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Abstract

During the last 15 years, many mathematical models have been developed in order to solve process operation scheduling

problems, using discrete or continuous time representations. In this paper, we present a unified representation and modeling

approach for process scheduling problems. Four different time representations are presented, compared, and applied to

single-stage and multi-stage batch scheduling problems, as well as crude-oil operations scheduling problems. We introduce

three solution methods that can be used to achieve global optimality or obtain near-optimal solutions depending on the stop

criterion used. Computational results show that the Multi-Operation Sequencing time representation is superior to the others

as it allows efficient symmetry-breaking and requires fewer priority-slots, thus leading to smaller model sizes.

Keywords:

time representations, batch scheduling, crude-oil scheduling, mixed-integer linear programming

1. Introduction

Rigorous optimization of real-world problems are often based on advanced programming tools such as mixed-integer

linear programming (MILP) or constraint programming (CP, see Rossi et al. (2006)). These tools rely on a mathematical or

symbolic representation of the problem which is applied by an end-user. In some cases, the relationship between the problem

description and its mathematical model is not clear. Therefore an intermediate step is included in the optimization approach

(see Figure 1). In this step, the representation used is detailed and approximations are made. For instance, in the context

of scheduling problems, using a discrete-time formulation is in general a constraining approximation of the actual problem,

and thus, it may lead to a suboptimal solution as discussed in Floudas and Lin (2004).

Additionally, it is important to note that several mathematical models may be used to obtain the global optimal solution

of the problem, which is the best possible solution according to a given optimization criterion. For example, many continuous-

time representations rely on a specific parameter representing the number of time points (Kondili et al., 1993), time intervals

(Lee et al., 1996), or event points (Ierapetritou and Floudas, 1998) used. Therefore, the scheduling problem is represented

by an infinite set of mathematical models, one for each possible value of this parameter (all positive integers). The global

optimal schedule is the best solution among the optimal solution of all these models. In general, it is not possible to know a

priori the parameter value that will lead to the global optimal solution, although it is sometimes possible to derive upper and

lower bounds for it. The common trade-off is that global optimality may be guaranteed with a large value of this parameter

which often results in prohibitive solution times.

Many different time representations have been introduced to solve scheduling problems (for review see Floudas and Lin

(2004)). Experience has shown that, depending on the characteristics of the problem, some time representations are better

suited than others. In this paper, we focus on scheduling problems which rely on:
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Figure 1: Four steps optimization method.

a) a set of possible operations, or actions, that can be performed once, several times, or not at all;

b) scheduling decisions that involve both selecting, parametrizing and sequencing the operations that should be executed;

c) scheduling constraints such as release dates, due dates, bounds on processing times, non-overlapping constraint, cardi-

nality constraints, and precedence constraints;

d) additional side constraints that are used to model more complex features such as limited inventory management or

process constraints.

It should be noted that, for example, the selection of operations may correspond to the selection of equipment or discrete

resources for tasks in a state-task-network (Kondili et al., 1993) or in a resource-task-network (Pantelides, 1994). In general,

operations are defined by fully disaggregating all possible discrete selections of actions in the scheduling system. In contrast,

parameterization of operations corresponds to continuous decisions such as batch sizes, transfer volumes, or process operating

conditions.

The main objective of this work is to develop a unified modeling approach for scheduling problems in order to facilitate

the evaluation of several time representations, both in terms of computational time and solution quality. First, a simple

scheduling problem is introduced as an example. Next, we study four different types of time representations, which have been

used in the literature and clarify the relationships between them. Then, basic MILP models for pure scheduling constraints

are presented for each of these time representation. Using concepts from graph theory (cliques and bicliques), we show how

these models can be generally strengthened based on the structure of the scheduling problem. Two solution methods are

then developed to solve these mathematical formulations. Finally, three types of problems are presented and solved using the

different approaches in order to show the effectiveness of the strengthened formulations and to provide elements of comparison

between the different time representations.

2. Case-Study

We introduce a small scheduling system that involves 6 different operations v1, . . . , v6 and 3 unary resources r1, r2, r3. A

unary resource cannot be shared by two or more processing operations at a given time. Table 1 displays resource requirement

for each operation. In this case and in the examples studied in this paper, unary resource requirements are handled as

non-overlapping constraints between operations. For instance, operations v1 and v4 cannot overlap as they both use resource

r1. Also, operations v5 and v6 cannot overlap as they both use resource r3. Besides, as a given operation v can be executed

several times, any two separate executions of v may not overlap. Thus, any operation v cannot overlap with itself. Different
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Table 1: Case-study: resource requirements

Operation v1 v2 v3 v4 v5 v6
Resources r1 r2 r3 r1 ∧ r2 r1 ∧ r3 r2 ∧ r3

v1

v2

v3

v4

v5

v6


1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
1 1 0 1 1 1
1 0 1 1 1 1
0 1 1 1 1 1



Figure 2: Non-overlapping matrix and graph for case-study.

linear objectives can be considered: maximization of profit, minimization of makespan, minimization of assignment costs,

minimization of tardiness or earliness.

In order to extract useful information from the structure of the problem, we use a global representation of all the non-

overlapping constraints. The non-overlapping matrix, denoted by NO, is such that NOvv′ = 1 if operation v and v′ must not

overlap, 0 otherwise. The non-overlapping graph, denoted by GNO = (V,E), is an undirected graph where the set of vertices

v is the set of operations and the set of edges is defined by E = {{v, v′} s.t. NOvv′ = 1}. Therefore, the non-overlapping

matrix is the adjacency matrix of graph GNO. The concept of non-overlapping graph can be viewed as an extension of the

disjunctive graph (Adams et al., 1988), which is used to represent disjunctive constraints between operations that have to be

executed exactly once. In this paper, we consider operations that can be executed once, several times, or not at all. Figure 2

shows the non-overlapping matrix and graph for the case-study. For clarity, edges that connect a vertex to itself, called

self-loops, are not represented.

3. Time Representations

In this paper, we study four different time representations and show how they can be defined using identical concepts.

Each of these make use of priority-slots, which are used to assign and order the executions of operations. The number of

priority-slots has to be postulated a priori, and each priority-slot corresponds to a position in a sequence. Whenever an

operation is assigned to a priority-slot, it has to be executed with a corresponding scheduling priority. Any operation may

be executed several times by assigning it to multiple priority-slots. It is not straightforward to select the best number of

priority-slots. Indeed, postulating a large number priority-slots increases the chance of obtaining the global optimal solution,

but it also increases the size of the model and the CPU time. The four time representations are listed below.

a. Multi Operation Sequencing (MOS)

b. Multi Operation Sequencing with Synchronized Start Times (MOS-SST)

c. Multi Operation Sequencing with Fixed Start Times (MOS-FST)

d. Single Operation Sequencing (SOS)

Figure 3 shows how the same schedule for the case-study can be obtained within each time representations. Each execution

of an operation is represented by an horizontal bar in the upper Gantt chart, while resource usage is represented by horizontal

lines in the lower Gantt chart. The priority-slots are represented by number labels on each operation execution. In each case,
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a. MOS (continuous-time) b. MOS-SST (continuous-time)
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Figure 3: A unique schedule obtained through different time representations.

the smallest possible number of priority-slots needed to obtained the solution has been used. From this figure, it is clear that

some time representations require more priority-slots than others.

In the MOS representation, several operations can be assigned to each priority-slots as long as they may overlap with

each other. For instance, in Figure 3(a) operations v1 and v6 are allowed to overlap and are both assigned to the first

priority-slot. However, operations v1 and v2 cannot overlap and are consequently assigned to different priority-slots: slots

1 and 4 for operation v1, slot 2 for operation v2. If two non-overlapping operations v and v′ are assigned to priority-slots

i and j, respectively, such that i < j, then operation v′ must be executed after operation v. For instance, operation v1

assigned to priority-slot 4 is executed after operation v2 assigned to priority-slot 2. We denote MOS(n) a scheduling model

using the MOS time representation with n postulated priority-slots. This time representation was introduced by Ierapetritou

and Floudas (1998) as the event point formulation. Their mathematical model, although significantly different than the

model developed in this paper, was used to solve several STN problems. As mentioned by Maravelias and Grossmann

(2003), inventory tracking using event points is quite different than inventory tracking using time points, which might lead to

inconsistent enforcement of storage capacity constraints. This issue was addressed by Janak et al. (2004) by adding additional

storage tasks in the STN problem, which can lead to a significant increase of model size.

The MOS-SST representation is based on the same features as the MOS representation. Additionally, all operations

assigned to the same priority-slot must have the same start time. For instance, in Figure 3(b), operations v1 and v6 are

both assigned to priority-slot 1, and therefore both start at the same time t = 0. Thus, each priority-slot i is associated
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to variable time-point ti which is represented by a vertical dotted line in Figure 3(b). The time interval between any two

successive time-points is variable. We denote MOS-SST(n) a scheduling model using the MOS-SST time representation with

n postulated priority-slots. This type of representation has been used to solve a wide variety of problems where time-points

are used to track both the start and end events of each operation (see Zhang and Sargent, 1996; Schilling and Pantelides,

1996; Maravelias and Grossmann, 2003).

The MOS-FST representation is based on the same features as the MOS-SST representation. Additionally, the time-

point associated to each priority-slot is fixed a priori. Thus, the interval between any two successive time-points is fixed. For

instance, the solution depicted in Figure 3(c) is obtained using time-points that are uniformly spaced along the time horizon:

t1 = 0, t2 = 1, . . . , t10 = 9. Therefore, operation v5 assigned to priority-slot 4 starts at t = t4 = 3 while operation v4 assigned

to priority-slot 7 starts at t = t7 = 6. We denote MOS-FST(n) a scheduling model using the MOS-FST time representation

with n postulated priority-slots. Discrete-time formulation for process scheduling problems were initially developed to solve

STN and RTN models where processing times are assumed to be constant (see Kondili et al., 1993; Pantelides, 1994).

In the SOS representation, at most one operation can be assigned to each priority-slot. It is therefore possible to represent

the scheduling solution by a sequence of operations (Mouret et al., 2009). For instance, the solution depicted in Figure 3(d)

is represented by sequence of operations 1625341. Similarly to the MOS model, if two non-overlapping operations v and

v′ are assigned to priority-slots i and j (i < j), then v′ must be executed after v. We denote SOS(n) a scheduling model

using the SOS time representation with n postulated priority-slots. This time representation was introduced by Mouret et al.

(2009) to solve the refinery crude-oil operations scheduling problem.

From these definitions, it can be inferred that for a given number of priority-slots n the integer feasible space of MOS(n)

is larger than the integer feasible space of models MOS-SST(n), MOS-FST(n), and SOS(n). Indeed, the latter models are

derived from the MOS model by introducing additional constraints, which reduce the set of feasible solutions. Furthermore,

the integer feasible space of MOS-SST(n) is larger than the one of MOS-FST(n) and SOS(n). In particular, any solution

for the SOS model is a solution for the MOS-SST model. Indeed, at most one operation can be assigned to each priority-slot

so the synchronization of start times is automatically satisfied.

These properties can also be interpreted by considering a scheduling solution z. We denote z ∈MOS(n) the membership

of schedule z to the integer feasible space of model MOS(n). In other words, z ∈MOS(n) means that solution z satisfies

all the constraints of model MOS(n). We introduce the minimum number of priority-slots needed to ”find” solution z using

each time representation.

nMOS(z) = min
n
{n|z ∈MOS(n)}

nMOS-SST(z) = min
n
{n|z ∈MOS-SST(n)}

nMOS-FST(z) = min
n
{n|z ∈MOS-FST(n)}

nSOS(z) = min
n
{n|z ∈ SOS(n)}

Then, the following inequalities hold:  nMOS(z) ≤ nMOS-SST(z) ≤ nMOS-FST(z)

nMOS(z) ≤ nMOS-SST(z) ≤ nSOS(z)

Remark. An important limitation of these time representations is that operations are considered as a whole for sequencing

purpose. More precisely, a scheduling priority is assigned to operations and not to the start and end events of these operations,

which may be necessary to solve some scheduling problems. For instance, operations that require a cumulative resource with
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capacity greater than 1 (e.g. manpower limited to 2 workers) are allowed to overlap, but only a limited number of these

operations may overlap at any given point in time. The models developed in this paper do not accommodate these features.

Another case is inventory tracking when simultaneous charging and discharging of tanks is allowed. It is sufficient to enforce

capacity limitations only at the start and end events of each charging/discharging operations, but in order to do so, a precise

sequence of such events needs to be obtained by the model. Possible workarounds or extensions of the model to handle these

specific features, such as presented in Janak et al. (2004), will not be discussed in this paper.

4. Mathematical Models

In this section, we present mathematical models for each time representation. They all rely on the same sets, parameters

and variables. Objective functions are not presented here (e.g. minimize makespan, minimize tardiness, or maximize profit)

although they can significantly impact the solution of the corresponding formulation.

4.1. Sets and Parameters

The following sets and parameters are used.

• T = {1, . . . , n} is a totally ordered set of priority-slots (indices i, j, i1, i2).

• W is the set of all operations (indices v, v′, v1, v2).

• H is the scheduling horizon.

• [Sv, Sv] ⊂ [0, H] are bounds on the start time of any execution of operation v.

• [Dv, Dv] ⊂ [0, H] are bounds on the duration of any execution of operation v.

• [Ev, Ev] ⊂ [0, H] are bounds on the end time of any execution of operation v.

• [Nv, Nv] are bounds on the total number of executions of operation v.

• [NW ′ , NW ′ ] are bounds on the total number of executions of all operations in W ′.

• NOv1v2 is 1 if operations v1 and v2 must not overlap, 0 if they are allowed to overlap.

• TRv1v2 is a sequence-dependent transition time between non-overlapping operations v1 and v2.

• TRW ′ is a unique set transition time between any pair of non-overlapping operations in W ′.

• Pv1v2 = 1 denotes a precedence constraint between operations v1 and v2.

• PW1W2 = 1 denotes a precedence constraint between set of operations W1 and W2.

Remark 1: It should be noted that for operations with fixed processing time, Dv = Dv = Dv.

Remark 2: A set transition time TRW ′ is defined when ∀v1, v2 ∈W ′, TRv1,v2 = TRW ′ . It can be used to represent unit

changeover times.

Remark 3: A precedence constraint between operations v1 and v2 states that v1 must be executed before v2. This implies

that each operation must be executed exactly once (Nv1 = Nv2 = Nv1 = Nv2 = 1). A precedence constraint between sets of

operations W1 and W2 states that exactly one operation in each set must be executed (NW1 = NW2 = NW1 = NW2 = 1) and

the operation selected from W1 must be executed before the operation selected from W2.
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4.2. Variables

The variables used in all models are composed of binary assignment variables, and continuous time variables.

• Assignment variables Ziv ∈ {0, 1} i ∈ T, v ∈W

Ziv = 1 if operation v is assigned to priority-slot i, Ziv = 0 otherwise.

• Time variables Siv ≥ 0, Div ≥ 0, Eiv ≥ 0 i ∈ T, v ∈W

Siv is the start time of operation v if it is assigned to priority-slot i, Siv = 0 otherwise.

Div is the duration of operation v if it is assigned to priority-slot i, Div = 0 otherwise.

Eiv is the end time of operation v if it is assigned to priority-slot i, Eiv = 0 otherwise.

4.3. MOS Model

Variable Bound Constraints. Bounds on time variables can be expressed using the following constraints.

Sv · Ziv ≤ Siv ≤ Sv · Ziv i ∈ T, v ∈W (1a)

Dv · Ziv ≤ Div ≤ Dv · Ziv i ∈ T, v ∈W (1b)

Ev · Ziv ≤ Eiv ≤ Ev · Ziv i ∈ T, v ∈W (1c)

Time Constraint. Time variables are linked through the following additional constraint.

Eiv = Siv +Div i ∈ T, v ∈W (2)

Cardinality constraint. The total number of execution of operations in a set W ′ ⊂W is restricted by the following constraint.

A cardinality constraint on a single operation v can be enforced by setting W ′ = {v}.

NW ′ ≤
∑
i∈T
v∈W ′

Ziv ≤ NW ′ W ′ ⊂W (3)

Assignment Constraint. Two non-overlapping operations v1 and v2 such that NOv1v2 = 1 cannot be assigned simultaneously

to the same priority-slot.

Ziv1 + Ziv2 ≤ 1 i ∈ T, v1, v2 ∈W,NOv1v2 = 1 (4)

Non-overlapping Constraint. A non-overlapping constraint between two operations v1, v2 ∈W states that they must not be

executed simultaneously. This property is enforced using the following big-M constraints where the big-M constant is defined

as a valid upper bound of the left hand side of the inequality.

Ei1v1 ≤ Si2v2 +H · (1− Zi2v2) i1, i2 ∈ T, i1 < i2, v1, v2 ∈W,NOv1v2 = 1 (5a)

Ei1v2 ≤ Si2v1 +H · (1− Zi2v1) i1, i2 ∈ T, i1 < i2, v1, v2 ∈W,NOv1v2 = 1 (5b)

Due to the assignment constraint (4) and variable bound constraints (1a) and (1c), equations (5a) and (5b) can be combined

in order to form the following tighter surrogate constraint (see Appendix A).

Ei1v1 + Ei1v2 ≤ Si2v1 + Si2v2 +H · (1− Zi2v1 − Zi2v2) i1, i2 ∈ T, i1 < i2, v1, v2 ∈W,NOv1v2 = 1 (6)
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Non-overlapping Constraint with Transition Times. Sequence-dependent transition times TRv1v2 between operations v1 ∈W

and v2 ∈W can be enforced as follows.

Ei1v1 + TRv1v2 · Zi1v1 ≤ Si2v2 + (H + TRv1v2) · (1− Zi2v2) i1, i2 ∈ T, i1 < i2, v1, v2 ∈W,NOv1v2 = 1 (7a)

Ei1v2 + TRv2v1 · Zi1v2 ≤ Si2v1 + (H + TRv2v1) · (1− Zi2v1) i1, i2 ∈ T, i1 < i2, v1, v2 ∈W,NOv1v2 = 1 (7b)

If the transition time is not sequence-dependent (i.e. TRv1v2 = TRv2v1) then constraints (7) can be combined in order to

form the following tighter surrogate constraint.

Ei1v1 + Ei1v2 + TRv1v2 · (Zi1v1 + Zi1v2) ≤ Si2v1 + Si2v2 + (H + TRv1v2) · (1− Zi2v1 − Zi2v2)

i1, i2 ∈ T, i1 < i2, v1, v2 ∈W,NOv1v2 = 1, TRv1v2 = TRv2v1

(8)

Precedence Constraint. Consider two operations v1, v2 ∈ W such as Pv1v2 = 1, then the precedence constraint can be

expressed as follows. Note that in each summation, exactly one term can be non-zero due to the cardinality constraint.∑
i∈T

Eiv1 ≤
∑
i∈T

Siv2 v1, v2 ∈W,Pv1v2 = 1 (9)

Consider two sets of operations W1,W2 ⊂ W . If PW1W2 = 1, the previous constraint can be extended as follows. Note that

in each summation, exactly one term can be non-zero due to the corresponding cardinality constraint (3).∑
i∈T

∑
v1∈W1

Eiv1 ≤
∑
i∈T

∑
v2∈W2

Siv2 W1,W2 ⊂W,PW1W2 = 1 (10)

4.4. MOS-SST Model

In the MOS-SST model, the start times of all operations assigned to the same priority-slot i have to be synchronized.

Therefore, we introduce positive synchronization time-points variables ti (i ∈ T ). Variables ti correspond to the start time

of all operations assigned to priority-slot i.

ti ∈ [0, H] i ∈ T (11)

Time-point Sequence Constraint. The following constraint insures that the variables ti are ordered in time.

ti−1 ≤ ti i ∈ T (12)

Synchronization Constraints. If operation v is assigned to priority-slot i, it must start at time ti. Therefore, the following

synchronization constraints are used. Note that constraint (1a) already insures that Siv = 0 if Ziv = 0.

Siv ≤ ti i ∈ T, v ∈W (13a)

Siv ≥ ti −H · (1− Ziv) i ∈ T, v ∈W (13b)

4.5. MOS-FST Model

In the MOS-FST model, the time-points variables ti of the MOS-SST model are used and are fixed a priori. They can

therefore be considered as parameters. In this paper, these time-points are always selected using a uniform time discretization.

ti =
i− 1
n
·H i ∈ T (14)

Synchronization Constraint. If operation v is assigned to priority-slot i, it must start at time ti. Therefore, the following

synchronization constraints are used.

Siv = ti · Ziv i ∈ T, v ∈W (15)
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Figure 4: Biclique ({v1, v6}; {v4, v5}).

4.6. SOS Model

All constraints from the MOS model are still valid for the SOS model. However, a new assignment constraint is defined.

Assignment Constraint. At most one operation has to be assigned to each priority-slot.∑
v∈W

Ziv ≤ 1 i ∈ T (16)

5. Strengthened Reformulations

The models presented in the previous section may not be effectively solved by MILP solvers. Indeed, special attention

needs to be paid to their LP relaxation. As MILP solvers usually perform better when the model has a tight LP relaxation,

we introduce strengthened formulations based on the non-overlapping structure of the problem.

5.1. Non-overlapping Graph Properties

In this section, we recall the definition of a clique and a biblique in the context of the non-overlapping graph GNO. A

clique of GNO is a subset of the set of operations W ′ ⊂W such that any two operations in W ′ must not overlap. A maximal

clique is a clique that is not a subset of any other clique. An isolated clique is a clique that has no edges connecting it to its

complement in the graph. For the case-study, the non-overlapping graph displayed in Figure 2 contains 9 non-maximal cliques

of two vertices, one for each non self-loop edge (e.g. {v1, v4}). It contains 4 maximal cliques of three vertices {v1, v4, v5},

{v2, v4, v6}, {v3, v5, v6}, {v4, v5, v6}. It contains no clique of larger size and no isolated clique.

We define a biclique of GNO as a pair of sets of operations (W1;W2) ∈ W 2 such that for any pair of operations

(v1; v2) ∈ W1 ×W2, {v1, v2} is an edge of GNO. Sets W1 and W2 are not necessarily disjoint. A maximal biclique of GNO

is a biclique that is not contained in any other biclique of GNO. For the case-study, the non-overlapping graph displayed in

Figure 2 contains 9 non-maximal bicliques of two vertices, one for each non self-loop edge (e.g. (W1 = {v1};W2 = {v4})).

It contains 4 maximal bicliques of three vertices that can be derived from its maximal cliques ({v1, v4, v5};{v1, v4, v5}),

({v2, v4, v6};{v2, v4, v6}), ({v3, v5, v6};{v3, v5, v6}), and ({v4, v5, v6};{v4, v5, v6}). It also contains 3 maximal cliques composed

of four vertices ({v1, v6};{v4, v5}), ({v2, v5};{v4, v6}), ({v3, v4};{v5, v6}) and 3 maximal bicliques composed of five vertices

({v4};{v1, v2, v4, v5, v6}), ({v5};{v1, v3, v4, v5, v6}), ({v6};{v2, v3, v4, v5, v6}). Figure 4 depicts the subgraph of GNO corre-

sponding to biclique ({v1, v6};{v4, v5}).

Remark 4: Isolated cliques are always maximal as they cannot be extended to larger cliques.

Remark 5: Using maximal cliques instead of non-maximal cliques generally leads to a tighter LP relaxation. Constraints

based on cliques will therefore be applied to maximal cliques only. Appendix A shows how applying strengthened constraints

to maximal cliques only generates the tightest and most compact model. The same remark applies to bicliques.
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Remark 6: The number of maximal cliques in an undirected graph might be exponential in the size of the graph.

Nevertheless, there are exponential-time algorithms to enumerate all maximal cliques of a graph and we assume the non-

overlapping graph is small enough so that this task can be performed in reasonable time. The same remark applies to

bicliques.

5.2. MOS Model

Aggregated Assignment Constraint. Let W ′ ⊂W be a clique of the non-overlapping graph GNO. Then, at most one operation

from W ′ can be assigned to priority-slot i. Therefore, the following constraint, which is at least as strong as constraint (4)

as shown in Appendix A, is valid.∑
v∈W ′

Ziv ≤ 1 i ∈ T,W ′ ∈ clique(GNO) (17)

Aggregated Non-overlapping Constraint. Given a clique W ′ ⊂W of the non-overlapping graph GNO, the following aggregated

non-overlapping constraint, which is at least as strong as constraint (6) as shown in Appendix A, is valid. Note that only

one term in each summation can be non-zero due to the aggregated assignment constraint (17).∑
v∈W ′

Ei1v ≤
∑
v∈W ′

Si2v +H · (1−
∑
v∈W ′

Zi2v) i1, i2 ∈ T, i1 < i2,W
′ ∈ clique(GNO) (18)

Aggregated Non-overlapping Constraint with Intermediate Operations. Given a clique W ′ ⊂W of the non-overlapping graph

GNO, and two priority-slots i1, i2 ∈ T such that i1 < i2, constraint (18) can be further strengthened (see Appendix A) by

including the duration of operations assigned to intermediate priority-slots i (i1 < i < i2).∑
v∈W ′

Ei1v +
∑
i∈T

i1<i<i2

∑
v∈W ′

Div ≤
∑
v∈W ′

Si2v +H · (1−
∑
v∈W ′

Zi2v) i1, i2 ∈ T, i1 < i2,W
′ ∈ clique(GNO) (19)

Aggregated Non-overlapping Constraint with Clique Transition Times. Given a clique W ′ ⊂W of the non-overlapping graph

GNO, the clique transition time TRW ′ is the minimum time delay between any two executions of operations in W ′. If W ′

represents a set of operations executed in a unit, TRW ′ corresponds to a unit transition time. Clique transition times can

be enforced as follows. Note that the value of the big-M constant is increased to a new valid upper bound for the left hand

side of the inequality: H + TRW ′ .∑
v∈W ′

(Ei1v + TRW ′ · Zi1v) +
∑
i∈T

i1<i<i2

∑
v∈W ′

(Div + TRW ′ · Ziv) ≤
∑
v∈W ′

Si2v + (H + TRW ′) · (1−
∑
v∈W ′

Zi2v)

i1, i2 ∈ T, i1 < i2,W
′ ∈ clique(GNO)

(20)

5.3. MOS-SST Model

Aggregated Synchronization Constraints. Given a clique W ′ ⊂W of the non-overlapping graph GNO, the following aggregated

synchronization constraints, which are tighter than constraints (13) as shown in Appendix A, are valid. Note that in each

summation only one term can be non-zero.∑
v∈W ′

Siv ≤ ti i ∈ T,W ′ ∈ clique(GNO) (21a)

∑
v∈W ′

Siv ≥ ti −H · (1−
∑
v∈W ′

Ziv) i ∈ T,W ′ ∈ clique(GNO) (21b)
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i−
⌈
Dv

H/n

⌉
i

H/n

Dv

Figure 5: Assignment constraint using consecutive time-points.

Tightening Precedence Constraint. Consider a precedence constraint between sets of operations W1 and W2 (PW1W2 = 1).

Assume that an operation from W1 is assigned to priority-slot i1 with associated time-point t1 and that an operation from

W2 is assigned to priority-slot i2 with associated time-point t2. Then, due to the precedence constraint, we must have t1 < t2.

Therefore, a necessary condition for the precedence constraint to hold true is i1 < i2. The following constraint insures that

this condition is satisfied, and therefore complements constraint (10).∑
j∈T
j<i

∑
v∈W1

Zjv ≥
∑
j∈T
j≤i

∑
v∈W2

Zjv i ∈ T,W1,W2 ⊂W,PW1W2 = 1 (22)

5.4. MOS-FST Model

Assignement Constraint using Time-points. Consider an operation v ∈ W . If the time interval between two time-points

is smaller than the duration of v, then v cannot start at both time-points (v cannot be assigned to both priority-slots).

As illustrated in Figure 5, v cannot be assigned to priority-slots i −
⌈
Dv

H/n

⌉
+ 1 and i simultaneously, as well as any other

priority-slot in between. However, it can be assigned to priority-slots i −
⌈
Dv

H/n

⌉
and i simultaneously. Note that the lower

bound on the duration of v is used to account for the case of variable processing times. Therefore, the following constraint,

which is a stronger extension of constraint (4), is valid.

Ziv +
∑
j∈T

i−δv<j<i

Zjv ≤ 1 i ∈ T, v ∈W, δv =
⌈
Dv

H/n

⌉
(23)

Aggregated Assignement Constraint. The previous constraint (23) can be extended to cliques of GNO.

∑
v∈W ′

Ziv +
∑
j∈T

i−δW ′ (v)<j<i

Zjv

 ≤ 1 i ∈ T,W ′ ∈ clique(W ), δv =
⌈
Dv

H/n

⌉
(24)

Aggregated Assignement Constraint with Transitions Times. The previous constraint (24) can also be extended to the case

of clique transition times.

∑
v∈W ′

Ziv +
∑
j∈T

i−δW ′ (v)<j<i

Zjv

 ≤ 1 i ∈ T,W ′ ∈ clique(W ), δW ′(v) =
⌈
Dv + TRW ′

H/n

⌉
(25)

5.5. SOS Model

Aggregated Non-overlapping Constraint. Additional aggregated non-overlapping constraints can be generated based on bi-

cliques of the non-overlapping graph for the SOS model. Given a biclique (W1,W2) of the non-overlapping graph GNO, the

following aggregated non-overlapping constraints, which are at least as strong as constraints (5) as shown in Appendix A,

11



are valid. Note that in each summation only one term can be non-zero due to the SOS specific assignment constraint (16).

Also, note that constraints (18) and (26) are not redundant as they are applied to different sets of operations.∑
v∈W1

Ei1v ≤
∑
v∈W2

Si2v +H · (1−
∑
v∈W2

Zi2v) i1, i2 ∈ T, i1 < i2, (W1,W2) ∈ maxbiclique(GNO) (26a)

∑
v∈W2

Ei1v ≤
∑
v∈W1

Si2v +H · (1−
∑
v∈W1

Zi2v) i1, i2 ∈ T, i1 < i2, (W1,W2) ∈ maxbiclique(GNO) (26b)

6. Solution Methods

Determining the minimum number of priority-slots needed to find the optimal schedule is non-trivial. A commonly used

algorithm is to solve several scheduling models, each time increasing the number of priority-slots. We present two different

approaches based on this idea.

6.1. Additive Approach

The MOS, MOS-SST and SOS time representations are such that any solution found with n priority-slots can be found

with n + 1 priority-slots: z ∈ MOS(n) ⇒ z ∈ MOS(n+ 1). Therefore, the corresponding models can be solved by

successively increasing by 1 the number of priority-slot. The additive approach is described by Algorithm 1. The parameter

n0 is the initial number of priority-slots. To improve efficiency of the branch & bound algorithm at each iteration, the cutoff

parameter is set using the objective value of the best incumbent found so far. During some iterations, the MILP model may

not have any solution strictly better than the best incumbent. In such cases, it will not return any solution even though the

model may be feasible.

In this paper, three stopping criteria will be used. The first one is (∆ ≤ ε) where ε is an absolute tolerance on the

variation of objective value. In general, this criterion does not guarantee global optimality of the solution even when setting

ε to 0. However, it leads to a small number of iterations. Also, in all our experiments, this stopping criterion always returned

the global optimal solution, which was only proved optimal by using the following stopping criterion.

The second stopping criterion is (n > n) where n is an upper limit on the number of priority-slots. In some cases, it is

possible to determine an upper limit on the number of priority-slots needed to find the optimal solution of the scheduling

problem. In such cases, this stopping criterion guarantees global optimality of the solution.

The third stopping criterion is a time limit on the total computational time, which of course does not guarantee global

optimality.

12



Algorithm 1: Additive approach.

begin
z∗ ←− ∅ ;

cutoff ←− −∞ ;

n←− n0 ;

repeat
z ←− Maximize(MOS(n), cutoff) ;

∆←− z.objval()− z∗.objval() ;

if ∆ > 0 then
z∗ ←− z ;

cutoff ←− z∗.objval() ;
n←− n+ 1 ;

until stopping condition ;

return z∗ ;

end

It is important to note that at each iteration, the integer feasible space of MOS(n) includes scheduling solutions explored

during previous iterations. In order to avoid redundant search, we introduce constraint (27) that rejects any solution that

do not make use of all priority-slots. By adding this constraint to the MOS(n) model, the property z ∈ MOS(n) ⇒ z ∈

MOS(n+ 1) is no longer valid. The same remark holds true for the MOS-SST(n) and SOS(n) models.∑
v∈W

Ziv ≥ 1 i ∈ T (27)

6.2. Multiplicative Approach

The previous approach could be used to solve a scheduling problem using the MOS-FST time representation. However,

a major flaw is that it is not guaranteed that a solution found with n priority-slots can be found with n + 1 priority-slots.

This can be overcome by multiplying the number of priority-slots be a factor of 2 instead of using an increment. Indeed, any

solution found with n priority-slots can be found with 2n priority-slots: z ∈ MOS-FST(n) ⇒ z ∈ MOS-FST(2n). The

multiplicative approach is therefore very similar to the additive approach and is described by Algorithm 2. The stopping

criteria introduced for the additive approach can still be used for the multiplicative approach.

Algorithm 2: Multiplicative approach.
begin

z∗ ←− ∅ ;
cutoff ←− −∞ ;
n←− n0 ;
repeat

z ←− Maximize(MOS(n), cutoff) ;
∆←− z.objval()− z∗.objval() ;
if ∆ > 0 then

z∗ ←− z ;
cutoff ←− z∗.objval() ;

n←− 2 · n ;
until stopping condition ;
return z∗ ;

end

13



6.3. Direct Approach

Although the additive approach can be used to solve SOS models, it might not be very efficient. Indeed, each time the

number of priority-slot is increased by 1, the solver can only schedule one additional operation. In MOS or MOS-SST models,

several additional operations can be scheduled at each iteration, which leaves much more flexibility to better improve the

objective value. Instead, a direct approach can be used. It consists of choosing a fixed value for n and solving the MILP

model once. In some cases, the total number of executions of operations is fixed and known in advanced, so it can be used

as the number of priority-slots, guaranteeing global optimality of the solution obtained. It other cases, a detailed analysis

of the scheduling structure of the problem needs to be performed to efficiently define a value for n (see Section 9). Global

optimality may not be guaranteed if n is too small, or if additional constraints are used to improve the search.

7. Single-Stage Batch Scheduling Problem

In this section, we apply the various time representations to model single-stage batch scheduling problems. We study

several instances introduced in Pinto and Grossmann (1995). The largest instance has 29 orders to be processed before given

due dates from time 0 to time 30. Four units are available to process each single-stage order. Each unit can process only

one order at a time and a minimum unit-specific set-up time is required between any two orders. Each order can only be

processed on a subset of all units with order-and-unit-specific processing times. Table 2 displays all required data. For each

order, units that do not have a corresponding processing time cannot be selected for this order. The objective is to minimize

total earliness which corresponds to maximizing the end times of all orders. Five instances have been studied with 8, 12, 18,

25, and 29 orders, which we denote SSBSP8, . . ., SSBSP29. We introduce the following specific sets.

• O ⊂ {o1, . . . , o29} is the set of orders (O = {o1, . . . , o8} for SSBSP8).

• U = {u1, . . . , u4} is the set of units.

• Uo is the set of units on which order o ∈ O can be processed. For instance, Uo1 = {u1, u4}.

• Ou is the set of orders that can be processed on unit u ∈ U . For instance, Ou3 = {o4, o5, o7, o8}.

The set of operations W can then be defined as follows. Exactly one operation is defined for each order and each unit on

which the order can be processed. This reduces the number of indices from 2 to 1, although the combinatorial size of the

problem remains identical.

W = {(o, u) ∈ O × U, u ∈ Uo} = {o1u1, o1u4, o2u1, o2u4, o3u1, o3u4, o4u3, o4u4, . . .}

Figure 6 depicts the non-overlapping graph of SSBSP8. It contains 3 isolated cliques each corresponding to one unit (unit u2

cannot be used in this instance as it is excluded for all orders, as seen in Table 2). We will denote Wu = {v = (o, u), o ∈ Ou},

where u ∈ U , the set of operations executed on unit u ∈ U , Wu is an isolated clique of GNO. Given an order o ∈ O, exactly

one execution of this order must be performed. Therefore, the set Wo = {v = (o, u), u ∈ Uo} has an associated cardinality

constraint of 1, that is NWo
= NWo

= 1.

7.1. MOS Model

The MOS model for the single-stage batch scheduling problem is derived from constraints (1)-(3), (17), (20), and (27).
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Table 2: Single-Stage Batch Scheduling Example Data

Order Due date (hr) Unit processing time (hr)
1 2 3 4

Set-up times 0.180 0.175 0.000 0.237
1 15 1.538 1.194
2 30 1.500 0.789
3 22 1.607 0.818
4 25 1.564 2.143
5 20 0.736 1.017
6 30 5.263 3.200
7 21 4.865 3.025 3.214
8 26 1.500 1.440
9 30 1.869 2.459
10 29 1.282
11 30 3.750 3.000
12 21 6.796 7.000 5.600
13 30 11.250 6.716
14 25 2.632 1.527
15 24 5.000 2.985
16 30 1.250 0.783
17 30 4.474 3.036
18 30 1.429
19 13 3.130 2.687
20 19 2.424 1.074 1.600
21 30 7.317 3.614
22 20 0.864
23 12 3.624
24 30 2.667 4.000
25 17 5.952 3.448 4.902
26 20 3.824 1.757
27 11 6.410 3.937
28 30 5.500 3.235
29 25 4.286

o1u1

o2u1

o3u1

o6u1

o7u1

o4u3

o5u3 o7u3

o8u3

o1u4

o2u4

o3u4

o4u4

o5u4

o6u4

o7u4

o8u4

Figure 6: Non-overlapping graph with isolated cliques for SSBSP8.
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Maximize
∑
i∈T

∑
v∈W

Eiv

Subject to

Div = Dv · Ziv i ∈ T, v ∈W

Eiv ≤ Ev · Ziv i ∈ T, v ∈W

Eiv = Siv +Div i ∈ T, v ∈W∑
i∈T

∑
v∈Wo

Ziv = 1 o ∈ O

∑
v∈Wu

Ziv ≤ 1 i ∈ T, u ∈ U

∑
v∈Wu

(Ei1v + TRWu · Zi1v) +
∑
i∈T

i1<i<i2

∑
v∈Wu

(Div + TRWu · Ziv)

≤
∑
v∈Wu

Si2v + (H + TRWu
) · (1−

∑
v∈Wu

Zi2v) i1, i2 ∈ T, i1 < i2, u ∈ U

∑
v∈W

Ziv ≥ 1 i ∈ T

Siv, Div, Eiv ≥ 0 i ∈ T, v ∈W

Ziv ∈ {0, 1} i ∈ T, v ∈W

This model can be strengthened in different ways. For each unit, it is possible to derive minimum and maximum of orders

that will be processed on it. The maximum number of orders that can be process on unit u ∈ U is defined as the number of

operations in the set.

NWu
=
∣∣Wu

∣∣ u ∈ U

An improved upper cardinality value for Wu can be obtained by considering the processing times of operations that might

be processed on unit u. Indeed, due to a limited scheduling horizon, it might not be possible to execute all operations in Wu.

Therefore, we use the following improved definition that solves a one-dimensional knapsack problem where all operation have

a value of 1. A linear algorithm to solve this problem consists in ordering the operations in Wu with respect to their duration

Dv and, starting from the operation with the lowest processing time, setting γv to 1 until the knapsack limit H + TRWu
is

reached. For the remaining operations, γv is set to 0.

NWu
= max

{ ∑
v∈Wu

γv
∣∣ γv ∈ {0, 1}, ∑

v∈Wu

(Dv + TRWu
) · γv ≤ H + TRWu

}
u ∈ U

We denote W 1
u = {v = (o, u) ∈W,Uo = {u}} the set of operations that can only be processed on unit u ∈ U . The minimum

number of orders that will be processed on unit u ∈ U can be defined as follows.

NWu =
∣∣W 1

u

∣∣ u ∈ U

However, as the number of orders executed on units different than u ∈ U is limited, NWu
can be increased as follows.

NWu
= max


∣∣W 1

u

∣∣, ∣∣O∣∣− ∑
u′∈U
u′ 6=u

min{n,NWu′}

 u ∈ U
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Table 3: Unit cardinality bounds depending on parameter n for SSBSP29

n u1 u2 u3 u4

8 [8,8] [5,5] [8,8] [8,8]
9 [6,9] [2,5] [6,9] [6,9]
10 [4,9] [2,5] [5,10] [5,10]
11 [2,9] [2,5] [4,11] [4,11]
12 [1,9] [2,5] [3,11] [4,12]
13 [0,9] [2,5] [2,11] [4,13]
14 [0,9] [2,5] [2,11] [4,14]

The values obtained for NWu
and NWu

in problem SSBSP29 are displayed in Table 3 as an example. Using NWu
and NWu

,

the following cardinality constraint can be derived.

NWu
≤
∑
i∈T

∑
v∈Wu

Ziv ≤ NWu
u ∈ U (28)

Given a unit u ∈ U , Wu is an isolated clique of GNO, so the optimal sequence of operations from Wu is not affected by

operations from W \Wu. It is therefore possible to reduce the set of possible sequences of operations from Wu by assigning

these operations to the first priority-slots only. In other words, an operation Wu can be assigned to priority-slot i only if an

operation from Wu is assigned to priority-slot i− 1. This leads to the following symmetry-breaking constraint.∑
v∈Wu

Ziv ≤
∑
v∈Wu

Z(i−1)v i ∈ T, i 6= 1, u ∈ U (29)

This idea can be further applied to other constraints in the model. A maximum cardinality constraint on the set of operations

Wu can be enforced by setting to 0 assignment variables corresponding to the last priority-slots for this set.∑
v∈Wu

Ziv = 0 i ∈ T, i > NWu
, u ∈ U (30)

Also, a minimum cardinality constraint on Wu can be enforced by assigning exactly one operation the first priority-slots.∑
v∈Wu

Ziv = 1 i ∈ T, i ≤ NWu
, u ∈ U (31)

Besides, non-overlapping constraint (20) can be tightened for the first priority-slots as follows.∑
v∈Wu

(Ei1v + TRWu
· Zi1v) +

∑
i∈T

i1<i<i2

∑
v∈Wu

(Div + TRWu
· Ziv) ≤

∑
v∈Wu

Si2v

i1, i2 ∈ T, i1 < i2 ≤ NWu
, u ∈ U

(32)

The single-stage batch scheduling problems are solved with the MOS model plus constraints (28)-(32). The additive approach

is used with the second stopping criterion (n > maxuNu) which guarantees global optimality of the solution. Indeed, for

each unit u ∈ U , no more than Nu priority-slots are needed to sequence operations on it. The initial number of priority-slots

is set to n0 =
⌈∣∣O∣∣/∣∣{u|Wu 6= ∅}

∣∣⌉ which is the minimum number of orders at least one unit has to process. Computational

results are given in Table 4. Experiments were run on an Intel Xeon 1.86GHz processor using GAMS/CPLEX 11. For each

iteration, the LP relaxation, MILP solution, number of nodes, CPU time and cumulative CPU time are displayed. The term

“no solution” for MILP solution is used when CPLEX did not find any solution with higher objective value than the cutoff

value which does not mean that no solution exists. For each problem, the global optimal solution is underlined. The CPU

time elapsed until the first stopping criterion (∆ ≤ 0) is satisfied is also underlined. The results show that the first stopping

criterion leads to significant reduction of CPU times compared to the second. Also, it is interesting to note the problem with
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Figure 7: Effect of the minimum priority-slot usage constraint.

29 orders, although larger, is solved faster than the 25 orders problem. As the scheduling horizon is fixed to 30 hours, the

density of operations is higher with 29 orders. Therefore, this problem is more constrained and has potentially fewer solution.

The model size is increased but the branch & bound tree is smaller, thus leading to smaller CPU times. This is verified by

the fact that fewer nodes are explored.

Additionally, we solved problem SSBSP18 using the full MOS models with or without the minimum priority-slot usage

constraint (27). The results obtained with the additive approach are displayed in Figure 7. It shows that constraint (27)

greatly reduces the search space at each iteration. In particular, using this constraint, the last iterations are solved in few

seconds, whereas CPU times are higher than 100 seconds if it is not used.

We also solved the SSBSP18 instance with exactly 5 priority-slots using the full MOS model without and with symmetry-

breaking constraints, which corresponds to the first iteration of the additive algorithm for this problem. Without symmetry-

breaking constraints, the problem was solved in 115 seconds (124788 nodes) as opposed to less than 2 seconds (513 nodes)

if symmetry-breaking constraints (29)-(32) are used. This shows why using symmetry-breaking concepts is crucial to solve

scheduling problems as they tend to be highly degenerate (Kallrath, 2002).

We performed another experiment which consisted in solving the full MOS model by using the original assignment

constraint (4) instead of the strengthened assignment constraint (17). Instance SSBSP18 was solved in 3.43 seconds (587

nodes) instead of 1.83 seconds (513 nodes) for the strengthened constraint. Thus, this constraint slightly helps to improve

the solution time although CPLEX is able to generate cuts to tighten the LP relaxation accordingly. However, we also solved

the full MOS model replacing the strengthened non-overlapping constraints (20) and (32) by the following non-overlapping

constraint with unit-dependent transition time, which is based on constraint (8).

Ei1v1 + Ei1v2 + TRWu
· (Zi1v1 + Zi1v2) ≤ Si2v1 + Si2v2 + (H + TRWu

) · (1− Zi2v1 − Zi2v2)

i1, i2 ∈ T, i1 < i2, u ∈ U, v1, v2 ∈Wu

(33)

The model was solved in 3288 seconds and 1,078,034 nodes (vs 1.83 seconds and 513 nodes) which proves that CPLEX was

not successful at improving the LP relaxation of the model for this mixed-integer constraint. In general, MILP solvers are

very efficient at solving IPs as they are able to exploit the structure of the model in order generate very tight cuts (such

as clique constraints, Nemhauser and Wolsey (1999)) that can lead to large improvements of the branch & bound search.

However, it is much harder to generate tightening cuts from constraint (33) using the clique structure. Therefore, using

strengthened formulations for mixed-integer constraints is very important as it greatly improves the performance of MILP
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Table 4: MOS computational results for Single-Stage Batch Scheduling Problems

Pb n LP MILP Nb of nodes CPU Cumulative CPU

SSBSP8

3 189.000 189.000 3 0.81s 0.81s
4 189.000 no solution 0 0.77s 1.58
5 189.000 no solution 0 0.80s 2.38s
6 189.000 no solution 0 0.76s 3.14s
7 189.000 no solution 0 0.86s 4.00s
8 188.035 no solution 0 0.90s 4.90s

SSBSP12

3 298.517 296.543 0 0.83s 0.83s
4 299.000 297.974 604 1.67s 2.50s
5 299.000 no solution 207 1.38s 3.88s
6 299.000 no solution 198 1.71s 5.59s
7 299.000 no solution 0 1.17s 6.76s
8 299.000 no solution 0 1.02s 7.78s
9 no solution 0.95s 8.73s
10 no solution 1.01s 9.74s
11 no solution 1.09s 10.83s

SSBSP18

5 461.563 450.760 513 1.83s 1.83s
6 463.993 450.982 1952 5.71s 7.54s
7 467.196 451.504 2924 8.37s 15.91s
8 467.966 no solution 4600 16.84s 32.75s
9 467.966 no solution 4600 18.47s 51.22
10 459.877 no solution 0 1.35s 52.57
11 no solution 1.32s 53.89s
12 no solution 1.48s 55.37s
13 no solution 1.72s 57.09s
14 no solution 1.90s 58.99s

SSBSP25

7 593.615 575.929 3444 17.24s 17.24s
8 601.884 579.089 18261 69.90s 87.14s
9 607.713 579.570 55046 189.66s 276.80s
10 609.000 no solution 77800 408.97s 685.77s
11 609.000 no solution 22400 113.60s 799.37s
12 597.717 no solution 0 3.61s 802.98s
13 583.289 no solution 0 2.31s 805.29s
14 no solution 2.54s 807.83s

SSBSP29

8 649.531 628.413 1583 12.97s 12.97s
9 656.403 634.964 10870 56.16s 69.13s
10 662.720 635.104 42249 206.66s 275.79s
11 666.512 no solution 22400 110.83s 386.62s
12 666.552 no solution 3700 32.72s 419.34s
13 668.164 no solution 1800 28.33s 447.67s
14 653.051 no solution 0 4.72s 452.39s
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solvers.

7.2. MOS-SST Model

The MOS-SST model for the single-stage batch scheduling problem is derived from constraints (1)-(3), (12), (17), (20),

(21), and (27).

Maximize
∑
i∈T

∑
v∈W

Eiv

Subject to

Div = Dv · Ziv i ∈ T, v ∈W

Eiv ≤ Ev · Ziv i ∈ T, v ∈W

Eiv = Siv +Div i ∈ T, v ∈W∑
i∈T

∑
v∈Wo

Ziv = 1 o ∈ O

Nu ≤
∑
i∈T

∑
v∈Wu

Ziv ≤ Nu u ∈ U

∑
v∈Wu

Ziv ≤ 1 i ∈ T, u ∈ U

∑
v∈Wu

(Ei1v + TRWu · Zi1v) +
∑
i∈T

i1<i<i2

∑
v∈Wu

(Div + TRWu · Ziv)

≤
∑
v∈Wu

Si2v + (H + TRWu
) · (1−

∑
v∈Wu

Zi2v) i1, i2 ∈ T, i1 < i2, u ∈ U

ti−1 ≤ ti i ∈ T, i 6= 1∑
v∈Wu

Siv ≤ ti i ∈ T, u ∈ U

∑
v∈Wu

Siv ≥ ti −H · (1−
∑
v∈W ′

Ziv) i ∈ T, u ∈ U

∑
v∈W

Ziv ≥ 1 i ∈ T

Siv, Div, Eiv ≥ 0 i ∈ T, v ∈W

Ziv ∈ {0, 1} i ∈ T, v ∈W

ti ∈ [0, H] i ∈ T

Due to the use of time-points, it is not possible to develop symmetry-breaking constraints based on the isolated cliques of

GNO for this model. Similarly to the MOS model, the additive approach is used and the initial number of priority-slots is set

to n0 =
⌈∣∣O∣∣/∣∣{u|Wu 6= ∅}

∣∣⌉. To solve the problem to global optimality, we use the second criterion (n > |O|). However, all

instances except the first one are very expensive to solve, so we used a time limit of 1000 seconds. Computational results are

given in Table 5. For each problem, the MOS-SST solution obtained with n priority-slots has lower objective value than the

MOS solution obtained with the same number of priority-slots as stated previously. Overall results show that the MOS-SST

time representation is much less effective than the MOS time representation.
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Table 5: MOS-SST computational results for Single-Stage Batch Scheduling Problems

Pb n LP MILP Nb of nodes CPU Cumulative CPU

SSBSP8

3 189.000 177.001 1220 1.47s 1.47s
4 189.000 183.149 6079 3.48s 4.95s
5 189.000 185.567 16339 7.44s 12.39s
6 189.000 187.815 8127 10.96s 23.35s
7 189.000 188.823 25640 18.38s 41.73s
8 189.000 189.000 649 2.64s 44.37s

SSBSP12

3 297.770 272.902 33 0.86s 0.86s
4 299.000 288.031 24452 19.76s 20.62s
5 299.000 290.640 195160 145.87s 166.49s
6 299.000 292.697 507940 394.78s 561.27s
7 299.000 294.289 815078 716.90s 1278.17s

SSBSP18 5 468.000 428.544 256375 476.74s 476.74s
6 468.000 433.583 360510 +1000s +1476.74s

SSBSP25 7 609.000 538.538 103912 +1000s +1000s
SSBSP29 8 638.975 569.580 140638 +1000s +1000s

7.3. MOS-FST Model

The MOS-FST model for the single-stage batch scheduling problem is derived from constraints (1)-(3), (15), and (25).

Note that non-overlapping constraint (20) is not included in the model as assignment constraint (25) is sufficient to enforce

non-overlapping constraints when processing times are constant (Dv = Dv). Also, constraint (27) is not included in the

model as valid schedules containing periods with no activity would become infeasible.

Maximize
∑
i∈T

∑
v∈W

Eiv

Subject to

Div = Dv · Ziv i ∈ T, v ∈W

Eiv ≤ Ev · Ziv i ∈ T, v ∈W

Eiv = Siv +Div i ∈ T, v ∈W∑
i∈T

∑
v∈Wo

Ziv = 1 o ∈ O

Nu ≤
∑
i∈T

∑
v∈Wu

Ziv ≤ Nu u ∈ U

Siv = ti · Ziv i ∈ T, v ∈W

∑
v∈Wu

Ziv +
∑
j∈T

i−δu(v)<j<i

Zjv

 ≤ 1 i ∈ T, u ∈ U, δu(v) =
⌈
Dv + TRu
H/n

⌉

Siv, Div, Eiv ≥ 0 i ∈ T, v ∈W

Ziv ∈ {0, 1} i ∈ T, v ∈W

ti =
i− 1
n
·H i ∈ T

Similarly to the MOS-SST model, it is not possible to develop symmetry-breaking constraints based on the isolated cliques

of GNO for this model. To solve it, the multiplicative approach is used and the initial number of priority-slots is set to

n0 = H
2 = 15. Due to memory limitations we used the second stopping criterion (n > 1920) which does not guarantee
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Figure 8: Comparison of the time representation for Single-Stage Batch Scheduling Problems.

global optimality of the solution. Computational results are given in Table 6. The first iterations are always computationally

inexpensive and lead to good feasible solutions, which are improved in the next iterations. Although near-optimal solutions

are obtained quickly, the gap is never entirely closed due to the time discretization. It is also interesting to note that most

problems are solved at the root node.

7.4. Models Comparison

Figure 8 shows how the objective value of the best incumbent varies over time. A step increase of the objective value

corresponds to a new solution found during the solution algorithm. Note that we do not include intermediate solutions

found during each branch & bound search. Empty squares represent the time when the first stopping criterion is satisfied

while plain squares represent the time when the second stopping criterion is satisfied. This applies only to the MOS model.

From this figure, it is clear that the MOS model is superior to the other models as it finds first feasible solutions very fast,

and is able to find optimal solutions and prove their optimality in reasonable time. The MOS-FST model compares well in

particular for finding first feasible solutions. It also finds near-optimal solutions in reasonable time although it was slower

than the MOS model for the instances that were considered. Also, it is clear that the MOS-SST representation is not well

suited to solve these problems.
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Table 6: MOS-FST computational results for Single-Stage Batch Scheduling Problems

Pb n LP MILP Nb of nodes CPU Cumulative CPU

SSBSP8

15 182.581 182.581 0 0.80s 0.80s
30 186.013 186.013 0 1.07s 1.87s
60 187.456 187.456 0 1.56s 3.43s
120 188.594 188.594 0 2.77s 6.20s
240 188.719 188.719 0 6.07s 12.27s
480 188.813 188.813 0 16.89s 29.16s
960 188.907 188.907 0 52.92s 82.08s
1920 188.954 188.954 0 183.32s 265.40s

SSBSP12

15 288.482 288.482 0 1.02s 1.02s
30 292.671 292.671 0 1.43s 2.45s
60 295.466 295.466 0 2.05s 4.50s
120 296.393 296.393 0 3.70s 8.20s
240 297.268 297.268 0 8.83s 17.03s
480 297.675 297.675 0 25.44s 42.47s
960 297.772 297.772 0 80.46s 122.93s
1920 297.878 297.878 0 282.79s 405.72s

SSBSP18

15 429.377 429.377 0 1.31s 1.31s
30 438.507 438.507 0 1.74s 3.05s
60 445.652 445.182 0 2.67s 5.72s
120 448.808 448.107 0 5.30s 11.02s
240 450.308 449.607 0 14.15s 25.17s
480 451.339 450.782 0 39.90s 65.07s
960 451.652 451.157 0 138.20s 203.27s
1920 451.800 451.297 0 459.25s 662.52s

SSBSP25

15 537.852 536.490 0 1.39s 1.39s
30 554.266 536.490 0 2.05s 3.44s
60 566.344 566.085 0 3.36s 6.80s
120 573.141 573.091 0 7.07s 13.87s
240 576.435 576.435 0 17.66s 31.53s
480 578.464 578.373 0 50.89s 82.42s
960 578.996 578.904 0 168.31s 250.73s
1920 579.300 579.185 0 628.46s 879.19s

SSBSP29

15 570.475 567.485 0 1.47s 1.47s
30 597.973 595.846 0 2.18s 3.65s
60 616.779 613.610 8 4.33s 7.98s
120 627.674 625.258 5 10.02s 18.00s
240 631.863 630.988 0 22.60s 40.60s
480 634.336 633.426 0 75.74s 116.34s
960 635.119 634.019 512 389.57s 505.91s
1920 635.741 no solution 400 +1000s +1505.91s

23



Table 7: Multi-Stage Batch Scheduling Example Data

Stage Unit Transition Order processing time (hr)
Time (hr) 1 2 3 4 5 6 7 8 9 10

1

1 8 18.1 23 18.1 20 17 15 31 12 13 12
2 8 18.1 23 18.1 20 17 14 30 12 7 4
3 8 18.1 23 18.1 20 17 13 34 14 8 23
4 8 18.1 23 18.1 20 17 12 32 15 9 12
5 8 18.1 23 18.1 20 17 18 31
6 8 18.1 23 18.1 20 17 15 16 16 14

2
7 8 14 14 14 11 14 15 31 15 13
8 1 5 5 5 5 5 7 31 16 15 13
9 1 5 5 5 5 5 7 31 15 11 13

3

10 2.5 12 12 24 12 12 13 14 12 13 12
11 2.5 12 12 24 12 12 12 15 13 7 4
12 2.5 12 12 24 12 12 15 16 14 8 23
13 2.5 12 12 24 12 12 17 41 14 9 12
14 2.5 12 12 24 12 12 17 15 14
15 2.5 12 12 24 12 12 18 81 14 16 14
16 2.5 12 12 24 12 12 19 14 15 13
17 2.5 12 12 24 12 12 16 14 15 13
18 2.5 12 16 16 14 11 13
19 2.5 12 13 21 10 12 6

4
20 6 9.5 9.3 7.9 12.5 13.5 12 10 15
21 6 9.5 9.3 7.9 12.5 14 13 9 17 12
22 24 100 14.5 11 8 17 23

5
23 4 24 24 24 24 12 11 22 12
24 4 24 24 24 24 12 11 7 21 22
25 5 48 23 11 7 12

8. Multi-Stage Batch Scheduling Problem

We now extend the previous study to multi-stage batch scheduling problems from Pinto and Grossmann (1995). The

largest instance has 8 orders to be processed in 5 consecutive stages before identical due dates t = 500 hr. Twenty-five units

are available to process each order. Each unit is associated to one stage and can process only one order at a time. A minimum

unit-specific set-up time is required between any two orders processed on the unit. Each order can only be processed on a

subset of all units with order-and-unit-specific processing times. Table 7 displays all required data. For each order, units that

do not have a corresponding processing time cannot be selected for this order. The objective, as introduced by Pinto and

Grossmann (1995), is to minimize total weighted earliness which corresponds to maximizing a weighted summation of the

end time of all orders in all stages. The weights are stage dependent and defined as wl = 0.2 · l. Three instances have been

studied with 5, 8 and 10 orders, which we denote MSBSP5, MSBSP8 and MSBSP10. We introduce the following specific

sets.

• O ⊂ {o1, . . . , o8} is the set of orders (O = {o1, . . . , o5} for MSBSP5).

• L = {l1, . . . , l5} is the set of stages

• U = {u1, . . . , u25} is the set of units.

• Uo is the set of units on which order o ∈ O can be processed. For instance, Uo1 = {u1, . . . , u17, u20, u21, u23, u24}.

• Ou is the set of orders that can be processed on unit u ∈ U . For instance, Ou20 = {o1, o3, . . . , o8}.

• lu is the stage in which unit u ∈ U can be used. For instance, lu7 = l2

24



o1l1u1

o2l1u1

o3l1u1

o4l1u1

o5l1u1

o2l3u18

o1l4u20

o3l4u20 o4l4u20

o5l4u20

Figure 9: Partial non-overlapping graph with isolated cliques for MSBSP5.

• Ul is the set of units which can be used in stage l ∈ L. For instance, Ul5 = {u23, u24, u25}

The set of operations can then be defined as follows. Exactly one operation is defined for each order, each stage and each

unit on which the order can be processed. This reduces the number of indices from 3 to 1, although the combinatorial size

of the problem remains identical.

W = {(o, l, u) ∈ O × L× U, u ∈ Uo ∩ Ul} = {o1l1u1, . . . , o1l1u6, o1l2u7, . . . , o1l2u9, o1l3u10, . . .}

Figure 9 partially depicts the non-overlapping graph of MSBSP5. It contains 25 isolated cliques each corresponding to one

unit. We will denote Wu = {v = (o, l, u), o ∈ Ou, l = lu}, where u ∈ U , the set of operations executed on unit u, Wu is an

isolated clique of GNO. Given an order o ∈ O and a stage l ∈ L, exactly one execution of order o in stage l must be performed.

Therefore, the set Wol = {v = (o, l, u), u ∈ Uo ∩ Ul} has an associated cardinality constraint of 1, that is NWol
= NWol

= 1.

Furthermore, due to the multi-stage feature of this problem, precedence constraints exist between operations belonging to

different stages of the same order. More precisely, for each order o ∈ O and each stage l ∈ L \ {l1}, sets Wo(l−1) and Wol

must satisfy a precedence constraint PWo(l−1)Wol
= 1.

8.1. MOS Model

The MOS model for the single-stage batch scheduling problem is derived from constraints (1)-(3), (10), (17), (20), (27),

and (29)-(32).
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Maximize
∑
i∈T

∑
v∈W

v=(o,l,u)

0.2 · l · Eiv

Subject to

Div = Dv · Ziv i ∈ T, v ∈W

Eiv ≤ Ev · Ziv i ∈ T, v ∈W

Eiv = Siv +Div i ∈ T, v ∈W∑
i∈T

∑
v∈Wol

Ziv = 1 o ∈ O, l ∈ L

Nu ≤
∑
i∈T

∑
v∈Wu

Ziv ≤ Nu u ∈ U

∑
i∈T

∑
v∈Wo(l−1)

Eiv ≤
∑
i∈T

∑
v∈Wol

Siv o ∈ O, l ∈ L, l 6= 1

∑
v∈Wu

Ziv ≤ 1 i ∈ T, u ∈ U

∑
v∈Wu

(Ei1v + TRWu
· Zi1v) +

∑
i∈T

i1<i<i2

∑
v∈Wu

(Div + TRWu
· Ziv)

≤
∑
v∈Wu

Si2v + (H + TRWu
) · (1−

∑
v∈Wu

Zi2v) i1, i2 ∈ T, i1 < i2, i2 > NWu
, u ∈ U

∑
v∈W

Ziv ≥ 1 i ∈ T

∑
v∈Wu

Ziv ≤
∑
v∈Wu

Z(i−1)v i ∈ T, i 6= 1, u ∈ U

∑
v∈Wu

Ziv = 0 i ∈ T, i > NWu
, u ∈ U

∑
v∈Wu

Ziv = 1 i ∈ T, i ≤ NWu
, u ∈ U

∑
v∈Wu

(Ei1v + TRWu
· Zi1v) +

∑
i∈T

i1<i<i2

∑
v∈Wu

(Div + TRWu
· Ziv)

≤
∑
v∈Wu

Si2v i1, i2 ∈ T, i1 < i2 ≤ NWu
, u ∈ U

Siv, Div, Eiv ≥ 0 i ∈ T, v ∈W

Ziv ∈ {0, 1} i ∈ T, v ∈W

Cardinality bounds for units are defined similarly to the single-stage case. The minimum cardinality bound is obtained by

considering the number of orders executed on units different than u ∈ U that belong to the same stage lu.

NWu = max

{ ∑
v∈Wu

γv
∣∣ γv ∈ {0, 1}, ∑

v∈Wu

(Dv + TRWu) · γv ≤ H + TRWu

}
u ∈ U

NWu = max


∣∣W 1

u

∣∣, ∣∣O∣∣− ∑
u′∈U
u′ 6=u
lu′=lu

min{n,NWu′}


u ∈ U
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Table 8: MOS computational results for Multi-Stage Batch Scheduling Problems

Pb n LP MILP Nb of nodes CPU Cumulative CPU

MSBSP5

2 6827.56 6827.56 0 0.98s 0.98s
3 6828.76 6828.76 58 1.66s 2.64
4 6996.76 no solution 0 2.26s 4.90s
5 6996.76 no solution 0 3.23s 8.13s

MSBSP8

3 10985.61 10985.16 837 16.70s 16.70s
4 11364.67 10986.36 1149 59.87s 76.57s
5 11364.67 no solution 500 30.34s 106.91s
6 11364.67 no solution 2200 156.14s 263.05s
7 11364.67 no solution 1500 243.65s 506.70s
8 11364.67 no solution 2200 331.18s 837.88s

MSBSP10 4 13627.41 13581.16 34340 +1000s +1000s

The multi-stage batch scheduling problems are solved using the additive approach with the second stopping criterion

(n > maxuNu) which guarantees global optimality of the solution. The initial number of priority-slots is set to n0 =⌈∣∣O∣∣/minl∈L
∣∣{u|u ∈ Ul}∣∣⌉, which is the minimum number of orders at least one unit has to process in each stage, more

precisely in bottleneck stages. Computational results are given in Table 8. Similarly to the single-stage case, the results

show that the first stopping criterion leads to significant reduction of CPU times compared to the second. The instance with

10 orders cannot be solved to global optimality although feasible solutions are obtained quickly using 4 priority-slots. The

Branch & Bound search is stopped after 1000 seconds with a remaining 0.09% optimality gap. A 1% optimality gap can be

achieved in 219.08 seconds.

8.2. MOS-SST Model

The MOS-SST model for the single-stage batch scheduling problem is derived from constraints (1)-(3), (10), (17), (20)-(22),

and (27).

27



Maximize
∑
i∈T

∑
v∈W

v=(o,l,u)

0.2 · l · Eiv

Subject to

Div = Dv · Ziv i ∈ T, v ∈W

Eiv ≤ Ev · Ziv i ∈ T, v ∈W

Eiv = Siv +Div i ∈ T, v ∈W∑
i∈T

∑
v∈Wol

Ziv = 1 o ∈ O, l ∈ L

Nu ≤
∑
i∈T

∑
v∈Wu

Ziv ≤ Nu u ∈ U

∑
i∈T

∑
v∈Wo(l−1)

Eiv ≤
∑
i∈T

∑
v∈Wol

Siv o ∈ O, l ∈ L, l 6= 1

∑
v∈Wu

Ziv ≤ 1 i ∈ T, u ∈ U

∑
v∈Wu

(Ei1v + TRWu
· Zi1v) +

∑
i∈T

i1<i<i2

∑
v∈Wu

(Div + TRWu
· Ziv)

≤
∑
v∈Wu

Si2v + (H + TRWu
) · (1−

∑
v∈Wu

Zi2v) i1, i2 ∈ T, i1 < i2, u ∈ U

ti−1 ≤ ti i ∈ T, i 6= 1∑
v∈Wu

Siv ≤ ti i ∈ T, u ∈ U

∑
v∈Wu

Siv ≥ ti −H · (1−
∑
v∈W ′

Ziv) i ∈ T, u ∈ U

∑
j∈T
j<i

∑
v∈Wo(l−1)

Zjv ≥
∑
j∈T
j≤i

∑
v∈Wol

Zjv i ∈ T, o ∈ O, l ∈ L, l 6= 1

∑
v∈W

Ziv ≥ 1 i ∈ T

Siv, Div, Eiv ≥ 0 i ∈ T, v ∈W

Ziv ∈ {0, 1} i ∈ T, v ∈W

ti ∈ [0, H] i ∈ T

The additive approach is used to solve the model and the initial number of priority-slots is set to n0 = |L|, the number of

stages, as for each order stage processing operations must start at different dates. No problem instance was solved to global

optimality, so we use a time limit of 1000 seconds. Computational results are given in Table 9. As for the single-stage case,

the MOS-SST time representation is much less effective than the MOS time representation. For the instance with 10 orders

the MOS-SST model returns a worse solution than the MOS model in 1000 seconds (13.31% optimality gap remaining).

8.3. MOS-FST Model

The MOS-FST model for the single-stage batch scheduling problem is derived from constraints (1)-(3), (10), (15), and

(25).
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Table 9: MOS-SST computational results for Multi-Stage Batch Scheduling Problems

Pb n LP MILP Nb of nodes CPU Cumulative CPU

MSBSP5
5 no solution 1.45s 1.45s
6 6617.96 6161.40 21915 21.89s 23.34s
7 6996.76 6448.62 285564 +1000s +1023.34s

MSBSP8
5 no solution 1.81s 1.81s
6 no solution 2.07s 3.88s
7 11363.98 9979.40 21491 +1000s +1003.88s

MSBSP10

5 no solution 2.19s 2.19s
6 no solution 2.37s 4.56s
7 no solution 3.36s 7.92s
8 14255.76 12560.20 2172 +1000s +1007.92s

Maximize
∑
i∈T

∑
v∈W

v=(o,l,u)

0.2 · l · Eiv

Subject to

Div = Dv · Ziv i ∈ T, v ∈W

Eiv ≤ Ev · Ziv i ∈ T, v ∈W

Eiv = Siv +Div i ∈ T, v ∈W∑
i∈T

∑
v∈Wo

Ziv = 1 o ∈ O

Nu ≤
∑
i∈T

∑
v∈Wu

Ziv ≤ Nu u ∈ U

∑
i∈T

∑
v∈Wo(l−1)

Eiv ≤
∑
i∈T

∑
v∈Wol

Siv o ∈ O, l ∈ L, l 6= 1

Siv = ti · Ziv i ∈ T, v ∈W

∑
v∈Wu

Ziv +
∑
j∈T

i−δu(v)<j<i

Zjv

 ≤ 1 i ∈ T, u ∈ U, δu(v) =
⌈
Dv + TRu
H/n

⌉

Siv, Div, Eiv ≥ 0 i ∈ T, v ∈W

Ziv ∈ {0, 1} i ∈ T, v ∈W

ti =
i− 1
n
·H i ∈ T

To solve this model, the multiplicative approach is used and the initial number of priority-slots is set to n0 = H
/

4 = 125. We

use a time limit of 1000s as a stopping criterion. Computational results are given in Table 10. As for the single-stage case,

the MOS-FST time representation quickly finds near-optimal solutions in the first iterations. The instance with 10 orders

was not solved due to memory limitations.

8.4. Models Comparison

Figure 10 shows how the objective value of the best incumbent varies over time. From this figure, it is clear that the

MOS model is superior to the other models as it finds first feasible solutions very fast and is able to find optimal solutions

in reasonable time. The MOS-FST model is significantly more expensive than previous single-stage cases as the scheduling
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Table 10: MOS-FST computational results for Multi-Stage Batch Scheduling Problems

Pb n LP MILP Nb of nodes CPU Cumulative CPU

MSBSP5

125 6820.61 6800.60 0 16.84s 16.84s
250 6826.21 6819.00 0 39.32s 56.16s
500 6827.76 6824.80 499 155.83s 211.99s
1000 6828.76 6828.00 509 619.69s 831.68s
2000 6828.76 6828.10 0 +1000s +1831.68s

MSBSP8 125 10951.49 10925.80 503 71.54s 71.54s
250 10965.66 10956.60 31692 +1000s +1071.54s
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Figure 10: Comparison of the time representation for Multi-Stage Batch Scheduling Problems.

horizon is much longer (500 hours as opposed to 30 hours). Therefore, more priority-slots need to be postulated which makes

the model size grow significantly.

9. Crude-Oil Operations Scheduling Problem

In this section, the different models are tested using the 4 refinery crude-oil scheduling problem studied in Mouret et al.

(2009), noted COSP1, . . .,COSP4. This problem has been widely studied from the optimization viewpoint since the work

of Lee et al. (1996) and Shah (1996). It consists of crude-oil unloading from marine vessels to storage tanks, transfer and

blending between tanks, and distillation of crude mixtures. The goal is to maximize profit and meet distillation demands for

each type of crude blend (e.g. low sulfur or high sulfur blends), while satisfying unloading and transfer logistics constraints,

inventory capacity limitations and property specifications for each blend. The logistics constraints involve non-overlapping

constraints between crude-oil transfer operations:

(i) Only one berth is available at the docking station for vessel unloadings,

(ii) inlet and outlet transfers on tanks must not overlap,

(iii) a tank may charge only one CDU at a time,

(iv) a CDU can be charged by only one tank at a time,

(v) and CDUs must be operated continuously throughout the scheduling horizon.

Due to the logistics constraint (ii), inventory tracking in tanks can be performed by looking at the sequence of inlet and

outlet operations only, and not at the sequence of start and end events of such operations. Indeed, for each tank, the

scheduling solution can be decomposed into successions of inlet and outlet states during which one or several operations are

performed. Therefore, it is only necessary to enforce capacity limitations at the transitions between these states. Figure 11
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Figure 11: Example of tank schedule.

depicts an example of tank schedule with inlet and outlet states, time-based and priority-slot-based inventory profiles. Each

transfer activity is represented by a horizontal bar labeled with the corresponding priority-slot. Vertical dashed lines represent

transitions between outlet and inlet states. Under assumption (ii), it is sufficient to enforce tank capacity limitations just

before transition slots as it corresponds to inventory upper and lower peaks. In practice, they are enforced just before all

priority-slots.

It is well known that developing an efficient tool to solve this problem for any type of refinery is very hard as it is

usually modeled as a large-scale MINLP and requires specific solution algorithms. In Mouret et al. (2009), the nonlinearities

involved by transfer composition constraints were handled using a two step MILP-NLP procedure. In the first stage, an MILP

relaxation obtained by removing the nonlinear composition constraints is solved. Although transfer stream compositions may

be inconsistent with the upstream tank compositions, crude material balances are correctly enforced at this stage. Then, the

discrete decisions (assignment variables Ziv) of the optimal solution are fixed before solving the corresponding NLP (including

the nonlinear constraints). Although global optimality is not proven, all instances were solved within a 4% optimality gap.

We focus on the MILP solution as it is the most expensive and crucial step in the procedure.

Figure 12 displays the refinery system for problems 2 and 3. Each labelled arc corresponds to a transfer operation. Fig-

ure 13 displays the corresponding non-overlapping graph. It contains 4 maximal cliques of 3 operations: {1, 2, 3}, {5, 12, 13},

{7, 12, 13}, and {9, 12, 13}. In particular, maximal clique {5, 12, 13} is due to non-overlapping constraints (ii) and (iii)

which makes it non trivial to detect. Therefore, a generic maximal clique finding algorithm allows generating non-trivial

strengthened non-overlapping constraints, which is the main objective of the non-overlapping graph representation.

The four time representations have been modeled using the same principles as in Mouret et al. (2009) for the SOS

representation. The full mathematical models are presented in Appendix B.
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Figure 12: Refinery crude-oil scheduling system for problems 2 and 3
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Figure 13: Non-overlapping graph for COSP2 and COSP3.
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Table 11: MOS computational results for Crude-Oil Scheduling Problems

Pb n LP MILP Nb of nodes CPU Cumulative CPU

COSP1
1-4 infeas 3.08s 3.08s
5 80.000 79.750 48 1.16s 4.24s
6 80.000 no solution 0 1.56s 5.80s

COSP2

1-3 infeas 2.22s 2.22s
4 103.000 90.000 0 1.05s 3.27s
5 103.000 96.170 122 2.30s 5.57s
6 103.000 101.175 225 3.64s 9.21s
7 103.000 no solution 335 8.61s 17.82s

COSP3

1-2 infeas 1.43s 1.43s
3 84.905 82.500 0 0.85s 2.28s
4 100.000 84.500 16 1.26s 3.54s
5 100.000 87.400 63 1.74s 5.28s
6 100.000 no solution 300 3.57s 8.85s

COSP4
1-3 infeas 2.59s 2.59s
4 132.585 132.548 21 1.58s 4.17s
5 132.585 no solution 0 1.72s 5.89s

9.1. MOS Model

The MOS representation allows us to break symmetries in the model using the following generic constraint. It states that

an operation v cannot be assigned to priority-slot i if no other non-overlapping operation is assigned to priority-slot i − 1.

Indeed, in this case operation v can be assigned to slot i− 1 instead of slot i with no impact on the scheduling solution.

Ziv ≤
∑
v′∈W

NOvv′=1

Z(i−1)v′ i ∈ T, i > 1, v ∈W (34)

This constraint does not make any assumptions on the characteristics of the problem as opposed to symmetry-breaking

constraint (29) which is specific to the case of batch scheduling problems.

The MOS model is solved with the additive approach using the second stop criterion (∆ ≤ 0). The initial number of

priority-slots is set to n0 = 1. Computational results are given in Table 11. All instances are solved within 20 seconds with

a few priority-slots. The most difficult instance, that is COSP2, is the one requiring the most priority-slots alhough not the

larger in size.

9.2. MOS-SST Model

The MOS-SST model is solved with the additive approach using the second stop criterion (∆ ≤ 0). The initial number of

priority-slots is set to n0 = 1. Computational results are given in Table 12. All instances are solved within 400 seconds with

slightly more priority-slots than for the MOS model. The most difficult instance is still COSP2. It is interesting to note that

for the solution obtained for this instance is not actually globally optimal, with a slightly lower objective value of 101.174

instead of 101.175 (see Table 11). The actual global optimal solution can be obtained with at least 10 priority-slots. It clearly

shows that the second stopping criterion does not guarantee global optimality, although it is very efficient in practice.

9.3. MOS-FST Model

The MOS-FST model is solved with the multiplicative approach using the second stop criterion (∆ ≤ 0). The initial

number of priority-slots is set to n0 = 4. Computational results are given in Table 13. Only COSP1 is solved to global

optimality although feasible solutions are obtained quickly. Within the 1000 second time limit, near-optimal solutions are

obtained for instance COSP3 and COSP4, but the solution obtained for COSP3 shows a 4.8% gap with the best known

solution. The MOS-FST discrete-time representation is not efficient at solving the crude-oil scheduling problem. Indeed,
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Table 12: MOS-SST computational results for Crude-Oil Operations Scheduling Problems

Pb n LP MILP Nb of nodes CPU Cumulative CPU

COSP1

1-4 infeas 2.97s 2.97s
5 80.000 79.722 144 1.25s 4.22s
6 80.000 79.750 288 1.94s 6.16s
7 80.000 no solution 968 6.30s 12.46s

COSP2

1-4 infeas 3.30s 3.30s
5 103.000 90.000 327 4.59s 7.89s
6 103.000 97.726 2316 33.51s 41.40s
7 103.000 97.751 4672 70.26s 111.66s
8 103.000 101.174 4545 88.45s 200.11s
9 103.000 no solution 7007 185.29s 385.40s

COSP3

1-3 infeas 2.52s 2.52s
4 100.000 82.500 48 1.43s 3.95s
5 100.000 84.500 333 3.42s 7.37s
6 100.000 87.000 931 14.83s 22.20s
7 100.000 87.400 2101 38.02s 60.22s
8 100.000 no solution 3900 99.03s 159.25s

COSP4
1-5 infeas 24.84s 24.84s
6 132.585 132.548 1293 28.62s 53.46s
7 132.585 no solution 500 20.74s 74.20s

Table 13: MOS-FST computational results for Crude-Oil Operations Scheduling Problems

Pb n LP MILP Nb of nodes CPU Cumulative CPU

COSP1
4 80.000 infeas 0 0.87s 0.87s
8 80.000 79.750 74 1.56s 1.56s
16 80.000 no solution 100 15.17s 17.60s

COSP2
4 98.000 infeas 0 0.90s 0.90s
8 103.000 90.000 2114 28.76s 29.66s
16 103.000 96.250 11852 +1000s +1029.66s

COSP3

4 84.929 82.500 0 0.93s 0.93s
8 99.120 84.250 22 2.55s 3.48s
16 100.000 87.156 563 29.97s 33.45s
32 100.000 no solution 300 +1000s +1033.45s

COSP4
4 132.585 infeas 0 1.20s 1.20s
8 132.585 132.266 574 12.82s 14.02s
16 132.585 132.362 2769 376.84s 390.86s
32 132.585 no solution 0 +1000s +1390.86s

as variable processing times are used, constraint (5) does not help strengthening the model. Instead, if one wishes to use a

discrete-time approach, it would be preferable to consider the work of Lee et al. (1996). Indeed, in their formulation, each

operation that is executed over several consecutive time intervals is actually split into several smaller operations, one for each

time interval.

9.4. SOS Model

As mentioned in Section 5, both cliques and bicliques of GNO can be used to generate non-overlapping constraints.

Table 14 displays all maximal cliques and all maximal bicliques that are not derived from cliques for instances COSP2 and

COSP3. They are 15 maximal cliques and 15 maximal bicliques which corresponds to 15 + 2 · 15 = 45 constraints such as

(19) and (26). There is a clear trade-off between the tightness of the LP relaxation and the size of the model. Therefore, it

is important to carefully select the cliques and bicliques that are used to enforce non-overlapping constraints. We introduce

3 different selection heuristics. The first selection strategy, denoted by a, consists in selecting all maximal cliques only,

leading to 15 constraints (19). The second selection strategy, denoted by b, consists in deriving cliques and bicliques directly

from the non-overlapping constraint definitions. The third selection strategy, denoted by c, consists in improving selection
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Table 14: Maximal cliques and bicliques for COSP2 and COSP3

Nb of vertices Maximal cliques

2

{1, 4}, {1, 5}, {2, 6},
{2, 7}, {2, 8}, {3, 9},
{3, 10}, {4, 11},
{6, 11}, {8, 14},
{10, 14}, {11, 12},
{13, 14}

3
{1, 2, 3}, {5, 12, 13},
{7, 12, 13}, {9, 12, 13}

Nb of vertices Maximal bicliques

3
({4}; {1, 4, 11}), ({6}; {2, 6, 11}),
({8}; {2, 8, 14}), ({10}; {3, 10, 14})

4
({5}; {1, 5, 12, 13}), ({7}; {2, 7, 12, 13}),
({9}; {3, 9, 12, 13}), ({11}; {4, 6, 11, 12}),
({14}; {8, 10, 13, 14})

5
({1}; {1, 2, 3, 4, 5}), ({3}; {1, 2, 3, 9, 10}),
({5, 7, 9, 12, 13}; {12, 13})

6
({2}; {1, 2, 3, 6, 7, 8}),
({12}; {5, 7, 9, 11, 12, 13}),
({13}; {5, 7, 9, 12, 13, 14})

Table 15: Cliques and bicliques used in selections b and c

Constraint No. Selection a Selection b Selection c

(i) 1 {1, 2, 3} {1, 2, 3} implied by 2, 3, 4

(ii)

2 {1, 4}, {1, 5} ({1}; {4, 5}) ({1}; {1, 2, 3, 4, 5})
3 {2, 6}, {2, 7}, {2, 8} ({2}; {6, 7, 8}) ({2}; {1, 2, 3, 6, 7, 8})
4 {3, 9}, {3, 10} ({3}; {9, 10}) ({3}; {1, 2, 3, 9, 10})
5 {4, 11}, {6, 11} ({4, 6}; {11}) ({4, 6, 11, 12}; {11})
6 {5, 12, 13}, {7, 12, 13}, {9, 12, 13} ({5, 7, 9}; {12, 13}) ({5, 7, 9, 12, 13}; {12, 13})
7 {8, 14}, {10, 14} ({8, 10}; {14}) ({8, 10, 13, 14}; {14})

(iii) 8 implied by 6 {12, 13} implied by 6

(iv) 9 {11, 12} {11, 12} implied by 5
10 {13, 14} {13, 14} implied by 7

b by extending it to maximal cliques and bicliques and removing unecessary elements from the selection. Table 15 shows

selections a, b and c. For example, non-overlapping constraint (ii) for the first storage tank is intuitively represented by

the clique ({1}; {4, 5}) in selection b but it is extended to the maximal biclique ({1}; {1, 2, 3, 4, 5}) in selection c. Also,

non-overlapping constraint (i) is represented by the maximal clique {1, 2, 3} in selection b but is removed in selection c as it

is implied by bicliques 2, 3, and 4. Therefore, selection b leads to 16 non-overlapping constraints while selection c leads to 12

non-overlapping constraints only.

Similarly to the MOS representation, it is possible to derive efficient symmetry-breaking constraints for SOS models.

Mouret et al. (2009) described a method for restricting the set of feasible sequences of operations. They used a deterministic

finite automaton (DFA) to express a sequencing rule which was then included in the model as a network flow problem. This

symmetry-breaking approach is problem specific as it exploits in details its scheduling properties.

The SOS model is solved using the direct approach. The number of priority-slots is set to its maximum value as determined

by Mouret et al. (2009). The authors mentioned that this approach does not guarantee global optimality of the solution,

although, in practice, the returned solution is always globally optimal. Computational results are given in Table 16 for

each clique/biclique selection heuristic. The behaviour of this time representation is quite different than for the MOS and

MOS-SST representations as instance COSP4 is now the most difficult, and instance COSP2 is quite easy to solve. Indeed,

COSP4 is solved with the largest number of priority-slots as it is the largest instance in terms of operations and resources,

which makes it the hardest instance. The results obtained for selection a shows that using only maximal cliques is not the

most efficient in the SOS model. It is rather preferable to combine it with bicliques as in selections b and c. Additionally, it

is clear that the selection improvements in selection c lead to a significant decrease in CPU time for instances COSP3 and

COSP4. This is due to the fact that non-overlapping constraints are strengthened and model size is reduced.
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Table 16: SOS computational results for Crude-Oil Operations Scheduling Problems

Pb n LP MILP Nb of nodes CPU
COSP1a 13 80.000 79.750 18 5.88s
COSP1b 13 80.000 79.750 19 4.45s
COSP1c 13 80.000 79.750 21 4.92s
COSP2a 21 103.000 101.175 36 120.42s
COSP2b 21 103.000 101.175 19 55.57s
COSP2c 21 103.000 101.175 25 60.50s
COSP3a 21 100.000 87.400 28 191.47s
COSP3b 21 100.000 87.400 33 97.70s
COSP3c 21 100.000 87.400 31 64.46s
COSP4a 26 132.585 132.548 16 606.86s
COSP4b 26 132.585 132.548 37 574.95s
COSP4c 26 132.585 132.548 32 308.43s

Table 17: Size of MOS, MOS-SST, MOS-FST, and SOS models

n Binary Vars Continuous Vars Constraints

COSP1

MOS 5 40 496 1086
MOS-SST 6 48 601 1403
MOS-FST 8 64 793 1804
SOS 13 104 2848 2333

COSP2

MOS 6 84 1303 2620
MOS-SST 8 112 1745 3758
MOS-FST 16 224 3473 8051
SOS 21 294 13084 7835

COSP3

MOS 5 70 1211 2302
MOS-SST 7 98 1702 3431
MOS-FST 16 224 3873 8439
SOS 21 294 13609 7909

COSP4

MOS 4 76 1489 2806
MOS-SST 6 114 2239 4338
MOS-FST 16 304 5953 12269
SOS 26 494 28445 14351

9.5. Models Comparison

Figure 14 shows how the objective value of the best incumbent varies over time. Results for the SOS model are presented

for clique/biclique selection heuristic c. As for the previous batch scheduling problems the MOS model shows to be superior.

However, the MOS-SST model behaves better than he MOS-FST model for these problems due to non-constant processing

times. The SOS model performs better than the MOS-SST model for instance COSP2, worse for instance COSP4, and

similarly for the other instances. From these results, it seems that the MOS-SST model scales better with the size of the

problem than the SOS model as it requires fewer priority-slots. Finally, in Table 17 we present the model sizes of the MILPs

corresponding to all time representations using the number of priority-slots leading to the best solution. It is clear that

the MOS time representation leads to the most compact models which partly explains its efficiency. The MOS-FST time

representation is much larger due to the higher number of priority-slots required. Also, it is interesting to note that the

SOS time representation requires many more continuous variables. These variables are introduced to represent the network

flow used to break symmetries. Overall, it is also interesting to note that 4 very different models all provide the same LP

relaxation for the problem. Indeed, the objective function is purely economic and not directly linked to scheduling issues, as

opposed to the previous batch scheduling examples. In the case of crude-oil operations scheduling, solving the LP relaxation

corresponds to generating a solution that only satisfies overall material balances, distillation demands and specifications, and

capacity limits at the end of the scheduling horizon.
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Figure 14: Comparison of the time representation for Crude Oil Operations Scheduling Problems.
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10. Conclusion

In this paper, we presented four different time representations that in different forms have been previously introduced

to solve chemical scheduling problems. Using the common concept of priority-slot, it is shown that it is possible to derive

relationship results between these time representations. Additionally, generic scheduling constraints are developed as well as

specific solution algorithms for each model. We apply these models to batch scheduling of single and multi-stage plants, and

to crude-oil operations scheduling.

Intuitively, the representation that requires the least priority-slots is the most computationally effective. In practice,

the MOS time representation proves to be superior to the other time representations on the three types of problem tested

due to the smaller number of priority-slots and symmetry-breaking constraints used. The discrete-time MOS-FST time

representation behaves well on problems with constant processing times while the MOS-SST time representation performs

better with variable processing times. Although it requires a larger number of priority-slots, the SOS time representation is

comparable to the MOS-SST time representation for the crude-oil operations scheduling problems. In particular, the SOS

model is efficiently solved using DFA-based symmetry-breaking constraints (see Mouret et al., 2009).

A natural extension of this work is to adapt the time representations and corresponding mathematical models to more

complex problems that require precise tracking of operation start and end events. Besides, instead of directly solving the

models using an MILP solver, multi-stage algorithms can be developed in order to decompose the different decision levels,

such as selection and sequencing of operations.
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Appendix A. On Tightness of Strengthened Constraints

We present mathematical results on the tightness of strengthened constraints.

• Constraint (17) is at least as tight as constraint (4). Indeed, assume constraint (17) is satisfied for W ′ such that

v1, v2 ∈W ′:

Ziv1 + Ziv2 ≤
∑
v∈W ′

Ziv ≤ 1

• Constraint (6) is at least as tight as constraints (5). Indeed, assume constraint (6) is satisfied for v1, v2 ∈W :

Ei1v1 ≤ Ei1v1 + Ei1v2

≤ Si2v1 + Si2v2 +H · (1− Zi2v1 − Zi2v2)

≤ Si2v2 +H · (1− Zi2v2) + Si2v1 −H · Zi2v1

≤ Si2v2 +H · (1− Zi2v2)

• Constraint (18) is at least as tight as constraint (6). Indeed, assume constraint (18) is satisfied for W ′ such that
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v1, v2 ∈W ′:

Ei1v1 + Ei1v2 ≤
∑
v∈W ′

Ei1v

≤
∑
v∈W ′

Si2v +H ·

(
1−

∑
v∈W ′

Zi2v

)

≤ Si2v1 + Si2v2 +H · (1− Zi2v1 − Zi2v2) +
∑

v∈W ′\{v1,v2}

(Si2v −H · Zi2v)

≤ Si2v1 + Si2v2 +H · (1− Zi2v1 − Zi2v2)

• Constraint (19) is at least as tight as constraint (18). Indeed, assume constraint (19) is satisfied for W ′:∑
v∈W ′

Ei1v ≤
∑
v∈W ′

Ei1v +
∑
i∈T

i1<i<i2

∑
v∈W ′

Div ≤
∑
v∈W ′

Si2v +H · (1−
∑
v∈W ′

Zi2v)

• Constraint (21a) is at least as tight as constraint (13a). Indeed, assume constraint (21a) is satisfied for W ′ such that

v′ ∈W ′:

Siv ≤
∑
v′∈W ′

Siv′ ≤ ti

• Constraint (21b) is at least as tight as constraint (13b). Indeed, assume constraint (21b) is satisfied for W ′ such that

v ∈W ′:

Siv ≥ Siv +
∑

v′∈W ′\{v}

(Siv′ −H · Ziv′)

≥
∑
v′∈W ′

Siv′ −H ·
∑

v′∈W ′\{v}

Ziv′

≥ ti −H · (1−
∑
v′∈W ′

Ziv′)−H ·
∑

v′∈W ′\{v}

Ziv′

≥ ti −H · (1− Ziv)

• Constraint (26) is at least as tight as constraint (5). Indeed, assume constraint (26) is satisfied for sets of operations

W1 and W2 such that v1 ∈W1 and v2 ∈W2:

Ei1v1 ≤
∑
v∈W1

Ei1v

≤
∑
v∈W2

Si2v +H · (1−
∑
v∈W2

Zi2v)

≤ Si2v2 +H · (1− Zi2v2) +
∑

v∈W2\{v2}

(Si2v −H · Zi2v)

≤ Si2v2 +H · (1− Zi2v2)

Appendix B. Mathematical Models for Crude-Oil Operations Scheduling Problems

We present the four mathematical models for crude-oil operations scheduling problems corresponding to each time repre-

sentation. They make use of the following additional sets and parameters.

• WU ⊂W is the set of unloading operations (WU = {1, 2, 3} for COSP2)
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• WT ⊂W is the set of tank-to-tank transfer operations (WT = {4, . . . , 10} for COSP2)

• WD ⊂W is the set of distillation operations (WD = {11, . . . , 14} for COSP2)

• R is the set of resources (i.e. tanks, units): R = RV ∪RS ∪RC ∪RD

• RV ⊂ R is the set of vessels

• RS ⊂ R is the set of storage tanks

• RC ⊂ R is the set of charging tanks

• RD ⊂ R is the set of distillation units

• Ir ⊂W is the set of inlet transfer operations on resource r

• Or ⊂W is the set of outlet transfer operations on resource r

• C is the set of products (i.e. crudes)

• K is the set of product properties (e.g. crude sulfur concentration)

• [V tv , V tv ] are bounds on the total volume transferred during transfer operation v ; in all instances, V tv = 0 for all

operations except unloadings for which V tv = V tv is the volume of crude in the marine vessel

• [ND, ND] are the bounds on the number of distillations

• [FRv, FRv] are flowrate limitations for transfer operation v

• [xvk, xvk] are the limits of property k of the blended products transferred during operation v

• xck is the value of the property k of crude c

• [Ltr, Ltr] are the capacity limits of tank r

• [Dr, Dr] are the bounds of the demand on products to be transferred out of the charging tank r during the scheduling

horizon

• Gc is the gross margin of crude c

Furthermore, the following additional variables are introduced.

• Operation variables V tiv ≥ 0 and Vivc ≥ 0 i ∈ T, v ∈W, c ∈ C

V tiv is the total volume of crude transferred during operation v if it is assigned to priority-slot i, V tiv = 0 otherwise.

Vivc is the volume of crude c transferred during operation v if it is assigned to priority-slot i, Vivc = 0 otherwise.

• Resource variables Ltir and Lirc i ∈ T, r ∈ R, c ∈ C

Ltir is the total accumulated level of crude in tank r ∈ RS ∪RC before the operation assigned to priority-slot i.

Lirc is the accumulated level of crude c in tank r ∈ RS ∪RC before the operation assigned to priority-slot i.
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In all models, the following variable (B.1), operation (B.2) and resource (B.3) constraints are used.

V tiv ≤ V tv · Ziv i ∈ T, v ∈W (B.1a)

V tiv ≥ V tv · Ziv i ∈ T, v ∈W (B.1b)

V tiv =
∑
c∈C

Vivc i ∈ T, v ∈W (B.1c)

Lirc = L0rc +
∑

j∈T,j<i

∑
v∈Ir

Vivc −
∑

j∈T,j<i

∑
v∈Or

Vivc i ∈ T, r ∈ R, c ∈ C (B.1d)

Ltir =
∑
c∈C

Lirc i ∈ T, r ∈ R (B.1e)

FRv ·Div ≤ V tiv ≤ FRv ·Div i ∈ T, v ∈W (B.2a)

xvk · V tiv ≤
∑
c∈C

xckVivc ≤ xvk · V tiv i ∈ T, v ∈W,k ∈ K (B.2b)

Ltr ≤ Ltir ≤ Ltr i ∈ T, r ∈ RS ∪RC (B.3a)

0 ≤ Lirc ≤ Ltr i ∈ T, r ∈ RS ∪RC , c ∈ C (B.3b)

Ltr ≤ Lt0r +
∑
i∈T

∑
v∈Ir

V tiv −
∑
i∈T

∑
v∈Or

V tiv ≤ Ltr r ∈ RS ∪RC (B.3c)

0 ≤ L0rc +
∑
i∈T

∑
v∈Ir

Vivc −
∑
i∈T

∑
v∈Or

Vivc ≤ Ltr r ∈ RS ∪RC , c ∈ C (B.3d)

Dr ≤
∑
i∈T

∑
v∈Or

V tiv ≤ Dr r ∈ RC (B.3e)
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Appendix B.1. MOS Model

Maximize
∑
i∈T

∑
r∈RD

∑
v∈Ir

∑
c∈C

Gc · Vivc

Subject to

Siv ≥ Sv · Ziv i ∈ T, v ∈WU

Eiv ≤ H · Ziv i ∈ T, v ∈W

Eiv = Siv +Div i ∈ T, v ∈W∑
i∈T

∑
v∈Or

Ziv = 1 r ∈ RV

ND ≤
∑
i∈T

∑
v∈WD

Ziv ≤ ND

∑
i∈T

∑
v∈Or1

Eiv ≤
∑
i∈T

∑
v∈Or2

Siv r1, r2 ∈ RV , r1 < r2

∑
j∈T
j<i

∑
v∈Or1

Zjv ≥
∑
j∈T
j≤i

∑
v∈Or2

Zjv i ∈ T, r1, r2 ∈ RV , r1 < r2

∑
i∈T

∑
v∈Ir

Div = H r ∈ RD

Assignment constraint (17)

Non-overlapping constraint (19)

Ziv ≤
∑
v′∈W

NOvv′=1

Z(i−1)v′ i ∈ T, i 6= 1, v ∈W

∑
v∈W

Ziv ≥ 1 i ∈ T

Variable constraints (B.1)

Operation constraints (B.2)

Resource constraints (B.3)

Siv, Div, Eiv, V
t
iv ≥ 0 i ∈ T, v ∈W

Vivc ≥ 0 i ∈ T, v ∈W, c ∈ C

Ltir ≥ 0 i ∈ T, r ∈ RS ∪RC

Lirc ≥ 0 i ∈ T, r ∈ RS ∪RC , c ∈ C

Ziv ∈ {0, 1} i ∈ T, v ∈W
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Appendix B.2. MOS-SST Model

Maximize
∑
i∈T

∑
r∈RD

∑
v∈Ir

∑
c∈C

Gc · Vivc

Subject to

Siv ≥ Sv · Ziv i ∈ T, v ∈WU

Eiv ≤ H · Ziv i ∈ T, v ∈W

Eiv = Siv +Div i ∈ T, v ∈W∑
i∈T

∑
v∈Or

Ziv = 1 r ∈ RV

ND ≤
∑
i∈T

∑
v∈WD

Ziv ≤ ND

∑
i∈T

∑
v∈Or1

Eiv ≤
∑
i∈T

∑
v∈Or2

Siv r1, r2 ∈ RV , r1 < r2

∑
j∈T
j<i

∑
v∈Or1

Zjv ≥
∑
j∈T
j≤i

∑
v∈Or2

Zjv i ∈ T, r1, r2 ∈ RV , r1 < r2

∑
i∈T

∑
v∈Ir

Div = H r ∈ RD

Assignment constraint (17)

Non-overlapping constraint (19)

ti−1 ≤ ti i ∈ T, i 6= 1∑
v∈W ′

Siv ≤ ti i ∈ T,W ′ ∈ clique(GNO)

∑
v∈W ′

Siv ≥ ti −H · (1−
∑
v∈W ′

Ziv) i ∈ T,W ′ ∈ clique(GNO)

∑
v∈W

Ziv ≥ 1 i ∈ T

Variable constraints (B.1)

Operation constraints (B.2)

Resource constraints (B.3)

Siv, Div, Eiv, V
t
iv ≥ 0 i ∈ T, v ∈W

Vivc ≥ 0 i ∈ T, v ∈W, c ∈ C

Ltir ≥ 0 i ∈ T, r ∈ RS ∪RC

Lirc ≥ 0 i ∈ T, r ∈ RS ∪RC , c ∈ C

Ziv ∈ {0, 1} i ∈ T, v ∈W

ti ∈ [0, H] i ∈ T
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Appendix B.3. MOS-FST Model

Maximize
∑
i∈T

∑
r∈RD

∑
v∈Ir

∑
c∈C

Gc · Vivc

Subject to

Siv ≥ Sv · Ziv i ∈ T, v ∈WU

Eiv ≤ H · Ziv i ∈ T, v ∈W

Eiv = Siv +Div i ∈ T, v ∈W∑
i∈T

∑
v∈Or

Ziv = 1 r ∈ RV

ND ≤
∑
i∈T

∑
v∈WD

Ziv ≤ ND

∑
i∈T

∑
v∈Or1

Eiv ≤
∑
i∈T

∑
v∈Or2

Siv r1, r2 ∈ RV , r1 < r2

∑
i∈T

∑
v∈Ir

Div = H r ∈ RD

Assignment constraint (17)

Non-overlapping constraint (19)

Siv = ti · Ziv i ∈ T, v ∈W∑
v∈W

Ziv ≥ 1 i ∈ T

Variable constraints (B.1)

Operation constraints (B.2)

Resource constraints (B.3)

Siv, Div, Eiv, V
t
iv ≥ 0 i ∈ T, v ∈W

Vivc ≥ 0 i ∈ T, v ∈W, c ∈ C

Ltir ≥ 0 i ∈ T, r ∈ RS ∪RC

Lirc ≥ 0 i ∈ T, r ∈ RS ∪RC , c ∈ C

Ziv ∈ {0, 1} i ∈ T, v ∈W

ti =
i− 1
n
·H i ∈ T
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Appendix B.4. SOS Model

Maximize
∑
i∈T

∑
r∈RD

∑
v∈Ir

∑
c∈C

Gc · Vivc

Subject to

Siv ≥ Sv · Ziv i ∈ T, v ∈WU

Eiv ≤ H · Ziv i ∈ T, v ∈W

Eiv = Siv +Div i ∈ T, v ∈W∑
i∈T

∑
v∈Or

Ziv = 1 r ∈ RV

ND ≤
∑
i∈T

∑
v∈WD

Ziv ≤ ND

∑
i∈T

∑
v∈Or1

Eiv ≤
∑
i∈T

∑
v∈Or2

Siv r1, r2 ∈ RV , r1 < r2

∑
j∈T
j<i

∑
v∈Or1

Zjv ≥
∑
j∈T
j≤i

∑
v∈Or2

Zjv i ∈ T, r1, r2 ∈ RV , r1 < r2

∑
i∈T

∑
v∈Ir

Div = H r ∈ RD

Assignment constraint (17)

Non-overlapping constraints (19) and (26)

Symmetry-breaking constraints (Mouret et al., 2009)∑
v∈W

Ziv ≥ 1 i ∈ T

Variable constraints (B.1)

Operation constraints (B.2)

Resource constraints (B.3)

Siv, Div, Eiv, V
t
iv ≥ 0 i ∈ T, v ∈W

Vivc ≥ 0 i ∈ T, v ∈W, c ∈ C

Ltir ≥ 0 i ∈ T, r ∈ RS ∪RC

Lirc ≥ 0 i ∈ T, r ∈ RS ∪RC , c ∈ C

Ziv ∈ {0, 1} i ∈ T, v ∈W
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