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Abstract 
In this work, we present different tools of mathematical modeling that can be used in Oil and Gas 
industry to help improve production decision making for field development, production 
optimization and planning. Firstly, we formulate models to compare multiperiod optimization and 
single period optimization for the maximization of net present value and the maximization of total 
oil production. This study helps to identify the importance of multiperiod optimization in Oil and 
Gas production planning. Further, we formulate a bicriterion optimization model to determine the 
ideal compromise solution between maximization of the two objective functions, the net present 
value (NPV) and the total oil production. To account for the importance of hedging against 
uncertainty in oil production, we formulate a two-stage stochastic programming model to compute 
an improved expected value of NPV and total oil production in the oil well network model subject 
to uncertainties in oil prices and productivity indices. 

	

1. Introduction 
Hydrocarbon production development is a complex process that encompasses physics of 
multiphase fluid flow from reservoir, wells, pipelines and processing equipment as well as 
infrastructure management for drilling and operating under safe conditions. In a reservoir, 
production is often constrained by the reservoir petrophysics and back-pressure as a result of flow 
characteristics of fluids in the pipelines and fluid-handling capacity of surface facilities, as well as 
safety and economic considerations [1]. Determination of optimal hydrocarbon production 
requires planning at several horizons from one year up to a specific time horizon for the lifespan 
of the reservoir [2]. In many oil and gas industries the planning and decision-making takes places 
for a single time period, but this may result in suboptimal solutions. For a better decision-making 
optimization over a time horizon, multiperiod optimization is a better approach. The multiperiod 
problem is capable to provide optimal solutions that take into account decision variables over a 
long-time span and are not subject to short-term changes in the parameters related to hydrocarbon 
production form the reservoirs.   

Production and injection well positioning, planning and surface network optimization are some 
aspects of optimization in Oil and Gas field planning. The optimization of the aspects mentioned 
above impacts the capital investment and profit generation in oil production facilities. Several 
studies have focused on production planning of oilfields, such as the work done by Gunnerud and 
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Foss, 2009 [2]; Camponogara, Plucenio, Teixeira, Campos, 2010 [30]; Kosmidis, Perkins, 
Pistikopoulos, 2005 [20]. These studies considered the production planning optimization problem 
taking into account the constraints for pressure drop in the oil wells, surface networks and 
incorporate gas lift in the optimization problem. In this study, we address a subset of the production 
planning problem taking into account the optimization of oil production in the oil well production 
planning problem. The works mentioned above have used models of varying complexity, but they 
have focused on a single objective function, i.e., the maximization of total oil production for the 
oilfields. In our study, we aim to highlight that maximization of total oil production is not the same 
as the maximization of net present value and present a formulation to determine a better solution. 

Isebor, Durlofsky, 2014[26]; address a general oilfield planning and production optimization 
problem. In their work, they consider a bi-objective optimization problem of maximization of net 
present value and maximization of total oil production. They present an algorithm to approximate 
the Pareto curve by handling the bi-objective problem as a single objective optimization problem. 
In their study, they have used a Single Objective Product Formulation (SOPF) and apply it to the 
case of optimization of two objective functions. SOPF (Audit et al. 2008 [31]) requires an 
identification of a reference point “r” in the objective space. Points are generated in the objective 
space such that the distance between the new solution points and reference point are maximized. 
These points identify the subsets of Pareto front and by varying the position of r different portions 
of the Pareto front are generated. The study applies SOPF such that it combines a two objective 
optimization in a way that maximizes the objective space with the reference point, and a Pareto 
approximation is generated. Furthermore, they approximate the compromise solution from the 
Pareto curve generated using the SOPF. In our study, we present a method to obtain the Pareto 
curve for the maximization of the two objective functions and obtain the exact compromise 
solution. Details of the formulation to determine the ideal compromise solution for bicriterion 
optimization are explained in appendix A of the paper. 
 
In this paper, we address an integrated production planning problem from reservoir to surface. The 
multiperiod problem is optimized to determine the production profiles of the oil wells for the 
maximization of the net present value (NPV) and the maximization of the total oil production over 
the time horizon. In this paper, we address the multiobjective problem for oil production 
optimization. The maximization of two conflicting objective functions, the NPV and the total oil 
production, are optimized using the approach used by Grossmann and Drabbant [12] to obtain the 
Pareto optimal solution and the ideal compromise solution for the oil production planning problem.  
 
The process of oil production involves uncertainty. Hence, to optimize the production from oil 
wells this uncertainty in prices and other parameters such as productivity indices, is to be 
considered for optimization. The uncertainty in the parameters affects the oil production from the 
oil wells and hence the revenue generation from the production. Significant work has been done 
to handle uncertainty in optimization. Sahinidis, 2004 [32] and Grossmann et al. 2016 [33] present 
an overview of modeling techniques such as stochastic programming and robust optimization, for 
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process systems that involve uncertainty in variables. In this study, we present a two-stage 
stochastic programming model. The stochastic model is based on the impact of uncertainty in 
parameters such as oil prices and productivity indices on the optimization on the objective 
functions. 

The outline of this paper is as follows. First, we describe the background of the research work done 
on oilfield planning and production modeling. Second, we present a general overview of the 
research work done on oilfield production planning problem and formulate a multiperiod nonlinear 
programming model for a production planning problem. In addition, we propose a simplified 5 oil 
well model and solve the problem for a time horizon of 20 years to optimize the net present value 
and total oil production over the time horizon. Based on the solutions of the multiperiod NLP 
problem we generate a Pareto curve with the ϵ-constrained method and present a direct approach 
to find the ideal compromise solution.  Finally, we describe a two-stage stochastic programming 
formulation to   the expected NPV and oil production by accounting for the uncertain oil prices 
and productivity indices.   

 

2. Background 

Oil production from a reservoir involves different steps: exploration, appraisal, development and 
production. At each step, decisions are made that affect the overall performance of the oil field. 
Gupta and Grossmann [4], proposed a multiperiod Mixed-integer Nonlinear Programming 
(MINLP) model for optimal planning of offshore oil and gas infrastructure. In their work, they 
considered the three components oil, gas and water explicitly in their formulation. The nonlinear 
behavior of the reservoir is approximated by third or higher order polynomials.  The model is 
reformulated as a mixed-integer linear programming (MILP) model. We consider the model 
proposed by Gupta and Grossmann [4], as reference for our model development. Significant work 
has been done to capture the effect of pressure drop in the oil well and surface network, e.g. 
mechanistic correlations [17], empirical correlations [17] and Gilbert curve [17, 23]. In this study, 
for the sake of simplicity, we do not consider pressure drop models for the oil wells.   

Several operations are associated with the oil production from a reservoir. It involves complex 
fluid flow with the components water, oil and gas flowing in the pipelines together. The exact 
prediction of the properties of this multiphase fluid flow is difficult. Hence, the fluid flow is 
approximated by single-phase flow or two-phase flow. Before the start of production, the reservoir 
has a shut-in pressure that corresponds to the maximum pressure of the reservoir. The reservoir 
pressure might be high such that no external assistance is required to carry the fluid to the surface. 
However, during the field life the reservoir pressure steadily decreases and requires external 
methods such as gas lift or pumping to sustain production at operating and economical conditions. 
The wellhead pressure controls the fluid flow in the oil well by adjusting the bottomhole pressure. 
The difference between the reservoir pressure and bottomhole pressure prevents the entry of sand 
particles from entering in the well [17]. 
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The total liquid produced from a reservoir is determined from the Inflow Performance Relationship 
(IPR). IPR determines the functional relationship between the production rate from the reservoir 
and the Bottom Hole Flowing Pressure (BHFP). IPR is derived from an approximation of Darcy’s 
law [17, 24, 25] for single-phase liquid flow and is used to determine the total production rate. 
This correlation depends on the productivity index, bottomhole pressure of well and the reservoir 
pressure. The approximated formulation of Darcy’s law (IPR)  is represented as follows,  

                J =      qo / (pr – pwf )                                                                          (1) 
                where, J: Productivity index, 
                 pr, pwf: average reservoir pressure, bottom hole flowing pressure, 
                 qo: oil flowrate into the well. 

The liquid production depends on the bottomhole pressure and the productivity index, which is the 
capability of a well to produce oil. The factors that affect the productivity index are reservoir 
drainage area, pay zone thickness, effective permeability of the formation of the oil, well length, 
fluid velocity and well completion method. The fluid produced in the well is directed to a separator, 
which is an equipment that separates the gas, oil and water from fluid produced from the reservoir. 
The capacity of the separator limits the production from the oil well it is a physical design 
constraint in the model. The oil and gas obtained from the separator is sent to the downstream 
processing. Further, as the oil is extracted from wells, the water oil ratio (water cut), gas oil ratio 
and reservoir pressure vary nonlinearly as a function of the cumulative oil recovered from the 
wells. These relations of the water oil ratio, gas oil ratio and pressure are obtained from on surface 
characterization and dynamic modeling studies. In this paper, the sets of pressure, cumulative 
offtake, GOR (gas oil ratio), WCT (water cut) curves have been extracted from numerical reservoir 
simulations because directly integrating such software adds a significant level of complexity. 

 

3. Problem statement 
Given is a reservoir with a set of oil wells, well = {well 1, well 2…}. The oil production problem 
is considered for a given time horizon of TH years. The pressure profiles, gas oil ratio and water 
cut have a linear or polynomial correlation with the cumulative oil produced from the respective 
wells. These correlations are obtained from actual data from oilfields. The productivity indices are 
fixed for the wells and do not vary with time. Further, the maximum cumulative liquid that can be 
produced from all the wells is limited by the capacity of the separator to handle processing of 
liquid into oil, gas and water. The revenue generation from the oil production depends on the 
selling prices of oil and gas obtained after from the oil wells. The cost of the oil production depends 
on the compression cost for the gas produced from the oil wells and the processing of water. The 
cost and price parameters are fixed for the model. Fluctuation in the oil prices, productivity indices 
takes place over the course of production from the oil wells. The uncertainty of the parameters is 
used to develop a stochastic model. 
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To determine the optimum oil production from the wells two objective functions can be 
formulated. First, the maximization of the net present value (NPV) for the oil wells results in the 
optimization of the oil production subject to increase in the capital generation, which is dependent 
on the revenue and cost associated with oil production. Second, the objective function to maximize 
the total oil production from the wells over the time horizon aims to increase the oil production 
form each well, but does not focus on the optimization of the revenue generation. The model is 
solved for a time horizon of TH years with the objective to maximize the net present value of 
production. Further, the simplified model is solved to maximize the total oil production from all 
the wells over the long-term time horizon of TH years.   

The time horizon of TH years is discretized into intervals Δt, of one year time periods. It is assumed 
that the surface pipeline network is already established, and the reservoir depletes at a natural rate. 
The liquid flow from the oil wells is combined and transferred to the separator, which is assumed 
to be of fixed capacity. It is also assumed that there is no pressure drop in the oil wells and the 
surface network. Further, in the IPR correlation the bottomhole pressure is assumed to be zero. 
The constraint equations formulated for oil and gas production are nonlinear yielding a multiperiod 
nonlinear programming model. This multiperiod NLP model is solved using the global 
optimization solver BARON [13] and local NLP solvers such as CONOPT [36], SNOPT [34, 35].  

 

3.1 Multiperiod nonlinear programming (NLP) model  

The multiperiod NLP model has objective functions to either maximize the NPV or maximize total 
oil production in the long-term time horizon TH. The initial investment for oil filed planning is not 
included in the objective functions since it is constant and is paid up-front. 

The cumulative oil produced Rorcw,t  for each well w for the time period t, is computed by summing 
up the oil production row,t from each well until the time T. 

Rorcw,t = ("# row,t )                                        ∀ t <= time ; T, time ϵ TH ; w  ϵ well             (2) 

The water cut WCTw,t , gas oil ratio  GORw,t  and pressure variation Prw,t for each well at time t is 
computed using the  given empirical correlations (linear equations or polynomial correlations) of 
the cumulative oil production Rorcw,t . These correlations of pressure variation, gas oil ratio and 
water cut are obtained from data from geological studies of reservoir. 

Prw,t  = f( Rorcw,t)                                                ∀ t ϵ TH ; w  ϵ well                                    (3) 

WCTw,t = f( Rorcw,t)                                             ∀ t ϵ  TH ; w  ϵ well                                  (4) 

GORw,t = f( Rorcw,t)                                             ∀ t ϵ TH ; w  ϵ well                                   (5) 
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The liquid produced rLw,t  from the oil wells is determined from the productivity indices PIw  and 
the pressure correlation Prw,t  (Eq 3). Given is the inflow performance relationships mentioned 
earlier ( eq 1) with the assumption that the bottomhole pressure (BHP) is zero,  

rLw,t = PIw * Prw,t                                                 ∀ t ϵ TH ; w  ϵ well                                  (6) 

The oil produced row,t is computed from the total liquid produced (Eq6) from the oil wells and 
the water cut correlation (Eq4).  

row,t = rLw,t * (1-WCTw,t)                                   ∀ t ϵ TH ; w  ϵ well                                   (7) 

The gas produced rgw,t  is calculated from the gas oil ratio (Eq5) and the oil produced from each 
well row,t . 

rgw,t = row,t * GORw,t                                          ∀ t ϵ TH ; w  ϵ well                                   (8) 

The total liquid produced TrLt, total oil produced Trot , total gas produced Trgt and total water 
produced Trwt are computed by summing the production of liquid, oil, gas and water over the wells 
w. 

TrLt = ($%&&  rLw,t  )                                            ∀ t ϵ TH ; w  ϵ well                                 (9) 

Trgt =  ($%&&  rgw,t)                                             ∀ t ϵ TH  ; w  ϵ well                                (10) 

Trot =  ($%&&  row,t)                                             ∀ t ϵ TH  ; w  ϵ well                                (11) 

Trwt =  ($%&&  rww,t)                                            ∀ t ϵ TH  ; w  ϵ well                               (12) 

The model has constraints on the total liquid Trot that can be processed in the separator. In addition, 
there is a constraint on the total oil produced from each well (maximum oil produced MOwell). 

Trot ≤ Sep                                                           ∀ t ϵ TH                                                     (13) 

row,t ≤ MOwell                                                      ∀ t ϵ TH ; w  ϵ well                                    (14) 

The NPV depends on the revenue CRt and cost CCt associated with the oil production. The revenue 
is generated from the price pot of total oil produced Trot, and the price pgt of total gas produced 
Trgt at each time interval from the wells. The cost is calculated from cost gcct for the compression 
of gas produced Trgt and the cost of wtct treatment of water produced Trwt during oil production.  

CRt = Δt * (pot *Trot + pgt * Trgt)                   ∀ t ϵ TH                                                     (15) 

CCt = Δt * (gcct * Trgt + wtct * Trwt)             ∀ t ϵ TH                                                      (16) 

As discussed earlier, for oil production optimization two objective functions can be used for the 
optimization the oil production. First, the maximization of the NPV that depends on the revenue 
CRt and cost CCt associated with oil production discounted over the time. Second, the 
maximization of the total oil production Z that is the sum of the total oil produced Trot summed 
over the time horizon. 
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max. NPV =  ("'  disct * (CRt –CCt) )                    ∀ t ϵ TH                                             (17) 

max. Z =   ("'  Trot)                                  ∀ t ϵ TH                                                       (18)   

 The model can be solved using nonlinear programming local NLP solvers (CONOPT [36], 
SNOPT [34, 35]) or global NLP solvers (BARON [17]).  

 

4. Numerical results 

The model is solved, and three studies are performed using the simplified multiperiod NLP model: 

i) The multiperiod model, Eq 2- Eq 18, formulated 
above is solved for maximization of the NPV 
simultaneously for all time periods (single period 
optimization) and compared to case where the 
model is solved sequentially for each time period 
(multiperiod optimization). 

ii)  The bicriterion optimization problem (18) is 
solved to determine the Pareto curve (see 
appendix A) between the net present value and 
the total oil production to determine the optimal 
tradeoffs between the two objective functions. 
Further, a model is formulated to find the ideal 
compromise solution between the two objective 
functions.                             Fig 1 Oil wells network 

iii)   The multiperiod model formulated is assumed to have uncertainty in the oil prices and 
productivity index. A two-stage stochastic model is developed and solved for the two 
objective functions subject to uncertainty in oil prices, productivity index.                                                     
 

The simplified multiperiod NLP model is solved for a case of five wells, Well = {well 1, well 2, 
well 3, well 4, well 5} over a time horizon of 20 years. The time horizon is discretized into one 
year time periods. The separator capacity is fixed to 8000 stock tank barrel per day (stb /day). 
Fig. 1 shows the five oil wells network. The oil prices in the model range from 28 USD per 
barrels to 84 USD per barrels and the gas prices are in the range 0.65 USD per MMBTU to 1.3 
USD per MMBTU. The rate of return to compute the NPV for the multiperiod model is 10%. 

The multiperiod nonlinear programming model is solved using the global solver BARON and 
the local solvers CONOPT [36] and SNOPT [34, 35]. The results of the global solver and local 
solvers were the same, but the computation time varied.            
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4.1 Five well production model 
a) Oil production for the maximization of NPV: 

The multiperiod NLP model with an objective function to maximize the NPV yields an NPV 
of 6401.8 Million USD and a total oil production of 18.5 Million stock tank barrels for a time 
horizon of 20 years. The model consists of 1,115 equations with 1,073 variables. The global 
optimization solver BARON [13] is used to solve the problem with maximum time limit of 
1000 CPU seconds. The model was also solved using CONOPT [36] (0.374 CPU seconds) and 
SNOPT [34, 35] (0.437 CPU seconds). The results of the local solvers are the same as that of 
BARON. The wells oil production profiles are shown in Fig. 2. 

 

 

Fig. 2 Production profiles for maximization of Net present value over 20 years 

 

b) Oil production for maximization of total oil production: 

The multiperiod NLP model with an objective function to maximize the total oil production 
over a time horizon of 20 years yields an NPV of 6361.297 Million USD and a total oil 
production of 22.56 Million stock tank barrels for a time horizon of 20 years. The model 
consists of 1,115 equations with 1,073 variables. The global optimization solver BARON [13] 
is used to solve the problem with maximum time limit of 1000 CPU seconds. The model was 
also solved using CONOPT [36] (0.203 CPU seconds) and SNOPT [34, 35] (0.608 CPU 
seconds). The results of the local solvers are the same as that of BARON. The wells oil 
production profiles are shown in Fig. 3.  
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Fig. 3 Production profiles for maximization of total oil production over 20 years 

 

4.2 Comparison of Single period optimization (SP) and Multiperiod    
     optimization (MP) 
The nonlinear programming model is solved successively for the single period optimizations over 
the time horizon of 20 years and compared to the multiperiod optimization for the two objective 
functions in eq. 17 and eq. 18. 

Case a: Maximization of net present value over 20 years. The results of the multiperiod 
optimization model (MP) and single period model (SP) to optimize the NPV over the time horizon 
of 20 years yields the results shown in Table 1. 

 Table 1. Results of multiperiod vs single period optimization for max. NPV. 
	 NPV_MP 

(MUSD)	
Total oil_MP 

(MMstb)	
NPV_SP 
(MUSD)	

Total oil_SP 
(MMstb)	

Δ NPV 
(MUSD)	

Δ Oil Production 
(MMstb)	

Total	 6401.8	 18.504	 6400.493	 18.863	 1.35	 -0.359	
        

The results of multiperiod and single period optimization show that the total NPV value for 20 
year time period (6401.8 MUSD) is greater than the NPV summation for single period optimization 
for a period of 20 years (6400.493 MUSD). The model has a gain of 1.35 million USD (0.021 %) 
for the multiperiod optimization. In addition, the total oil produced is greater for the single period 
optimization by 0.359 MMstb (1.93 %).  This shows that single period optimization yields 1.93 % 
more oil production than the multiperiod optimization.  

Case b: Maximization of total oil production over 20 years. The results of multiperiod 
optimization model (MP) and single period model (SP) to optimize the total oil production over 
the time horizon of 20 years yields following results: 
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Table 2. Results of multiperiod vs single period optimization for max. Total oil production. 
	 NPV_MP 

(MUSD)	
Total oil_MP 

(MMstb)	
NPV_SP 
(MUSD)	

Total oil_SP 
(MMstb)	

Δ NPV  
(MUSD)	

Δ Oil 
Production 

(MMstb)	
Total	 6361.3	 22.563	 6368.047	 22.203	 -6.75 	 0.315	

             

The results of the multiperiod and single period cases for the objective function to maximize total 
oil production for a time horizon of 20 years, show that the total NPV value for multiperiod 
optimization (6361.3 MUSD) is less than summed NPV of single period optimization (6368.047 
MUSD), which shows a gain of 6.75 million USD (0.12 %) for multiperiod over the single period 
optimization.  Further, the total oil produced is greater for the multiperiod optimization by 0.315 
MMstb, i.e., multiperiod optimization has 1.6% more oil production rate than single period. 

For both cases, there are small differences in values because we are using a reduced model that 
does not account for depletion. Further, we perform a case study for different rates of return and 
oil prices. This study helps to understand the impact of different rates of return and oil prices on 
the NPV value, because the difference between the NPV for multiperiod and single period 
optimization is less for the base case solved above. 

We consider five cases to study the effect rate of return and oil prices has on the two objective 
functions. The cases are as follow: 

• BC: Base case with 10 % rate of return. 

• LI: Low rate of return 5% 

• HI: High rate of return 15% 

• DO: Oil prices in descending order for base case 

• AO: Oil price are in ascending order for base case 

 

Table 3. Results of max NPV and max total oil production. 

Case	
NPV	MP	
(MUSD)	

Total	oil	
produced	

MP	
(MMstb)	

NPV	SP	
(MUSD)	

Total	oil	
produced	

SP	
(MMstb)	

Δ	NPV	
(MUSD)	

Δ	Oil	
Production	
(MMstb)	

BC	 6401.84	 18.5	 6400.49	 18.86	 1.35	 -0.36	
LI	 9254.67	 18.27	 9250.91	 18.86	 3.766	 -0.6	
HI	 4843.16	 18.65	 4842.73	 18.86	 0.427	 -0.21	
DO	 6664.86	 18.81	 6662.88	 18.53	 1.982	 0.274	
AO	 6430.18	 19.73	 6421.27	 20.48	 8.91	 -0.76	
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Table	3	shows	the	results	for	multiperiod	and	single	period	optimization	for	maximization	of	NPV	
for	the	five	cases	BC,	LI,	HI,	DO,	AO.	The	case	AO	in	which	the	oil	prices	are	in	ascending	order	in	
the	 range	 from	 28	 USD	 per	 barrel	 to	 84	 USD	 per	 barrel	 yields	 the	 results	 with	 the	 largest	
difference	in	the	NPV	between	SP	and	MP	optimization	(8.91	MUSD).	

Table	4.	Results	of	max	NPV	and	max	total	oil	production.	

Case	
NPV	MP	
(MUSD)	

Total	oil	
Produced	

MP	
(MMstb)	

NPV	SP	
(MUSD)	

Total	oil	
Produced	

SP	
(MMstb)	

Δ	NPV	
(MUSD)	

Δ	Oil	
Production	
(MMstb)	

BC	 6361	 22.56	 6368	 22.2	 -6.5	 0.36	
LI	 9199	 22.56	 9201	 22.2	 -1.43	 0.36	
HI	 4810	 22.56	 4820	 22.2	 -9.69	 0.36	
DO	 6627	 22.56	 6644	 22.2	 -17.4	 0.36	
AO	 6406	 22.56	 6406	 22.2	 0.063	 0.36	

	

Table	4	 shows	 the	 results	 for	multiperiod	optimization	and	single	period	optimization	 for	 the	
maximization	of	the	total	oil	production	for	the	cases	BC,	LI,	HI,	DO	and	AO.	The	NPV	value	is	
better	for	multiperiod	optimization	is	better	than	the	single	period	(0.063	MUSD)	for	AO.	The	
difference	in	the	total	oil	production	between	multiperiod	and	single	period	optimization	is	same	
for	the	five	cases.		

The	results	from	the	case	study	indicate	the	case	in	which	the	oil	prices	are	in	ascending	order	
from	 28	 USD	 per	 barrel	 to	 84	 USD	 per	 barrel	 yield	 the	 largest	 differences.	 Single	 period	
optimization	is	a	myopic	approach;	hence	it	computes	a	lower	NPV	for	the	case	AO.	Multiperiod	
optimization	 takes	 into	 account	 the	 overall	 time	 horizon	 and	 gives	 better	 results	 than	 single	
period	optimization.	

	

4.3 Bicriterion optimization model 
A comparative study of the five well model was performed for maximizing NPV and maximizing 
total oil production for the complete time horizon of 20 years. The results for the two cases are 
shown in Table 5. 

Table 5. Results of max NPV and max Total oil production. 

Variable	 Maximization of  NPV	 Variable	 Maximization of oil	
NPV (MUSD)	 6401.843	 NPV(MUSD)	 6361.297	

Total Oil(MMstb)	 18.504	 Total Oil(MMstb.)	 22.563	
 

 The total oil production for the two cases are plotted in Fig 4. 
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Fig. 4 Oil production for the two cases over a time horizon of 20 years 

In the case of maximizing the NPV, the oil production decreases first and then increases. In 
contrast, for the case where the objective function is to maximize total oil production, all wells 
start producing from the beginning. In the case of maximizing the oil production, there is a 
constant decrease in the oil produced, based on the relations of total oil production and NPV 
maximization.  A comparison was performed for different NPV values. The model was solved 
with the objective function to maximize total oil production with a constraint on NPV.  Six 
different cases were formulated by imposing constraint on the maximum value of NPV. The 
model formulation for the bicriterion optimization is as follows. 

   max Total oil production 
       s.t.  NPV  ϵ    
               Constraints, 
               where, min NPV ≤  ϵ  ≤  max NPV 

Table 6. Results for Pareto analysis. 

Cases	 NPV(MUSD)	 Total oil Produced (MMstb)	
Max Oil	 6361	 22.563	
Case1	 6377	 21.971	
Case2	 6385	 21.367	
Case3	 6393	 20.562	
Case4	 6397	 19.978	

Max NPV	 6401	 18.504	
 

The results from Table 6 clearly indicate that as the NPV increases the total oil production 
decreases and vice versa. This behavior leads to a set of Pareto optimal solutions. Fig. 5 shows 
the production profile for the different values of NPV. 
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Fig. 5 Total oil production for different values of NPV 

Fig. 6 shows an inverse relation between NPV and total oil production. The figure shows that 
changes in total oil produced have smaller variation in the NPV for low total oil production values. 
For higher total oil, production a small variation in the total oil produced produces a higher change 
in the NPV. 

 

Fig. 6 Pareto curve for NPV and total oil production maximizations. 

In the graph of Fig. 6, point A represents the max NPV and min oil produced, while point B  
represents the max Oil produced and min NPV. The Pareto curve shown in Fig. 6 corresponds to 
a multiobjective optimization problem with the two objective functions: 
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a) Maximization of NPV  
b) Maximization of total oil produced. 

The utopia point represents the point where we have both maximum NPV and maximum oil 
produced. The problem is also formulated and solved to obtain the ideal compromise solution 
between the NPV and the total oil production (see appendix A). The ideal compromise solution, 
which is the closest point from the utopia point and a Pareto optimal solution according to some 
norm (e.g. Euclidean norm), is given by a value 6393.759 Million USD for NPV, which is 0.13 % 
less than maximum NPV. The total oil production is 20.559 MMstb, which is 9 % less than the 
maximum value for the total oil production from the oil well. Fig. 7 shows the ideal compromise 
solution of the bicriterion optimization model.        

                 
 Fig.  7 Ideal compromise solution for the Pareto analysis.		

Table 7. Results of bicriterion optimization. 

	 Maximize  NPV	 Ideal compromise solution	 Maximize total oil	
NPV(MUSD)	 6401.843	 6393.759	 6361.297	

Total Oil(MMstb)	 18.504	 20.559	 22.563	
 

6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405

18 18.5 19 19.5 20 20.5 21 21.5 22 22.5 23

N
PV

	(M
US

D)

Total	Oil	Produced	(MMstb)

Ideal	
compromise	
Solution	



15	
	

 
Fig.  8 Total oil produced over 20 years 

The total oil production profile for the three cases of maximization of NPV, ideal compromise 
solution and maximization total oil production for the reduced model are shown in Fig. 9. 

 

4.4 Two-stage stochastic model 
Uncertainty in the parameters associated with oil production can be handled using stochastic 
programming [37], which is used for long term production planning problems. We formulate a 
two-stage stochastic programming model to optimize the expected value for the production model. 
In a two-stage stochastic programming [37] we have two sets of decisions variables, first stage 
variables are the here and now decision variables that are decided before the uncertainty is realized, 
and the second stage variables are the recourse action decisions based on the realization of 
uncertainty. 

A two-stage stochastic programming model [37] is formulated for a deviation of ±20 % in the oil 
prices and productivity indices. The multiperiod NLP model is modified for the formulation of 
stochastic model. The first stage variables for the stochastic model are taken to be the selection of 
3 oil wells form a total set of 5 oil wells. Therefore, binary variables for the selection of wells are 
added to the model as the first stage decision variables. Three scenarios are considered for both oil 
prices and productivity indices, low, medium and high. This Mixed-integer Nonlinear 
programming (MINLP) model is solved for the case of maximization of NPV and the case of 
maximization of total oil production. The probability of the scenarios for oil prices and 
productivity indices are {0.25, 0.5, 0.25} for the pessimistic, nominal and optimistic cases 
respectively. The model is solved using the SBB solver [38] and the results are shown in Table 8. 

To compare the deterministic and the stochastic solutions, the value of stochastic solution (VSS) 
is computed [37]. VSS is the difference between the optimal solution of the two-stage stochastic 
model to the solution obtained by solving the two-stage model with the first stage variables fixed 
to the values at the optimal solution of the deterministic problem.    
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Table 8. Values of the deterministic and stochastic model 

	 Max. NPV	 Max. Total Oil Produced	
	 Deterministic	 Stochastic	 Deterministic	 Stochastic	

NPV (MUSD)	 6455.437	 6511.343	 6186.86	 5932.748	
Total Oil Produced (MMstb)	 15.774	 16.283	 19.46	 18.794	

 

Table 9. VSS results 

Objective function	 Stochastic	 Expected stage 1	 VSS	 VSS %	
Max. NPV (MUSD)	 6511.343	 6456.356	 54.987	 0.85	

Max. Total Oil Produced (MMstb)	 19.435	 18.779	 0.656	 3.5	
 

Based on the results mentioned in Table 9, the VSS for case of maximization of NPV is 54.99 
MUSD (0.85 %), while for maximization of total oil production is 0.66 MMstb (3.5%). Hence, for 
the scenarios considered for the oil well model, the two-stage stochastic model provides an 
improved solution and gives a better NPV (for Max. NPV) and total oil production (for Max. Total 
Oil Produced) values compared to the deterministic solution. 

 

5. Conclusion 

This paper has described a multiperiod NLP model to determine the optimal solutions for oil 
production planning. In this study, we solve a simplified model for production from oil wells. The 
results of the multiperiod NLP model determines the production profiles of the oil wells as shown 
in Fig.2 and 3. We formulate a case study for different rates of return and oil prices to compare the 
objective function values for multiperiod and single period optimization (Table 3 and 4). The study 
mentioned in section 4.3, clearly shows that maximization of net present value or maximization of 
total oil production does not determine the best tradeoff between these objectives. The best tradeoff 
solution is an ideal compromise solution that is closest to the utopia point. This is an important 
finding, as in industries maximization of either of the objective functions mentioned above is 
considered as the best solution. It is also shown that the multiperiod model provides significantly 
improved solutions compared to the case where successive single-period problems are solved. 
Finally, the model is solved to optimize the oil production for uncertainty in oil prices and results 
of the VSS for the two-stage stochastic model are tabulated in Table 9.  The values of stochastic 
solution show that the results of the two-stage stochastic model are better than the deterministic 
solution. Hence, considering the two-stage stochastic model improves the solution for both 
objective functions.    

Acknowledgement 

The authors acknowledge financial support from Total and from the Center of Advanced Process 
Decision-Making at Carnegie Mellon.	 	

 



17	
	

 

6. Bibliography 

• Lake, L. W., Liang, X., Edgar, T. F., Al-Yousef, A., Sayarpour, M., & Weber, D. (n.d.). 
Optimization Of Oil Production Based On A Capacitance Model Of Production And Injection 
Rates. Society of Petroleum Engineers. SPE, 2007. 

• Gunnerud, V., & Foss, B. (2010). Oil production optimization-A piecewise linear model, 
solved with two decomposition strategies. Computers and Chemical Engineering, 34(11), 
1803–1812.  

• Gupta, V., 2013, Modeling and Computational Strategies for Optimal Oilfield Development 
Planning   under Fiscal Rules and Endogenous Uncertainties. PhD. Dissertation, Carnegie 
Mellon University, Pittsburgh, US.  

• Gupta, V., Grossmann, I.E. An Efficient Multiperiod MINLP Model for Optimal Planning of 
Offshore Oil and Gas Field Infrastructure. Ind. Eng. Chem. Res. 2012, 51 (19), 6823-6840. 

• Lee, A. S.; Aronofsky, J. S. A linear programming model for scheduling crude oil production. 
J. Petrol Tech. 1958, 10, 51−54.  

• Bohannon, J. A linear programming model for optimum development of multi-reservoir 
pipeline systems. J. Petrol Tech. 1970, 22, 1429−1436.   

• Sullivan, J. a computer model for the development of an offshore gas field. J. Petrol Tech. 
1982, 34, 1555−1564.  

•  Harding, T.J., Radcliffe, N.J. and King, P.R., 1996, January. Optimisation of production 
strategies using stochastic search methods. In European 3-D Reservoir Modeling Conference. 
Society of Petroleum Engineers. 

•  Iyer, R. R.; Grossmann, I. E.; Vasantharajan, S.; Cullick, A. S. Optimal planning and 
scheduling offshore oilfield infrastructure investment and operations. Ind. Eng. Chem. Res. 
1998, 37, 1380−1397.  

•  Van den Heever, S. A., Grossmann, I. E., 2000. An iterative aggregation/disaggregation 
approach for the solution of a mixed integer nonlinear oilfield infrastructure planning model. 
Ind. Eng. Chem. Res., 39, 1955–1971.  

•  Van den Heever, S. A., Grossmann, I. E., 2001. A Lagrangean Decomposition Heuristic for 
the Design and Planning of Offshore Hydrocarbon Field Infrastructures with Complex 
Economic Objectives. Ind. Eng. Chem. Res., 40, 2857–2875. 

• Grossmann, I. E., R. Drabbant and R. K. Jain. “Incorporating toxicology in the synthesis of 
industrial chemical complexes.” Chem. Eng. Commun., 17 (1982): 151-170. 

• Sahinidis, N. V. BARON: A general purpose global optimization software package. Journal of 
Global Optimization 1996, 8, 201−205. 

• Verma Kinshuk, Integration of reservoir data with oilfield planning and infrastructure 
optimization, Master’s thesis, 2015. 

• Mundhada Nirmal, Integration of reservoir modeling with oilfield planning and infrastructure 
optimization, Master’s thesis, 2016. 

• Szilas A. P. (1975), Production and transportation of oil and gas, Development in petroleum 
science volume 3, Elsevier scientific publishing company. 

• Mukherjee, H., and Brill, J. P., Multiphase flow in wells, Henry L. Doherty series, Monograph 
volume 17. Society of petroleum engineers Inc. 



18	
	

• Grossmann, I. E.,  Review of nonlinear mixed-integer and disjunctive programming 
technique. Optimization and engineering, 2002. 

• Lin, X., Floudas, C. A., 2003. A Novel Continuous-Time Modeling and Optimization 
Framework for Well Platform Planning Problems. Optim. Eng., 4 (1-2), 65–95.  

•  Kosmidis, V. D., Perkins, J. D., Pistikopoulos, E. N., 2005. A mixed integer optimization for 
the well scheduling problem on petroleum fields. Computers & Chemical Engineering Journal, 
29, 1523–1541. 

• Tavallali M.S. and Karimi I.A., 2013. Optimal producer well placement and production 
planning in an oil reservoir. Comp. Chem. Eng. 55, 109-125. 

• Carvalho, M., Pinto, J. M., 2006a. A bilevel decomposition technique for the optimal planning 
of offshore platforms. Brazilian J. Chem. Eng., 23, 67–82.  

• Gilbert, W.E., “Flowing and Gas-lift Well Performance,” Drill. & Prod. Prac. (1954) 126. 
• Darcy, H., Les fontaines publiques de la ville de Dijon (1856). 
• Muskat, M., The Flow of Homogeneous Fluids through Porous Media. McGraw-Hill Book Co. 

Inc, New York City (1937); reprinted by SPE Richardson Texas (1982); copyrighted by Intl. 
Human Resources Development Corp., Boston (1982). 

• Isebor, O.J., Durlofsky, L.J.: Biobjective optimization for general oil field development. J. Pet. 
Sci. Eng. 119, 123 – 138 (2014).ISSN 0920-4105 

• Hanes, Y. Y., Hall, W. A., and Freedman, H. T., “Multiobjective Optimization in Water 
Resource Systems.” Elsevier Scientific, Amsterdam,1975. 

• Freimer, M., Yu, L., “Some New Results on Compromise Solutions for Group Decision 
Problems,” Management Science , 22,628 ,1976. 

• Yu, L., “A Class of Solutions for Group Decision Problems,” Management Science, 19, 936, 
1973. 

• Camponogara, E.; Plucenio, A.; Teixeira, A. F.; Campos, S. R. V. An automation system for 
gas-lifted oil wells: Model identification, control and optimization. J. Pet. Sci. Eng. 2010, 70, 
157−167. 

• Audet, C., Savard, G., Zghal, W., 2008.Multiobjective optimization through a series of single-
objective formulations.SIAMJ.Optim.19 (1), 188–210. 

• Sahinidis NV. Optimization under uncertainty: state-of-the-art and opportunities. Comput 
Chem Eng 2004; 28(6):971–83. 

• Grossmann, I. E., Apap, R. M., Calfa, B. A., García-Herreros, P., & Zhang, Q. (2016). 
Recent advances in mathematical programming techniques for the optimization of process 
systems under uncertainty. Computers and Chemical Engineering, 91, 3–14. 
https://doi.org/10.1016/j.compchemeng.2016.03.002 

• Gill, P. E., Murray W., and Saunders, M. A., SNOPT: An SQP algorithm for large-scale 
constrained optimization. SIAM Journal on Optimization, 12(4):979–1006, 2002. 

• Gill, P. E., Murray W., and Saunders, M. A., SNOPT: An SQP algorithm for large-scale 
constrained optimization. SIAM Review, 47(1):99–131, 2005. 

•  Drud A. S., CONOPT – A Large-Scale GRG Code, ORSA Journal on Computing 6, 207–216 
(1992). 

• Birge J., Louveaux FV. Introduction to Stochastic Programming. 2nd edition. New York: 
Springer (2011). 

• Bussieck M.R. and Drud A.S., 2001, SBB: A New Solver for Mixed Integer Nonlinear 
Programming. 

• Awasthi Utsav, Optimization of production and gas lift for oil wells, Master’s thesis, 2017. 



19	
	

 
 

Appendix A 

Bicriterion optimization 

The Pareto analysis of conflicting objective functions results in the formulation of a bicriterion 
optimization problem. The bicriterion optimization yields tradeoff solutions between two objective 
functions such as the net present value and the total oil production. To generate the Pareto cure the 
ϵ - constrained method [27] is used. In this method one of the objective functions is optimized 
subject to a constraint ϵ on the other objective function. Further, after obtaining the Pareto curve 
one can determine the ideal compromise solution. In this case, the resulting Pareto front clearly 
shows that as the NPV value is increased the total oil production is decreased as shown in Fig A1. 

 
Fig.  A1 Pareto curve of NPV vs Total oil production.  

The ideal solution would be the one in which we obtain the maximum NPV and maximum total 
oil production. This point is denoted as the utopia point [28, 29]. The ideal compromise solution 
corresponds to the point in the Pareto curve that has the shortest distance to the Utopia point. 

Model 

Let f1: Net present value, f2: total oil production. [12] 

• The utopia point corresponds to [f1U, f2U]. The maximum of both variables. Where superscript 
U represent upper bound.  
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Fig. A2 Scaled Net present value (f1) vs Total oil produced(f2) 

• An ideal compromise solution can be obtained by finding the point on the curve closest to 
utopia point i.e. minimizing the distance (δ p) for a norm p, where: 
        p = [(f1U – f1)p + (f2U -f2)p]1/p         1 p                                                               (19) 

• The variables f1 and f2 are scaled from zero to one. 
• After scaling of the functions to f1’ and f2’. The utopia point for scaled variables is (1, 1). 

Norm p=2 is considered for minimizing the fractional deviations 1- f1’ and 1- f2’.  
• To obtain the ideal compromise solution. For p=2, solve, 

min ((1- f1’)2 +(1- f2’ )2 )1/2 ,                                                                            (20) 
  s.t. Constraints 
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