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Abstract

The optimal scheduling of crude-oil operations in refineries has been studied by various

groups during the past decade leading to different mixed integer linear programming (MILP)

or mixed integer nonlinear programming (MINLP) formulations. This paper presents a new

continuous-time formulation, called single-operation sequencing (SOS) model, which can be

used to solve the crude-oil operations problem introduced by Lee et al. 1 . It is different from

previous formulations as it requires to postulate the number of priority-slots in which opera-

tions take place instead of specifying the number of time intervals or event points to be used

in the schedule. This MINLP model is also based on the representation of a crude-oil sched-

ule by a single sequence of transfer operations. It allows breaking symmetries involved in the

problem, thus tremendously reducing the computational expenses (all instances can be solved

within 2 minutes). A simple two step MILP - NLP procedure has been used to solve the

non-convex MINLP model leading to an optimality gap lower than 5% in all cases.

†Carnegie Mellon University
‡Total France
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Introduction

Scheduling problems are among the most challenging optimization problems, both in terms of

modeling and solution algorithm. Mostly mixed integer linear programming (MILP), constraint

programming (CP) and genetic algorithm (GA) techniques have been used to tackle these prob-

lems. CP has proved to be very efficient for solving scheduling problems but it is rarely used to

solve problems arising in the chemical engineering field. One of the reason is that CP is very

efficient at sequencing tasks or jobs clearly defined a priori (e.g. job-shop problems in discrete

manufacturing). However, the scheduling of chemical processes usually involves both defining

and sequencing the tasks that should be performed. Defining tasks means choosing a batch size or

a unit operating mode for example. As a consequence, LP based techniques have been preferred

with formulations essentially based on time grids as it easily allows modeling reservoir or unit

capacity at the ends of each time interval.

Uniform time discretization (usually referred as discrete-time) formulations have first been

successfully used to solve batch processes based on an STN (state-task-network, Kondili et al. 2 )

or RTN (resource-task-network, Pantelides 3 ) representation of the process. This formulation has

two main advantages: it can easily be applied to many different problems and it has a very tight

continuous relaxation. However, when a large number of time intervals is needed (for example in

the a case of a large scheduling horizon), the model size may become intractable, even for efficient

commercial solvers.

Nonuniform time discretization (or global event) formulations have been introduced based on

the RTN representation (Zhang and Sargent 4 , Schilling and Pantelides 5 ) or STN representation

(Mockus and Reklaitis 6 ). The main difference with the discrete-time approach is that the duration

of the time intervals is not fixed and has to be determined by the solver. This approach is also easy

to implement and may be used for larger scheduling horizon, as it leads to more compact models.

However, its continuous relaxation is in general less tight making the model hard to solve, even

with few time intervals.

A unit specific (or operation specific) event formulation has been introduced by Ierapetritou
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and Floudas 7 . In this approach, each unit (or operation) has its own set of time invervals which

is not shated with other units (or operations). It has led to better computational performances

compared to the previous continuous-time formulations as fewer events need to be postulated.

A detailed comparison between these three approaches can be found in Floudas and Lin 8 .

Even though a great amount of work has been done in order to decrease the model size while

tightening its continuous relaxation, these scheduling formulation have a common disadvantage.

As mentioned by Kallrath 9 they often display many degeneracies or symmetries leading to poor

computational performances when postulating a large number of time intervals or events.

The aim of this paper is to propose a novel continuous-time model for the crude-oil scheduling

problem introduced by Lee et al. 1 and to efficiently solve it by using symmetry-breaking tech-

niques. The single-operation sequencing (SOS) model introduced is based on the representation of

a schedule as a sequence of operations. A sequencing rule is used to remove symmetric solutions

and reduce the size of the search space.

Commercial software such as GRTMPS (Haverly Systems), PIMS (Aspen Tech) and RPMS

(Honeywell Hi-Spec Solutions), mostly based on successive linear programming techniques, have

been used to address refinery planning since the early 80’s and have led to increased operational

benefits. The optimal scheduling of crude-oil operations have been studied since the 90’s and has

been shown to lead to multimillion dollar benefits by Kelly and Mann 10 as it is the first stage

of the oil refining process. It involves crude-oil unloading from crude marine vessels (at berths

or jetties) or from a pipeline to storage tanks, transfers from storage tanks to charging tanks and

atmospheric distillations of crude-oil mixtures from charging tanks. The crude is then processed

in order to produce basic products which are then blended into gasoline, diesel, and other final

products. Assuming that the schedule of crude supply and production demands are determined by

the long-term refinery planning, this paper studies the short-term scheduling problem maximizing

gross margins of crude-oil mixtures.

Shah 11 proposed to use mathematical programming techniques to find crude-oil schedules

exploiting opportunities to increase economic benefits. Lee et al. 1 defined a precise crude-oil
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scheduling problem involving crude unloading at berths, developped a discrete-time MINLP model,

and solved a linear relaxation of the model. Later, Wenkay and Hui 12 improved the model and

proposed an iterative approach to solve the MINLP model, taking into account nonlinear blending

constraints. Pinto et al. 13 , Moro and Pinto 14 , and Reddy et al. 15 used a global event formulation

to model refinery systems involving crude-oil unloading from pipeline or jetties. The scheduling

horizon is divided into fixed length sub-intervals, which are then divided in several variable length

time-slots. In parallel, Jia et al. 16 developed an operation specific event model and applied it to

the problems introduced by Lee et al. 1 , using a linear approximation of storage costs. A com-

parison of computational performances between both continuous-time and discrete-time models

is given, showing tremendous decrease in CPU time. Also, locally optimal solutions have been

obtained using a MINLP algorithm. Karuppiah et al. 17 later addressed the global optimization of

this model using a Lagrangean decomposition of the refinery system. While rigorous, this method

is computationally expensive.

This paper is organized as follows. First, the problem definition is given and a continuous-time

single-operation sequencing (SOS) formulation is proposed. Next, a simple solution method to

solve the SOS model is presented and a new approach for breaking symmetries using a sequenc-

ing rule is introduced. Finally, computational results are given to show the effectiveness of the

proposed model and solution method.

Problem Statement

This paper aims at solving a refinery crude-oil operations problem. A crude-oil operations system

is composed of four types of resources: crude marine vessels, storage tanks, charging tanks and

crude distillation units (CDUs). Three types of operations, all transfers between resources, are

allowed: crude-oil unloading from marine vessels to storage tanks, transfer between tanks, and

transfers of charging tanks to CDUs.

A crude-oil scheduling problem is defined by: (a) a time horizon, (b) arrival time of marine
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vessels, (c) capacity limits of tanks, (d) transfer flowrate limitations, (e) initial composition of

vessels and tanks, (f) crude property specifications for distillations, (g) and demands for each

crude blend.

The logistics constraints of the problem are defined as follows.

(i) only one berth is available at the docking station for vessel unloadings,

(ii) simultaneous inlet and outlet transfers on tanks are forbidden,

(iii) a tank may charge only one CDU at a time,

(iv) a CDU can be charged by only one tank at a time,

(v) and CDUs must be operated continuously throughout the scheduling horizon.

The goal is to determine how many times each operation will be executed, when it will be

performed (start time and duration), and the volume of crude to be transferred in order to maximize

the gross margins of distilled mixed oil. The gross margin of each crude can be estimated from the

sale income of the final products minus its purchase value and related refining operational costs.

Depending on the market value of the different crudes and final products, the model tries to process

the most profitable crudes and to store the other crudes. Unloading and storage costs are ignored.

As CDU switches between different crude blends are costly, it is considered that the number of

distillation batches is bounded. The bounds on the number of distillation operations can be set by

the operator or, for the lower bound, can be obtained by solving a model minimizing the number of

distillations. Typically, the number and type of marine vessels is determined at the planning level

as well as demands in each crude blend.
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Single-Operation Sequencing Model

Basic idea

The continuous-time formulation presented in this section is based on the representation of a sched-

ule as a sequence of operations. To obtain the optimal schedule, a sequence of priority-slots is used.

A priority-slot is a position i in the sequence of operations, which has a higher scheduling priority

than other priority-slots j such that j > i. Each priority-slot is to be assigned to exactly one specific

operation (e.g. unloading, tank-to-tank transfer, distillation). The number of priority-slots corre-

sponds to the length of the sequence of operations, which is the total number of operations that

will be executed during the scheduling horizon. The number of priority-slots has to be postulated

a priori by the user.

One of the most common logistics constraints appearing in scheduling problems is the non-

overlapping constraint between two operations v and w, noted v][w. The logistics constraints (i),

(ii), (iii), and (iv) from the previous section can all be expressed as non-overlapping constraints.

Indeed, for the problem 1 (see Figure 1), (i) is equivalent to 1][2, (ii) to 1][3, 1][4, 2][5, 2][6, 3][7,

4][8, 5][7, 6][8, and (iv) to 7][8.

Assuming that two non-overlapping operations v and w are assigned to priority-slots i and j

such that i < j (i has a higher scheduling priority than j), we define Siv and S jw their respective

start times and Div and D jw their respective durations. As the operation v has the highest priority,

operation w must start after the end of operation v.

Siv +Div ≤ S jw

Based on a given sequence of operations, any schedule defined using this precedence rule

is such that any pair of non-overlapping operations do not overlap. Any given schedule can be

obtained by the model by ordering the sequence of operations with respect to their start time.
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Case-study

Figure 1 depicts the refinery configuration for the first example presented in Lee et al. 1 . The

scheduling horizon is composed of 8 days and two marine vessels are scheduled to arrive at the

beginning of day 1 (t = 0) and day 5 (t = 4) and contain 1 million bbl of crude-oil A and B,

respectively. There is one CDU which has to process 1 million bbl of each crude-oil mixture, X

and Y. The property that is being tracked is the sulfur concentration, 0.01 for crude A and 0.06

for crude B. The sulfur concentration of crude mix X and Y should be in the ranges [0.015,0.025]

and [0.045,0.055], respectively. The two storage tanks initially contain 250,000 bbl of crude A

and 750,000 bbl of crude B. The two charging tanks initially contain 500,000 bbl of crude C and

D, with sulfur concentrations of 0.02 and 0.05, respectively. Crudes C and D are in fact blends

of crudes A and B that match the sulfur concentration specifications for crude mix X and Y. The

gross margins of crudes A, B, C, and D are 9 $/bbl, 4 $/bbl, 8 $/bbl, 5 $/bbl, respectively. Gross

margins for crudes C and D have been calculated from gross margins of crudes A and B. The data

for problem 1 is given in Table 1. Flowrate limitations are expressed in Mbbl/day.

Figure 2 depicts the Gantt chart of a sub-optimal solution for problem 1 with a profit of

$6,925,000, that might be obtained by using heuristics. It can be represented as the sequence

of operations 8313746852. Each task is represented by a horizontal bar labeled with its schedul-

ing priority (or position in the sequence), and each row corresponds to a specific operation. Tank

inventories are also displayed, showing that tank capacity limits are satisfied. Figure 3 shows in

contrast the Gantt chart of the optimal solution with a profit of $7,975,000, which represents a

13.2% increase in profit. It can be represented as the sequence of operations 7683513762. Clearly,

finding such a solution is non-trivial.

Crude Vessels Storage Tanks Charging Tanks CDU

1

2

3

4

5

6

7

8

Figure 1: Crude-oil operations system for problem 1

7



Sylvain Mouret et al. A Novel Priority-Slot Based . . .

Table 1: Problem 1 data
Scheduling horizon 8 days

Vessels Arrival time Composition Amount of crude (Mbbl)
Vessel 1 0 100% A 1,000
Vessel 2 4 100% B 1,000

Storage tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 [0, 1,000] 100% A 250
Tank 2 [0, 1,000] 100% B 750

Charging tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 (mix X) [0, 1,000] 100% C 500
Tank 2 (mix Y) [0, 1,000] 100% D 500

Crudes Property 1 (sulfur concentration) Gross margin ($/bbl)
Crude A 0.01 9
Crude B 0.06 4
Crude C 0.02 8
Crude D 0.05 5

Crude mixtures Property 1 (sulfur concentration) Demand (Mbbl)
Crude mix X [0.015, 0.025] [1,000, 1,000]
Crude mix Y [0.045, 0.055] [1,000, 1,000]

Unloading flowrate [0, 500] Transfer flowrate [0, 500]
Distillation flowrate [50, 500] Number of distillations 3

2

5

4
6

3

7

8

9

10

Transfer 5

Unloading 1

Transfer 6

Operation

Transfer 4

Unloading 2
Transfer 3

Distillation 7
Distillation 8 1

876543210

Storage tank 1

Storage tank 2

Charging tank 1

Charging tank 2

Figure 2: Sub-optimal schedule for problem 1 (profit: $6,925,000)
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2

3

4

5

6

7

8
9

10

Transfer 5

Unloading 1

Transfer 6

Operation

Transfer 4

Unloading 2
Transfer 3

Distillation 7
Distillation 8

1

876543210

Storage tank 1

Storage tank 2

Charging tank 1

Charging tank 2

Figure 3: Optimal schedule for problem 1 (profit: $7,975,000)

Sets

The following sets will be used in the model.

• T = {1, . . . ,n} is the set of priority-slots

• W is the set of all operations

• WU ⊂W is the set of unloading operations

• WT ⊂W is the set of tank-to-tank transfer operations

• WD ⊂W is the set of distillation operations

• R is the set of resources (i.e. reservoirs)

• RV ⊂ R is the set of vessels

• RS ⊂ R is the set of storage tanks
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• RC ⊂ R is the set of charging tanks

• RD ⊂ R is the set of distillation units

• Ir ⊂W is the set of inlet transfer operations on resource r

• Or ⊂W is the set of outlet transfer operations on resource r

• C is the set of products (i.e. crudes)

• K is the set of product properties (e.g. crude sulfur concentration)

Variables

The variables used in the model can be decomposed into assignment variables, time variables,

operation variables and resource variables.

• Assignment variables Ziv.

Ziv = 1 if operation v is assigned to priority-slot i, Ziv = 0 otherwise.

• Time variables Siv and Div.

Siv is the start time of operation v if it is assigned to priority-slot i, Siv = 0 otherwise.

Div is the duration of operation v if it is assigned to priority-slot i, Div = 0 otherwise.

• Operation variables Viv and Vivc.

Viv is the total volume of crude transferred during operation v if it is assigned to priority-slot

i, Viv = 0 otherwise.

Vivc is the volume of crude c transferred during operation v if it is assigned to priority-slot i,

Vivc = 0 otherwise.

• Resource variables Lir and Lirc.

Lir is the intermediate total level of crude in tank r ∈ RS∪RC before the operation assigned

to priority-slot i.
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Lirc is the intermediate level of crude c in tank r ∈ RS∪RC before the operation assigned to

priority-slot i.

It should be noted that the crude composition of blends in tanks is tracked instead of their

properties. The distillation specifications are later enforced by calculating a posteriori the prop-

erties of the blend in terms of its composition. For instance, in problem 1, a blend composed of

50% of crude A and 50% of crude B has a sulfur concentration of 0.035 which does not meet the

specification for crude mix X nor for crude mix Y.

Assignment constraints

Assignment constraints restrict the operations that can be assigned to each priority-slot. In the SOS

model, exactly one operation has to be assigned to each priority-slot.

∑
v∈W

Ziv = 1 i ∈ T (1)

Variable constraints

Variable constraints are given by their definitions. Start time, duration and global volume variables

are defined with big-M constraints.

Siv +Div ≤ H ·Ziv i ∈ T,v ∈W (2)

Viv ≤Vv ·Ziv i ∈ T,v ∈W (3)

Crude volume variables are positive variables whose sum equals the corresponding global vol-

ume variable.

∑
c∈C

Vivc = Viv i ∈ T,v ∈W (4)

Total and crude level variables are defined by adding to the initial level in the tank all inlet and
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outlet transfer volumes of operations of higher priority than the considered priority-slot.

Lir = L0r + ∑
j∈T, j<i

∑
v∈Ir

Viv− ∑
j∈T, j<i

∑
v∈Or

Viv i ∈ T,r ∈ R (5)

Lirc = L0rc + ∑
j∈T, j<i

∑
v∈Ir

Vivc− ∑
j∈T, j<i

∑
v∈Or

Vivc i ∈ T,r ∈ R,c ∈C (6)

Sequencing constraints

Sequencing constraints restrict the set of possible sequences of operations. Cardinality and unload-

ing sequence constraints are specific cases of sequencing constraints. More complex sequencing

constraints will also be discussed later.

Cardinality constraint. Each crude-oil marine vessel has to unload its content exactly once.

∑
i∈T

∑
v∈Or

Ziv = 1 r ∈ RV (7)

The total number of distillations is bounded by ND and ND in order to reduce the cost of CDU

switches.

ND ≤ ∑
i∈T

∑
v∈WD

Ziv ≤ ND (8)

Unloading sequence constraint Marine vessels have to unload in order of arrival to the refinery.

Considering two vessels r1,r2 ∈ RV , r1 < r2 signifies that r1 unloads before r2.

∑
j∈T, j<i

∑
v∈Or2

Z jv + ∑
j∈T, j≥i

∑
v∈Or1

Z jv ≤ 1 i ∈ T, i 6= 1,r1,r2 ∈ RV ,r1 < r2 (9)

Scheduling constraints

Scheduling constraints restrict the values taken by time variables according to logistics rules.
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Non-overlapping constraint. A non-overlapping constraint between two sets of operations W1⊂

W and W2 ⊂W states that any pair of operations (v1,v2) ∈W1×W2 must not be executed simulta-

neously.

Unloading operations must not overlap.

∑
v∈WU

(Siv +Div)≤ ∑
v∈WU

S jv +H · (1− ∑
v∈WU

Z jv) i, j ∈ T, i < j (10)

Inlet and outlet transfer operations on a tank must not overlap.

∑
v∈Ir

(Siv +Div)≤ ∑
v∈Or

S jv +H · (1− ∑
v∈Or

Z jv) i, j ∈ T, i < j,r ∈ RS∪RC (11)

∑
v∈Or

(Siv +Div)≤ ∑
v∈Ir

S jv +H · (1−∑
v∈Ir

Z jv) i, j ∈ T, i < j,r ∈ RS∪RC (12)

Although we do not consider crude settling in storage tanks after vessel unloadings, it could

be included in the model, with a modified version of constraint (11) taking into account transition

times. We note T Rv the transition time after unloading operation v ∈WU and T R the maximum

transition time, T R = maxv∈WU T Rv.

∑
v∈Ir

(Siv +Div +T Rv ·Ziv)≤ ∑
v∈Or

S jv +(H +T R) · (1− ∑
v∈Or

Z jv) i, j ∈ T, i < j,r ∈ RS (13)

Constraint (13) is valid in the 4 possibles cases:

(∃v1 ∈ Ir,Ziv1 = 1)∧
(
∃v2 ∈ Or,Z jv2 = 1

)
⇒ Siv1 +Div1 +T Rv1 ≤ S jv2

(∃v1 ∈ Ir,Ziv1 = 1)∧
(
∀v2 ∈ Or,Z jv2 = 0

)
⇒ Siv1 +Div1 ≤ H +T R−T Rv1

(∀v1 ∈ Ir,Ziv1 = 0)∧
(
∃v2 ∈ Or,Z jv2 = 1

)
⇒ 0≤ S jv2

(∀v1 ∈ Ir,Ziv1 = 0)∧
(
∀v2 ∈ Or,Z jv2 = 0

)
⇒ 0≤ H +T R
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A tank may charge only one CDU at a time.

∑
v∈Or

(Siv +Div)≤ ∑
v∈Or

S jv +H · (1− ∑
v∈Or

Z jv) i, j ∈ T, i < j,r ∈ RC (14)

A CDU may be charged by only one tank at a time.

∑
v∈Ir

(Siv +Div)≤ ∑
v∈Ir

S jv +H · (1−∑
v∈Ir

Z jv) i, j ∈ T, i < j,r ∈ RD (15)

In order to avoid schedules in which a transfer is being performed twice at a time, thus possibly

violating the flowrate limitations, constraint (16) is included in the model.

Siv +Div ≤ S jv +H · (1−Z jv) i, j ∈ T, i < j,v ∈W (16)

Continuous distillation constraint. It is required that CDUs operate without interruption. As

CDUs perform only one operation at a time, the continuous operation constraint is defined by

equating the sum of the duration of distillations to the time horizon.

∑
i∈T

∑
v∈Ir

Div = H r ∈ RD (17)

Resource availability constraint. Unloading of crude-oil vessels may start only after arrival to

the refinery. Let Sr be the arrival time of vessel r.

Siv ≥ Sr ·Ziv i ∈ T,r ∈ RV ,v ∈ Or (18)

Operation constraints

Operation constraints restrict the values taken by operation and time variables according to opera-

tional rules.
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Flowrate constraint. The flowrate of transfer operation v is bounded by FRv and FRv.

FRv ·Div ≤Viv ≤ FRv ·Div i ∈ T,v ∈W (19)

Minimum volume constraint. As vessels need to be entirely discharged, the volume transferred

during unloading of vessel r must be greater than its initial content Vr.

Viv ≥Vr ·Ziv i ∈ T,v ∈W (20)

Property constraint. The property k of the blended products transferred during operation v is

bounded by xvk and xvk. The property k of the blend is calculated from the property xck of crude c

assuming that the mixing rule is linear.

xvk ·Viv ≤ ∑
c∈C

xckVivc ≤ xvk ·Viv i ∈ T,v ∈W,k ∈ K (21)

Composition constraint. It has been shown18 that processes including both mixing and splitting

of streams cannot be expressed as a linear model. Mixing occurs when two streams are used to

fill a tank and is expressed linearly in constraint (6). Splitting occurs when partially discharging a

tank, resulting in two parts: the remaining content of the tank and the transferred products. This

constraint is nonlinear. The composition of the products transferred during a transfer operation

must be identical to the composition of the origin reservoir.

Lirc

Lir
=

Vivc

Viv
i ∈ T,r ∈ R,v ∈ Or,c ∈C (22)

Constraint (22) is reformulated as an equation involving bilinear terms.

Vivc ·Lir = Lirc ·Viv i ∈ T,r ∈ R,v ∈ Or,c ∈C (23)

15
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Note that constraint (23) is correct even when operation v is not assigned to priority-slot i, as

Viv = Vivc = 0.

Resource constraints

Resource constraints restrict the use of resources throughout the scheduling horizon.

Reservoir capacity constraint. The level of materials in the tank r must remain between min-

imum and maximum capacity limits Lr and Lr, respectively. Let L0r be the initial total level and

L0rc be the initial level of crude c in the reservoir r. As simultaneous charging and discharging of

tanks is forbidden, the following constraints are sufficient.

Lr ≤ Lir ≤ Lr i ∈ T,r ∈ RS∪RC (24)

0≤ Lirc ≤ Lr i ∈ T,r ∈ RS∪RC,c ∈C (25)

Lr ≤ L0r + ∑
i∈T

∑
v∈Ir

Viv−∑
i∈T

∑
v∈Or

Viv ≤ Lr r ∈ RS∪RC (26)

0≤ L0rc + ∑
i∈T

∑
v∈Ir

Vivc−∑
i∈T

∑
v∈Or

Vivc ≤ Lr r ∈ RS∪RC,c ∈C (27)

Demand constraint. Demand constraints define lower and upper limits, Dr and Dr, on the prod-

ucts transferred out of each charging tank r during the scheduling horizon.

Dr ≤ ∑
i∈T

∑
v∈Or

Viv ≤ Dr r ∈ RC (28)

Objective function

The objective is to maximize the gross margins of the distilled crude blends. Let Gc be the indi-

vidual gross margin of the crude c.

max ∑
i∈T

∑
r∈RD

∑
v∈Ir

∑
c∈C

Gc ·Vivc (29)
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Solution Method

The non-convex MINLP model given in the previous section can be solved using any generic

MINLP solver such as DICOPT (outer-approximation method) or BARON (global solver using

a spatial branch-and-bound search). These methods can be prohibitively expensive when used to

solve this model. Therefore, a simple two-stage procedure has been implemented (see Figure 4),

leading to locally optimal solutions with an estimation of the optimality gap. In the first stage, a

linear MILP relaxation of the model, defined by removing nonlinear constraints, is solved. The

solution returned by the MILP solver may violate the bilinear composition constraint (23). In this

case, the binary variables Ziv are fixed, which means that the sequence of operations is fixed, and

the resulting nonlinear programming (NLP) model is solved using the solution of the MILP as

a starting point. This NLP model contains the same constraints as in the MILP model plus the

nonlinear constraints. The solution obtained at this stage might not be the optimum of the full

model, but the optimality gap can be estimated from the lower bound given by the MILP solution

and the upper bound given by the NLP solution. It should be noted that the NLP is non-convex

and thus may lead to different locally optimal solutions depending on the starting point. It could

also be locally infeasible although it did not occur in our experiments. For such a case, one could

add integer cuts to the MILP model and restart the procedure until a solution is found. However,

there is no proof that the solution obtained with this algorithm is globally optimal. Also, it cannot

be ensured that a solution will be found, even if the MINLP has feasible solutions.

Symmetry-Breaking Constraints

As mentioned by Kallrath 9 , degeneracies and symmetries often cause scheduling problems to be

difficult to solve. The author suggests that nonlinearities involved in refinery scheduling problems

may reduce these effects. In this section, another approach is proposed in order to break the

symmetries which can be detected in the SOS model. It is based on the concept of static symmetry-

breaking constraints as presented by Margot 19 .
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MILP

minimize
objective

s.t.
all constraints

except composition constraints

NLP

minimize
objective

s.t.
all constraints

Fix assignment variables Zi
v

Figure 4: Two-stage decomposition strategy

Symmetric sequences of operations

It is possible to exhibit different sequences of operations leading to the same schedule. For the

optimal solution of problem 1 (Figure 3), there are 96 symmetric sequences of operations, 4 of

which are displayed in Figure 5. These sequences are obtained from the optimal one by moving

operations in the sequence in such a way that the same non-overlapping constraints are active. As

there are many different optimal discrete solutions, the Branch & Bound algorithm will explore

many redundant nodes of the search tree. Therefore, an efficient symmetry-breaking tool is needed

to avoid searching irrelevant solutions.

A sequencing rule based on a regular language

A sequencing rule is defined in order to select the sequences of operations to be explored. This

rule is expressed as a regular language which can be recognized by a deterministic finite automaton

(DFA). A regular language is a set of words (sequences of letters) defined from an alphabet (i.e.

the set of operations) and the empty word ε by the operations concatenation ‘·‘ (symbol usually

omitted), union ‘+‘, and Kleene star ‘*‘. Given two languages L1 and L2, these operations are

defined by the following formulas. The reader may refer to Hopcroft and Ullman 20 for a complete
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Figure 5: Symmetric sequences of operations for problem 1
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definition of regular languages.

L1 ·L2 = {w = w1 ·w2 s.t. w1 ∈ L1 and w2 ∈ L2}

L1 +L2 = {w s.t. w ∈ L1 or w ∈ L2}

L1
∗ = {ε}∪L1∪L1 ·L1∪L1 ·L1 ·L1∪ . . .

Rule derivation for problem 1

The rule presented in this section has been designed in order to remove as many symmetric se-

quences of operations as possible, regardless of its complexity. In problem 1, two distillation states

exist as either distillation 7 or distillation 8 is being executed at any time. Thus, the sequence of

operations can be decomposed into subsequences, each corresponding to one distillation state, as

shown in Figure 5.

Let L7 (resp. L8) be the regular language describing the possible sequences of operations during

distillation state 7 (resp. distillation state 8). Note that only transfer operations 1, 2, 4 and 6 are

allowed to be executed during distillation state 7 due to the non-overlapping constraints.

If no unloading operation is performed, operations 4 and 6 need to be executed at most once.

Thus, in that case, we choose to define the regular language L7 so that a subsequence corresponding

to the distillation state 7 starts with distillation 7 and may follow by at most one occurrence of

transfer operations 4 and 6, in this order.

L7 = {7,74,76,746}= 7(ε +4)(ε +6)

If unloading operation 1 is allowed to be executed during distillation state 7, then it can be

executed at most once. Also, it might be necessary to perform transfer operation 4 before and after

this unloading. Thus, in that case, we define the regular language L7 as follows.

L7 = 7(ε +4)(ε +6)(ε +1+14)
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If both unloading operations 1 and 2 are allowed to be executed during distillation state 7, then

it might also be necessary to perform transfer operation 6 before and after this unloading. Also,

unloading 1 has to be sequenced before operation 2 due to the precedence constraint between

unloading operations (crude-oil vessels have to unload in order of arrival). Thus, in this general

case, we choose to define the regular language L7 as follows.

L7 = 7(ε +4)(ε +6)(ε +1+14)(ε +2+26)

The set of all sequences of operations belonging to the regular language L7 is displayed in

Table 2. It can be represented by the DFA depicted in Figure 6, noted DFA7. This DFA reads

a sequence starting with operation 7, and then reads the following operation in the sequence by

moving though the corresponding labeled arc. A sequence is accepted if it can be entirely be read

by DFA7.

Table 2: List of sequences belonging to regular language L7
Length Sequences belonging to L7

1 7
2 71, 72, 74, 76
3 712, 714, 726, 741, 742, 746, 761, 762
4 7126, 7142, 7412, 7414, 7426, 7461, 7462, 7612, 7614, 7626
5 71426, 74126, 74142, 74612, 74614, 74626, 76126, 76142
6 741426, 746126, 746142, 761426
7 7461426

4

6

1

7
2

2

62

1

6
4

2

1

2

Figure 6: Automaton DFA7 recognizing regular language L7
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Similarly, the regular language L8, represented by DFA8, is defined as follows.

L8 = 8(ε +3)(ε +5)(ε +1+13)(ε +2+25)

Finally, the regular language L describing an efficient sequencing rule for the problem 1 can be

defined using language L7 and L8. Figure 7 shows a scheme of the DFA recognizing the regular

language L.

L = (ε +L7)(L8 ·L7)∗(ε +L8)

7

8

DFA7

DFA8

7 8

Figure 7: Automaton recognizing the regular language L

It should be noted that this symmetry-breaking rule captures all possible schedules and removes

many redundant sequences of operations. However, there are some symmetric sequences that

remain such as 78132 and 71832. Indeed, in these two sequences belonging to the language L,

exchanging operations 1 and 8 does not change the active non-overlapping constraints.

Regular constraint

Once the regular language L and its corresponding DFA has been defined, it is possible to include

the sequencing rule using the linear system of equation proposed by Côté et al. 21 . The equations

represent a network flow through a directed layered graph initially introduced by Pesant 22 for

Constraint Programming.

Let M = (Q,Σ,δ ,q1,F), where Q is the set of states, Σ is the alphabet, δ is the transition
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function, q1 is the initial state, and F is the set of final states, be a DFA recognizing the regular

language L. The idea is to unfold the automaton states on n + 1 layers (where n is the length of

the sequence), the first layer corresponding to the initial state, the last layer corresponding to the

possible final states, and the transition between layers corresponding to the automaton transitions

defined by δ . Then, a sequence is recognized by the DFA M if and only if there is a flow of unit 1

from the initial state in the first layer to a final state in the last layer such that the transition taken

between any two adjacent layers i and i+1 corresponds to the ith letter of the sequence.

The regular language membership constraint makes use of flow binary variables Sivq, where

q ∈Q. Sivq = 1 if the automaton is in state q when operation v is assigned to priority-slot i, Sivq = 0

otherwise. The network flow problem is defined with the following constraints.

∑
q

Sivq = Ziv i ∈ T,v ∈W linking constraint (30)

∑
v

S1vq1 = 1 initial unit flow (31)

∑
v,q′,q=δ (q′,v)

S(i−1)vq′−∑
v

Sivq = 0 i ∈ T, i 6= 1,q ∈ Q flow conservation (32)

∑
v,q,δ (q,v)∈F

Snvq = 1 final unit flow (33)

Constraint (30) links the Ziv variable to the Sivq variables (q ∈ Q) ensuring that the assignment

of operation v to priority-slot i is equivalent to a unit flow traversing the corresponding arcs in the

network. Constraint (31) sets the flow leaving the network source node (1,q1) to 1. Constraint

(32) ensures that the flow entering network node (i,q) is equal to the flow leaving it. Constraint

(33) sets the flow leaving the network nodes (n,q) through transitions δ (q,v) ∈ F to 1.

Although O(|T | · |W | · |Q|) new variables and O(|T | · |W |+ |T | · |Q|) new constraints are added

to the model, the search space is substantially reduced as only sequences belonging to the regular

language L are explored. It should be noted that it is not necessary to declare the variable Sivq as

binary. Indeed, if all variables Ziv are fixed, then the sequence of operations is fixed to v1...vi...vn.

As the automaton M is deterministic, there is a unique sequence of states q1...qi...qnqn+1 (where
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qn+1 ∈ F) corresponding to the states visited upon processing the sequence v1...vi...vn. Therefore,

the network flow problem stated above has a unique solution defined by Sivq = 1 if v = vi and

q = qi, Sivq = 0 otherwise.

Computational Results

All experiments have been performed on an Intel Core 2 Duo 2.16GHz processor with GAMS as

modeling language, Xpress 17.1 as MILP solver and CONOPT 3 as NLP solver. The CPU limit

for solving the MILP has been set to 1 hour. The DFAs for problems 2, 3, and 4 have been defined

in a similar way as for problem 1, adapted to each refinery configuration.

Scheduling results

Figures 8 and 13 depict the refinery configuration for problems 2, 3, and 4. The data involved in

these problems are given in Tables 3, 4, and 5. Figures 9 and 12 depict the optimal solutions for

problems 2 and 3. As there is no incentive to keep inventory in the charging tanks, their final level

is in general close to zero. However, the crude-oil that arrived late to the refinery is mostly kept

in the storage tanks. This leads to higher transfer activity at the beginning than at the end of the

scheduling horizon.

The main uncertain parameter in refinery crude-oil scheduling problems is the arrival time of

tankers. The expected date of arrival of these marine vessels is known long in advance, but is also

subject to many changes before it actually arrives at the refinery. Figure 10 shows the optimal

schedule for problem 2 when vessels are scheduled to arrive one day later, leading to a 3.4% profit

decrease (from $10,117,00 to $9,775,000). It should be noted that the sequence of distillations

is different in this case and that there is a higher transfer activity in the very beginning of the

scheduling horizon. However, this schedule assumes that the late arrival of vessels is known at

time t = 0.

Assuming that the exact arrival dates are known slightly later (t = ε � 1), the initial decisions
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are fixed, so that priority-slots 1, 2, 3 and 4 (which start at time t = 0) are fixed to operations 12,

14, 4, and 6 respectively. In this case, the optimal solution is depicted in Figure 11. This solution

is very similar to the original optimal solution (Figure 9) as most transfers are simply delayed,

although the profit is reduced to $9,609,000. Only transfer operation 10 from t = 8 to t = 8.5 is no

longer used. The fact that the exact arrival of vessels is known only at t = ε leads to a 1.7% profit

decrease (from $9,775,000 to $9,609,000) compared to the case where it is known at t = 0. This

result shows that the original schedule determined at t = 0 is not very affected by the late arrival

of vessels.

Crude Vessels Storage Tanks Charging Tanks CDUs
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4
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6

7

11

12

3

8

10

9

13

14

Figure 8: Crude-oil operations system for problems 2 and 3

Effect of symmetry-breaking constraints

In this section, we study the effect of the symmetry-breaking rule on solving the MILP linear

relaxation of the MILP-NLP decomposition method established earlier is studied. Two models

will be compared: the basic model that includes all linear constraints of the MILP except the

symmetry-breaking constraints, and the extended model that includes all linear constraints as well

as the symmetry-breaking constraints.

Consider a single instance of problem 1 (Figure 1, Table 1) for which 12 priority-slots are

postulated. As seen in Table 6, although the extended model contains many more new variables

and relatively fewer additional constraints than the basic model, the number of nodes explored

is greatly reduced (from more than 2 million to 63), which leads to very low CPU time (from

more than 3600s to 2s). This is due to the removal of many symmetric solutions from the search

space by using the symmetry-breaking rule. It should be noted that both models have the same LP
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Table 3: Problem 2 data
Scheduling horizon 10 days

Vessels Arrival time Composition Amount of crude (Mbbl)
Vessel 1 0 100% A 1,000
Vessel 2 3 100% B 1,000
Vessel 3 6 100% C 1,000

Storage tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 [0, 1,000] 100% A 200
Tank 2 [0, 1,000] 100% B 500
Tank 3 [0, 1,000] 100% C 700

Charging tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 (mix X) [0, 1,000] 100% D 300
Tank 2 (mix Y) [0, 1,000] 100% E 500
Tank 3 (mix Z) [0, 1,000] 100% F 300

Crudes Property 1 Property 2 Gross margin ($/bbl)
Crude A 0.01 0.04 1
Crude B 0.03 0.02 3
Crude C 0.05 0.01 5
Crude D 0.0167 0.333 1.67
Crude E 0.03 0.23 3
Crude F 0.0433 0.133 4.33

Crude mixtures Property 1 Property 2 Demand (Mbbl)
Crude mix X [0.01, 0.02] [0.03, 0.038] [1,000, 1,000]
Crude mix Y [0.025, 0.035] [0.018, 0.027] [1,000, 1,000]
Crude mix Z [0.04, 0.048] [0.01, 0.018] [1,000, 1,000]

Unloading flowrate [0, 500] Transfer flowrate [0, 500]
Distillation flowrate [50, 500] Number of distillations 5
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Figure 9: Optimal schedule for problem 2 (profit: $10,117,000)
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Figure 10: Optimal schedule for problem 2 with late vessel arrivals (profit: $9,775,000)
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Figure 11: Optimal schedule for problem 2 with late vessel arrivals and fixed initial decisions
(profit: $9,609,000)
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Table 4: Problem 3 data
Scheduling horizon 12 days

Vessels Arrival time Composition Amount of crude (Mbbl)
Vessel 1 0 100% A 500
Vessel 2 4 100% B 500
Vessel 3 8 100% C 500

Storage tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 [0, 1,000] 100% D 200
Tank 2 [0, 1,000] 100% E 200
Tank 3 [0, 1,000] 100% F 200

Charging tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 (mix X) [0, 1,000] 100% G 300
Tank 2 (mix Y) [0, 1,000] 100% E 500
Tank 3 (mix Z) [0, 1,000] 100% F 300

Crudes Property 1 Gross margin ($/bbl)
Crude A 0.01 1
Crude B 0.085 6
Crude C 0.06 8.5
Crude D 0.02 2
Crude E 0.05 5
Crude F 0.08 8
Crude G 0.03 3

Crude mixtures Property 1 Demand (Mbbl)
Crude mix X [0.025, 0.035] [500, 500]
Crude mix Y [0.045, 0.065] [500, 500]
Crude mix Z [0.075, 0.085] [500, 500]

Unloading flowrate [0, 500] Transfer flowrate [0, 500]
Distillation flowrate [50, 500] Number of distillations 5
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Figure 12: Optimal schedule for problem 3 (profit: $8,540,000)
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Figure 13: Crude-oil operations system for problem 4
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Table 5: Problem 4 data
Scheduling horizon 15 days

Vessels Arrival time Composition Amount of crude (Mbbl)
Vessel 1 0 100% A 600
Vessel 2 5 100% B 600
Vessel 3 10 100% C 600

Storage tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 [100, 900] 100% D 600
Tank 2 [100, 1,100] 100% A 100
Tank 3 [100, 1,100] 100% B 500
Tank 4 [100, 1,100] 100% C 400
Tank 5 [100, 900] 100% E 300
Tank 6 [100, 900] 100% E 600

Charging tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 (mix X) [0, 600] 100% F 50
Tank 2 (mix Y) [0, 600] 100% G 300
Tank 3 (mix Z) [0, 600] 100% H 300
Tank 4 (mix W) [0, 600] 100% E 300

Crudes Property 1 Gross margin ($/bbl)
Crude A 0.03 3
Crude B 0.05 5
Crude C 0.065 6.5
Crude D 0.031 3.1
Crude E 0.075 7.5
Crude F 0.0317 3.17
Crude G 0.0483 4.83
Crude H 0.0633 6.33

Crude mixtures Property 1 Demand (Mbbl)
Crude mix X [0.03, 0.035] [600, 600]
Crude mix Y [0.043, 0.05] [600, 600]
Crude mix Z [0.06, 0.065] [600, 600]
Crude mix W [0.071, 0.08] [600, 600]

Unloading flowrate [0, 500] Transfer flowrate [0, 500]
Distillation flowrate [20, 500] Number of distillations 7
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relaxation. Also, the optimal solution is found early during the resolution of the basic model, but a

large amount of time is used to prove its optimality.

Figure 14 shows how both models perform on problem 1 when varying the number of priority-

slots from 6 to 13. Clearly, the computational expense needed to solve the basic model grows

exponentially with the number of priority-slots. However, both the number of nodes and the CPU

time remain stable when solving the extended model.

Table 6: Size and performance of the Basic and Extended models on problem 1 (12 priority-slots)
Variables Binary variables Constraints Non-zeroes LP Nodes CPU

Basic 1,189 96 2,383 15,555 80 +1,990,700 +3,600s
Extended 2,629 96 2,646 18,923 80 63 2s
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Figure 14: Performance of the Basic and Extended models on problem 1 (6 to 12 slots)

Performance of the MILP-NLP decomposition strategy

Table 7 shows the performance of different solution methods on problem 1. The Extended model

is solved by the two-step MILP-NLP procedure and several MINLP solvers available in GAMS.

MINLP solvers are given as a starting point the solution of the LP obtained by removing the

nonlinear constraints of the model and relaxing the integrality constraints on binary variables.

Other problems do not appear in Table 7 as they are intractable for these MINLP solvers. Results

show that the two-step procedure is able to get the optimal solution and keep the computational

expense low compared to other solvers.
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Table 7: Performance of difference solution method on problem 1
Solution method Problem Slots Solution CPU time

MILP-NLP decomposition 1 13 79.75 1s
DICOPT 1 13 79.75 20s

SBB 1 13 79.35 56s
AlphaECP 1 13 79.28 242s
BARON 1 13 79.75 419s

Effect of the number of priority-slots

It is critical to postulate a relevant number of priority-slots to be used in the model. Indeed, a small

number of priority-slots may lead to infeasibility, while a large number of priority-slots may result

in an intractable model. The strategy used to determine the number of priority-slots is dependent

on the problem.

In the case of the refinery problems introduced by Lee et al. 1 , it can be shown that the number

of relevant operations is bounded as long as the number of distillations is bounded. For example, if

problem 1 is constrained to be solved with a maximum of 3 distillation operations, the maximum

number of operations is 13 as in the sequence 7461483525746. Any sequence of 14 operations

will be rejected by the sequencing rule in combination with the distillation cardinality constraints.

Therefore, it is unnecessary to postulate a number of priority-slots greater than 13.

Figure 15 shows the evolution of the number of nodes explored, the CPU time, the MILP and

NLP solutions objective value ($100,000 unit), and the optimality gap with respect to the number

of priority-slots when solving problems 1 to 4 and using the extended formulation. The grey area

represents the gap between MILP and NLP solutions. For all problems, the computational expense

is small when the number of priority-slots is small, as the size of the problem and the feasible

space are small. Also, the computational expense is small when the number of priority-slots is

large (close to its maximum), as the solver must assign one operation to each priority-slot while

satisfying both the cardinality constraints and the symmetry-breaking rule, thus making the feasible

space small. In between, the number of nodes explored and the CPU time reach a maximum

although not at the same number of priority-slots. It can also be observed that the objective value

of the optimal solutions of the MILP relaxation increases with the number of priority-slots as more
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flexibility is given to the solver to find feasible solution. The optimality gap tends to decrease as

well.

Table 8 gives some details on the solution of instances with the maximum number of priority-

slots. The optimality gap is rather small (less than 4%) even though the solution strategy does

not necessarily converge to a global optimum. This is explained by the fact that the composition

constraints are always satisfied, even if dropped, under specific conditions. For each transfer v

assigned to priority-slot i, the composition constraint (23) is satisfied if either of the following

conditions hold true.

• the origin tank contains only one crude before the transfer

• the origin tank is fully discharged during the transfer

These conditions are always met in the optimal solutions of problems 1, 2, and 4. They do not

always hold true in the optimal solution of problem 3, which explains the positive gap obtained.

Table 8: Performance of the model on problem 1 to 4 (maximum number of priority-slots)

Problem No. of slots
LP MILP NLP

Gap
Solution Solution Nodes CPU Solution CPU

1 13 80 79.75 17 2s 79.75 0s 0%
2 21 103 101.17 23 15s 101.17 1s 0%
3 21 100 87.4 45 32s 84.5 2s 3.3%
4 26 132.59 132.55 21 79s 132.55 3s 0%

Remark

When no symmetry-breaking sequencing rule is used, the global optimal solution of the SOS model

with maximum number of priority-slots leads to the best possible schedule. Indeed, the optimal

sequence of operations can be extended with unused operations, for which the volume transferred

is set to 0. Thus, it can be obtained even if the user postulated more priority-slots than needed.

However, in general, if a sequencing rule is used, this property does not necessarily hold true.
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Figure 15: Performance of the model on problem 1 to 4 (varying number of priority-slots)
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Conclusion

A new continuous-time scheduling formulation has been proposed in order to address crude-oil

scheduling problems. It requires to postulate the number of tasks to be performed instead of the

number of time intervals or event points as in previous formulations. Besides, it allows representing

a solution schedule as a single sequence of operations that can be restricted with respect to a

symmetry-breaking sequencing rule. A simple two step procedure consisting of solving an MILP

and an NLP has been used to solve the MINLP model leading to solutions with optimality gaps

lower than 5% with CPU times under 2 minutes.

The focus of future work is to use inference techniques such as contraint propagation in CP to

handle the sequencing rule as it can be expensive in terms of variables and constraints, and thus

in terms of node relaxation time. Also, techniques tightening the linear relaxation of such MINLP

problems are under development.
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