investment costs have two components: fixed-charges and variable charges
proportional to the capacity. This formulation also accommodates location-dependent failure probabilities
in the scenario generation.

The model is intended to anticipate demand assignments over a discrete set of scenarios. The scenarios
represent the possible combinations of active and disrupted locations; their probabilities are parameters
calculated from the disruption probabilities of individual DCs by assuming independence among locations.
Under the assumption of equal disruption probability (q) at the candidate locations, the probability of a
scenarios only depends on the number of disrupted locations. For a problem with N candidate locations, the
probability (τs) of one scenario with n simultaneous disruptions can be calculated according to equation
(77).

τs = qn(1−q)N−n (77)

The following notation is used in the two-stage stochastic programming formulation. The set of can-
didate locations for DCs is denoted by J, including a fictitious DC with unlimited capacity in position |J|
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(note that |J| = N + 1); the set of demand sites is denoted by I; the set of scenarios is denoted by S. The
decision whether DC at candidate location j is selected is represented by the binary variable x j; the frac-
tion of demand i satisfied from location j in scenario s is denoted by ys, j,i; the capacity of DC at location j
is denoted by c j . The parameters of the problem are: the fixed-charge for the selection of DCs j (Fj), the
unit capacity cost for DC j (V j), the demand at site i (Di), the unit transportation cost from DC j to site i
(A j,i), the probability of scenario s (τs), the maximum capacity of DCs (Cmax), and the matrix indicating
the availability of DC j in scenario s (Ts, j).

B.2 Model

According to Garcia-Herreros et al (2014), the capacitated reliable facility location problem (CRFLP) is
formulated as follows.

(CRFLP) min
|J|−1

∑
j
(Fjx j +Vjc j)+∑

s∈S
∑
j∈J

∑
i∈I

τsA j,iDiys, j,i (78)

s.t. c j −Cmaxx j ≤ 0 ∀ j < |J| (79)

∑
i∈I

Diys, j,i −Ts, jc j ≤ 0 ∀s ∈ S, j ∈ J (80)

∑
j∈J

ys, j,i = 1 ∀s ∈ S, i ∈ I (81)

x j ∈ {0,1} , 0 ≤ c j ≤Cmax ∀ j ∈ J (82)

0 ≤ ys, j,i ≤ 1 ∀s ∈ S, j ∈ J, i ∈ I (83)

The objective function (78) minimizes the sum of investment cost and expected transportation cost.
Constraints (79) ensure that capacity is only allocated to selected DCs. Constraints (80) limit demand
satisfaction to the inventory availability according to the binary parameter Ts, j that indicates the disrupted
locations in each scenario. Constraints (81) enforce demands satisfaction or penalization in every scenario.
The domain of the variables is presented in constraints (82) and (83).

The formulation (CRFLP) is know to have a poor linear relaxation. In order to strengthen the MILP
formulation, a redundant set of constraints can be added to the model. The set of tightening constraints
(86) directly prevent demand assignments to DCs that are not selected or disrupted.

(CRFLP-t) min
|J|−1

∑
j
(Fjx j +V jc j)+∑

s∈S
∑
j∈J

∑
i∈I

τsA j,iDiys, j,i (84)

s.t. (79)− (83) (85)

ys, j,i −Ts, jx j ≤ 0 ∀s ∈ S, j ∈ J, i ∈ I (86)

B.3 Data

The data for the case study is taken from Daskin (1995). The original problem considers 49 US cities
that simultaneously serve as demand sites and potential distribution centers (DCs). Their demand for a
single commodity is assumed to be proportional to the state populations in 1990. The original formulation
includes uncapacitated DCs with investment costs estimated from the real-state market. Variable costs as-
sociated with the DC capacities have been added at a rate of $0.0001 per unit of product. The transportation
costs are proportional to the great-circle distance between facilities.

Given the very large number of possible scenarios (249), we have selected subsets of 10, 11, and 12
facilities as candidate locations for DCs in the different instances of the problem. The locations included in
the smallest instance are: Sacramento (CA), Albany (NY), Austin (TX), Tallahassee (FL), Harrisburg (PA),
Springfield (IL), Columbus (OH), Montgomery (AL), Salem (OR), and Des Moines (IA). The additional
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location included in the instance with 11 candidate DCs is Lansing (MI). The largest instance with 12
candidate DCs also includes Trenton (NJ).

Given the very small probability of scenarios with more than 5 simultaneous disruptions, they have
been grouped into a single scenario in which all demands are penalized. The effect of this approximation
is limited by the magnitude of corresponding probabilities. Furthermore, the approximation improves the
numerical performance of the algorithm. Despite the reduction in size, the problem still implies minimizing
the cost over large sets of scenarios. The failure probability of all DCs has been left to the value originally
used by Snyder and Daskin (2005): q = 0.05.


