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Abstract.  

The optimal design of gathering networks for the unconventional oil and gas production is a relevant problem, particularly 

from the shale boom. In this work, we address an optimal pipeline network design problem in which the strategic decisions 

are the location and sizing of separation tank batteries together with the pipeline connections. The goal is to gather the oil, 

gas and water production from a large number of wellpads, being also possible to install junction nodes to merge the 

production in strategic points of the field. One major challenge is due to the steep production decline curves of 

unconventional wells, requiring continued turn-in-lines of new wells. To address this problem, we develop a complex 

multiperiod formulation to address the varying flows over the planning horizon. We aim to develop an optimization 

framework to obtain efficient solutions within reasonable computational times. To circumvent the computational burden 

due to the large-scale nonlinear and non-convex formulation required to model fluid dynamics in multiphase flows, we 

propose a solution algorithm, based on a bi-level decomposition. The results yield near optimal solutions for real-world 

instances, suggesting that the infrastructure planning can considerably improve the economics of unconventional projects.  
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1. Introduction 

The paradigm for managing upstream and midstream operations has changed radically since the shale revolution, 

whose impact has reached and transformed the oil and gas (O&G) industry. Shale energy has become profitable 

after the improvement in the efficiency and costs of the hydraulic fracturing techniques, lowering O&G prices, 

and promoting multi-million projects including pipeline networks, production separation and petrochemical 

plants. The mid and long-term projections for energy consumptions expect a large growth in natural gas 

production, being a relatively clean source of energy towards reducing CO2 emissions. This increase in natural 

gas consumption will be driven by industrial and electrical sectors, and in this context, over 90% of O&G 

production in the U.S. is expected to come from unconventional fields by 2050 (U.S. Energy Information 

Administration, 2018) 

In addition to the fact that the hydraulic fracturing and stimulation techniques are significantly more costly than 

conventional operations, the production profiles show sharp decline, requiring the continued drilling of new wells 
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to maintain the global production. On the one hand, this leads to much larger materials requirements and logistics 

operations. This in turn requires advanced optimization models to design integrated supply chain networks for 

upstream operations that can accomplish effective planning of materials and services flows (Montagna and 

Cafaro, 2019). On the other hand, the steady development of new wellpads to maintain the production levels 

points to the importance of efficiently and systematically managing “producing” wells (Rexilius, 2015), for 

which a large planning horizon should be considered in order to develop reasonable infrastructure investment 

plans.  

This work aims at optimally designing pipelines networks for gathering the unconventional oil and gas production 

of large fields with many wellpads under development. The production has to be separated into its individual 

components (oil, gas and water) in tank batteries to be subsequently sent to centralized delivery points. As 

previously mentioned, the production profiles in unconventional fields show a significant peak followed by a 

steep decline, thus posing the challenge of keeping the infrastructure with reasonable utilization levels, motivated 

by the large capital expenditures involved. If the flow rate of any of the individual components exceeds the tank 

battery capacity, the wells connected to it must be choked back, which is undesirable. The number of tank 

batteries, their size and location should be optimally determined to comply with the well development plan while 

minimizing investment and operating costs. Moreover, pipeline diameters and network connections should be 

properly selected.  

Another important aspect in the problem is related with the fluid dynamics, including pressure estimations at 

every node and pipelines transportation capacities, which are rather complex calculations when different phases 

share the same pipeline section. Likewise, all the investments are assessed under the net present cost concept, 

mainly due to the large capital expenditures required and the significant impact of postponing certain decisions 

to later periods. In conclusion, it is well-known that integrating the planning and development of unconventional 

fields is key in order to avoid missed production and project overruns. Therefore, the design of integrated supply 

chain networks is one of the most important challenges for modern O&G companies (Accenture, 2014; Stevens, 

2012).  

The outline of this paper is the following. First, a literature review is presented, analyzing the most important 

contributions to both the pipeline network design problem and the multiphase flow modelling. Moreover, the 

main insights about these works are noted. Second, we present the background to the problem, including technical 

details, statement and modeling assumptions. Next, a general MINLP (mixed integer non-linear programming) 

formulation is developed to tackle the problem. This is followed by an overall optimization framework including 

a bi-level decomposition involving NLP and MILP subproblems. We describe some strategies aimed at 

improving the general performance of the optimization procedure. Both, an illustrative example and a real-world 

case study are solved to assess the performance of the proposed formulation and the proposed solution strategy. 

Finally, conclusions and future work perspectives are outlined.  

1.1. Literature Review 

The literature addressing the planning and design of the O&G production gathering through pipeline networks is 

rather extensive, being a topic that has been studied for a long time using different approaches and methodologies. 

However, most of the literature is not targeted to address the particular conditions and assumptions required for 

the unconventional developments. The work of Mah and Shacham (1978) is a pioneering contribution in the area, 

clearly conceptualizing the elements of a network, characterizing flows, stating alternative formulations and even 

a very interesting analogy with electrical circuits. Moreover, different NLP solution methods are proposed in that 

work, with alternatives for large problems and sensitivity analysis. More recently, a group of works (Duran and 
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Grossmann, 1986; Guerra et al., 2019; Peng et al., 2020; Cafaro and Grossmann, 2014; Drouven and Grossmann, 

2016) address the design of supply chain networks for the shale gas development, each of them with some specific 

features. In general terms, every work determines a network of pipelines to gather the products of the field 

development, selecting the pipeline diameters and lengths, compressors power and locations, wellpads location, 

drilling and stimulation scheduling, water management, among other features. However, the separation of the 

flow streams into oil, gas and water is not considered in these contributions. On the other hand, the resulting 

models are largely complex MINLP formulations, for which the authors propose different solution strategies, 

such as bi-level decomposition, piecewise linear approximations, linearization techniques, among others. This 

clearly shows the computational difficulty of the pipeline network design and infrastructure planning problem.  

Multiproduct gathering optimization has been studied by Gupta and Grossmann (2012) who address the oil, gas 

and water production and transportation in offshore fields taking into account the evolution of Gas-to-Oil and 

Water-to-Oil ratios (GOR and WOR) over the reservoir behavior to plan the optimal infrastructure. However, 

the declining curves are not comparable to those of unconventional wells, and the pipelines capacities are not 

addressed in this work. Another closely related work is the one by Hong et al. (2019) aimed at the design of 

pipeline networks, particularly considering hydraulic conditions. The work specifically highlights the fact that 

previous studies have ignored the hydraulic aspects when designing gathering networks. The work proposes an 

MILP formulation to minimize the total costs taking into account technical constraints, topological profiles, 

pipeline diameters and wellhead pressures. The non-linear hydraulic equations are approximated through a 

piecewise linearization approximation. A similar approach is proposed by Zhang et al. (2017), where oil and gas 

gathering networks are optimized in order to minimize the development cost, accounting for specific connection 

structures, terrain conditions and limits in the pressure drops by considering friction losses and potential energy 

changes by linear simplified equations. Also Dbouk et al., (2020) optimize the design of gathering pipeline 

networks paying special attention to topological complexities and using a shortest path algorithm. Nevertheless, 

all these works are not focused on unconventional production, proposing static formulations that do not account 

for the continued turn-in-line of new wells over the planning horizon. More recently, Hong et al. (2020) address 

the multi-period development of onshore gas pipeline systems by means of a MILP formulation, although it 

comprises a single-phase problem without separation infrastructure.  

Regarding the fluid dynamics,  Liu et al. (2020) study the dynamic optimization of natural gas pipeline networks, 

also accounting for the uncertainties in the demand and production composition. They propose a robust 

optimization algorithm with rigorous thermodynamic equations, accurately computing the pressures at all the 

nodes of the network. Focusing on hydraulics and pressures optimization, the work by Drouven and Grossmann 

(2017) determines the line pressure profile within a given shale gas gathering network, and the required 

compression power. However, the optimal design of the network is out of the scope in the two latter contributions. 

1.2. New contributions of this work 

After reviewing the main literature related to the design of gathering networks for unconventional resources, it 

is important to highlight that this work presents an optimization framework aimed at solving a problem that has 

not been previously addressed. The main novelties of the work are therefore the following: (1) the handling of 

multiphase flows through the pipeline network to account for the oil, gas and water streams from unconventional 

production, which are modelled through complex empirical correlations and industry guidelines, (2) the 

separation infrastructure planning, accounting for tank battery capacities in a context of steep declining 

production from every single well, and (3) the formulation of multi-period models to address the steady 

development of unconventional resources, dealing with the early production peaks from new wells. An efficient 
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optimization framework is presented to face the complexity of the general problem, which turns to be a large-

scale MINLP formulation.  

2. Background 

The problem is concerned with the optimal planning of the gathering infrastructure of an unconventional oil 

reservoir with hundreds of wells to be developed over a long-term horizon. The problem can be regarded as a 

supply chain design problem, one of whose main complexities lies on the multi-phase flows (oil, gas and water) 

produced by the wellpads. Multi-phase flows have to be gathered through a series of pipelines, and then routed 

to tank batteries (TB) where the streams are separated into individual components before sending them off to 

centralized delivery points (CDP). In their way to the tank batteries, multi-phase flows merge at junction nodes, 

which allow for the consolidation of the production coming from many wellpads, in order to make a more 

efficient use of the pipeline’s transportation capacity. Figure 1 illustrates a simple scheme of the supply chain to 

design.  

  
Figure 1. Left: Simple Schema of the network to be designed. Right: tank battery illustrative diagram. 

Due to operational reasons, the production of a wellpad has to be routed to one and only one tank battery. This 

assumption follows from: (1) contract conditions with the land owners, (2) flow measuring and integrity 

requirements, and (3) difficulties when splitting a three-phase flow with unsteady pressure conditions (Alvarez 

et al., 2010; Azzopardi and Smith, 1992; Worthen and Henkes, 2015). The difficulty of the problem increases 

with the number of wellpads, and in practice, the straightforward solution is to increase the number of tank 

batteries (TB), even though they become underutilized in a few months when the wells production declines. The 

aim of this work is to look for a better TB utilization over the planning horizon, and to offer insights for facility 

planners on how to bring production coming from different wellpads into a single battery. To accomplish this 

goal, this work develops a rigorous mathematical formulation and a series of solution strategies. 

2.1. Oil Gathering Networks 

The design of gathering networks for the production of unconventional oil is rigorously described in this section 

through the definition of the elements that play a key role in the system. This includes transportation of three-

phase flows though pipelines, separation at tank batteries, determination of pressure profiles and topological 

constrains.  



 5 

Main Components in the Network. A complete oil gathering network comprises the elements depicted in the 

Figure 2, which include: (a) a series of wellpads (nodes p ∈ P) whose production start date has been previously 

scheduled for a given month in the current planning horizon, (b) potential locations for junction nodes (nodes j 

∈ J) where the unconventional production coming from different wellpads converges, (c) a group of potential or 

existing tank battery locations (b ∈ B) whose aim, if installed, is to gather the three-phase flows from junctions 

to separate them into three individual components: oil, gas and water; (d) potential and/or existing pipelines of 

different diameters (d ∈ D) transporting  oil, gas and water from wellpads p to junctions nodes j, and from these 

to tank batteries b; (e) potential and/or existing junction nodes (bj ∈ BJ) (usually comprising pump and/or 

compressor stations) where the single-phase flows converge after separation; (f) potential and/or existing single-

phase pipelines of different diameters d transporting single-phase flows from tank batteries to centralized delivery 

points; and (g) centralized delivery points (cdp ∈ 

CDP) receiving the flows to be commercialized). 

Figure 2 shows an illustrative gathering network 

chosen from a superstructure of alternatives, 

where a very large number of pipelines 

connecting nodes p, j, b, bj and cdp may be 

adopted, which gives rise to the combinatorial 

complexity to the problem. Another important 

concept introduced in Figure 2 is the cluster of 

wellpads (k ∈ K) as a group of wellpads in a 

common area. It is important to note that all the 

wellpads start their production at a given time 

period, and their productivity profiles are 

assumed to be known. There is no decision to be 

made on how many and which wells are to be 

developed. Therefore, the total income at every 

time period is a fixed term in the objective 

function. 

Tank Batteries. Tank batteries can be arranged in two different ways. The first refers to isolated locations where 

it is possible to install a single tank battery. The second arrangement refers to a cluster of batteries (see b1 and 

b2 in Fig. 2) which comprises a single point where several facilities can be installed. In both cases, compressors 

and pumps are usually installed in an adjacent location (called the tank battery junction) to gain the required 

energy to reach the delivery location. The cost of these facilities is included in the battery capital expenditure.  

Regarding the size of a tank battery, it has to be selected from a set of available alternatives (bz ∈ BZ). Each 

alternative size bz has its own processing capacity 𝑏𝑎𝑡𝑐𝑎𝑝𝑏𝑧
𝑐  for every component c and a capital expenditure 

equal to 𝑖_𝑏𝑎𝑡𝑏𝑧. Companies normally have two or three alternative designs for tank batteries, according to the 

average flow compositions, and use them over the exploitation areas. The capital expenditure of these facilities 

is usually several times larger than a normal length pipeline installation cost. Therefore, their optimal location 

and size is a very relevant decision. In turn, we assume that unit processing costs at tank batteries are invariant 

with their size and location, from which operating costs for TB represent a constant term in the objective function.   

Junction Nodes. A group of accessories and equipment, such as T-junctions or manifolds, are used to connect 

two or more pipes to route the gathered flow towards a single destination. The potential locations for junction 

nodes are usually the wellpads themselves. The corresponding capital expenditures and operational costs are 

Figure 2. Typical Oil gathering network infrastructure.  
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included into the objective function to be minimized. Nevertheless, it should be noted that the latter are relatively 

small in comparison with the other network elements.   

Pipelines. Pipeline installation and operating costs are the other 

important terms to be minimized. The required investment for 

every mile of a pipeline of diameter d is given by the parameter 

i_piped. Usually, a limited set of alternative diameters is 

available. Regarding the pipeline transportation capacity, it is 

necessary to distinguish between single phase and multi-phase 

flows and handle them separately. The aim is to determine the 

maximum flow maxflowi,j,d admitted by every potential pipeline 

of diameter d linking nodes i and j in the network. This is 

strongly dependent on the distance between the nodes, the 

pressure drop being assumed, and the flow composition. Figure 

3 shows different multi-phase flow patterns according to the liquid to gas ratio and velocities, which trigger 

different head losses (Oddie et al., 2003; Spedding et al., 2005). In the particular case of multi-phase flows, a 

reduction in the transportation capacity is observed when compared with the same amount of gas or liquid as 

moving alone in a pipeline.  

For single-phase pipelines the computation is relatively straightforward as reported in the literature (Green and 

Southard, 2018). In Appendix A we present the main assumptions and equations used for estimating the 

transportation capacity of single-phase pipelines. In our model, liquid phase pipelines transport oil or water from 

TB to CDP passing through battery junctions. Since, for this specific case a maximum velocity is imposed, 

typically 1.5 m/s (Society of Petroleum Engineers, 2006), the maximum flow is assumed to be directly 

proportional to the pipeline section. The case of gas-phase pipelines is intrinsically more complex due to gas 

compressibility. A detailed formulation is also given in Appendix A, according to the pressure levels and other 

specific gas properties following the Weymouth correlation. By means of this model, the maximum flow of a gas 

pipeline of diameter d is proportional to the pipeline diameter raised to the power of 2.667 (Duran and 

Grossmann, 1986; Weymouth, 1942). 

In the case of multi-phase flows, the transportation capacity of the pipelines is more complex, requiring some 

important assumptions to be made and then solving a system of nonlinear equations. In fact, the calculation of 

pressure drops in multi-phase flows is usually based on empirical relationships to consider the effects caused by 

pressure and temperature changes, the relative velocities of the streams, the flow pattern and the elevation 

variations. Even though many different models have been proposed to represent multi-phase flows, the Lockhart-

Martinelli correlation (Lockhart and Martinelli, 1949) and the SPE guidelines (Society of Petroleum Engineers, 

2006), both widely known and used in practice, are taken into account in this model. We address this point with 

more detail in following sections.  

Three-Phase Production Profiles. Production from unconventional wellpads p is characterized by specific gas 

to oil (gorp) and water to oil (worp) ratios. For simplicity, both are assumed to be deterministic and constant 

during the wellpad lifespan. Regarding the productivity profile, the production rate starts with a peak followed 

by a steep decline. This is explained because of the sudden release of the gas, oil and water stored in the pores 

after the hydraulic fractures are opened. The steady decline in the flowrate is due to the pressure loss and the low 

permeability of these formations (Baihly et al., 2015; Tan et al., 2018; Vanorsdale, 2013). In fact, the production 

profile can be represented by a decreasing hyperbolic function of the wellpad age (see Figure 4). The parameter 

𝑣𝑝,𝜏
𝑐  is the production of component c at wellpad p in its 𝜏𝑡ℎ period after the starttimep. It is usually given in 

Figure 3. Multi-phase flow patterns according 

to the gas to liquid ratios and velocities. 
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barrels per day for liquid phases, and in standard cubic feet per day for the gas phase. Finally, either from 

empirical or theoretical models, the long-term production estimates for every wellpad p are assumed to be given.  

 

Pressure Estimations. We assume that the pressure at the wellheads is high enough to make oil, gas and water 

flow towards the tank batteries. Let us consider the production pressure Pp to be known at the outlet of the wellpad 

p. The inlet pressure at tank batteries has to be at least Pb, while Pj indicates the minimum pressure at junction 

nodes. For the latter, as the distance between wellpads and junctions is usually short, the value of Pj is close to 

Pp. We also assume that the pipelines from junction nodes to batteries operate at medium-low pressures. After 

the stream flows are separated in the tank batteries, the pressure is assumed to drop to Pbj at the tank battery 

junctions, where pumps and compressors direct the fluids to the CDP at high pressure conditions. The pressure 

after the gas compressor reaches Pgc, which is assumed to drop to Pcdp at the centralized delivery point. The 

pipeline capacity computation together with the network design problem leads to a complex non-linear model, 

which is presented as the general formulation in the next sections.  However, if we fix the maximum pressure 

drops between each pair of nodes in the network, we can predetermine the pipelines capacity, yielding a linear 

approximation of the original problem. The challenges of each of the formulations, namely the MINLP and 

MILP, are further fully described.  

Time representation. A long term planning horizon is involved (from 5 to 10 years), which is discretized in 

monthly periods. Despite drilling and completion tasks requiring between 60 and 90 days, and the water flowback 

requiring 10 to 20 more days, it is common to have a group of drilling and fracturing crews starting to produce 

one or more new well every month. The exact period (namely, starttimep) when a wellpad p starts producing is a 

given data for this problem. As already mentioned, capital expenditures are very significant and postponing 

investment decisions over the planning horizon is crucial. Hence, it is required to assess the model results in 

terms of the net present cost, and also to allow the formulation to decide on the investments at any period, thus 

leading to a multiperiod decision model.  

2.2. An Illustrative Example 

In order to show one of the tradeoffs, an illustrative example comparing two optional gathering network designs 

is presented in Figure 5. The unconventional O&G produced by eight different wellpads has to be gathered, 

separated and sent to a single delivery point. The alternative design A proposes the use of two tank batteries 

(TB), each one near each group of four wellpads, whereas the alternative B centralizes the separation process at 

a single TB. Assuming that the processing capacities are met, it can be seen at first sight that the total length of 

pipelines (particularly those of low pressure) installed in case A is much lower than in case B, but in the latter 

Figure 4. Single Wellpad Productivity Profile for each component: oil, gas and water. 
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case the capital investment in TB is reduced by half. Also, as the distances covered by the multi-phase pipelines 

are shorter in case A, the pipeline diameters can be much smaller. In a real world case study, these typical 

tradeoffs have to be integrated with the TB processing constraints and the production scheduling from the 

wellpads, among other features.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Problem Statement 

Based on the description so far, the aim of this section is to formally state the problem. Specifically, given is:   

(a) A number of time periods (usually months) comprising a long-term time horizon. 

(b) A set of wellpads, their production start times and expected productivity profiles (including gor and 

wor).  

(c) Potential location and existing sites for tank batteries, their alternative capacities per component and the 

corresponding capital expenditure requirements and operational costs.  

(d) Potential location for junction nodes.  

(e) Potential and existing locations for Centralized Delivery Points (CDP) and their available capacities.  

(f) Alternative pipeline diameters to use over the network, their installation costs per unit of length and the 

operational expenditures.   

(g) The estimated pressure at the well-heads, the maximum admitted pressure at tank batteries and the 

compression factor achieved by the compressor at batteries junction nodes.  

The objective is to minimize the net present cost of the capital investments required to build the unconventional 

oil gathering network and the corresponding operational costs by determining: (a) the number of tank batteries 

to be installed, their location, sizes and period of installation, (b) the junctions to be installed in the network and 

Figure 5. Network superstructure and two alternative designs 
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their connections, (c) the location and diameter of the pipelines gathering production flows from pads to 

junctions, from junctions to tank batteries, and finally to CDP. Furthermore, it is necessary to determine the 

optimal timing for installing facilities over the planning horizon.  

In the most general case, the pressures in every node in the network, at every monthly period, are also variables 

of the problem, which are computed according to the flow properties, the selected diameters and the distances 

between nodes by applying fluid-dynamics equations. These pressures are determined from the network design 

since the transportation capacity is a function of these pressures (among other factors). This situation leads to a 

highly non-linear and non-convex mixed-integer nonlinear programming (MINLP) formulation, which is 

presented in the next sections.  

3.1. Model Assumptions 

The following are the main assumptions made for the proposed MINLP model:  

(a) Constant and deterministic gor and wor are assumed for all the wellpads, all over the time horizon. 

(b) For every wellpad p, the production peak is reached in the first period after completion, that is, in the 

corresponding start time starttimep. 

(c) Production from many wellpads may converge to a junction node, and many junction nodes may be 

connected to a single tank battery. However, splitting flows is not allowed: every pad should be assigned 

to a single junction node, and every junction node to a single battery. This is mainly due to operating 

constraints, the need to track the production streams, and the physical/technical issues arising when 

splitting a three-phase flow. The mathematical implication is the elimination of the bi-linearities required 

when tracking flow compositions in the network (Drouven and Grossmann, 2017). Even if splitting were 

permitted, constant gor and wor would allow the tracking of only one component of the flow in the three-

phase pipelines. 

(d) Single-phase streams (after separation at the tank batteries) are treated differently according to the 

component. For liquid phase pipelines (oil/water), the maximum rate is proportional to the pipeline section 

considering a maximum average velocity of 1.5 m/s, while the gas pipelines are modeled through the 

Weymouth correlation (see Appendix A).   

(e) Multi-phase flows are modeled by the Lockhart-Martinelli correlation (Lockhart & Martinelli, 1949) and 

the SPE guidelines (Society of Petroleum Engineers, 2006), both widely known and used in practice. 

Indeed, pressure drop calculations are based on these empirical correlations considering the effects of 

pressure and temperature changes, relative velocities, flow pattern and the elevation variations (see 

Appendix A). 

(f) Installation or construction times are disregarded. We assume that the capacities of the facilities are 

available in the same time period the investments are scheduled.  

4. General Mathematical Formulation 

In this section, an overall MINLP mathematical formulation for the optimal design of the unconventional oil 

gathering network is formally presented. It aims to account for numerous trade-offs, selecting the most 

convenient location for facilities and pipeline connections, together with the determination of nodes pressures 

and flow conditions that minimize the total present cost from both capital and operational expenditures over the 

planning horizon. A mathematical formulation is proposed by considering a rigorous multiperiod model in which 

the installation decisions can be made at any time period over the planning horizon.  
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The aim is to design a gathering network for the production of a set P = {1, 2, …, p} of unconventional oil 

wellpads, whose production is scheduled to start at a given period starttimep over the planning horizon. The time 

horizon is comprised by T= {1, 2, …, t} periods (usually months). Firstly, the production of every wellpad has to 

be transported to one and only one potential junction node from the set J=  {1, 2, …, j}, where the production 

from other wellpads may be also gathered before flowing to one and only tank battery from the potential set B= 

{1, 2, …, b}. After the separation of each component c ∈ C={oil, gas, water}, the individual phases are transported 

in single-phase pipelines to centralized delivery points cdp ∈ CDP={1, 2, …, cdp} being previously gathered in 

single-component junction nodes bj ∈ BJ={1, 2, …, bj}. Moreover, the production flow through every pair of 

nodes implies the decision of the installation of a pipeline of a certain diameter diamd from the available set d ∈ 

D={1, 2, …, d}. It is important to mention that the wellpads are usually grouped into clusters k by geographical 

or operational reasons, which is used later to reduce the problem size. More specifically, every wellpad belongs 

to one and only one cluster k ∈ K.  The constraints of the mathematical formulation can be divided into the flow 

balances, facilities installation and sizing, topological constraints and integer cuts.  

Flow Balances at Critical Time Points. Eq. 1 imposes that the wellpad production has to be delivered toward 

the selected junction node at every time period after production starts. Note that 𝒗𝒑,𝝉
𝒄  is the expected production 

of component c at pad p,  periods after its start date (in barrels or thousand-cubic feet per day, according to the 

component). The continuous variable 𝑭𝑷𝒑,𝒋,𝒕
𝒄  represents the flow of component c from pad p to junction node j 

during period t. Eqs. 2, 3 and 4 are the mass balances for every single component at junction nodes, tank batteries 

and battery junctions, respectively, while the continuous variables 𝑭𝑷𝑩𝒋,𝒃,𝒕
𝒄 , 𝑭𝑩𝑱𝒃,𝒃𝒋,𝒕

𝒄  and 𝑭𝑪𝑫𝑷𝒃𝒋,𝒄𝒅𝒑,𝒕
𝒄  are the flows 

of component c moving between nodes j, b, bj and cdp during period t according to the segment being linked in 

the hierarchical topology of the network.  

𝑣𝑝,𝑡−𝑠𝑡𝑎𝑟𝑡𝑡𝑖𝑚𝑒𝑝+1
𝑐 = ∑ 𝐹𝑃𝑝,𝑗,𝑡

𝑐

𝑗∈𝐽𝑝

     ∀𝑝, 𝑐, 𝑡 𝜖 𝑇𝑃, 𝑡 ≥ 𝑠𝑡𝑎𝑟𝑡𝑡𝑖𝑚𝑒𝑝 (1)  

∑ 𝐹𝑃𝑝,𝑗,𝑡
𝑐

𝑝∈𝑃𝑗

= ∑ 𝐹𝑃𝐵𝑗,𝑏,𝑡
𝑐

𝑏∈𝐵𝑗

        ∀𝑗, 𝑐, 𝑡 𝜖 𝑇𝑃 (2)  

∑ 𝐹𝑃𝐵𝑗,𝑏,𝑡
𝑐

𝑗∈𝐽𝑏

= ∑ 𝐹𝐵𝐽𝑏,𝑏𝑗,𝑡
𝑐

𝑏𝑗∈𝐵𝐽𝑏

        ∀𝑏, 𝑐, 𝑡 𝜖 𝑇𝑃 (3)  

∑ 𝐹𝐵𝐽𝑏,𝑏𝑗,𝑡
𝑐

𝑏∈𝐵𝑏𝑗

= ∑ 𝐹𝐶𝐷𝑃𝑏𝑗,𝑐𝑑𝑝,𝑡
𝑐

𝑐𝑑𝑝∈𝐶𝑃𝐷𝑏𝑗

∩𝐶𝐷𝑃𝑐

        ∀𝑏𝑗, 𝑐, 𝑡 𝜖 𝑇𝑃 
(4)  

Note that it is not strictly necessary to control the flow between every pair of nodes when no wellpad increases 

its production rate, which are the most critical periods in terms of transportation and processing requirement. 

Therefore, some important subsets are introduced in the equations above in order to limit the size of the model 

and the connectivity of the network: (a) TP includes the periods t with some wellpad increasing its production 

rate regarding the previous period, which in our case involves the initial period when the production peak is 

reached; (b) TS includes the periods in which some wellpad starts production and the infrastructure investment 

might be planned, (c) Jp and Pj are subsets of wellpads-junctions to be potentially connected, (d) Jb and Bj are 

junctions-tank batteries that might be linked, (e) BJb and Bbj  are batteries-battery junctions potential connections, 

(f) CDPbj and BJcdp are subsets of battery junctions and centralized facilities to be potentially linked, and (g) 

CDPc includes the centralized delivery nodes available for component c. Subsets (c) to (f) are usually built from 

geographical proximity criteria. It is relevant to note that Jp and Pj are built with the following logic: if a wellpad 
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p and the junction j are part of the same cluster k, then the pair p-j is included, whereas if p and j belong to 

different clusters, but these clusters are close enough, then the pair p-j is also added to the corresponding subset. 

Otherwise, the pair p-j is not included among the possible connections. Similar logic is applied to build the 

ordered sets Jb, Bj, BJb, Bbj, CDPbj and BJcdp. However, as later discussed, tank batteries capital expenditures are 

determinant to the total investment, often requiring to build some pipelines that at first sight look counterintuitive 

and costly.  

Processing and Delivery Capacities. Tank batteries installation and capacity control constraints are shown in 

Eq. 5, where the set BZ={1, 2, …, bz} comprises the alternative battery capacities (𝑏𝑎𝑡𝑐𝑎𝑝𝑏𝑧
𝑐 ), being BZb the 

capacities bz allowed at location b. Likewise, the corresponding control for the centralized delivery points is 

given by Eq. 6, with 𝑐𝑑𝑝𝑐𝑎𝑝𝑐 being the maximum flowrate of component c allowed by the centralized facility 

cdp. As observed, two main binary variables are introduced to model the tank batteries and centralized facilities 

installation decisions: (a) �̂�𝒃𝒂𝒕𝒃,𝒃𝒛,𝒕 is equal to 1 if a battery of capacity bz is installed in the location b at period 

t, and (b) �̂�𝒄𝒅𝒑𝒄𝒅𝒑,𝒕 that equals 1 if the delivery point cdp is installed at period t. Note that the tank batteries and 

centralized delivery points can only be installed in the time periods when a new wellpad starts its production 

(𝑡′  ∈  𝑇𝑆). On the other hand, 𝒛𝒃𝒂𝒕𝒃,𝒃𝒛,𝒕 and 𝒛𝒄𝒅𝒑𝒄𝒅𝒑,𝒕 determine that the corresponding facilities are already 

available at period t. A value equal to 1 in 𝒛𝒃𝒂𝒕𝒃,𝒃𝒛,𝒕 or  𝒛𝒄𝒅𝒑𝒄𝒅𝒑,𝒕 implies that in the same or in a previous 

period the corresponding installation has already been made, which is captured by Eq. 7 and illustrated in Figure 

6.  

∑ 𝐹𝑃𝐵𝑗,𝑏,𝑡
𝑐

𝑗∈𝐽𝐵

≤ ∑ 𝑏𝑎𝑡𝑐𝑎𝑝𝑏𝑧
𝑐 ∙ 𝑧𝑏𝑎𝑡𝑏,𝑏𝑧,𝑡

𝑏𝑧 ∈ 𝐵𝑍𝑏

        ∀𝑏, 𝑐, 𝑡 𝜖 𝑇𝑃 (5)  

∑ 𝐹𝐶𝐷𝑃𝑏𝑗,𝑐𝑑𝑝,𝑡
𝑐

𝑏𝑗 ∈ 𝐷𝐹𝑏𝑗,𝑐𝑑𝑝

≤ 𝑐𝑑𝑝𝑐𝑎𝑝𝑐 ∙ 𝑧𝑐𝑑𝑝𝑐𝑑𝑝,𝑡        ∀𝑐, 𝑐𝑑𝑝 𝜖 𝐶𝐷𝑃𝑐 , 𝑡 𝜖 𝑇𝑃 (6)  

𝑧𝑏𝑎𝑡𝑏,𝑏𝑧,𝑡 = ∑ �̂�𝑏𝑎𝑡𝑏,𝑏𝑧,𝑡′  

𝑡′≤𝑡
 𝑡′ ∈ 𝑇𝑆

 ∀𝑏, 𝑏𝑧 𝜖 𝐵𝑍𝑏 , 𝑡 𝜖 𝑇𝑃           𝑧𝑐𝑑𝑝𝑐𝑑𝑝,𝑡 = ∑ �̂�𝑐𝑑𝑝𝑐𝑑𝑝,𝑡′   

𝑡′≤𝑡
𝑡′ ∈ 𝑇𝑆

 ∀𝑐𝑑𝑝, 𝑡 𝜖 𝑇𝑃   
(7)  

To reduce the model size, since gor and wor are assumed to be constant, Eq. 5 can be imposed only for the most 

restricting component, by comparing gor and wor with the single component capacities of the tank batteries. 

These straightforward strategies can significantly reduce the model size.  

 
Figure 6. Binary variables indicating the availability of a facility in the superstructure. 

It is also interesting to note the relationship of this formulation with the knapsack problem from Integer 

Programming (Wolsey, 1998), with every component of the flow from the wellpads representing the “packages” 

that have to be allocated in the TB (knapsack). However, in this case there are the following additional conditions: 

(1) every component has its own processing capacity in the TB, (2) the magnitude of the flows changes with time 

because of the declining production curves and the drilling of new unconventional wells, and (3) the number of 

TB to be installed, its size and location is not pre-determined.  
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Pipeline Selection. Pipeline sizing and installation decision variables are also divided into two groups, one 

determining the period in which it is installed and the other one to state the availability of the resource over time. 

The first one, whose elements can be active for at most one period of the planning horizon, comprises the 

following variables: (a) �̂�𝒑,𝒋,𝒅,𝒕 being 1 if a pipeline of diameter d connecting pad p to junction node j is installed 

at period t, (2) �̂�𝒋,𝒃,𝒅,𝒕 equals 1 if a pipeline of diameter d connecting node j to battery b is installed at period t, 

(c) �̂�𝒃,𝒃𝒋,𝒅,𝒕
𝒄  is 1 if a pipeline of diameter d for component c connecting battery b and junction bj is installed at 

period t, and finally (d) �̂�𝒃𝒋,𝒄𝒅𝒑,𝒅,𝒕
𝒄

 taking a value of 1 if a pipeline of diameter d for component c connecting 

junction bj with the delivery point cdp is installed at period t. Similar to the tank batteries and delivery points, 

pipelines can only be installed in those time periods in which a new wellpad starts its production (t’ ∈ TS). The 

second group of variables consists of: 𝒙𝒑,𝒋,𝒅,𝒕 , 𝒚𝒋,𝒃,𝒅,𝒕 , 𝒖𝒃,𝒃𝒋,𝒅,𝒕
𝒄  and 𝒘𝒃𝒋,𝒄𝒅𝒑,𝒅,𝒕

𝒄  which are equal to one if the 

corresponding pipeline is already installed at period t. Eqs. 8 and 9 relate both groups of variables and Figure 6 

illustrates them.  

𝑥𝑝,𝑗,𝑑,𝑡 = ∑ 𝑥𝑝,𝑗,𝑑,𝑡′  

𝑡′≤𝑡
𝑡′ ∈ 𝑇𝑆

  ∀𝑝, 𝑗 𝜖 𝐽𝑝, 𝑑, 𝑡 𝜖 𝑇𝑃                    𝑦𝑗,𝑏,𝑑,𝑡 = ∑ �̂�𝑗,𝑏,𝑑,𝑡′

𝑡′≤𝑡
𝑡′ ∈ 𝑇𝑆

    ∀𝑗, 𝑏 𝜖 𝐵𝑗 , 𝑑, 𝑡 𝜖 𝑇𝑃   
(8)  

𝑢𝑏,𝑏𝑗,𝑑,𝑡
𝑐 = ∑ �̂�𝑏,𝑏𝑗,𝑑,𝑡′

𝑐

𝑡′≤𝑡
𝑡′ ∈ 𝑇𝑆

 ∀𝑐, 𝑏, 𝑏𝑗 𝜖 𝐵𝐽𝑏 , 𝑑, 𝑡 𝜖 𝑇𝑃   

 𝑤𝑏𝑗,𝑐𝑑𝑝,𝑑,𝑡
𝑐 = ∑ �̂�𝑏𝑗,𝑐𝑑𝑝,𝑑,𝑡′

𝑐

𝑡′≤𝑡
𝑡′ ∈ 𝑇𝑆

 ∀𝑐, 𝑏𝑗, 𝑐𝑑𝑝 𝜖 𝐶𝐷𝑃𝑏𝑗 , 𝑑, 𝑡 𝜖 𝑇𝑃 

(9)  

Regarding the pipeline transportation constraints, the total flow from a pad to a junction node, and from a junction 

node to a tank battery should not exceed the selected pipeline capacity. This is achieved by controlling the 

pressures drops for each segment and diameter selected, which is further elaborated in the Multi-phase Pipelines 

Capacity sub-section. After the multi-phase flows are separated, single-product pipelines connect batteries to 

battery junction nodes, and the latter to centralized delivery points. Single-product pipelines are sized as given 

by Eq. 10 and Eq. 11. Parameters 𝜙𝑐 are unit-transformation coefficients that depend on the fluid-dynamic model 

used to calculate pipeline transportation capacity. 

𝜙𝑐𝐹𝐵𝐽𝑏,𝑏𝑗,𝑡
𝑐 ≤  ∑ 𝑚𝑎𝑥𝑓𝑙𝑜𝑤𝑏,𝑏𝑗,𝑑

𝑐 ∙ 𝑢𝑏,𝑏𝑗,𝑑,𝑡
𝑐

𝑑

       ∀𝑏, 𝑏𝑗 𝜖 𝐵𝐽𝑏 , 𝑐, 𝑡 𝜖 𝑇𝑃 (10)  

𝜙𝑐𝐹𝐶𝐷𝑃𝑏𝑗,𝑐𝑑𝑝,𝑡
𝑐 ≤  ∑ 𝑚𝑎𝑥𝑓𝑙𝑜𝑤𝑏𝑗,𝑐𝑑𝑝,𝑑

𝑐 ∙ 𝑤𝑏𝑗,𝑐𝑑𝑝,𝑑,𝑡
𝑐

𝑑

       ∀𝑏𝑗, 𝑐𝑑𝑝 𝜖 𝐶𝐷𝑃𝑏𝑗 , 𝑐, 𝑡 𝜖 𝑇𝑃 (11)  

In a given superstructure with alternative connections, the maximum transportation capacities 𝒎𝒂𝒙𝒇𝒍𝒐𝒘𝒃,𝒃𝒋,𝒅
𝒄  

and 𝒎𝒂𝒙𝒇𝒍𝒐𝒘𝒃𝒋,𝒄𝒅𝒑,𝒅
𝒄  are the corresponding single-phase capacities for component c. As mentioned in the 

previous sections and further discussed in Appendix A, the capacity transportation for liquid-phase pipelines 

transporting oil or water is determined by the Eq. 12, while Eq. 13 represents the maximum flow for gas-phase 

pipelines. In Eq. 12, 𝑣𝑚𝑎𝑥𝐿𝑃is the fixed maximum velocity (1.5 m/s) for the liquid phase, while in both equations 

𝜇 is used for units conversion. Observe that, for liquid-phase pipelines, the maximum flow does not depend on 

the distance between the nodes being linked, in contrast with the inverse relation existing for gas pipelines 

(Weymouth, 1942). In the most general case, the inlet and outlet pressures are also decision variables.  
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𝑚𝑎𝑥𝑓𝑙𝑜𝑤𝑑
𝑜𝑖𝑙 𝑤𝑎𝑡𝑒𝑟⁄

=  𝜇𝑜𝑖𝑙 𝑤𝑎𝑡𝑒𝑟⁄ ∙ 𝑣𝑚𝑎𝑥𝐿𝑃 ∙
𝜋

4
∙ (𝑑𝑖𝑎𝑚𝑑

2)      ∀𝑑  (12)  

𝑚𝑎𝑥𝑓𝑙𝑜𝑤𝑑
𝑔𝑎𝑠

=
𝜇𝑔𝑎𝑠

𝑑𝑖𝑠𝑡𝑔𝑎𝑠
∙ (𝑃𝑖𝑛

2 − 𝑃𝑜𝑢𝑡
2 )0.5 ∙ 𝑑𝑖𝑎𝑚𝑑

2.667 
    ∀𝑑  (13)  

Multi-phase Pipelines Capacity. A series of nonlinear equations aim to control the transportation capacities 

allowed for multiphase (oil, gas, water) pipelines of diameter d linking every pair of nodes i and j. The 

corresponding transportation capacity is strongly dependent on the gor and wor, or, in simpler terms, dependent 

on the ratio between the liquid and the gas phases. Even if we assume constant temperature and horizontal 

pipelines, the resulting flow patterns are quite complex depending on the liquid-gas ratio and physical properties 

of the fluids. According to the literature on multiphase flows  (Al-Hadhrami et al., 2014; Petalas and Aziz, 2000; 

Spedding et al., 2006), there are many theoretical models and empirical correlations to compute the flow 

conditions and pressure drop in different lab conditions, but just a few are useful for O&G production (Edwards 

et al., 2018; Zaghloul et al., 2008). Tools to predict flow regimes vary from large computational methods and 

algorithms (usually in the form of commercial codes) to very simple graphical procedures (flow pattern maps). 

In this model, two blocks of equations have been selected to represent every triplet origin-destination-diameter. 

The first block is developed under the Lockhart-Martinelli (LM) correlation for liquid-gas flows, whereas the 

second one includes SPE guidelines for multi-phase pipeline sizing.  

In order to state the equations more clearly, we define them for a generic variable flowrate 𝐹𝑃𝑐 of every 

component c instead of referencing it for a pair of nodes and a period of time. Also, the equations are stated for 

every potential diameter d. More specifically, the set of equations 14 to 28 should be imposed for every pair of 

nodes (wellpads-junctions (FPp,j,t) / junctions-tank batteries (FPBj,b,t)) and every pipeline diameter. Also, it would 

be required to multiply the flowrates by the corresponding binary variables (𝑥𝑝,𝑗,𝑑,𝑡  or 𝑦𝑗,𝑏,𝑑,𝑡) to account for the 

selected pipeline diameter. Although these bilinear terms can be linearized, they are retained to gain clarity in 

the presentation. 

Lockhart-Martinelli (LM) Correlation. This procedure is for predicting the pressure drop for fully developed 

horizontal gas-liquid flows, and is widely used in the Chemical Engineering field (Green and Southard, 2018; 

Lockhart and Martinelli, 1949). It is based on the calculation of the pressure drops that would be expected for 

each of the phases as if flowing alone through the pipeline. Then, the Lockhart-Martinelli parameter is computed 

as the square root of the ratio between the individual expected pressure drops. Finally, the overall two-phase 

pressure drop is estimated by using phase-specific multipliers that are obtained from nonlinear correlations with 

the LM parameter. We assume oil and water streams as part of a common liquid phase. Even though this is not 

entirely valid since oil and water phases are not miscible, generating particularly complex flow-patterns, the 

assumption is made to gain simplicity. In fact, as reviewed by Edwards et al. (2018), the major effect on the 

pressure drops could be the apparent viscosity of the liquid mixture, which depend on the water fraction. In our 

view, this assumption does not excessively affect the pressure drops computations since the gor and wor are 

constant terms in our model.  

From Eq. 14 we obtain the ratios between the component flow rates. Eq. 15 computes the superficial velocities 

for liquid (VSLP) and gas (VSGP) phases, while Eq. 16 determines the estimated Reynolds numbers for liquid and 

gas phases (RYLP - RYGP). The remaining parameters account for: diamd, the pipeline diameter [m], 𝜌 and 𝜇, the 

average density [kg/m3] and viscosity [Pa.s] of each phase, respectively. The friction factor 𝐻𝐹𝐹𝐿𝑃 for the liquid 

phase is computed through the Haaland correlation in Eq. 17, while the pressure drop gradient ∆𝑃𝐿𝑃 𝐿⁄  is 

estimated by Eq. 18, as if the liquid phase were flowing alone in the pipeline. The parameter ε accounts for the 
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pipeline internal surface roughness [m]. For the gas phase, the Weymouth equation (Weymouth, 1942) estimates 

a pressure gradient along the pipeline, as in Eq. 19.  

𝑤𝑜𝑟 ∙ 𝐹𝑃𝑜𝑖𝑙 = 𝐹𝑃𝑤𝑎𝑡𝑒𝑟       𝑔𝑜𝑟 ∙ 𝐹𝑃𝑜𝑖𝑙 = 𝐹𝑃𝑔𝑎𝑠       (14) 

𝑉𝑆𝑑
𝐿𝑃 =

𝐹𝑃𝑤𝑎𝑡𝑒𝑟 + 𝐹𝑃𝑜𝑖𝑙

𝜋𝑑𝑖𝑎𝑚𝑑
2 4⁄

        𝑉𝑆𝑑
𝐺𝑃 =

𝐹𝑃𝑔𝑎𝑠

𝜋𝑑𝑖𝑎𝑚𝑑
2 4⁄

 (15) 

𝑅𝑌𝑑
𝐿𝑃 =  

𝜌𝐿𝑃 ∙ 𝑉𝑆𝐿𝑃 ∙ 𝑑𝑖𝑎𝑚𝑑

𝜇𝐿𝑃
          𝑅𝑌𝑑

𝐺𝑃 =
𝜌𝐺𝑃 ∙ 𝑉𝑆𝐺𝑃 ∙ 𝑑𝑖𝑎𝑚𝑑

𝜇𝐺𝑃
 (16) 

1

(𝐻𝐹𝐹𝑑
𝐿𝑃)0.5

= −1.8 𝑙𝑜𝑔 (
ε

3.7 𝑑𝑖𝑎𝑚𝑑
+

6.9

𝑅𝑌𝑑
𝐿𝑃) (17) 

∆𝑃𝑑
𝐿𝑃

𝐿
=

𝐻𝐹𝐹𝑑
𝐿𝑃

2
 ∙

𝜌𝐿𝑃 𝑉𝑆𝑑
𝐿𝑃2

𝑑𝑖𝑎𝑚𝑑
 (18) 

𝐹𝑃𝑔𝑎𝑠 = 𝑑𝑖𝑠𝑡−0.5 ∙ 𝑑𝑖𝑎𝑚𝑑
2.667 {

(𝑃𝑖𝑛
2 − 𝑃𝑜𝑢𝑡

2 )

(𝜌𝐺𝑃𝑇[𝑃0 0.375𝑇0⁄ ]2)
}

0.5

 (19) 

∆𝑃𝐺𝑃

𝐿
=  

(𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡)

𝑑𝑖𝑠𝑡
 (20) 

Note that in the most general case, only the pressure at the wellpads is given. As the gas flow FPgas increases, the 

square pressure difference (P2
in – P2

out) also increases, leading to a larger single-phase pressure gradient ∆𝑃𝐺𝑃 𝐿⁄  

(Eq. 20). The other parameters account for the average gas temperature T [K], the standard temperature T0 [K] 

and pressure P0 [MPa] conditions. Also, the inlet pressure Pin has an upper limit according to the segment of 

network being considered. It can be easily proved that ∆𝑃𝐿𝑃 𝐿⁄  and ∆𝑃𝐺𝑃 𝐿⁄  are strictly increasing functions with 

the oil flow rate, for fixed gor and wor.  

𝑋𝐿𝑀 = (
∆𝑃𝐿𝑃 𝐿⁄

∆𝑃𝐺𝑃 𝐿⁄
)

0.5

    (21) 

𝑌𝐺𝑃 = (1 + 𝑋𝐿𝑀

2
𝑛) 𝑛    𝑌𝐿𝑃 =  

𝑌𝐺𝑃 

𝑋𝐿𝑀
2    (22) 

The Lockhart-Martinelli parameter XLM is a measure of the relation between the single-phase pressure gradients, 

which is computed by Eq. 21. The corresponding multipliers YLP and YGP
 are obtained in Eq. 22 to determine how 

much the single-phase pressure gradients are increased when both phases are flowing together in a two-phase 

flow. The latter equation follows the Wilkes approach (Wilkes, 2005) to fit the curves of the LM correlation (see 

Figure 7). The parameter n depends on the flow regime of each phase, being equal to 4.12 if both liquid and gas 

phases have a turbulent regime, as is usually seen in practice for unconventional streams. The overall multiphase 

pressure gradient ∆𝑃 𝐿⁄  is computed by Eq. 23 and the total pressure drop ∆𝑃𝑇𝑜𝑡𝑎𝑙 is given by Eq. 24 while 

imposing a maximum pressure drop ∆𝑝𝑚𝑎𝑥. This limit in the pressure drops is set according the operating 

conditions of the manifolds and the tank batteries. Note that the overall pressure gradient ∆𝑃 𝐿⁄  is also a strictly 

increasing function with the oil flow rate, for fixed gor and wor.  

∆𝑃

𝐿
= 𝑌𝐿𝑃 ∙

∆𝑃𝐿𝑃

𝐿
 (23) 
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∆𝑃𝑇𝑜𝑡𝑎𝑙 =  
∆𝑃

𝐿
∙ 𝑑𝑖𝑠𝑡 ≤ ∆𝑝𝑚𝑎𝑥 (24) 

SPE (Society of Petroleum Engineers) Guidelines. According to 

the SPE (Society of Petroleum Engineers, 2006), certain 

recommendations should be taken into account to determine the 

diameter of a multiphase pipeline. These are related to maximum 

and minimum velocity constraints to prevent erosion, corrosion, 

noise or water hammer effects. The maximum recommended 

velocity is 60 ft/sec to inhibit noise, and 50 ft/sec for CO2 

corrosion inhibition. In turn, a minimum velocity of 10 to 15 ft/sec 

is usually set to prevent surging and keep the line swept clear of 

solids.  

The SPE guidelines for multiphase pipeline design and sizing are 

then added to the MINLP formulation. Eq. 25 limits the flow in 

order not to exceed the maximum velocity vmax [ft/s], according to the given pipeline diameter. The parameter 

vmax is the maximum velocity according to SPE procedure [ft/s] and it is computed as the division between the 

constant  and the square root of the average density 𝜌𝑎𝑣𝑔.   is an SPE specific constant with a value of 150 for 

solids-free fluids and continuous service operation. The average density is also a parameter computed as shown 

in Eq. 26. Moreover, z is the compressibility factor, r the gas/liquid ratio [ft3/bbl], T the gas/liquid flowing 

temperature [°R], 𝑃𝑖𝑛 the inlet pressure in PSI, sg the specific gravity of the liquid phase relative to water, and s 

the specific gravity of the gas, relative to air.  

𝐹𝑃𝑜𝑖𝑙 + 𝐹𝑃𝑤𝑎𝑡𝑒𝑟 ≤
1000 ∙ 𝑣𝑚𝑎𝑥 ∙ (0.0254 𝑑𝑖𝑎𝑚𝑑)2

(11.9 +
𝑧 𝑟 𝑇

16.7 𝑃𝑖𝑛
)

 (25) 

𝑣𝑚𝑎𝑥 =
 

𝜌𝑎𝑣𝑔
0.5

       ;     𝜌𝑎𝑣𝑔 =
12409 𝑠𝑔 𝑃𝑖𝑛 + 2.7 𝑟 𝑠 𝑃𝑖𝑛

198.7 𝑃𝑖𝑛 + 𝑧 𝑟 𝑇
 (26) 

Topological Constraints. A set of constraints is introduced in order to account for the topological conditions of 

the network. First, it is necessary to impose that the outgoing flows cannot be split at any node in the network 

(Eq. 27 and Eq. 28). These constraints also enforce that only a single diameter be selected for any pipeline 

connection, and that the installation can be made at a single period within the subset TS. Note that for the first 

segment in the network it is possible to tighten the constraint by making it strictly equal to one (production needs 

to be sent to a junction node). On the other hand, the last inequality in constraint 28 also establishes that in a 

potential tank battery location only one battery capacity can be installed. Note that the investments in 

infrastructure over the network can only be scheduled for those time periods in which a new wellpad starts its 

production.  

∑ 𝑥𝑝,𝑗,𝑑,𝑡

𝑗 𝜖 𝐽𝑝

𝑑,𝑡 ∈ 𝑇𝑆 

=  1     ∀𝑝                ∑ �̂�𝑗,𝑏,𝑑,𝑡

𝑏 𝜖 𝐵𝑗

𝑑,𝑡 ∈ 𝑇𝑆

≤  1       ∀𝑗 
(27)  

∑ �̂�𝑏,𝑏𝑗,𝑑,𝑡
𝑐

𝑏𝑗 𝜖 𝐵𝐽𝑏
𝑑,𝑡 ∈ 𝑇𝑆

≤  1     ∀𝑏, 𝑐   ∑ �̂�𝑏𝑗,𝑐𝑑𝑝,𝑑,𝑡
𝑐

𝑐𝑑𝑝 𝜖 𝐶𝑃𝐷𝑏𝑗

𝑑,𝑡 ∈ 𝑇𝑆

≤ 1     ∀𝑏𝑗, 𝑐    ∑ �̂�𝑏𝑎𝑡𝑏,𝑏𝑧,𝑡  
𝑏𝑧 𝜖 𝐵𝑍𝑏 

𝑡 ∈ 𝑇𝑆

≤  1     ∀𝑏       
(28)  

Figure 7. Liquid and gas pressure gradient 

multipliers vs. Lockhart-Martinelli parameter. 
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Integer Cuts. Further constraints are included in order to tighten the mathematical formulation. Tank battery 

location and delivery point selection restrain pipeline connections, as given by Eqs. 29 and 30. In other words, 

no pipeline can be connected to a node that is not selected. Similarly, Eq. 31 relates the binary variables 

accounting for upstream and downstream flows in every node: no downstream pipeline can leave a node if no 

upstream pipeline reaches the same node.  

𝑦𝑗,𝑏,𝑑,𝑡 ≤ ∑ 𝑧𝑏𝑎𝑡𝑏,𝑏𝑧,𝑡

𝑏𝑧  𝜖 𝐵𝑍𝑏

   ∀𝑗, 𝑏 ∈ 𝐵𝑗 , 𝑑, 𝑡 𝜖 𝑇𝑃          𝑢𝑏,𝑏𝑗,𝑑,𝑡
𝑐 ≤ ∑ 𝑧𝑏𝑎𝑡𝑏,𝑏𝑧,𝑡

𝑏𝑧  𝜖 𝐵𝑍𝑏

    ∀𝑐, 𝑏, 𝑏𝑗 ∈ 𝐵𝐽𝑏 , 𝑑, 𝑡 𝜖 𝑇𝑃 
(29)  

𝑤𝑏𝑗,𝑐𝑑𝑝,𝑑,𝑡
𝑐 ≤  𝑧𝑐𝑑𝑝𝑐𝑑𝑝,𝑡        ∀𝑐, 𝑏𝑗, 𝑐𝑑𝑝 ∈ 𝐶𝐷𝑃𝑏𝑗 ∩ 𝐶𝐷𝑃𝑐 , 𝑑, 𝑡 𝜖 𝑇𝑃 (30)  

∑ 𝑦𝑗,𝑏,𝑑,𝑡

𝑏 𝜖 𝐵𝑗,𝑑

≤ ∑ 𝑥𝑝,𝑗,𝑑,𝑡

𝑝 𝜖 𝑃𝑗,𝑑

     ∀𝑗, 𝑡 𝜖 𝑇𝑃               ∑ 𝑢𝑏,𝑏𝑗,𝑑,𝑡
𝑐

𝑏𝑗 𝜖 𝐵𝐽𝑏,𝑑

≤ ∑ 𝑦𝑗,𝑏,𝑑,𝑡      ∀𝑏, 𝑡 𝜖 𝑇𝑃

𝑗 𝜖 𝐽𝑏,𝑑

 

∑ 𝑤𝑏𝑗,𝑐𝑑𝑝,𝑑,𝑡
𝑐

𝑐𝑑𝑝 𝜖 𝐶𝐷𝑃𝑏𝑗,𝑑

≤ ∑ 𝑢𝑏,𝑏𝑗,𝑑,𝑡
𝑐

𝑏 𝜖 𝐵𝑏𝑗,𝑑

 ∀𝑏𝑗, 𝑡 𝜖 𝑇𝑃 
(31)  

Symmetry Breaking Constraints. Many nodes b for TB installation may comprise the same physical location 

(a cluster of batteries). In fact, there may be a maximum of tank batteries that can be installed in the location, 

which induces several equivalent or symmetric solutions when varying the individual element being selected and 

the corresponding flow allocation. Therefore, we systematically activate the tank batteries within the same 

location following the lexical order of the individual candidates, yielding Eq. 32.  

∑ 𝑧𝑏𝑎𝑡𝑏+1,𝑏𝑧,𝑡

𝑏𝑧 𝜖 𝐵𝑍𝑏+1

≤ ∑ 𝑧𝑏𝑎𝑡𝑏,𝑏𝑧,𝑡

𝑏𝑧 𝜖 𝐵𝑍𝑏

     ∀𝑏, 𝑏 + 1 𝜖 𝐵𝑎𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟, 𝑡 𝜖 𝑇𝑃 
(32)  

Objective Function. The goal of the mathematical formulation is to minimize the total present cost of capital 

and operating expenditures involved in the network design and operation. Without loss of generality, we assume 

that the availability of the installed facilities is instantaneous so as to be able to discount the cost appropriately. 

The objective function shown in Eq. 33 accounts for: (1) the tank batteries installation costs, being i_batbz the 

cost of a battery of capacity bz [in thousands USD], (2) the investment required for pipelines in the network, 

being i_piped the unit cost of a pipeline of diameter d [thousand USD/mile] and distp,j / distj,b  /  distb,bj  / distbj,cdp  

the euclidean distances between nodes [miles], (3) the junction capital requirements, where i_junj and i_junbbj  

represent the installation costs of a junction, while 𝑥�̂�𝑗,𝑡 and 𝑏𝑏�̂�𝑏𝑗,𝑡 are new binary variables defining if the 

corresponding junctions are installed at period t (𝑥�̂�𝑗,𝑡 ≥ 𝑥𝑝,𝑗,𝑑,𝑡, and 𝑏𝑏�̂�𝑏𝑗,𝑡 ≥ �̂�𝑏,𝑏𝑗,𝑑,𝑡
𝑐 ), (4) pipelines operational 

expenditures, where c_piped is the unit cost of using a pipeline per unit of volume being transported [thousand 

USD/(bbl-tcf3)], and (5) tank batteries and junctions operational costs, where c_batbz and c_jun are the 

corresponding costs per unit of volume being processed, and 𝑥𝑦𝑗,𝑡 and 𝑏𝑏𝑗𝑏𝑗,𝑡 determine the use of a junction 

during a period t. For all cases, i is the interest rate considered to assess the capital flows through the planning 

horizon. Strictly speaking, and for simplicity, all the operating cost terms are given by non-linear terms involving 

a binary variable and a continuous one. These conditional terms can be easily linearized by introducing a new 

positive variable and a set of new linear constraints.   
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𝑀𝑖𝑛 𝑧 = ∑
1

(1 + 𝑖)𝑡−1 {∑ (𝑖_𝑏𝑎𝑡𝑏𝑧 ∙ �̂�𝑏𝑎𝑡𝑏,𝑏𝑧,𝑡 + 𝑧𝑏𝑎𝑡𝑏,𝑏𝑧,𝑡 ∙ 𝑐_𝑏𝑎𝑡𝑏𝑧 ∑ 𝐹𝑃𝐵𝑗,𝑏,𝑡
𝑐

𝑐,𝑗

)

𝑏,𝑏𝑧𝑡

+ ∑ (𝑑𝑖𝑠𝑡𝑝,𝑗 ∙ 𝑖_𝑝𝑖𝑝𝑒𝑑 ∙ �̂�𝑝,𝑗,𝑑,𝑡 + 𝑥𝑝,𝑗,𝑑,𝑡 ∙ 𝑐_𝑝𝑖𝑝𝑒𝑑 ∑ 𝐹𝑃𝑝,𝑗,𝑡
𝑐

𝑐

)

𝑝,𝑗,𝑑

+ ∑ (𝑑𝑖𝑠𝑡𝑗,𝑏 ∙ 𝑖_𝑝𝑖𝑝𝑒𝑑 ∙ �̂�𝑗,𝑏,𝑑,𝑡 + 𝑦𝑗,𝑏,𝑑,𝑡 ∙ 𝑐_𝑝𝑖𝑝𝑒𝑑 ∑ 𝐹𝑃𝐵𝑗,𝑏,𝑡
𝑐

𝑐

)

𝑗,𝑏,𝑑

+ ∑ (𝑑𝑖𝑠𝑡𝑏,𝑏𝑗 ∙ 𝑖_𝑝𝑖𝑝𝑒𝑑 ∙ �̂�𝑏,𝑏𝑗,𝑑,𝑡
𝑐 + 𝑢𝑏,𝑏𝑗,𝑑,𝑡

𝑐 ∙ 𝑐_𝑝𝑖𝑝𝑒𝑑 ∙ 𝐹𝐵𝐽𝑏,𝑏𝑗,𝑡
𝑐 )

𝑐,𝑏,𝑏𝑗,𝑑

+ ∑ (𝑑𝑖𝑠𝑡𝑏𝑗,𝑐𝑑𝑝 ∙ 𝑖_𝑝𝑖𝑝𝑒𝑑 ∙ �̂�𝑏𝑗,𝑐𝑑𝑝,𝑑,𝑡
𝑐 + 𝑤𝑏𝑗,𝑐𝑑𝑝,𝑑,𝑡

𝑐 ∙ 𝑐_𝑝𝑖𝑝𝑒𝑑 ∙ 𝐹𝐶𝐷𝑃𝑏𝑗,𝑐𝑑𝑝,𝑡
𝑐 )

𝑐,𝑏𝑗,𝑐𝑑𝑝,𝑑

+ ∑ (𝑖_𝑗𝑢𝑛𝑗 ∙ 𝑥�̂�𝑗,𝑡 + 𝑥𝑦𝑗,𝑡 ∙ 𝑐_𝑗𝑢𝑛 ∑ 𝐹𝑃𝑝,𝑗,𝑡
𝑐

𝑐,𝑝

)

𝑗

+  ∑ (𝑖_𝑗𝑢𝑛𝑏𝑏𝑗 ∙ 𝑏𝑏�̂�𝑏𝑗,𝑡 + 𝑏𝑏𝑗𝑏𝑗,𝑡 ∙ 𝑐_𝑗𝑢𝑛 ∑ 𝐹𝐵𝐽𝑏,𝑏𝑗,𝑡
𝑐

𝑐,𝑏

)

𝑏𝑗

}  

(33)  

5. Optimization Framework 

After having presented a general MINLP formulation for the unconventional production gathering network 

design, a global solution strategy is developed in this section. The MINLP model proves to be computationally 

intractable even for rather small instances, because of the following reasons: (1) the highly nonlinear and non-

convex nature of the constraints, (2) the combinatorial complexity due to the large number of alternatives when 

dealing with case studies of reasonable size, and (3) the loose NLP relaxation that yields poor bounds. In fact, 

for a case study resulting in a MINLP model with 6526 single equations, 3250 nonnegative variables and 350 

binary variables, after one day of CPU processing, not even a feasible solution had been found using BARON 

global optimization solver.  

The proposed solution strategy is composed of a series of approximations derived from the MINLP model, which 

when solved in a specified sequence, can provide efficient near-optimal and feasible solutions for the overall 

problem. The overall solution strategy is based on a bi-level decomposition consisting of: (1) an NLP formulation 

comprising all the fluid dynamic equations to estimate the transportation capacity of the pipelines, and (2) a 

MILP formulation for the gathering network design.  

5.1.  NLP Formulation for Estimation of the Maximum Flow in Multiphase 

Pipelines 

To separate all the nonlinear and nonconvex elements of the MINLP formulation, an NLP model comprising the 

group of equations from Eq. 14 to Eq. 26 is developed. By carefully analyzing these equations, it is important to 

highlight that, for any potential multiphase pipeline in the network (defined by the triplet origin-destination-

diameter), we can setup an NLP model whose objective is to maximize the value of the variable maxflowi,j,d 

computing the total maximum flow. Also note the following key aspects: (1) if the inlet and outlet pressures are 

assumed to be given for each segment, the NLP model leads to the transportation capacity of the pipeline for the 

given pressure drop ∆𝑝𝑚𝑎𝑥, (2) the resulting NLP formulation is a system of nonlinear equations that can be 

solved separately for every triplet  i-j-d, resulting in a large number of small NLP models; and (3) segments with 

multiphase flows are the ones linking wellpads p with junction nodes j, and junctions j with tank batteries b.   
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In summary, the NLP aims at maximizing the multiphase flowrate for every potential pipeline segment in the 

network, given by 𝑀𝑎𝑥   𝑧 = 𝐹𝑃𝑜𝑖𝑙, subject to Eqs. 14 to Eq. 26. In other words, we want to setup a reasonable 

capacity for the segment i-j with diameter d that can be designed in practice from an engineering viewpoint. Note 

that the oil flowrate is used for reference as the gor and wor parameters are assumed to be constant. It is important 

to mention that the proposed NLP formulation comprises both the Lockhart-Martinelli procedure and the SPE 

guidelines. In general terms, a separate comparison of LM and SPE procedures leads to the conclusion that the 

first one is more restrictive for longer pipelines, while the second one imposes tighter upper bounds on the 

flowrate as the pipeline becomes shorter. In fact, in contrast with the LM correlation, the SPE guidelines are 

independent of the pipeline length because they are not based on the calculation of the pressure drop. In Appendix 

B, an illustrative example is presented to show the formulation results and its understanding.  

5.2.  Multiperiod MILP Formulation: A Rigorous Approach for Investment 

Planning 

Based on the previous NLP formulation, the resulting parameter maxflowi,j,d is introduced into an MILP 

formulation for the optimal design of the gathering network. In particular, the new Eqs. 34 and 35 for pipelines 

connecting wellpads with junction nodes, and junctions with tank batteries, are added to the group of equations 

given by Eq. 1 to 13 and Eq. 27 to 33, leading to a MILP model. Its objective function to be minimized is given 

by Eq. 33, which is subject to Eqs. 1 to 13, 27 to 32, 34 and 35.  

∑ 𝜙𝑐 ∙ 𝐹𝑃𝑝,𝑗,𝑡
𝑐

𝑐

≤  ∑ 𝑚𝑎𝑥𝑓𝑙𝑜𝑤𝑝,𝑗,𝑑 ∙ 𝑥𝑝,𝑗,𝑑,𝑡

𝑑

     ∀  𝑝, 𝑗 𝜖 𝐽𝑝, 𝑡 𝜖 𝑇𝑃 (34)  

∑ 𝜙𝑐 ∙ 𝐹𝑃𝐵𝑗,𝑏,𝑡
𝑐

𝑐

≤  ∑ 𝑚𝑎𝑥𝑓𝑙𝑜𝑤𝑗,𝑏,𝑑 ∙ 𝑦𝑗,𝑏,𝑑,𝑡

𝑑

      ∀ 𝑗, 𝑏 𝜖 𝐵𝑗, 𝑡 𝜖 𝑇𝑃 (35)  

Pre-processing step. According to the maximum flowrate estimation, for both multiphase and single-phase 

pipeline segments, straightforward logic can be applied to reduce the size of the problem without affecting the 

quality of the solutions being obtained:  

- For every wellpad-junction connection, the maximum flowrate over time is known in advance according to 

the wellpad production forecast. Hence, it is possible to minimize the pipeline costs by selecting the minimum 

diameter d that is able to handle the production peak of the wellpad. This is achieved by fixing the xp,j,d’ 

variables to zero for all d’ ≠ d.   

- For connections between junction nodes and tank batteries, the minimum flow to be transported is that 

coming from the less productive wellpad associated to j. Then, it is possible to omit from the network 

superstructure every diameter d that is not able to handle at least the production of that single wellpad.  

- Also, it is possible to assume that no more than a certain number of wellpads will be connected to the junction 

node, according to the maximum processing capacity of a single tank battery. From that, one can omit 

alternative diameters that are larger than required.  

5.3.  MILP Formulation with investments at initial time 

A new strong assumption is introduced in this section to reduce the size of the MILP formulation, and thereby 

improving its computational performance. We assume that all the gathering facilities selected by the model are 

installed and available at time zero, yielding a compact formulation with a large reduction in the model size, both 

in variables and equations.  
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Note that every feasible solution of this compact MILP is also a feasible solution of the previous MILP. However, 

in some cases, it might be beneficial to delay some capital expenditures at the expense of smaller ones being 

brought forward, which is disregarded in this simplified model.  

Model Reformulation. The main changes with regards to the previous MILP are as follows. Regarding the 

binary variables, all decisions related to the installation of a facility after the first period are omitted, as stated by 

Eqs. 36 and 37.  

�̂�𝑝,𝑗,𝑑,𝑡 = 0    ∀𝑝, 𝑗, 𝑑, 𝑡 ∈ 𝑇𝑆, 𝑡 > 1  ;   �̂�𝑗,𝑏,𝑑,𝑡 = 0   ∀𝑗, 𝑏, 𝑑, 𝑡 ∈ 𝑇𝑆, 𝑡 > 1   ;  �̂�𝑏,𝑏𝑗,𝑑,𝑡
𝑐 = 0   ∀𝑏, 𝑐, 𝑏𝑗, 𝑑, 𝑡 ∈ 𝑇𝑆, 𝑡 > 1 (36)  

    �̂�𝑏𝑗,𝑐𝑑𝑝,𝑑,𝑡
𝑐 = 0   ∀𝑏𝑗, 𝑐, 𝑐𝑑𝑝, 𝑑, 𝑡 ∈ 𝑇𝑆, 𝑡 > 1         ;        �̂�𝑏𝑎𝑡𝑏,𝑏𝑧,𝑡 = 0     ∀𝑏, 𝑏𝑧, 𝑡 ∈ 𝑇𝑆, 𝑡 > 1       (37)  

Moreover, after solving the simplified MILP, it is important to compute the actual net present cost of every 

facility by postponing the capital expenditures to the time they are used for the first time, according to the network 

design. These computations are introduced to determine the net present cost of the solution, which is comparable 

with those yielded by the previous MILP.  

It is also interesting to note that this formulation yields feasible solutions for the multiperiod MILP model 

presented in section 5.2. This can be easily proved by considering that: (a) every solution of the reduced MILP 

model is a solution in the multiperiod approach, and (b) the objective function when the capital expenditures are 

discounted back in the multiperiod MILP is always lower or equal to the total cost in the reduced MILP. The 

implications are: (1) the reduced MILP formulation with investments at time zero is a valid starting point for 

augmented problem, and (2) imposes a valid upper bound to the optimal solution.  

5.4.  Bounds on the Tank Batteries 

In order to find better solutions and to improve the efficiency of the mathematical formulations, an iterative 

procedure is developed to establish the minimum and maximum number of tank batteries among which the 

optimal solution lies. This reduces the feasible region of the problem, limits the combination of potential locations 

to be activated, and can also improves the search for an overall lower bound, as explained in the Solution 

Algorithm section.  

Heuristic Determination of the Number of Tank Batteries. The minimum number of tank batteries required 

MinBat is determined by adding Eq. 38 to the MILP, where the parameter nTB is iteratively increased (starting 

at 1) until the problem becomes feasible, as shown in Figure 8. In other words, it seeks to determine the minimum 

number of TB at which the problem becomes feasible, regardless of the quality of the solution. Since this strategy 

relies on a feasibility search, many of the constraints of the original formulation can be relaxed in order to improve 

the procedure. Particularly, it is possible to relax pipeline sizing conditions, solving a pad-battery assignment 

problem, without affecting the feasibility search.  

On the other hand, by imposing a minimum number of batteries to use (through the same parameter nTB) we can 

determine the number of tank batteries MaxBat above which the solution is guaranteed to be suboptimal (Eq. 

39). Taking into consideration the best integer solution found so far, the heuristic procedure starts with a large 

value for nTB (in an extreme case, all potential tank batteries are enforced to be used), and compares the lower 

bound of the branch and bound search with the best solution. If the lower bound exceeds the net present cost of 

best solution, it is guaranteed that the total number of batteries has to be smaller than the imposed value, 

interrupting the execution, reducing the value of nTB by 1 and repeating the procedure, as observed in Figure 8.  
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∑ 𝑧𝑏𝑎𝑡𝑏,𝑏𝑧

𝑏,𝑏𝑧 ∈𝐵𝑍𝑏 

 ≤ 𝑛𝑇𝐵 
(38)  ∑ 𝑧𝑏𝑎𝑡𝑏,𝑏𝑧

𝑏,𝑏𝑧 ∈𝐵𝑍𝑏

 ≥ 𝑛𝑇𝐵 
(39)  

 
Figure 8. Heuristic Determination of the number of tank batteries. *Adapted for feasibility search. ** #TB=total of 

potential TB locations. ***Checked during the first 2 hours of CPU computation for every iteration.  

5.5.  Lower Bound Improvement Strategies 

In this section, we introduce the concept of SuperBatteries and further topological constraints are added for 

cutting off suboptimal solutions. Both ideas aim to provide and guarantee better optimality gaps for the overall 

problem, as explained in the Solution Algorithm section.  

SuperBatteries (SB) Concept. The idea is about the aggregation of the tank batteries capacities within the same 

geographical location, looking for a valid relaxation whose optimal solution has a much faster convergence. 

Through the synthesis of multiple batteries as a whole, the element SB replaces the tank batteries in the same site 

with a SuperBattery with a capacity that is an integer multiple of a single battery, which is captured by the 

aggregate integer variable nBat (see Figure 9).   

 

We prove that this aggregation provides a valid lower bound for the original problem. Formally: (1) every 

solution in the original problem is also a solution of the SB relaxation (it is simply obtained by assigning single 

flows to the corresponding SB); and (2) the objective function of the SB relaxation is always less or equal to that 

in the original formulation. More specifically, from the original Eq. 5, adding up the incoming flows to the 

Figure 9. Original topology (left) and SuperBattery Topology (right) topology of the 

problem with the SuperBattery concept 
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potential tank batteries in every SuperBattery location SB (as in Eq. 40 and Eq. 41), it is possible to obtain the 

integer variable 𝑛𝑏𝑎𝑡𝒔𝒃,𝑏𝑐 as the sum of the corresponding 𝑧𝑏𝑎𝑡𝑏,𝑏𝑐binary variables. Clearly, the number of 

SuperBatteries may be significantly smaller than the tank batteries in the original formulation, which allows to: 

(1) significantly reduce the model size, and (2) notably decrease the problem complexity by cutting off the 

number of potential links between junctions and tank batteries (now SuperBatteries).  

∑ ∑ 𝐹𝑃𝐵𝑗,𝑏,𝑡
𝑐

𝑗∈𝐽𝑏𝑏∈𝑆𝐵

≤ ∑ ∑ 𝑏𝑎𝑡𝑐𝑎𝑝𝑏𝑧
𝑐 ∙ 𝑧𝑏𝑎𝑡𝑏,𝑏𝑧

𝑏𝑧∈𝐵𝑍𝒔𝒃

=  ∑ 𝑏𝑎𝑡𝑐𝑎𝑝𝑏𝑧
𝑐 ∑ 𝑧𝑏𝑎𝑡𝑏,𝑏𝑧

𝑏∈𝑺𝑩𝑏𝑧∈𝐵𝑍

 

𝑏∈𝑆𝐵

   ∀𝒔𝒃, 𝑐, 𝑡 𝜖 𝑇𝑃 
(40)  

∑ 𝐹𝑃𝐵𝑗,𝒔𝒃,𝑡
𝑐

𝑗∈𝐽𝑏

≤ ∑ 𝑏𝑎𝑡𝑐𝑎𝑝𝑏𝑧
𝑐 ∙ 𝑛𝑏𝑎𝑡𝒔𝒃,𝑏𝑧

𝑏𝑧∈𝐵𝑍𝒔𝒃

        ∀𝒔𝒃, 𝑐, 𝑡 𝜖 𝑇𝑃 
(41)  

However, the relaxation gives rise to two important issues: first, it may lead to almost feasible solutions, which 

is illustrated in Figure 10. In that example, 11 wellpads are developed and assigned month after month to a 

double-capacity SuperBattery, but it turns to be impossible to re-assign the flows to the individual tank batteries 

without exceeding their single capacities. Secondly, it tends to consolidate flows from many wellpads into a 

single junction before sending them to the SB, as observed in Figure 11 (left). That solution is infeasible in terms 

of the original formulation since a single flow towards the SB exceeds the capacity of a single tank battery. 

However, Eq. 42 can be added to the relaxation to overcome this issue, which also turns out to be an excellent 

tightening constraint.  

 

 

Figure 10. Aggregate/Disaggregate assignment of wellpads when the SuperBattery relaxation is applied. 

Figure 11. Infeasible gathering of the production into a single pipeline (left), which is overcome 

by limiting the intermediate pipeline’s capacity (right). 
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𝐹𝑃𝐵𝑗,𝒔𝒃,𝑡
𝑐 ≤ 𝑚𝑎𝑥𝑏𝑧 {𝑏𝑎𝑡𝑐𝑎𝑝𝑏𝑧

𝑐 } ∑ 𝑦𝑗,𝑠𝑏,𝑑,𝑡

𝑑

     ∀𝒔𝒃, 𝑐, 𝑗, 𝑡 𝜖 𝑇𝑃 (42)  

New Topological Constraints to Cut Off Suboptimal Solutions. It is also worth to analyze how we can gather 

the production in a given cluster of wellpads in order to study the viability of adding special topological 

constraints. First of all, it is possible to determine if the total production from a cluster of wellpads can be sent 

to a single battery, or, in other words, determine the minimum number of junction nodes required per cluster. 

Figure 12 shows two illustrative cases gathering the production of 4 wellpads (each of them with an initial 

production peak of 22,750 BBL/day). At the left of Figure 12, the production start dates are in periods 38, 41, 44 

and 46, yielding an excess of 7.3% in the capacity of the largest tank battery. 

Figure 12. Effects of gathering the complete production of a cluster of wellpad and send it to a single tank battery. 

Therefore, installing a single junction node in this cluster is an infeasible solution. Two 

ways to avoid this are illustrated in Figure 13. The first is by installing at least two junction 

nodes in the cluster, and the second is by sending the production of at least one wellpad 

to a junction of another cluster of wellpads. This can be generalized and applied to the SB 

relaxation by adding equations in two ways. The first method (Eq. 43) makes use of an 

auxiliary binary variable to select the strategy for every cluster k in the subset K’. The 

second one (Eq. 44) limits the internal pipelines connected to every junction to be fewer 

than the number of wellpads nwk in k. The latter approach involves a larger number of 

equations when compared to Eq. 43, but it avoids introducing a further binary variable. 

Eq. 43 and Eq. 44 are designed for clusters with 4 wellpads (as observed in Figure 13), 

but the generalization is straightforward.  

(𝑎) ∑ 𝑦𝑗,𝑏,𝑑

𝑗∈𝐾,𝑏,𝑑 

≥ 2 − 𝑎𝑢𝑥𝑘   ; (𝑏) ∑ 𝑥𝑝,𝑗,𝑑

𝑗∈𝐾,𝑏,𝑑

 ≤ 𝑛𝑤𝑘  − 𝑎𝑢𝑥𝑘         ∀𝑘 ∈ 𝐾′ 
(43)  

Figure 13.  Logic of 

topological cuts. 
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5.6. Solution Algorithm  

In this section we integrate all the elements previously presented in order to develop a global solution strategy 

capable of providing very good solutions in reasonable CPU times. The algorithm, presented in Figure 14, is 

based on a bi-level decomposition of the MINLP general formulation, being the NLP model used to estimate the 

maximum admissible flows in multiphase pipelines at the first level, and the MILP model for selecting the 

gathering network design in the second level. The algorithm, that includes special strategies in each step, is as 

follows (starting with the iteration counter at n=0):  

First Step. The NLP formulation is solved for every potential triplet origin-destination-diameter in the 

superstructure, giving as a result the values of the corresponding maximum admissible flows maxflowi,j,d. Details 

on how to estimate pressure levels are described in Appendix C, based on conservative considerations of the 

pressure drop.  

Second Step. A pre-processing step aims to reducing the size of the problem by cutting off infeasible 

combinations.  

Third Step. This step aims to determine the   minimum number of TB required, as an input for the following 

phases. It consists of an iterative feasibility search to be performed before the MILP formulation (see Figure 8).  

Fourth Step. Increase the iteration counter to n+1. The MILP formulation is solved within a limit of Hn CPU 

hours of computation. The MILP formulations are, as shown in the case studies, very difficult to solve, often 

returning only feasible solutions. The reasons of this complexity come from the closeness with the knapsack 

problem in the Integer Programming field, which is proved to be NP-hard. Therefore, the strategy consists in 

limiting the computational time to Hn and, if the solution proves to satisfy a small tolerance criterion (optimality 

gap < 10-3), the algorithm terminates. Otherwise, we save the best solution Zn found so far and proceed with the 

next step. It is important to mention that the parameter Hn can be modified to generate many iterations in shorter 

CPU times (more feasible solutions to reduce the size of the model in future instances), or fewer iterations in 

longer times, searching for more efficient solutions.  

Fifth Step.  Determine the maximum number of TB required according to the best solution found so far Zn, as 

shown at the right of Figure 8.  

Sixth Step. By introducing the concept of SuperBatteries and new topological constraints, a relaxed problem RP 

is solved to optimality (Zn
*RP). We search for tighter lower bounds on the minimum net present cost to improve 

the optimality gap and the MILP execution performance. After this step, a new iteration can be performed by 

returning to step 4.   

∑ 𝑥𝑝,𝑗,𝑑

𝑝∈𝐾,𝑑

 ≤ 𝑛𝑤𝑘 − 1   ∀𝑗, 𝑘 ∈ 𝐾′ (44)  
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In summary, a special strategy has been proposed to obtain very good solutions and, at the same time, close up 

the optimality gap into reasonable values, all in moderate computational processing time, as can be observed in 

the next section. Future works are aimed to improve and expand the scope of the algorithm. 

6. Results and Discussion 

Two case studies are addressed in this section to assess the capabilities of the proposed mathematical formulation 

and solution strategy to design gathering networks for unconventional production. All the case studies are coded 

in GAMS 30.3 and solved using IPOPT 30.3 for the NLPs, and GUROBI 9.0.1 for the MILPs, on an Intel Core 

i7 8th gen with 16gb RAM under deterministic, non parallel mode. Based on information from our industry 

partner, additional assumptions are made on both instances: (1) capital and operating costs of junction nodes are 

Figure 14. Solution algorithm in detail. *Optimality Gap=0% 
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neglected, and (2) operating costs for the pipelines and tank batteries are assumed to be constant terms in the 

objective function. The latter is justified by the fact that the total volume to be transported is fixed by the well 

development plan, and pressure drops are set at specific values for every point in the network according to the 

solution strategy.  

Note that, for both case studies, the production of every wellpad reaches its peak as soon as it starts. In this case, 

the subsets of time periods TP and TS coincide. If the production profiles were different, the constraints should 

be expressed for an extended set of periods TP. 

6.1. Case Study 1: Small Illustrative Example 

The proposed approach is first applied to a small illustrative example to show the major trade-offs of the problem. 

As seen in Figure 15, the first case study comprises 12 wellpads with their starting production dates, 2 potential 

locations for tank batteries (one of them allowing up to 2 single batteries), two battery junction nodes, and a 

centralized delivery point (CDP). Tank batteries of two sizes bz1 and bz2 are available, whereas alternative 

pipeline diameters of 8, 12, 16 and 20 inches are considered. Table 1 shows the capital expenditures for both 

pipelines and tank batteries, along with its processing capacity per component.   

All the wellpads are considered identical in terms of their production curves (Figure 16). The gas-to-oil and 

water-to-oil ratios gorp and worp are 2 and 3.5, respectively, being constant for all the wellpads throughout the 

entire time horizon. Regarding the junction nodes, every wellpad is proposed as a potential location for them. 

The potential locations for tank batteries include a battery junction from where the production can be transported 

by single phase pipelines to the CDP. All the potential connections among wellpads, junction nodes and batteries 

are allowed in this case study. More detailed information for this problem is given in the supplementary material. 

 

According to the solution algorithm, the pipeline transportation capacity (maxflow) is computed by solving the 

NLP formulation for every potential connection wellpad-junction and junction-battery, considering alterative 

pipeline diameters. The NLP models are solved by using GAMS-IPOPT 30.3 in less than 1 CPU second per 

instance, amounting to 1080 CPUs for all possible combinations. The parameters for these calculations are also 

given in the supplementary material. After pre-processing (Step 2), a significant reduction in the number of 

variables is obtained. For instance, consider the pad p5 in Figure 15. If the model decides to link p5 with p1 or 

p2, a 16” diameter pipeline will be required, while a 12” pipeline will be large enough to connect p5 with p3, p4, 

p6, p7 or p8. Then, for any other combination, the binary variables xp,j,d are set to zero. In the case of pipelines 

Figure 15.  Case Study 1 Superstructure: wellpads locations, scheduled 

production start dates, potential junctions and tank batteries. 
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connecting junctions with tank batteries, 20” pipelines are also blocked because the capacity of the 16” pipelines 

is large enough to transport more production than the flow that can be processed by the tank batteries in this case.  

 

Table 1. Case Study 1 Costs and Parameters 

Tank Battery 

Capacity 

Capital Expenditures  

[MM USD] 

Water capacity 

[BBL/day] 

Oil Capacity 

[BBL/day] 

Gas capacity  

[thousand cf/day] 

bz1 10 30,000 10,000 30,000 

bz2 20 60,000 20,000 60,000 

Pipeline Diameter 

[inches] 
8 12 16 20 

Capital Expenditures  

[103 USD/mile] 
201.72 819.49 1954.16 3053.36 

Investments at the Initial Time. MILP Results. The MILP model with investments at the initial time comprises 

4,157 single equations, 2,348 nonnegative variables and 265 binary variables after the solver pre-processing, and 

is solved to optimality in 218.5 CPU seconds. The optimal solution amounts to a total investment of 53.449 MM 

USD, while the relaxed LP reports a solution of 43.33 MM USD (a 18.9% integrality gap). From the total 

investment, 40 MM USD are related to TB and the remaining amount to pipelines. The net present cost of this 

solution, assuming a 10% annual discount rate, turns out to be 52.502 MM USD. No further steps of the solution 

algorithm are required because of the optimality achieved at the first iteration.  

The optimal network design is shown in Figure 17, where it is possible to note that: (a) two tank batteries of 

capacity bz2 are installed, both of them in the central node, collecting the production from 6 junction nodes, (b) 

the optimal network of pipelines it is not composed of the “shortest-path” options (some crossings are evident) 

since they are driven by the usage of tank batteries; (c) all of the multiphase pipelines between wellpads and tank 

batteries are of 12” of diameter; and (d) the single-phase pipelines after separation are of 8” for gas, 12” for oil 

and 16” for water. 

Figure 16. Characteristic production curve for wellpads in Case Study 1 
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Figure 18 shows the tank battery utilization profiles for the water component, the most restrictive one. Both 

batteries are used from the early stages, with a clear underutilization until the 16th period, which could indicate 

an opportunity for improvement when considering the decisions over time. However, from the 16th period 

onwards, dealing with production peaks is not trivial, as seen in Figure 18. More detailed results including 

individual flows over the time horizon are shown in the supplementary material. 

 
Figure 18. Utilization of TB 1 (left) and TB 2 (right) for processing water flows (most restrictive component) 

distinguishing between the wellpads being linked throughout the planning horizon. 

Multiperiod MILP Formulation. When solving the multiperiod investment model, it is possible to place the 

investments in any period along the planning horizon. In this case, the total present cost improves by 2%, being 

reduced to 51.472 MM USD. The computational performance of the model clearly deteriorates because of the 

growth in the model size. The model comprises a similar number of continuous variables, but equations and 

binary variables increase by an order of magnitude. The total time spent to close the optimality gap to 0% is 

12,887 CPUs (3.58 h), sixty times the CPU time for the initial time approach. As in the previous case, the optimal 

solution is found, and no further steps are required in the solving strategy.  

Figure 19 depicts the new network obtained, while Figure 20 shows the tank battery utilization for water flows. 

Note that the new solution delays by 13 periods the installation of the second tank battery. As observed in Figure 

19, even though the network of pipelines is crisscrossed and tangled, which increases the pipeline investment 

costs, the reduction in the total net present cost of the second tank battery is more significant.  

 

 

Figure 17. Case Study 1 Network Solution. 
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Figure 20. Utilization of TB 1 (left) and TB 2 (right) in the multiperiod optimal solution.  For simplicity, only water flows 

(the most restrictive component) are represented, differentiating among the wellpads connected to every TB. 

6.2. Case Study 2: Real World Problem 

This case study is a larger size problem from the O&G industry with a challenging superstructure. As seen in 

Figure 21, it comprises 40 wellpads with their corresponding scheduled production start dates over a planning 

horizon of 50 months. Potential locations for tank batteries are 5, 3 of which account for a single unit, and the 

remaining 2 for sites where a maximum of 4 units are allowed. Also, a potential junction node is assumed in each 

wellpad. Finally, the set of pipeline diameters and tank battery capacities considered, as well as their related 

installation costs, are similar to the ones in Case Study 1 (see Table 1). Large tank batteries are the only allowed 

for all the potential locations, except for node b5 where only a small tank battery can be installed. Given that the 

gor and the wor are assumed to be constant for all the wellpads and over the whole time horizon, we focus on 

water flows, the most restrictive component according to the tank batteries capacities. The production profile of 

every wellpad is similar to the one predicted for Case Study 1. Figure 21 also shows the clusters of wellpads in 

the area (c1 to c8), each of them comprising from 4 to 8 wellpads. According to the solution algorithm, the first 

step is to solve the NLP formulations in order to determine the maximum pipeline transportation capacities 

maxflowi,j,d for every triplet i-j-d in the superstructure of alternatives for the pipeline network design. For every 

segment, the NLP formulation involves 21 variables and 15 constraints. By using GAMS-IPOPT 30.3, the 

maximum admissible flow for every pipeline segment is found in less than 1 CPU second, solving a total of 2,000 

NLPs in about 15 minutes of CPU). The pre-processing stage is applied afterwards, and the heuristic procedure 

determines that a feasible solution requires at least 6 tank batteries (see Table 3).  

Figure 19. Multiperiod Solution for Case Study 1 
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Next, the MILP formulation with investments at the initial time is solved with a limit of 10 hours of CPU. The 

MILP model is applied to two different instances. The first one, assuming no limitations in the potential 

connections among the nodes, resulting in a model with a total of 29,441 equations, 24,600 positive variables 

and 2,250 binary variables (after solver pre-processing). The second instance is a variant assuming a reduced 

connectivity among the elements of the network. Table 2 shows the possible connections among the elements of 

the network, which have been selected with the premise that two extremely distant elements (like connections 

between wellpads and junctions in opposite positions) are unlikely to be part of the optimal solution. Also, the 

potential number of junctions are reduced by half, allowing at most 2 nodes every cluster of 4 wellpads. The 

model size for the second instance comprises 8,323 equations, 6,062 positive variables and 488 binary variables. 

Table 2. Connectivity between clusters of wellpads and with tank batteries. A number 1 means available wellpad-junction 

connections between clusters (left) and allowed tank batteries to receive production from a junction in a cluster (right). 

Cluster  k1 k2 k3 k4 k5 k6 k7 k8  
Cluster/ 

Battery 
k1 k2 k3 k4 k5 k6 k7 k8 

k1 1 1 1       b1 1 1 1 1  1   

k2 1 1 1       b2 1 1 1 1 1    

k3 1 1 1 1 1     b3 1 1 1 1 1 1 1  

k4    1 1     b4 1 1 1 1 1 1 1 1 

k5    1 1     b5       1 1 

k6     1 1 1            

k7       1            

k8       1 1       

Figure 21. Case study 2 superstructure wellpads locations, scheduled production start dates, potential junctions and TB. 
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For the first instance, after 3 hours of CPU the model reports a solution of 185.94 MM USD, with a 25.4% 

optimality gap, which is reduced to 21% after 10 hours of computation. It is worth to mention that the best 

solution amounting to 176.75 MM USD is found in the last 100 seconds, which highlights the difficulty of finding 

better integer solutions. In the second instance, despite not improving the solution significantly (176.56 MM 

USD) the network design is found after 1 hour of CPU and the MILP solver reports an optimality gap of 18.2% 

after the 10 CPU hours. In both cases, 120 MM USD are the capital expenditures in tank batteries and slightly 

more than 56 MM USD are paid for pipelines. The total present cost of the capital expenditures in the network 

is 157 MM USD, considering a 10% annual discount rate. Regarding the LP relaxation, an integrality gap of 29% 

is observed when compared with the best solution found. To improve this value through tighter formulations is 

the key to achieve a better computational performance.  

The gathering network suggested by these solutions, which is shown in Figure 22, comprises a total of 6 tank 

batteries, 4 in the central location, 1 in the south and 1 in the east of the map. Two junction nodes are planned 

for almost every cluster of wellpads, whereas in the case of the cluster k2 on the south, only one junction node is 

required. Pipelines of 12” are the most common option, while 16” pipelines are installed to satisfy pressure drop 

constraints for longer distances. Regarding the single-phase pipelines, 8” high pressure (HP) pipelines are used 

for natural gas, 20” for water and 16” for the oil phase. It is important to note that a rather counterintuitive pipeline 

links a junction node in the west with the southern tank battery, yielding an investment of more than 10 MM 

USD. Guided by a simple analysis, despite the high cost of this pipeline, it is more convenient than adding a new 

tank battery. However, there is an open question about its need, since the optimality gap is still large. Moreover, 

it is interesting to observe how many wellpads finally send their production to every tank battery. For example, 

tank batteries b1 and b3 gather the production from 7 wellpads.  

 Figure 22. Network obtained by general formulation instances (a) and (b). 
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SuperBattery Relaxation. When solving the relaxed version of the model considering the notion of 

SuperBatteries, a 0% optimality gap is reached after 732 CPU seconds. The model comprises 4,285 continuous 

variables, 588 binary variables and a total of 6,734 constraints. The relaxed solution of 149.2 MM USD yields a 

valid lower bound for the overall MILP formulation previously addressed. The solution is obtained in 1.2 CPU 

hours and is represented in Figure 23. Even though this bound reduces the optimality gap to 15%, it is still a 

rather poor quality measure.  

                            

                                     

Limits on the Tank Batteries and Lower Bound Improvement Strategy. Back to the optimization algorithm, 

as the MILP solution has not closed the optimality gap to 0%, the next step is to determine the MaxBat parameter. 

As seen in Table 3, the heuristic procedure determines that the number of TB to install in the optimal solution 

will finally have a total of 6 or 7 batteries.  

Table 3. MinBat and MaxBat determination by the heuristic procedure. *value adopted for the corresponding parameter. 

MinBat Determination MaxBat Determination 

MaxBat 

Value 
Report 

CPU Time 

[seconds] 

MinBat 

Value 

LB found  

[MM USD] 

CPU Time 

[seconds] 

3 Infeasible Instance 1.92  10 218.63 12 

4 Infeasible Instance 2.28  9 198.6 20 

5 Infeasible Instance 25  8 178.63 17 

6* Feasible Solutions Found 310  7* 171 7200 

Based on the MinBat and MaxBat parameters, the next step of the algorithm is executed, forcing the installation 

of at least 6 batteries, but no more than 7. Hence, the problem converges to optimality (10-9 optimality tolerance) 

after 7.75 hours of computation, yielding a solution of 162.61 MM USD. This new valid LB for the MILP 

problem represents a better and tighter bound, 7.9% below the best solution found so far. As seen in Figure 24, 

the solution involves the installation of 2 superbatteries, one composed of 2 single TB and the other of 4.  

MILP at the second iteration. The next iteration is executed (n=2) by solving again the MILP formulation 

including the updated information about MinBat, MaxBat, lower and upper bounds. After 10 hours of CPU, a 

substantial improvement of the solution is achieved, reaching a total cost of 171.7 MM USD. A global reduction 

of 4.8 MM USD (6.6 MM USD in terms of the present cost) is achieved, representing a relative improvement of 

Figure 23. Solution for the SB relaxation  

Figure 24. SuperBattery RP solution with the 

addition of the MinBat and MaxBat parameters 
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2.7%. In terms of optimality gap, note that this solution shows a 5.2% of optimality gap when compared with the 

lower bound from the SB relaxation.  

The new gathering network obtained is shown in Figure 25, comprising the same number of tank batteries in the 

same locations, but notably improving the pipelines network, which is the driver of the total cost reduction. The 

most important aspect to highlight is the elimination of the counterintuitive pipeline linking the junction node in 

the west with the southern tank battery. The rest of the results can be observed in the supplementary material.  

 
Figure 25. Gathering network obtained after solving the MILP formulation in the second iteration.  

Final Analysis. A real world case study has been addressed by formally applying the solution algorithm proposed 

by this work, combining a bi-level decomposition into an NLP-MILP sequence together with tailored strategies 

to improve the solutions and reduce de optimality gap. The procedure has been able to reduce the gap to a 5.2%, 

which, despite being much lower still does not guarantee that there are no better alternatives for the 

unconventional gathering network design.  

7. Conclusions and Future Work 

We have developed a rigorous approach for the design of supply chain networks for gathering the production of 

unconventional oil and gas, yielding a complex MINLP formulation. The complexity is due to the integration of 
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empirical correlations and industry guidelines to model the oil, gas and water multiphase flows of the 

unconventional production, within the network infrastructure design and planning problem. The model takes into 

account infrastructure capacity limitations of tank batteries and the multi-period nature of the problem, required 

to address steep-declining production profiles and steady turn-in-line of new wellpads. Overcoming the problem 

complexity is one of the major contributions of this work, facing the challenge of developing an optimization 

framework to obtain efficient solutions in reasonable times, also providing a valid reference on how much it 

might be improved (optimality gap).  

An iterative solution algorithm, based on a bi-level decomposition and lower bound improvement strategies, has 

been developed and tested both in an illustrative case study and in a real world problem, to determine the number, 

size location and period of installation of tank batteries and pipelines to gather the production from multiple 

wellpads to centralized delivery points. The real world case study, an extremely challenging instance comprising 

40 wellpads over a planning horizon of 50 months whose production has to be routed to tank batteries to be 

located within 5 potential locations. After executing the solution algorithm, a near optimal solution is obtained, 

yielding an efficient network configuration. These results clearly show the potential of the proposed optimization 

framework. 

It is important to mention that by assuming minimum pressures at the nodes, the transportation capacity of 

multiphase pipelines is conservatively computed by solving a large number of NLP models, accounting for the 

Lockhart-Martinelli correlation and SPE guidelines for pipeline sizing. This implies that the worst conditions for 

pressure losses are imposed for every pipeline segment, resulting in solutions that are an upper bound on the 

minimum total cost for the overall MINLP.  

Future work is to assess the impact of deferring the start of the well production, which could lead to a reduction 

in the net present value of the incomes, but may significantly improve the usage of the TB capacities. The 

integration of the wellpads development planning together with the supply chain network design optimization 

configures an extremely challenging problem. On the other hand, we aim to overcome some of the limitations of 

the proposed optimization framework, to enhance the convergence of the solution algorithm.   

Acknowledgments 

Financial support from Fulbright Commission Argentina, Bunge y Born and Williams Foundations, University 

of Litoral and CONICET is gratefully acknowledged. Financial support from ExxonMobil Upstream Research 

Company through the Center of Advanced Process Decision-making at Carnegie Mellon University is also 

gratefully acknowledged. 

  



 34 

Appendix A: Maximum Flow in Single Phase Pipelines 

The objective of this appendix is to deepen the calculations needed to estimate the maximum flow in single phase 

pipelines, both for the liquid and the gas phase.  

Liquid Phase Pipelines. One of the most important objectives when designing liquid phase pipelines is to avoid 

the causes generating corrosion, erosion, water hammer effect, among other negative phenomena. One of the 

specific actions in this sense is to impose a maximum mean velocity, which is set to 1.5 m/s (Society of Petroleum 

Engineers, 2006). Then, according to typical flow computations, Eq. A1 determines the maximum flow (in m3/s) 

for oil and water phases when linking tank batteries with battery junction nodes and these with central delivery 

points by a pipeline of diameter diamd (in m). The maximum flow is directly proportional to the pipeline section.  

𝑚𝑎𝑥𝑓𝑙𝑜𝑤𝑑
𝑜𝑖𝑙/𝑤𝑎𝑡𝑒𝑟

= 𝑣𝑚𝑎𝑥𝐿𝑃 ∙
π

4
∙ (𝐷𝑖𝑎𝑚𝑑

2) (A1) 

Gas Phase Pipelines. The compressibility of the gas phase makes the calculation of the transportation capacity 

much more complex. Similar to Cafaro & Grossmann (2014) and (Duran & Grossmann (1986), assuming first a 

mixture of ideal gases being transported, the head loss in a given pipeline segment with diameter diamd (in m) is 

assumed to follow the Weymouth correlation (Weymouth, 1942) for gas pipelines sizing, represented by Eq. A2 

and A3. The value of the gas density 𝜌𝐺𝑃 is 0.729 kg/m3 for shale gas in standard conditions (P0=0.1013 MPa; 

T0=288.9 K). T is the average gas temperature (fixed at 288.9K) and the value of 𝛼 is 3/16. Input and output 

pressures (Pi and Pj, in MPa) are variables in the case of the general formulation, whereas in the proposed 

optimization framework are assumed to be known (see Appendix C). The pipeline segment length is given by dist 

(in km). Merging A2 and A3, the final Eq. A4 represents the gas flow computation (in 106 m3/day).  

𝑑𝑖𝑎𝑚𝑑 = 𝑑𝑖𝑠𝑡𝛼(𝑃𝑖𝑛
2 − 𝑝

𝑜𝑢𝑡
2 )

−𝛼
𝐵𝛼 (A2) 

𝐵𝛼 = 𝜌𝐺𝑃𝑇[𝑃0 0.375𝑇0⁄ ]2 𝑚𝑎𝑥𝑓𝑙𝑜𝑤𝑑
𝑔𝑎𝑠 (A3) 

𝑚𝑎𝑥𝑓𝑙𝑜𝑤𝑑
𝑔𝑎𝑠

= 𝑑𝑖𝑠𝑡−0.5 ∙ 𝑑𝑖𝑎𝑚𝑑
2.667 {

(𝑃𝑖𝑛
2 − 𝑝

𝑜𝑢𝑡
2 )

(𝜌𝐺𝑃𝑇[𝑃0 0.375𝑇0⁄ ]2)
}

0.5

 (A4) 

As described in the general mathematical formulation, the 𝑚𝑎𝑥𝑓𝑙𝑜𝑤𝑑
𝑔𝑎𝑠

 is proportional to: (1) the pipeline 

diameter raised to the power of 2.667, and (2) the difference of the inlet and outlet pressures individually squared. 

Then, Eq. A5 represents the final flow computation according to the assumptions made.  

𝑚𝑎𝑥𝑓𝑙𝑜𝑤𝑑
𝑔𝑎𝑠

=
𝜇𝑔𝑎𝑠

𝑑𝑖𝑠𝑡𝑔𝑎𝑠
 (𝑃𝑖𝑛

2 − 𝑝
𝑜𝑢𝑡
2 ) 𝑑𝑖𝑎𝑚𝑑

2.667 
    ∀𝑑  (A5) 
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Appendix B: Examples of Multiphase Maximum Flow Computation 

with the NLP Formulation 

A group of illustrative examples is developed to show the NLP formulation results and its understanding when 

applied to a specific pipeline segment with given minimum inlet and outlet pressures.  

Illustrative Example 1. To illustrate the general behavior of the NLP formulation to estimate the pipeline 

transportation capacity, assume two given nodes: (1) the origin representing a wellpad with a pressure of 250 PSI 

(1.72 MPa), connected by a pipeline of diameter d and length dist with 

(2) a junction node with an outlet pressure of 200 PSI (1.37 MPa) (see 

Figure B1). The NLP formulation is solved assuming ten different 

segment lengths: 250, 500, 750, 1000, 1250, 1500, 2000, 3000, 4500 

and 6000 meters. gor and wor values are fixed at 2 and 3.5 

respectively, whereas the pipeline diameters considered are of 8”, 12” 

and 16”.  

Figure B2 shows the results after solving the NLP formulation (using IPOPT as solver) for the maximum flow 

determination. For every diameter, the maximum flowrate is a decreasing function with the length. Some 

conclusions can be derived from analyzing the data. First, it is possible to observe an important increase in the 

maximum flowrate with the diameter. Moreover, for short lengths, the maximum flowrate is large, which 

decreases rapidly when increasing slightly the distance, while, for larger distances, the reduction in the maximum 

flowrate is not so notorious. For every diameter, the SPE guideline generates a unique result independent of the 

distance, which is evident in the totally horizontal segment of each curve. This indicates that, for short distances, 

the SPE guidelines are more restrictive than the Lockhart-Martinelli (LM) correlation (dotted lines). The red 

circles represent the distance at which LM determines the maximum admitted flow. Then, it is possible to conclude 

that, for longer distances, the LM procedure is more restrictive because of being based in the head losses, which 

are larger with the pipeline length, while for short distances SPE guidelines impose because of limiting the 

maximum velocity to avoid damage to the infrastructure. Finally, it is observed that the SPE guidelines become 

more restrictive as the diameter increases.   

 
Figure B2. Example 1 results for different pipeline diameters. As representative of the multiphase flow, oil phase maxflow 

is reported. 

Figure B1. Pressures for the Example 1 
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Illustrative Example 2. Keeping the first example configuration, we only change the gor and wor values with 

the aim of study the effect of the phases ratio. The three scenarios studied were: (1) gor =2 and wor = 3.5 (Phases 

Ratio = 444 [ft3/BBL]), (2) gor =3 and  wor = 2,(Phases Ratio = 1000 [ft3/BBL]), (3) gor =4 and wor =2 (Phases 

Ratio = 1333 [ft3/BBL]). Figure B3 below shows, for an 8in diameter pipeline, the comparative MaxFlows 

obtained for each individual phase and the corresponding total flow. Being a predefined parameter, the total head 

losses are constant for all the cases, which makes possible to observe that the maximum total flows are rather 

similar, with a slight difference in favor of the 1st scenario (lowest gas/liquid ratio). It is interesting to note that, 

for the 1st and 2nd scenarios, the oil maximum flow are practically similar with the corresponding variations in gas 

and water results. However, in the 3rd scenario, in order to achieve the greater proportion of gas in the flow, the 

oil flow decreases.  

 
Figure B3. Results for the Example 2. 

Next, we study the behavior of the models when varying the gor and wor toward extreme values, in particular a 

gor =10 and a wor = 0.5. When comparing with the original case study (gor =2, wor = 3.5), it is observed in the 

Figure B4 below how the maximum oil flow decreases at the expense of a larger increase in the gas flow. 

Additionally, the break-even point is slightly moved to the right, meaning that the SPE model imposes a maximum 

bound for the flows that is valid for larger segment distances before changing to the LM bounds.  

 
Figure B4. Results for the Example 2 when varying gor and wor to extreme values.  
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Appendix C: Pressure Estimations for the Case Studies 

The values in Figure C1 are the minimum pressures admitted for every type of node in the system when the 

optimization framework is performed. Consider that, for the general mathematical formulation, the unique known 

pressure is the one at the wellpads, being the rest variables of the formulation. We assume that the pressure at the 

wellheads is high enough to make oil, gas and water flow towards the tank batteries. Even though in certain cases 

the pressure reaches 650 PSI (4.48 MPa) a conservative value of 250 PSI (1.72 MPa) is assumed at the outlet of 

the wellpads. The inlet pressure at tank batteries has to be at least of 80 PSI (0.55 MPa), resulting a maximum 

allowable pressure drop of 170 PSI. The distance between wellpads and junctions will be short, leading to set the 

maximum pressure drop to 50 PSI (0.34 MPa) in the potential link. From junction nodes to batteries the pipelines 

operate at medium-low pressures, being the maximum head loss equal to 120 PSI (0.82 MPa). After the stream 

flows are separated in the tank batteries, the pressure is assumed to drop to 40 PSI at the tank battery junctions, 

where pumps and compressors push the fluids to the CDP at high pressure conditions. The pressure after the gas 

compressor reaches 1100 PSI, which is assumed to drop to 580 PSI at the centralized delivery point. As a result, 

if pipelines are not used at maximum capacity in some periods, the inlet/outlet pressure at each node can be larger 

but never smaller.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure C1. Fixing Pressures at the Nodes of the Network 
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Abbreviations 
O&G   Oil and Gas 

MINLP Mixed Integer Non-Linear Programming 

NLP  Non-Linear Programming  

MILP  Mixed Integer Linear Programming 

GOR  Gas-to-Oil ratio 

WOR  Water-to-Oil ratio 

TB  Tank Battery 

CDP  Centralized Delivery Point 

LM  Lockhart-Martinelli 

SB  SuperBattery 

Nomenclature 

Sets and Indices 
B  tank batteries potential location 

BJ  battery junctions potential nodes 

BZ  batteries capacities 

C  components in the flow {oil, gas, water}  

CDP  centralized delivery points 

D  pipeline diameters  

J  potential wellpad junction nodes 

K  clusters of wellpads 

P  wellpads  

T  time in months 

Bk     batteries able to receive production from wellpads/junctions of cluster k  

BZb  batteries capacities allowed at location b 

Pk     wellpads that belong to cluster k  

Pt  wellpads that starts its production at period t  

Jk     wellpad junctions that belong to cluster k  

CDPc   includes the centralized delivery nodes available for component c 

Pj - Jp      wellpad - junctions possible connections 

Jb - Bj       junctions - batteries possible connections 

Bbj – BJb      batteries - batteries junctions possible connections 

CDPbj - BJcdp    batteries junctions - centralized facilities possible connections 

TP  subset of periods with some wellpad increasing its production or reaching production peak 

TS  subset of periods with some wellpad starting its production 

Parameters 
General Parameters 

distp,j / distj,b  /  distb,bj  / distbj,cdp euclidean distances between nodes [miles] 

i_junj / i_junbbj installation costs of a junction [thousands USD]  

c_jun  costs per unit of volume being processed in a junction node [thousand USD/(bbl-tcf3)]  

Pj  minimum pressure at junction nodes 

Pbj  estimated pressure after separation at battery junction nodes 

Pgc  pressure after the gas compressor 

Pcdp  pressure at the centralized delivery point 

𝝁   synthesizes unit conversion and fluid parameters 

i  interest rate considered to assess the capital flows 
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ε  roughness of the pipe [m]          

𝝆𝑳𝑷  average density of the liquid phase [kg/m3]     

𝝆𝑮𝑷  density of the gas phase [kg/m3]       

∆𝒑𝒎𝒂𝒙  maximum pressure drop admitted between the nodes  

𝝁𝑳𝑷  average viscosity of the liquid phase [Pa.s]  

𝝁𝑮𝑷        viscosity of the gas phase [Pa.s]      

T0  standard temperature conditions [ºK]   

P0   standard pressure conditions [MPa]   

T  average flow temperature [ºK]    

Pin   upper pressure limit at the inlet of the pipeline according to the pipeline segment 

z  compressibility factor, dimensionless  

r   gas/liquid ratio [ft3/bbl]    

sg  specific gravity of liquid phase relative to water  

s  specific gravity of the gas relative to air   

   SPE specific constant according to a flow regimen  

Wellpads Data 

starttimep start time (in months) for the production of wellpad p 

gorp  Gas to Oil Ratio from wells of pad p 

worp  Water to Oil Ratio from wells of pad p 

𝒗𝒑,𝝉
𝒄   production of component c at wellpad p, t periods after its start date [B/D] - [mcf/d] 

Pp   production pressure at the outlet of the wellpad p   

Tank Batteries and CDP Data 

𝒃𝒂𝒕𝒄𝒂𝒑𝒃𝒛
𝒄  maximum flow rate of component c allowed by a battery with capacity bz. 

i_batbz  cost of a battery of type bz [thousands USD]  

c_batbz  costs per unit of volume being processed in a battery of size bz [thousand USD/(bbl-tcf3)] 

Pb  minimum inlet pressure at tank batteries 

Pipelines Data 

diamd  diameter of the pipeline d [in] 

i_piped  investment unit cost of a pipeline of diameter d [thousand USD/mile] 

c_piped  unit cost of using a pipeline per unit of volume being transported [thousand USD/(bbl-tcf3)] 

vmaxLP  liquid-phase maximum velocity [m/s]      

Binary Variables 
𝒙𝒑,𝒋,𝒅,𝒕      1 if a pipeline of diameter d connecting pad p to junction node j is installed at period t 

�̂�𝒋,𝒃,𝒅,𝒕      1 if a pipeline of diameter d connecting node j to battery b is installed at period t 

�̂�𝒃,𝒃𝒋,𝒅,𝒕
𝒄     1 if a pipeline of diameter d for component c connecting TB b and junction bj is installed at period t 

�̂�𝒃𝒋,𝒄𝒅𝒑,𝒅,𝒕
𝒄  1 if a pipeline of diameter d for component c connecting junction bj with cdp is installed at period t 

�̂�𝒃𝒂𝒕𝒃,𝒃𝒛,𝒕 1 if a battery of capacity bz is installedse in the location b at period t 

�̂�𝒄𝒅𝒑𝒄𝒅𝒑,𝒕 1 if the delivery point cdp is installed at period t 

𝒛𝒃𝒂𝒕𝒃,𝒃𝒛,𝒕 1 if a battery of capacity bz is available at location b during period t 

𝒛𝒄𝒅𝒑𝒄𝒅𝒑,𝒕 1 if the delivery point cdp is active during period t 

𝒙𝒑,𝒋,𝒅,𝒕     1 if a pipeline of diameter d connecting pad p to junction node j is available at period t 

𝒚𝒋,𝒃,𝒅,𝒕       1 if a pipeline of diameter d connecting node j to battery b is available at period t 

𝒖𝒃,𝒃𝒋,𝒅,𝒕
𝒄      1 if a pipeline of diameter d for component c connecting TB b and junction bj is available at period t 

𝒘𝒃𝒋,𝒄𝒅𝒇,𝒅,𝒕
𝒄  1 if a pipeline of diameter d for component c connecting junction bj with cdp is available at period t 
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Positive Continuous Variables 

𝑭𝑷𝒑,𝒋,𝒕
𝒄         flow of component c from wellpad p to junction node j during period t  

𝑭𝑷𝑩𝒋,𝒃,𝒕
𝒄        flow of component c from junction node j to battery b during period t 

𝑭𝑩𝑱𝒃,𝒃𝒋,𝒕
𝒄       flow of component c from battery b to battery junction bj during period t 

𝑭𝑪𝑫𝑷𝒃𝒋,𝒄𝒅𝒑,𝒕
𝒄  flow of component c from battery junction bj to delivery point cdp during period t 

VSLP  superficial velocity of liquid phase (water + oil)  

VSGP  superficial velocity of gas phase [m/s] 

RYLP  Reynolds Number for Liquid Phase 

RYGP  Reynolds Number for Gas Phase 

HFFLP  friction factor for gas phase following Haland Equation 

𝒎𝒂𝒙𝒇𝒍𝒐𝒘𝒅
𝒄         single-phase capacities for component c in a pipeline of diameter d 

∆𝑷𝑳𝑷 𝑳⁄  pressure drop gradient for liquid phase 

∆𝑷𝑮𝑷 𝑳⁄  pressure drop gradient for gas phase 

XLM  Lockhart-Martinelli parameter   

YLP  liquid phase multiplier for Lockhart-Martinelli 

YGP  gas phase multiplier for Lockhart-Martinelli 

∆𝑷 𝑳⁄   pressure drop gradient for multiphase flow per distance unit 

∆𝑷𝑻𝒐𝒕𝒂𝒍        multiphase total pressure drop in the pipeline segment 

𝑷𝒊𝒏   inlet pressure  

𝑷𝒐𝒖𝒕   outlet pressure  

 

 

 


