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Abstract In this paper we present a review on the latest advances in solution
methods for the global optimization of non-convex Generalized Disjunctive Pro-
grams (GDP). Considering that the performance of these methods relies on the
quality of the relaxations that can be generated, our focus is on the discussion
of a general framework to find strong relaxations. We identify two main sources
of non-convexities that any methodology to find relaxations should account for.
Namely, the one arising from the non-convex functions and the one arising from
the disjunctive set. We review the work that has been done on these two fronts
with special emphasis on the latter. We then describe different optimization tech-
niques that make use of the relaxation framework and its impact through a set of
numerical examples typically encountered in Process Systems Engineering. Finally,
we outline challenges and future lines of work in this area.

1 Introduction

Mixed-integer Nonlinear Programming (MINLP) [11] is a well known framework
to represent optimization problems that deal with discrete and continuous vari-
ables, where the model is mainly described by using algebraic equations defined on
the discrete and continuous space. In order to represent accurately the behavior
of complex systems, many nonlinear expressions are often used. In general, this
leads to an MINLP where the solution space is non-convex, and hence, difficult
to solve since this may give rise to local solutions that are suboptimal. In the last
decades many global optimization algorithms for non-convex problems have been
proposed [8][34]. To prove optimality of the solution, most of these methods rely
on finding upper and lower bounds of the global optimum until their corresponding
gap lies within a given tolerance. The lower bound prediction is often achieved by
solving a continuous convex relaxation of the MINLP. The tighter the relaxation
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the closer the lower bound to the global optimum and that is why a large part of
the research has been related to finding tighter relaxations. However, in general,
finding the global optimum of large-scale non-convex MINLP models in reasonable
computational time remains a largely unsolved problem.

Even though the MINLP framework has been successfully used in many differ-
ent areas, it greatly relies on the expertise of the modeler to generate models that
are tractable and effective to solve. With this in mind, in order to faciliate the
generation of effective models, Raman and Grossmann [23] proposed the General-
ized Disjunctive Programming framework, which can be regarded as an extension
of Disjunctive Programming [3]. This alternative strategy not only considers al-
gebraic expressions but also disjunctions and logic propositions, which allow the
modeler to focus on the physical description of the problem rather than on the
properties of the model from a mathematical perspective. This is particularly im-
portant when dealing with complex systems where large number of different logic
constructs are necessary to describe them and, hence, difficult to model effectively.
By exploiting the underlying logic structure of this representation at a higher level
of abstraction can help to obtain MINLP models with tighter relaxations and,
hence, develop better solution methods [25].

This paper reviews the state of the art of global optimization techniques for
non-convex GDPs. It is organized as follows, in section 2 we introduce the general
structure of a non-convex GDP and analyze the sources of non-convexity (i.e. aris-
ing from nonlinear terms and disjunctions). We review different techniques that
have been proposed in the literature to handle them. In particular, we focus on the
latest results by Ruiz and Grossmann [26] to find relaxations for convex GDPs.
In section 3 we show how the results in previous sections are used to develop
a general framework to find convex continuous relaxations for non-convex GDPs
as described in [29]. We validate the benefits of this strategy by using it within
a set of optimization problems frequently arising in Process Systems Engineer-
ing. In section 4 we discuss the implementation of different solution methods that
make use of the relaxation framework described in section 3, whose performance
is analyzed through the set of numerical examples previously introduced. Section
5 summarizes the paper and outlines challenges and future lines of work in this
area.

2 Non-convex Generalized Disjunctive Programs

The general structure of a non-convex GDP, which we denote as (GDPNC), is as
follows,
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min Z = f(x)

s.t. gl(x) ≤ 0 l ∈ L

∨
i∈Dk

[

Yik

rjik(x) ≤ 0 j ∈ Jik

]

k ∈ K (GDPNC)

∨
i∈Dk

Yik k ∈ K

Ω(Y ) = True

xlo ≤ x ≤ xup

x ∈ Rn, Yik ∈ {True, False}, i ∈ Dk, k ∈ K

where f : Rn → R1 is a function of the continuous variables x in the objec-
tive function, gl : Rn → R1, l ∈ L belongs to the set of global constraints, the
disjunctions k ∈ K, are composed of a number of terms i ∈ Dk, that are con-
nected by the OR operator. In each term there is a Boolean variable Yik and a
set of inequalities rjik(x) ≤ 0, rjik : Rn → Rm. If Yik is True, then rjik(x) ≤ 0
is enforced; otherwise, it is ignored. Note that a fixed cost term was associ-
ated to each disjunct in the original representation [23]. However, a more com-
pact form was presented in [13] and it is used here. Ω(Y ) = True are logic
propositions for the Boolean variables expressed in the conjunctive normal form

Ω(Y ) = ∧
t=1,2,..T

[

∨
(i,k)∈Rt

(Yik) ∨
(i,k)∈Qt

(¬Yik)

]

where for each clause t=1,2 . . . T,

Rt is the subset of indices of Boolean variables that are non-negated, and Qt is
the subset of indices of Boolean variables that are negated. The logic constraints
∨

i∈Dk

Yik ensure that only one Boolean variable is True in each disjunction.

It is important to note that the source of non-convexities in GDPNC is twofold.
On one hand, the regions that each disjunct defines in the disjunctions may be
disconnected in the continuous space. In other words, for any k ∈ K and i ∈ Dk

and i′ ∈ Dk the intersection of the disjunct i with i′ may be empty. On the other
hand, the region that is defined in a given disjunct may not be convex (i.e. for any
k ∈ K, i ∈ Dk the set S = { x|rik(x) ≤ 0, x ∈ Rn } may not be convex). Notice
that without loss of generality the global constraints gl(x) ≤ 0 can be considered
as being part of a disjunction with one disjunct. Also, the nonlinear objective
function could also be represented as part of the disjunctive set [29].

Any methodology that aims at finding a convex relaxation for non-convex
GDPs must deal with these two sources.

2.1 Relaxation for non-convex regions arising in each disjunct

As proposed by Lee and Grossmann [18] a typical approach to find relaxations
for this source of non-convexities consists in replacing the non-convex functions
rjik,g

l and f with suitable convex underestimators r̂jik, ĝ
l and f̂ . It is important to

note that if this is implemented in the original non-convex GDP (i.e. GDPNC) a
convex GDP is obtained. The structure of the resulting convex GDP can be seen
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in GDPCR.

min Z = f̂(x)

s.t. ĝl(x) ≤ 0 l ∈ L

∨
i∈Dk

[

Yik

r̂jik(x) ≤ 0 j ∈ Jik

]

k ∈ K (GDPCR)

∨
i∈Dk

Yik k ∈ K

Ω(Y ) = True

xlo ≤ x ≤ xup

x ∈ Rn , Yik ∈ {True, False}, i ∈ Dk, k ∈ K

Then, the following relationship can be established,

FGDPCR ⊇ FGDPNC ,

where FGDPCR denotes the defining disjunctive set of GDPCR and FGDPNC the
defining disjunctive set of GDPNC .
This is illustrated in Figure 1 where FGDPNC = {(x1, x2)|[r1(x) ≤ 0]∨[r2(x) ≤
0], (x1, x2) ∈ R} and FGDPCR = {(x1, x2)|[r1(x) ≤ 0]∨[r2(x) ≤ 0], (x1, x2) ∈ R}

Fig. 1 (a) GDPNC (b) GDPCR

Considering that f̂(x) always underestimates f(x) the solution of GDPCR pro-
vides a lower bound of the global optimal solution of GDPNC .

Finding suitable convex underestimators rjik,g
l and f has been the purpose

of research for many decades. However, most of the current approaches to obtain
convex relaxations are based on replacing the non-convex functions with prede-
fined convex envelopes [34]. Three of the most frequent functions that arise in
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non-convex programs are bilinear, concave and fractional. For the particular case
of bilinear terms, tighter relaxations have been proposed. Note that the method
to obtain the convex envelope for this special function, which was proposed by
McCormick [20] [1], is a particular case of the Reformulation-Linearization Tech-
nique (RLT) [32] in which cuts are constructed by multiplying constraints by
appropriate variables and then linearizing the resulting bilinear terms. Efficient
implementations of this approach for large scale problems were studied by Liberti
and Pantelides [19]. Other techniques consider the convex envelope of the sum-
mation of the bilinear terms [34], the semidefinite relaxation of the whole set of
bilinear terms [2] or the piecewise linear relaxations [40]. In [28] a methodology
for finding tight convex relaxations for a special set of quadratic constraints given
by bilinear and linear terms that frequently arise in the optimization of process
networks was presented. The basic idea lies on exploiting the interaction between
the vector spaces where the different set of variables are defined in order to gener-
ate cuts that will tighten the relaxation of traditional approaches. These cuts are
not dominated by the McCormick convex envelopes and can be effectively used in
conjunction with them.

In the last few years, techniques to find the convex envelopes for more general
non-convex functions have been proposed [15]. Instead of relying on factorable
programming techniques to iteratively decompose the non-convex factorable func-
tions through the introduction of variables and then relaxing each intermediate
expression, they consider the functions as a whole, leading to stronger relaxations.
For a more thorough review on finding relaxations for non-convex functions please
see [9].

In the last few years, an alternative way to find relaxations that relies on the
physical meaning of the model rather than the mathematical constructs has been
introduced [27]. The main idea consists in recognizing that each constraint or set
of constraints has a meaning that comes from the physical interpretation of the
problem. When these constraints are relaxed part of this meaning is lost. Adding
redundant constraints that recover that physical meaning strengthens the relax-
ation. A methodology to find such redundant constraints based on engineering
knowledge and physical insight was proposed.

It is important to note that depending on the strategy that is selected, linear
or nonlinear relaxations can be developed. Even though the former is often pre-
ferred due to the maturity of linear programming techniques, the tightness of the
latter may sometimes result in a significant improvement in the performance of
the solution method that is chosen. With this in mind, in this work we consider
both linear and nonlinear relaxations.

2.2 Dealing with non-convexities arising from the disjunctions

The discrete nature of the GDP may lead to a disjoint feasible set, even when
the regions defined in each disjunct are convex. This leads to a second source of
non-convexities for which a relaxation is necessary.

Typically, the continuous relaxation of convex GDPs (i.e. GDPs where the
global constraints and the regions defined in each disjunct are convex) is achieved
by first reformulating the GDP as a MINLP and then relaxing the integrality of
the discrete variables.
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GDPs are often reformulated as an MINLP/MIP by using either the big-M
(BM) [21], or the Hull reformulation (HR) [17]. The former yields:

min Z = f(x)

s.t. g(x) ≤ 0

rik(x) ≤ M(1− yik) i ∈ Dk, k ∈ K (BM)
∑

i∈Dk
yik = 1 k ∈ K

Ay ≥ a

xlo ≤ x ≤ xup

x ∈ Rn, yik ∈ {0, 1} , i ∈ Dk , k ∈ K

where the variable yik has a one to one correspondence with the Boolean variable
Yik. Note that when yik = 0 and the parameter M is sufficiently large, the associ-
ated constraint becomes redundant; otherwise, it is enforced. Also, Ay ≥ a is the
reformulation of the logic constraints in the discrete space, which can be easily
implemented as described in the work by Williams [41] and discussed in the work
by Raman and Grossmann [23]. The hull reformulation yields,

min Z = f(x)

s.t. x =
∑

i∈DK
νik k ∈ K

g(x) ≤ 0

yikrik(ν
ik/yik) ≤ 0 i ∈ Dk, k ∈ K (HR)

yikx
lo ≤ νik ≤ yikx

up i ∈ Dk, k ∈ K
∑

i∈Dk
yik = 1 k ∈ K

Ay ≥ a

x ∈ Rn, νik ∈ Rn, yik ∈ {0, 1} , i ∈ Dk , k ∈ K
As it can be seen, the HR reformulation is not as intuitive as the BM. However,

there is also a one to one correspondence between (GDP) and (HR). Note that the
size of the problem is increased by introducing a new set of disaggregated variables
νik and new constraints. On the other hand, as proved in Grossmann and Lee [12]
and discussed by Vecchietti, Lee and Grossmann [38], the HR formulation is at
least as tight and generally tighter than the BM when the discrete domain is
relaxed (i.e. 0 ≤ yik ≤ 1, k ∈ K, i ∈ Dk). This is of great importance considering
that the efficiency of the MINLP/MIP solvers heavily rely on the quality of these
relaxations [11].

It is important to note that on the one hand the yik rik (νik/yik) is convex
if rik(x) is a convex function. On the other hand, if rik(x) is nonlinear, the term
requires the use of a suitable approximation to avoid singularities. Sawaya [31]
proposed the following reformulation which yields an exact approximation at yik =
0 and yik = 1 for any value of ε in the interval (0,1), and the feasibility and
convexity of the approximating problem are maintained:
yikrik(ν

ik/yik) ≈ ((1− ε)yik + ε)rik(ν
ik/((1− ε)yik + ε))− εrik(0)(1− yik)

Note that this approximation assumes that rik(x) is defined at x = 0 and that
the inequality yikx

lo ≤ νik ≤ yikx
up is enforced. Clearly, if rik(x) is linear (i.e.

rik(x) = Aikx − bik, with Aik and bik a real matrix and vector, respectively),
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yikrik(ν
ik/yik) does not need to be approximated. In this case yikrik(ν

ik/yik) =
Aikx− bik.

One question that arises is whether the HR relaxation can be improved. This
question was tackled by Sawaya and Grossmann [31] for the linear case and Ruiz
and Grossmann [26] for the nonlinear case. In this paper we review the nonlinear
case since it can be regarded as a generalization of the linear problem.

In [26] it was proved that any nonlinear convex GDP that involves Boolean
and continuous variables can be equivalently formulated as a Disjunctive Con-
vex Program (DCP) that only involves continuous variables. This transformation,
which is equivalent to the one proposed by Sawaya and Grossmann [31] for linear
GDP, consists in first replacing the Boolean variables Yik, i ∈ Dk, k ∈ K inside the
disjunctions by equalities λik = 1, i ∈ Dk, k ∈ K, where λ is a vector of continu-
ous variables whose domain is [0,1], and convert the logical relations ∨

i∈Dk

Yik and

Ω(Y ) = True into the algebraic equations
∑

i∈Dk
λik = 1, k ∈ K and Aλ ≥ a,

respectively. This yields the following disjunctive model:

min Z = f(x)

s.t. g(x) ≤ 0

∨
i∈Dk

[

λik = 1
rik(x) ≤ 0

]

k ∈ K (DCP )

∑

i∈Dk
λik = 1 k ∈ K

Aλ ≥ a

xlo ≤ x ≤ xup

x ∈ Rn , λik ∈ [0, 1]
This equivalent representation means that the theory behind disjunctive con-

vex programming [7] [4] can be exploited to find relaxations for convex GDP.
One of the properties of disjunctive sets is that they can be expressed in many

different equivalent forms. Among these forms, two extreme ones are the Conjunc-
tive Normal Form (CNF), which is expressed as the intersection of elementary
sets, and the Disjunctive Normal Form (DNF), which is expressed as the union
of convex sets. One important result in disjunctive convex programming theory,
as presented in [4][26], is that a set of equivalent disjunctive convex programs go-
ing from the CNF to the DNF can be systematically generated by performing an
operation called ”basic step” that preserves regularity. A Regular Form (RF) is
defined as the form represented by the intersection of the union of convex sets.
Hence, the regular form is:

F =
⋂

k∈K

Sk

where for k ∈ K, Sk =
⋃

i∈Dk

Pi and Pi a convex set for i ∈ Dk.

The following theorem, as first stated in [4], defines a ”basic step” as an oper-
ation that takes a disjunctive set to an equivalent disjunctive set with less number
of conjuncts.
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Theorem 1 Let F be a disjunctive set in regular form. Then F can be brought to

DNF by |K| − 1 recursive applications of the following basic step which preserves

regularity:

For some r, s ∈ K, bring Sr ∩ Ss to DNF by replacing it with:

Srs =
⋃

i∈Dr,j∈Ds

(Pi ∩ Pj)

Although the formulations obtained after the application of basic steps on the
disjunctive sets are equivalent, their continuous relaxations are not. We denote
the continuous relaxation of a disjunctive set F =

⋂

j∈T

Sj in regular form, where

each Sj is a union of convex sets, as the hull-relaxation of F (or h− rel F ). Here
h− rel F :=

⋂

j∈T

clconv Sj and clconv Sj denotes the closure of the convex hull of

Sj . That is, if Sj =
⋃

i∈Qj

Pi, Pi = {x ∈ Rn, ri(x) ≤ 0}, then the clconvSj is given

by:
x =

∑

i∈Qj

νi

λiri(ν
i/λi) ≤ 0, i ∈ Qj

∑

i∈Qj

λi = 1, λi ≥ 0, i ∈ Qj (DISJrel)

|νi| ≤ Lλi i ∈ Qj

where νi are disaggregated variables, λi are continuous variables between 0 and 1
and λiri(ν

i/λi) is the perspective function that is convex in ν and λ if the function
r(x) is also convex [33].
As shown in Theorem 2 [4][26] and illustrated in Figure 2, the application of a
basic step leads to a new disjunctive set whose hull relaxation is at least as tight,
if not tighter, than the original one.

Theorem 2 For i = 1, 2....k, let Fi =
⋂

k∈K

Sk be a sequence of regular forms of

a disjunctive set such that Fi is obtained from Fi−1 by the application of a basic

step, then:

h-rel(Fi) ⊆ h-rel(Fi−1)

It is important to note that every time a basic step is applied, the number of
disjuncts generally increases, leading in principle to the need of a larger number of
binary variables to represent them in the mixed-integer formulation. Based on the
work on disjunctive linear programming [4], the following theorem that establishes
that no increase of the number of 0-1 variables is required is presented in [26].

Theorem 3 Let Z = min{f(x)|x ∈ Fd} be a disjunctive convex program with the

variables x bounded below and above by a large number L and such that Fd is a

disjunctive set in regular form consisting of those x ∈ Rn satisfying
∨

s∈Qr

(rs(x) ≤

0), r ∈ Td and let Fn the disjunctive set obtained after the application of a number

of basic steps on Fd , such that x ∈ Rn satisfies
∨

t∈Qj

(Gt(x) ≤ 0), j ∈ Tn. Then

every j ∈ Tn corresponds to a subset Tdj with Td =
⋃

j∈Tn

Tdj such that the disjunc-

tion in
∨

t∈Qj

(Gt(x) ≤ 0) for a given j is the disjunctive normal form of the set of
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Fig. 2 Impact of the basic steps on the relaxation of an illustrative disjunctive set

disjunctions
∨

s∈Qr

(rs(x) ≤ 0), r ∈ Tdj . Furthermore, let M t
j be the index set of the

inequalities rs(x) ≤ 0 making up the system Gt(x) ≤ 0 for a given j ∈ Tn and

t ∈ Qj . Then, an equivalent mixed-integer nonlinear program can be described as:

min Z = f(x)
s.t.

x =
∑

t∈Qj

νt, j ∈ Tn

λiG
t(νt/λt) ≤ 0, t ∈ Qj , j ∈ Tn

∑

t∈Qj

λt = 1, λt ≥ 0, t ∈ Qj , j ∈ Tn (HRCGDP )

∑

t∈Qj |s∈Mt
j

λt = δrs , s ∈ Qr, r ∈ Td, j ∈ Tn

∑

s∈Qr

δrs = 1, r ∈ Td

|νt| ≤ Lλt, t ∈ Qj , j ∈ Tn

δrs ∈ {0, 1}, t ∈ Qj , j ∈ Tn

Even though the number of discrete variables does not increase, the number
of constraints and continuous variables may increase. This is why it is important
to apply the basic steps in an efficient way. Ruiz and Grossmann [24] developed a



10

set of propositions that led to the development of rules to apply the basic steps.
These are summarized as follows:

Rule 1 : Apply basic steps between those disjunctions with at least one variable
in common.
Rule 2 : The more variables in common two disjunctions have the more the tight-
ening expected.
Rule 3 : A basic step between a half space and a disjunctions with two disjuncts
one of which is a point contained in the facet of the half space will not tighten the
relaxation.
Rule 4 : A smaller increase in the size of the formulation is expected when basic
steps are applied between improper disjunctions and proper disjunctions.

A new rule developed in [26] consists in the inclusion of the objective function
in the disjunctive set previous the application of basic steps. This has shown to
be useful to strengthen the final relaxation of the disjunctive set. Note that this
rule, different from the previous ones, has an effect when the objective function
is nonlinear. In the work by Ruiz and Grossmann [29] it is shown that this relax-
ation is still valid for the non-convex case. This is true considering that when the
objective function of a non-convex GDP (GDPNC) is represented as a constraint
it leads to an equivalent GDP (GDPNC′). This is illustrated in Figure 3.

Fig. 3 Equivalence between (a) GDPNC and (b) GDPNC′

An efficient and more systematic implementation of these rules is described in
the work of Trespalacios and Grossmann [35].

3 Convex continuous relaxations of Non-Convex GDPs

Now we are ready to present one of the main results in the theory of non-convex
GDPs, which is instrumental in the development of a relaxation framework. Namely,
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a hierarchy of relaxations for GDPNC . Let us assume GDPCR0 is obtained by re-
placing the non-convex functions with suitable relaxations as presented in section
2. Also, let us assume that GDPCRi is the convex generalized disjunctive program
whose defining disjunctive set is obtained after applying i basic steps on the dis-
junctive set of GDPCR0 and t is the number of basic steps required to achieve the
DNF. Note that i ≤ t. Then, from Theorem 2 and the main result in section 2.1
the following relationship can be established,

h-rel(FGDPCR

0 ) ⊇ h-rel(FGDPCR

1 )... ⊇ h-rel(FGDPCR

i ) ... ⊇

... ⊇ h-rel(FGDPCR

t ) ⊇ FGDPCR

t ∼ FGDPCR

0 ⊇ FGDPNC ,

where FGDPCR

i denotes the defining disjunctive set of GDPCRi and FGDPNC the
defining disjunctive set of GDPNC . Also, the symbol ∼ denotes equivalence.

Based on the previous results, Figure 4 shows an schematic of the general
framework for finding strong relaxations for non-convex GDP. The framework
consists of two steps. In the Step 1 the non-convex GDP (GDPNC)) is relaxed
as a convex GDP (GDPCR0). In the Step 2 of the framework the convex GDP is
reformulated as an equivalent convex GDP (GDPCRi) by using the basic steps.
The hull-relaxation of the latter is a valid strong relaxation for the initial non-
convex GDP and can be used to obtain tight lower bounds within any solution
method.

Fig. 4 Framework to obtain relaxations for GDPNC

Note that the hull relaxation of the GDP that is obtained after Step 1 (i.e.
GDPCR0) was initially proposed by Lee and Grossmann [18] as a valid relaxation
for non-convex GDPs. This was later extended by Ruiz and Grossmann [29] by
adding Step 2. In the following sections we will show the impact of the second step
on the tightness of the relaxation.

3.1 Computational results for the relaxation framework

In this section we show through a set of numerical examples the benefits of the two
step approach to find relaxations for non-convex GDPs with focus on describing
the impact of the second step on the quality of the relaxations. In the first set
of examples, the first step leads to a linear GDP, which in turn leads to a linear
relaxation, whereas in the second set of examples the first step leads to a nonlinear



12

GDP which in turn leads to a nonlinear relaxation. As it will be shown, the benefits
of this approach to find strong relaxations is invariant to the linear properties of
the system.

3.1.1 Linear Relaxations

The first set of numerical examples consists of 6 problems that frequently arise
in Process Systems [24] for which linear relaxations are proposed. The problems
Ex1Lin and Ex2Lin deal with the optimal design and selection of a reactor.
Ex3Lin and Ex6Lin are related to the optimization of a Heat Exchanger Net-
work with discontinuous investment costs for the exchangers and can be repre-
sented by a non-convex GDP with bilinear and concave constraints [37]. Ex4Lin

deals with the optimization of a Wastewater Treatment Network whose associated
non-convex GDP formulation is a bilinear GDP [10]. Finally, Ex5Lin is a Pooling
Design problem that can be also represented as a bilinear GDP [18].

Table 1 summarizes the characteristics and size of the examples, and Table 2
shows the lower bounds predicted by using only the first step [18] and using the
first and second step.

Table 1 Size and characteristics of the example problems

Boolean Variables Continuous Variables Bilinear Terms Concave Terms
Ex1Lin 2 3 1 0
Ex2Lin 2 5 0 2
Ex3Lin 9 8 4 9
Ex4Lin 9 114 36 0
Ex5Lin 9 76 24 0
Ex6Lin 24 24 11 24

Table 2 Lower bounds of proposed framework

Global Lower Bound Lower Bound) Best Lower Bound
Optimum (Step I) (Step I + Step II) DNF

Ex1Lin -1.01 -1.28 -1.10 -1.10
Ex2Lin 5.56 4.90 5.33 5.33
Ex3Lin 114,384.78 91,671.18 94,925.77 97,858.86
Ex4Lin 1,214.87 400.66 431.90 431.90
Ex5Lin -4,640.00 -5,515.00 -5,468.00 -5,241.00
Ex6Lin 322,122.09 260,235.11 265,361.46 281,191.44

All the examples that were solved show an improvement in the lower bound
prediction when the second step is used. For instance, in Ex5Lin it increased from
-5515 to -5468 which is a direct indication of the reduction of the relaxed feasible
region. The column ”Best Lower Bound” represents the lower bound that would be
obtained by the method if the second step takes the GDP to the DNF form. With
this in mind, it can be used as an indicator of the performance of the proposed set
of rules to apply basic steps. Note that in the Ex1Lin, Ex2Lin and Ex4Lin, the
lower bound obtained using the two step approach is the same as the one obtained
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by solving the relaxed DNF, which is quite remarkable. A further indication of
tightening is shown in section 4 where numerical results of the solution methods
are presented.

3.1.2 NonLinear Relaxations

The second set of numerical examples considers optimization problems that, as
in the first set, are frequently found in Process Systems Engineering for which
nonlinear relaxations are proposed. Ex1NonLin and Ex2NonLin considers the op-
timization of a process network with fixed charges [16]. The problems are non-
convex where the non-convexities arise from the nonlinear inequalities (given by
exponential functions) defining the processes and from the disjunctive nature of
the problem. Ex3NonLin and Ex4NonLin consider the optimization of a reactor
networks with non-elementary kinetics described through posynomial functions.
Finally, Ex5NonLin and Ex6NonLin consider the optimization of a heat exchanger
network model with linear fractional terms.

In Table 3 we show the size and characteristics of the second set of instances
and Table 4 shows the lower bounds predicted by using only the first step [18] and
using the first and second step.

Table 3 Size and characteristics of the example problems

Example Cont. Vars. Boolean Vars. Logic Const. Disj. Const. Global. Const.
Ex1NonLin 5 2 1 1 3
Ex2NonLin 5 2 1 1 3
Ex3NonLin 4 2 1 1 6
Ex4NonLin 4 2 1 1 6
Ex5NonLin 18 2 2 2 21
Ex6NonLin 18 2 2 2 21

Clearly, from Table 4 we observe a significant improvement in the predicted
lower bound in all instances. For example, in Ex2NonLin the two step framework
predicts 17.07 as a lower bound, whereas the approach based on using only the first
step is only able to obtain a bound of 12.38. Moreover, the lower bounds obtained
are close, if not the same as the one we would obtain if the relaxation of the DNF
form is solved. For example, Ex6NonLin, reaches a lower bound of 45281, which
is the same as the maximum attainable.

Table 4 Lower bounds of proposed framework

Global Lower Bound Lower Bound) Best Lower Bound
Optimum (Step I) (Step I + Step II) DNF

Ex1NonLin 18.61 11.85 16.01 16.01
Ex2NonLin 19.48 12.38 17.07 17.07
Ex3NonLin 42.89 -337.50 -320.00 -320.00
Ex4NonLin 76.47 22.50 40.00 40.00
Ex5NonLin 48,531.00 38,729.27 48,230.00 48,531.00
Ex6NonLin 45,460.00 35,460.00 45,281.00 45,281.00
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4 Global Optimization algorithm with improved relaxations

4.1 Logic Based Spatial Branch and Bound

In this section we describe the global optimization method from the work of
Ruiz and Grossmann [24] that is used to test the relaxation framework [29]. This
methodology follows the well known spatial branch and bound method [14], and
is presented below.

I. GDP Reformulation: The first step in the procedure consists of making use of
the framework proposed in section 3 to obtain a tight GDP formulation.
II. Upper Bound and Bound Tightening: After a reformulation is obtained, the
procedure continues by finding an optimal or suboptimal solution of the problem
to obtain an upper bound. This is accomplished by solving the non-convex GDP
reformulated as an MINLP (either as big-M or convex hull formulation) with a
convex optimizer such as DICOPT/GAMS [39] [6]. By using the result obtained
in the previous step, a bound contraction of each continuous variable is performed
[42]. This is done by solving min/max subproblems in which the objective function
is the value of the continuous variable to be contracted subject to the condition
that the objective of the original problem is less than the upper bound.
III. Spatial Branch and Bound: After the relaxed feasible region is contracted, a
spatial branch and bound search procedure is performed. This technique consists of
splitting the feasible region recursively into subproblems that are eliminated when
it is established that their descendents cannot contain a better solution than the
one that has been obtained so far. The splitting is based on a “branching rule”, and
the decision about when to eliminate the subproblems is performed by comparing
the lower bound LB (i.e. the solution of the subproblem) with the upper bound
UB (i.e. the feasible solution with the lowest objective function value obtained so
far). The latter can be obtained by solving an NLP with all the discrete variables
fixed in the corresponding subproblem); if UB − LB < tol, where tol is a given
tolerance, then the node (i.e. subproblem) is eliminated.
From the above outline of the algorithm, there are two features that characterize
the particular branch and bound technique: the branching rule and the way to
choose the next subproblem to split. In the implementation of this work we have
chosen to first branch on the discrete variable which most violates the integrality
condition in the relaxed NLP (i.e. choosing the discrete variable closest to 1/2),
and then on the continuous variables by choosing the one that most violates the
feasible region in the original problem (i.e. the violation to the feasible region is
computed by taking the difference between the non-convex term and the associated
relaxed variable). To generate the subproblems when branching on the continuous
variables, we split their domain by using the bisection method. To choose the node
to branch next, we followed the “Best First” heuristic that consists in taking the
subproblem with lowest LB. The search ends when no more nodes remain in the
queue. Note that this technique converges in a finite number of iterations (i.e.
it guarantees epsilon-global optimality of the solution). See [34] where sufficient
conditions for finite convergence of the spatial branch and bound are presented.
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4.1.1 Computational results for the branch and bound method using the relaxation

framework

The performance of the spatial branch and bound method described in the previ-
ous section is tested on the set of instances described in sections 3.1.1 and 3.1.2.
The results can be seen in Tables 5 and 6. A clear indication of a tighter relaxation
when using step 1 in conjunction with step 2 is observed in the columns Bounding
and Nodes. The latter refers to the number of nodes the algorithm needs to visit
to find the solution whereas the former refers to how much reduction in the upper
and lower bounds of the variables can be predicted. More precisely, the column
Bounding % refers to the upper/lower bound of the variable xi before and after the
bound contraction procedure, respectively. For instance, in Ex1NonLin, the two
step framework is able to reduce the bounds of the variables 35% with respect to
the original bounds, whereas by using only step 1 the bounds are only contracted
13.8%. Note that the strength of the relaxations of the non-convex functions heav-
ily depend on the bounds of the variables on which they are defined, and that is
why it is very important to count on an efficient procedure to find these bounds.
Even though a modest reduction in the number of nodes needed to find to solution
when using nonlinear relaxations may be due to the fact that the problems are
small in size, a significant reduction is observed in the instances that used linear
relaxations. For example in the instance Ex4Lin only 130 nodes were needed when
using the proposed framework as opposed to 408 nodes when only using the first
step. Furthermore, the reduction in the number of nodes leads to a reduction in
the time necessary to find the solution. For example Ex4Lin only requires 115
seconds when using the proposed relaxation as opposed to 176 seconds when using
only the first step of the approach.

Table 5 Performance of the relaxations within a spatial B&B

Step I Step I + Step II
GO Nds Bounding % Time(sec) Nds Bounding % Time(sec)

Ex1Lin -1.01 5 35 2.1 1 38 1.4
Ex2Lin 5.56 1 33 1.0 1 33 1.0
Ex3Lin 114,384.78 10 85 9.0 1 99 5.0
Ex4Lin 1,214.87 408 8 176 130 16 115
Ex5Lin -4,640.00 162 1 89 140 1 93
Ex6Lin 322,122.09 18 98 24 5 99 18

4.2 Logic Based Outer-Approximation

Motivated by the benefits of using the logic based outer approximation approach
to solve convex GDP [37], Bergamini et al. [5] proposed an alternative solution
framework for non-convex GDPs. This is accomplished by solving iteratively re-
duced NLP subproblems to global optimality to obtain upper bounds of the global
optimum and MILP master problems, which are valid outer-approximations of the
original problem to obtain lower bounds. Piecewise linear under and overestima-
tors of non-convex terms are constructed with the property of having zero gap in a
finite set of points. The global optimization of the reduced NLP may be performed
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Table 6 Performance of the relaxations within a spatial B&B

Step I Step I + Step II
GO Nds Bounding % Time(sec) Nds Bounding % Time(sec)

Ex1NonLin 18.61 3 51.3 6 2 67.0 4
Ex2NonLin 19.48 2 40.5 4 2 47.2 4
Ex3NonLin 42.89 2 51.0 7 2 66.0 7
Ex4NonLin 76.46 2 51.0 6 2 66.0 6
Ex5NonLin 48,531.00 3 13.8 15 1 35.0 14
Ex6NonLin 45,460.00 3 7.5 14 1 97 23

by using global solvers for NLPs. Trespalacios and Grossmann [36] proposed an
improvement of this method by generating cuts that strenghten the relaxation of
the non-convex terms in the disjuncts. It is important to note that the quality
of the lower bound inferred by the MILP master problem heavily relies on the
strength of the GDP relaxation and that is why the results presented in this paper
will probably also have a great impact on the performance of the method.

5 Conclusions

In this paper we have presented a review on the state-of-the-art of solution meth-
ods for the global optimization of GDPs. Considering that the performance of
these methods relies on the quality of the relaxations that can be generated, our
focus has been on the discussion of a general framework to find strong relaxations.
We identified two main sources of non-convexities that any methodology to find
relaxations should account for. Firstly, the one arising from the non-convex func-
tions, and secondly, the one arising from the disjunctive set. Research on both
fronts have had and will have a great impact on the quality of these relaxations.
We have described the use of these relaxations within a spatial branch and bound
method and a logic based outer-approximation method. Even though there is a
clear benefit of using stronger relaxations, one key challenge that remains to be
solved is how to generate these relaxations without incurring in a significant in-
crease in the size of the reformulation. With this in mind, new rules and techniques
to apply basic steps or novel cutting plane strategies need to be developed. We
have achieved a significant progress in understanding the theory behind the gener-
ation of these relaxations. However, implementing them efficiently to fully exploit
their potential is still an open problem.
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